node.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. static struct kmem_cache *nat_entry_set_slab;
  26. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  27. {
  28. struct f2fs_nm_info *nm_i = NM_I(sbi);
  29. struct sysinfo val;
  30. unsigned long mem_size = 0;
  31. bool res = false;
  32. si_meminfo(&val);
  33. /* give 25%, 25%, 50% memory for each components respectively */
  34. if (type == FREE_NIDS) {
  35. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
  36. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  37. } else if (type == NAT_ENTRIES) {
  38. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
  39. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  40. } else if (type == DIRTY_DENTS) {
  41. if (sbi->sb->s_bdi->dirty_exceeded)
  42. return false;
  43. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  44. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
  45. }
  46. return res;
  47. }
  48. static void clear_node_page_dirty(struct page *page)
  49. {
  50. struct address_space *mapping = page->mapping;
  51. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  52. unsigned int long flags;
  53. if (PageDirty(page)) {
  54. spin_lock_irqsave(&mapping->tree_lock, flags);
  55. radix_tree_tag_clear(&mapping->page_tree,
  56. page_index(page),
  57. PAGECACHE_TAG_DIRTY);
  58. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  59. clear_page_dirty_for_io(page);
  60. dec_page_count(sbi, F2FS_DIRTY_NODES);
  61. }
  62. ClearPageUptodate(page);
  63. }
  64. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  65. {
  66. pgoff_t index = current_nat_addr(sbi, nid);
  67. return get_meta_page(sbi, index);
  68. }
  69. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  70. {
  71. struct page *src_page;
  72. struct page *dst_page;
  73. pgoff_t src_off;
  74. pgoff_t dst_off;
  75. void *src_addr;
  76. void *dst_addr;
  77. struct f2fs_nm_info *nm_i = NM_I(sbi);
  78. src_off = current_nat_addr(sbi, nid);
  79. dst_off = next_nat_addr(sbi, src_off);
  80. /* get current nat block page with lock */
  81. src_page = get_meta_page(sbi, src_off);
  82. dst_page = grab_meta_page(sbi, dst_off);
  83. f2fs_bug_on(PageDirty(src_page));
  84. src_addr = page_address(src_page);
  85. dst_addr = page_address(dst_page);
  86. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  87. set_page_dirty(dst_page);
  88. f2fs_put_page(src_page, 1);
  89. set_to_next_nat(nm_i, nid);
  90. return dst_page;
  91. }
  92. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  93. {
  94. return radix_tree_lookup(&nm_i->nat_root, n);
  95. }
  96. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  97. nid_t start, unsigned int nr, struct nat_entry **ep)
  98. {
  99. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  100. }
  101. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  102. {
  103. list_del(&e->list);
  104. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  105. nm_i->nat_cnt--;
  106. kmem_cache_free(nat_entry_slab, e);
  107. }
  108. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  109. {
  110. struct f2fs_nm_info *nm_i = NM_I(sbi);
  111. struct nat_entry *e;
  112. int is_cp = 1;
  113. read_lock(&nm_i->nat_tree_lock);
  114. e = __lookup_nat_cache(nm_i, nid);
  115. if (e && !e->checkpointed)
  116. is_cp = 0;
  117. read_unlock(&nm_i->nat_tree_lock);
  118. return is_cp;
  119. }
  120. bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
  121. {
  122. struct f2fs_nm_info *nm_i = NM_I(sbi);
  123. struct nat_entry *e;
  124. bool fsync_done = false;
  125. read_lock(&nm_i->nat_tree_lock);
  126. e = __lookup_nat_cache(nm_i, nid);
  127. if (e)
  128. fsync_done = e->fsync_done;
  129. read_unlock(&nm_i->nat_tree_lock);
  130. return fsync_done;
  131. }
  132. void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
  133. {
  134. struct f2fs_nm_info *nm_i = NM_I(sbi);
  135. struct nat_entry *e;
  136. write_lock(&nm_i->nat_tree_lock);
  137. e = __lookup_nat_cache(nm_i, nid);
  138. if (e)
  139. e->fsync_done = false;
  140. write_unlock(&nm_i->nat_tree_lock);
  141. }
  142. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  143. {
  144. struct nat_entry *new;
  145. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  146. if (!new)
  147. return NULL;
  148. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  149. kmem_cache_free(nat_entry_slab, new);
  150. return NULL;
  151. }
  152. memset(new, 0, sizeof(struct nat_entry));
  153. nat_set_nid(new, nid);
  154. new->checkpointed = true;
  155. list_add_tail(&new->list, &nm_i->nat_entries);
  156. nm_i->nat_cnt++;
  157. return new;
  158. }
  159. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  160. struct f2fs_nat_entry *ne)
  161. {
  162. struct nat_entry *e;
  163. retry:
  164. write_lock(&nm_i->nat_tree_lock);
  165. e = __lookup_nat_cache(nm_i, nid);
  166. if (!e) {
  167. e = grab_nat_entry(nm_i, nid);
  168. if (!e) {
  169. write_unlock(&nm_i->nat_tree_lock);
  170. goto retry;
  171. }
  172. node_info_from_raw_nat(&e->ni, ne);
  173. }
  174. write_unlock(&nm_i->nat_tree_lock);
  175. }
  176. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  177. block_t new_blkaddr, bool fsync_done)
  178. {
  179. struct f2fs_nm_info *nm_i = NM_I(sbi);
  180. struct nat_entry *e;
  181. retry:
  182. write_lock(&nm_i->nat_tree_lock);
  183. e = __lookup_nat_cache(nm_i, ni->nid);
  184. if (!e) {
  185. e = grab_nat_entry(nm_i, ni->nid);
  186. if (!e) {
  187. write_unlock(&nm_i->nat_tree_lock);
  188. goto retry;
  189. }
  190. e->ni = *ni;
  191. f2fs_bug_on(ni->blk_addr == NEW_ADDR);
  192. } else if (new_blkaddr == NEW_ADDR) {
  193. /*
  194. * when nid is reallocated,
  195. * previous nat entry can be remained in nat cache.
  196. * So, reinitialize it with new information.
  197. */
  198. e->ni = *ni;
  199. f2fs_bug_on(ni->blk_addr != NULL_ADDR);
  200. }
  201. /* sanity check */
  202. f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
  203. f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
  204. new_blkaddr == NULL_ADDR);
  205. f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
  206. new_blkaddr == NEW_ADDR);
  207. f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
  208. nat_get_blkaddr(e) != NULL_ADDR &&
  209. new_blkaddr == NEW_ADDR);
  210. /* increment version no as node is removed */
  211. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  212. unsigned char version = nat_get_version(e);
  213. nat_set_version(e, inc_node_version(version));
  214. }
  215. /* change address */
  216. nat_set_blkaddr(e, new_blkaddr);
  217. __set_nat_cache_dirty(nm_i, e);
  218. /* update fsync_mark if its inode nat entry is still alive */
  219. e = __lookup_nat_cache(nm_i, ni->ino);
  220. if (e)
  221. e->fsync_done = fsync_done;
  222. write_unlock(&nm_i->nat_tree_lock);
  223. }
  224. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  225. {
  226. struct f2fs_nm_info *nm_i = NM_I(sbi);
  227. if (available_free_memory(sbi, NAT_ENTRIES))
  228. return 0;
  229. write_lock(&nm_i->nat_tree_lock);
  230. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  231. struct nat_entry *ne;
  232. ne = list_first_entry(&nm_i->nat_entries,
  233. struct nat_entry, list);
  234. __del_from_nat_cache(nm_i, ne);
  235. nr_shrink--;
  236. }
  237. write_unlock(&nm_i->nat_tree_lock);
  238. return nr_shrink;
  239. }
  240. /*
  241. * This function always returns success
  242. */
  243. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  244. {
  245. struct f2fs_nm_info *nm_i = NM_I(sbi);
  246. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  247. struct f2fs_summary_block *sum = curseg->sum_blk;
  248. nid_t start_nid = START_NID(nid);
  249. struct f2fs_nat_block *nat_blk;
  250. struct page *page = NULL;
  251. struct f2fs_nat_entry ne;
  252. struct nat_entry *e;
  253. int i;
  254. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  255. ni->nid = nid;
  256. /* Check nat cache */
  257. read_lock(&nm_i->nat_tree_lock);
  258. e = __lookup_nat_cache(nm_i, nid);
  259. if (e) {
  260. ni->ino = nat_get_ino(e);
  261. ni->blk_addr = nat_get_blkaddr(e);
  262. ni->version = nat_get_version(e);
  263. }
  264. read_unlock(&nm_i->nat_tree_lock);
  265. if (e)
  266. return;
  267. /* Check current segment summary */
  268. mutex_lock(&curseg->curseg_mutex);
  269. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  270. if (i >= 0) {
  271. ne = nat_in_journal(sum, i);
  272. node_info_from_raw_nat(ni, &ne);
  273. }
  274. mutex_unlock(&curseg->curseg_mutex);
  275. if (i >= 0)
  276. goto cache;
  277. /* Fill node_info from nat page */
  278. page = get_current_nat_page(sbi, start_nid);
  279. nat_blk = (struct f2fs_nat_block *)page_address(page);
  280. ne = nat_blk->entries[nid - start_nid];
  281. node_info_from_raw_nat(ni, &ne);
  282. f2fs_put_page(page, 1);
  283. cache:
  284. /* cache nat entry */
  285. cache_nat_entry(NM_I(sbi), nid, &ne);
  286. }
  287. /*
  288. * The maximum depth is four.
  289. * Offset[0] will have raw inode offset.
  290. */
  291. static int get_node_path(struct f2fs_inode_info *fi, long block,
  292. int offset[4], unsigned int noffset[4])
  293. {
  294. const long direct_index = ADDRS_PER_INODE(fi);
  295. const long direct_blks = ADDRS_PER_BLOCK;
  296. const long dptrs_per_blk = NIDS_PER_BLOCK;
  297. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  298. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  299. int n = 0;
  300. int level = 0;
  301. noffset[0] = 0;
  302. if (block < direct_index) {
  303. offset[n] = block;
  304. goto got;
  305. }
  306. block -= direct_index;
  307. if (block < direct_blks) {
  308. offset[n++] = NODE_DIR1_BLOCK;
  309. noffset[n] = 1;
  310. offset[n] = block;
  311. level = 1;
  312. goto got;
  313. }
  314. block -= direct_blks;
  315. if (block < direct_blks) {
  316. offset[n++] = NODE_DIR2_BLOCK;
  317. noffset[n] = 2;
  318. offset[n] = block;
  319. level = 1;
  320. goto got;
  321. }
  322. block -= direct_blks;
  323. if (block < indirect_blks) {
  324. offset[n++] = NODE_IND1_BLOCK;
  325. noffset[n] = 3;
  326. offset[n++] = block / direct_blks;
  327. noffset[n] = 4 + offset[n - 1];
  328. offset[n] = block % direct_blks;
  329. level = 2;
  330. goto got;
  331. }
  332. block -= indirect_blks;
  333. if (block < indirect_blks) {
  334. offset[n++] = NODE_IND2_BLOCK;
  335. noffset[n] = 4 + dptrs_per_blk;
  336. offset[n++] = block / direct_blks;
  337. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  338. offset[n] = block % direct_blks;
  339. level = 2;
  340. goto got;
  341. }
  342. block -= indirect_blks;
  343. if (block < dindirect_blks) {
  344. offset[n++] = NODE_DIND_BLOCK;
  345. noffset[n] = 5 + (dptrs_per_blk * 2);
  346. offset[n++] = block / indirect_blks;
  347. noffset[n] = 6 + (dptrs_per_blk * 2) +
  348. offset[n - 1] * (dptrs_per_blk + 1);
  349. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  350. noffset[n] = 7 + (dptrs_per_blk * 2) +
  351. offset[n - 2] * (dptrs_per_blk + 1) +
  352. offset[n - 1];
  353. offset[n] = block % direct_blks;
  354. level = 3;
  355. goto got;
  356. } else {
  357. BUG();
  358. }
  359. got:
  360. return level;
  361. }
  362. /*
  363. * Caller should call f2fs_put_dnode(dn).
  364. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  365. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  366. * In the case of RDONLY_NODE, we don't need to care about mutex.
  367. */
  368. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  369. {
  370. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  371. struct page *npage[4];
  372. struct page *parent;
  373. int offset[4];
  374. unsigned int noffset[4];
  375. nid_t nids[4];
  376. int level, i;
  377. int err = 0;
  378. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  379. nids[0] = dn->inode->i_ino;
  380. npage[0] = dn->inode_page;
  381. if (!npage[0]) {
  382. npage[0] = get_node_page(sbi, nids[0]);
  383. if (IS_ERR(npage[0]))
  384. return PTR_ERR(npage[0]);
  385. }
  386. parent = npage[0];
  387. if (level != 0)
  388. nids[1] = get_nid(parent, offset[0], true);
  389. dn->inode_page = npage[0];
  390. dn->inode_page_locked = true;
  391. /* get indirect or direct nodes */
  392. for (i = 1; i <= level; i++) {
  393. bool done = false;
  394. if (!nids[i] && mode == ALLOC_NODE) {
  395. /* alloc new node */
  396. if (!alloc_nid(sbi, &(nids[i]))) {
  397. err = -ENOSPC;
  398. goto release_pages;
  399. }
  400. dn->nid = nids[i];
  401. npage[i] = new_node_page(dn, noffset[i], NULL);
  402. if (IS_ERR(npage[i])) {
  403. alloc_nid_failed(sbi, nids[i]);
  404. err = PTR_ERR(npage[i]);
  405. goto release_pages;
  406. }
  407. set_nid(parent, offset[i - 1], nids[i], i == 1);
  408. alloc_nid_done(sbi, nids[i]);
  409. done = true;
  410. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  411. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  412. if (IS_ERR(npage[i])) {
  413. err = PTR_ERR(npage[i]);
  414. goto release_pages;
  415. }
  416. done = true;
  417. }
  418. if (i == 1) {
  419. dn->inode_page_locked = false;
  420. unlock_page(parent);
  421. } else {
  422. f2fs_put_page(parent, 1);
  423. }
  424. if (!done) {
  425. npage[i] = get_node_page(sbi, nids[i]);
  426. if (IS_ERR(npage[i])) {
  427. err = PTR_ERR(npage[i]);
  428. f2fs_put_page(npage[0], 0);
  429. goto release_out;
  430. }
  431. }
  432. if (i < level) {
  433. parent = npage[i];
  434. nids[i + 1] = get_nid(parent, offset[i], false);
  435. }
  436. }
  437. dn->nid = nids[level];
  438. dn->ofs_in_node = offset[level];
  439. dn->node_page = npage[level];
  440. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  441. return 0;
  442. release_pages:
  443. f2fs_put_page(parent, 1);
  444. if (i > 1)
  445. f2fs_put_page(npage[0], 0);
  446. release_out:
  447. dn->inode_page = NULL;
  448. dn->node_page = NULL;
  449. return err;
  450. }
  451. static void truncate_node(struct dnode_of_data *dn)
  452. {
  453. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  454. struct node_info ni;
  455. get_node_info(sbi, dn->nid, &ni);
  456. if (dn->inode->i_blocks == 0) {
  457. f2fs_bug_on(ni.blk_addr != NULL_ADDR);
  458. goto invalidate;
  459. }
  460. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  461. /* Deallocate node address */
  462. invalidate_blocks(sbi, ni.blk_addr);
  463. dec_valid_node_count(sbi, dn->inode);
  464. set_node_addr(sbi, &ni, NULL_ADDR, false);
  465. if (dn->nid == dn->inode->i_ino) {
  466. remove_orphan_inode(sbi, dn->nid);
  467. dec_valid_inode_count(sbi);
  468. } else {
  469. sync_inode_page(dn);
  470. }
  471. invalidate:
  472. clear_node_page_dirty(dn->node_page);
  473. F2FS_SET_SB_DIRT(sbi);
  474. f2fs_put_page(dn->node_page, 1);
  475. invalidate_mapping_pages(NODE_MAPPING(sbi),
  476. dn->node_page->index, dn->node_page->index);
  477. dn->node_page = NULL;
  478. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  479. }
  480. static int truncate_dnode(struct dnode_of_data *dn)
  481. {
  482. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  483. struct page *page;
  484. if (dn->nid == 0)
  485. return 1;
  486. /* get direct node */
  487. page = get_node_page(sbi, dn->nid);
  488. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  489. return 1;
  490. else if (IS_ERR(page))
  491. return PTR_ERR(page);
  492. /* Make dnode_of_data for parameter */
  493. dn->node_page = page;
  494. dn->ofs_in_node = 0;
  495. truncate_data_blocks(dn);
  496. truncate_node(dn);
  497. return 1;
  498. }
  499. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  500. int ofs, int depth)
  501. {
  502. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  503. struct dnode_of_data rdn = *dn;
  504. struct page *page;
  505. struct f2fs_node *rn;
  506. nid_t child_nid;
  507. unsigned int child_nofs;
  508. int freed = 0;
  509. int i, ret;
  510. if (dn->nid == 0)
  511. return NIDS_PER_BLOCK + 1;
  512. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  513. page = get_node_page(sbi, dn->nid);
  514. if (IS_ERR(page)) {
  515. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  516. return PTR_ERR(page);
  517. }
  518. rn = F2FS_NODE(page);
  519. if (depth < 3) {
  520. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  521. child_nid = le32_to_cpu(rn->in.nid[i]);
  522. if (child_nid == 0)
  523. continue;
  524. rdn.nid = child_nid;
  525. ret = truncate_dnode(&rdn);
  526. if (ret < 0)
  527. goto out_err;
  528. set_nid(page, i, 0, false);
  529. }
  530. } else {
  531. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  532. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  533. child_nid = le32_to_cpu(rn->in.nid[i]);
  534. if (child_nid == 0) {
  535. child_nofs += NIDS_PER_BLOCK + 1;
  536. continue;
  537. }
  538. rdn.nid = child_nid;
  539. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  540. if (ret == (NIDS_PER_BLOCK + 1)) {
  541. set_nid(page, i, 0, false);
  542. child_nofs += ret;
  543. } else if (ret < 0 && ret != -ENOENT) {
  544. goto out_err;
  545. }
  546. }
  547. freed = child_nofs;
  548. }
  549. if (!ofs) {
  550. /* remove current indirect node */
  551. dn->node_page = page;
  552. truncate_node(dn);
  553. freed++;
  554. } else {
  555. f2fs_put_page(page, 1);
  556. }
  557. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  558. return freed;
  559. out_err:
  560. f2fs_put_page(page, 1);
  561. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  562. return ret;
  563. }
  564. static int truncate_partial_nodes(struct dnode_of_data *dn,
  565. struct f2fs_inode *ri, int *offset, int depth)
  566. {
  567. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  568. struct page *pages[2];
  569. nid_t nid[3];
  570. nid_t child_nid;
  571. int err = 0;
  572. int i;
  573. int idx = depth - 2;
  574. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  575. if (!nid[0])
  576. return 0;
  577. /* get indirect nodes in the path */
  578. for (i = 0; i < idx + 1; i++) {
  579. /* reference count'll be increased */
  580. pages[i] = get_node_page(sbi, nid[i]);
  581. if (IS_ERR(pages[i])) {
  582. err = PTR_ERR(pages[i]);
  583. idx = i - 1;
  584. goto fail;
  585. }
  586. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  587. }
  588. /* free direct nodes linked to a partial indirect node */
  589. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  590. child_nid = get_nid(pages[idx], i, false);
  591. if (!child_nid)
  592. continue;
  593. dn->nid = child_nid;
  594. err = truncate_dnode(dn);
  595. if (err < 0)
  596. goto fail;
  597. set_nid(pages[idx], i, 0, false);
  598. }
  599. if (offset[idx + 1] == 0) {
  600. dn->node_page = pages[idx];
  601. dn->nid = nid[idx];
  602. truncate_node(dn);
  603. } else {
  604. f2fs_put_page(pages[idx], 1);
  605. }
  606. offset[idx]++;
  607. offset[idx + 1] = 0;
  608. idx--;
  609. fail:
  610. for (i = idx; i >= 0; i--)
  611. f2fs_put_page(pages[i], 1);
  612. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  613. return err;
  614. }
  615. /*
  616. * All the block addresses of data and nodes should be nullified.
  617. */
  618. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  619. {
  620. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  621. int err = 0, cont = 1;
  622. int level, offset[4], noffset[4];
  623. unsigned int nofs = 0;
  624. struct f2fs_inode *ri;
  625. struct dnode_of_data dn;
  626. struct page *page;
  627. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  628. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  629. restart:
  630. page = get_node_page(sbi, inode->i_ino);
  631. if (IS_ERR(page)) {
  632. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  633. return PTR_ERR(page);
  634. }
  635. set_new_dnode(&dn, inode, page, NULL, 0);
  636. unlock_page(page);
  637. ri = F2FS_INODE(page);
  638. switch (level) {
  639. case 0:
  640. case 1:
  641. nofs = noffset[1];
  642. break;
  643. case 2:
  644. nofs = noffset[1];
  645. if (!offset[level - 1])
  646. goto skip_partial;
  647. err = truncate_partial_nodes(&dn, ri, offset, level);
  648. if (err < 0 && err != -ENOENT)
  649. goto fail;
  650. nofs += 1 + NIDS_PER_BLOCK;
  651. break;
  652. case 3:
  653. nofs = 5 + 2 * NIDS_PER_BLOCK;
  654. if (!offset[level - 1])
  655. goto skip_partial;
  656. err = truncate_partial_nodes(&dn, ri, offset, level);
  657. if (err < 0 && err != -ENOENT)
  658. goto fail;
  659. break;
  660. default:
  661. BUG();
  662. }
  663. skip_partial:
  664. while (cont) {
  665. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  666. switch (offset[0]) {
  667. case NODE_DIR1_BLOCK:
  668. case NODE_DIR2_BLOCK:
  669. err = truncate_dnode(&dn);
  670. break;
  671. case NODE_IND1_BLOCK:
  672. case NODE_IND2_BLOCK:
  673. err = truncate_nodes(&dn, nofs, offset[1], 2);
  674. break;
  675. case NODE_DIND_BLOCK:
  676. err = truncate_nodes(&dn, nofs, offset[1], 3);
  677. cont = 0;
  678. break;
  679. default:
  680. BUG();
  681. }
  682. if (err < 0 && err != -ENOENT)
  683. goto fail;
  684. if (offset[1] == 0 &&
  685. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  686. lock_page(page);
  687. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  688. f2fs_put_page(page, 1);
  689. goto restart;
  690. }
  691. f2fs_wait_on_page_writeback(page, NODE);
  692. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  693. set_page_dirty(page);
  694. unlock_page(page);
  695. }
  696. offset[1] = 0;
  697. offset[0]++;
  698. nofs += err;
  699. }
  700. fail:
  701. f2fs_put_page(page, 0);
  702. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  703. return err > 0 ? 0 : err;
  704. }
  705. int truncate_xattr_node(struct inode *inode, struct page *page)
  706. {
  707. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  708. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  709. struct dnode_of_data dn;
  710. struct page *npage;
  711. if (!nid)
  712. return 0;
  713. npage = get_node_page(sbi, nid);
  714. if (IS_ERR(npage))
  715. return PTR_ERR(npage);
  716. F2FS_I(inode)->i_xattr_nid = 0;
  717. /* need to do checkpoint during fsync */
  718. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  719. set_new_dnode(&dn, inode, page, npage, nid);
  720. if (page)
  721. dn.inode_page_locked = true;
  722. truncate_node(&dn);
  723. return 0;
  724. }
  725. /*
  726. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  727. * f2fs_unlock_op().
  728. */
  729. void remove_inode_page(struct inode *inode)
  730. {
  731. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  732. struct page *page;
  733. nid_t ino = inode->i_ino;
  734. struct dnode_of_data dn;
  735. page = get_node_page(sbi, ino);
  736. if (IS_ERR(page))
  737. return;
  738. if (truncate_xattr_node(inode, page)) {
  739. f2fs_put_page(page, 1);
  740. return;
  741. }
  742. /* 0 is possible, after f2fs_new_inode() has failed */
  743. f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
  744. set_new_dnode(&dn, inode, page, page, ino);
  745. truncate_node(&dn);
  746. }
  747. struct page *new_inode_page(struct inode *inode)
  748. {
  749. struct dnode_of_data dn;
  750. /* allocate inode page for new inode */
  751. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  752. /* caller should f2fs_put_page(page, 1); */
  753. return new_node_page(&dn, 0, NULL);
  754. }
  755. struct page *new_node_page(struct dnode_of_data *dn,
  756. unsigned int ofs, struct page *ipage)
  757. {
  758. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  759. struct node_info old_ni, new_ni;
  760. struct page *page;
  761. int err;
  762. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  763. return ERR_PTR(-EPERM);
  764. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  765. if (!page)
  766. return ERR_PTR(-ENOMEM);
  767. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  768. err = -ENOSPC;
  769. goto fail;
  770. }
  771. get_node_info(sbi, dn->nid, &old_ni);
  772. /* Reinitialize old_ni with new node page */
  773. f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
  774. new_ni = old_ni;
  775. new_ni.ino = dn->inode->i_ino;
  776. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  777. f2fs_wait_on_page_writeback(page, NODE);
  778. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  779. set_cold_node(dn->inode, page);
  780. SetPageUptodate(page);
  781. set_page_dirty(page);
  782. if (f2fs_has_xattr_block(ofs))
  783. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  784. dn->node_page = page;
  785. if (ipage)
  786. update_inode(dn->inode, ipage);
  787. else
  788. sync_inode_page(dn);
  789. if (ofs == 0)
  790. inc_valid_inode_count(sbi);
  791. return page;
  792. fail:
  793. clear_node_page_dirty(page);
  794. f2fs_put_page(page, 1);
  795. return ERR_PTR(err);
  796. }
  797. /*
  798. * Caller should do after getting the following values.
  799. * 0: f2fs_put_page(page, 0)
  800. * LOCKED_PAGE: f2fs_put_page(page, 1)
  801. * error: nothing
  802. */
  803. static int read_node_page(struct page *page, int rw)
  804. {
  805. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  806. struct node_info ni;
  807. get_node_info(sbi, page->index, &ni);
  808. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  809. f2fs_put_page(page, 1);
  810. return -ENOENT;
  811. }
  812. if (PageUptodate(page))
  813. return LOCKED_PAGE;
  814. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  815. }
  816. /*
  817. * Readahead a node page
  818. */
  819. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  820. {
  821. struct page *apage;
  822. int err;
  823. apage = find_get_page(NODE_MAPPING(sbi), nid);
  824. if (apage && PageUptodate(apage)) {
  825. f2fs_put_page(apage, 0);
  826. return;
  827. }
  828. f2fs_put_page(apage, 0);
  829. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  830. if (!apage)
  831. return;
  832. err = read_node_page(apage, READA);
  833. if (err == 0)
  834. f2fs_put_page(apage, 0);
  835. else if (err == LOCKED_PAGE)
  836. f2fs_put_page(apage, 1);
  837. }
  838. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  839. {
  840. struct page *page;
  841. int err;
  842. repeat:
  843. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  844. if (!page)
  845. return ERR_PTR(-ENOMEM);
  846. err = read_node_page(page, READ_SYNC);
  847. if (err < 0)
  848. return ERR_PTR(err);
  849. else if (err == LOCKED_PAGE)
  850. goto got_it;
  851. lock_page(page);
  852. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  853. f2fs_put_page(page, 1);
  854. return ERR_PTR(-EIO);
  855. }
  856. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  857. f2fs_put_page(page, 1);
  858. goto repeat;
  859. }
  860. got_it:
  861. return page;
  862. }
  863. /*
  864. * Return a locked page for the desired node page.
  865. * And, readahead MAX_RA_NODE number of node pages.
  866. */
  867. struct page *get_node_page_ra(struct page *parent, int start)
  868. {
  869. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  870. struct blk_plug plug;
  871. struct page *page;
  872. int err, i, end;
  873. nid_t nid;
  874. /* First, try getting the desired direct node. */
  875. nid = get_nid(parent, start, false);
  876. if (!nid)
  877. return ERR_PTR(-ENOENT);
  878. repeat:
  879. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  880. if (!page)
  881. return ERR_PTR(-ENOMEM);
  882. err = read_node_page(page, READ_SYNC);
  883. if (err < 0)
  884. return ERR_PTR(err);
  885. else if (err == LOCKED_PAGE)
  886. goto page_hit;
  887. blk_start_plug(&plug);
  888. /* Then, try readahead for siblings of the desired node */
  889. end = start + MAX_RA_NODE;
  890. end = min(end, NIDS_PER_BLOCK);
  891. for (i = start + 1; i < end; i++) {
  892. nid = get_nid(parent, i, false);
  893. if (!nid)
  894. continue;
  895. ra_node_page(sbi, nid);
  896. }
  897. blk_finish_plug(&plug);
  898. lock_page(page);
  899. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  900. f2fs_put_page(page, 1);
  901. goto repeat;
  902. }
  903. page_hit:
  904. if (unlikely(!PageUptodate(page))) {
  905. f2fs_put_page(page, 1);
  906. return ERR_PTR(-EIO);
  907. }
  908. return page;
  909. }
  910. void sync_inode_page(struct dnode_of_data *dn)
  911. {
  912. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  913. update_inode(dn->inode, dn->node_page);
  914. } else if (dn->inode_page) {
  915. if (!dn->inode_page_locked)
  916. lock_page(dn->inode_page);
  917. update_inode(dn->inode, dn->inode_page);
  918. if (!dn->inode_page_locked)
  919. unlock_page(dn->inode_page);
  920. } else {
  921. update_inode_page(dn->inode);
  922. }
  923. }
  924. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  925. struct writeback_control *wbc)
  926. {
  927. pgoff_t index, end;
  928. struct pagevec pvec;
  929. int step = ino ? 2 : 0;
  930. int nwritten = 0, wrote = 0;
  931. pagevec_init(&pvec, 0);
  932. next_step:
  933. index = 0;
  934. end = LONG_MAX;
  935. while (index <= end) {
  936. int i, nr_pages;
  937. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  938. PAGECACHE_TAG_DIRTY,
  939. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  940. if (nr_pages == 0)
  941. break;
  942. for (i = 0; i < nr_pages; i++) {
  943. struct page *page = pvec.pages[i];
  944. /*
  945. * flushing sequence with step:
  946. * 0. indirect nodes
  947. * 1. dentry dnodes
  948. * 2. file dnodes
  949. */
  950. if (step == 0 && IS_DNODE(page))
  951. continue;
  952. if (step == 1 && (!IS_DNODE(page) ||
  953. is_cold_node(page)))
  954. continue;
  955. if (step == 2 && (!IS_DNODE(page) ||
  956. !is_cold_node(page)))
  957. continue;
  958. /*
  959. * If an fsync mode,
  960. * we should not skip writing node pages.
  961. */
  962. if (ino && ino_of_node(page) == ino)
  963. lock_page(page);
  964. else if (!trylock_page(page))
  965. continue;
  966. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  967. continue_unlock:
  968. unlock_page(page);
  969. continue;
  970. }
  971. if (ino && ino_of_node(page) != ino)
  972. goto continue_unlock;
  973. if (!PageDirty(page)) {
  974. /* someone wrote it for us */
  975. goto continue_unlock;
  976. }
  977. if (!clear_page_dirty_for_io(page))
  978. goto continue_unlock;
  979. /* called by fsync() */
  980. if (ino && IS_DNODE(page)) {
  981. int mark = !is_checkpointed_node(sbi, ino);
  982. set_fsync_mark(page, 1);
  983. if (IS_INODE(page))
  984. set_dentry_mark(page, mark);
  985. nwritten++;
  986. } else {
  987. set_fsync_mark(page, 0);
  988. set_dentry_mark(page, 0);
  989. }
  990. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  991. unlock_page(page);
  992. else
  993. wrote++;
  994. if (--wbc->nr_to_write == 0)
  995. break;
  996. }
  997. pagevec_release(&pvec);
  998. cond_resched();
  999. if (wbc->nr_to_write == 0) {
  1000. step = 2;
  1001. break;
  1002. }
  1003. }
  1004. if (step < 2) {
  1005. step++;
  1006. goto next_step;
  1007. }
  1008. if (wrote)
  1009. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1010. return nwritten;
  1011. }
  1012. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1013. {
  1014. pgoff_t index = 0, end = LONG_MAX;
  1015. struct pagevec pvec;
  1016. int ret2 = 0, ret = 0;
  1017. pagevec_init(&pvec, 0);
  1018. while (index <= end) {
  1019. int i, nr_pages;
  1020. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1021. PAGECACHE_TAG_WRITEBACK,
  1022. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1023. if (nr_pages == 0)
  1024. break;
  1025. for (i = 0; i < nr_pages; i++) {
  1026. struct page *page = pvec.pages[i];
  1027. /* until radix tree lookup accepts end_index */
  1028. if (unlikely(page->index > end))
  1029. continue;
  1030. if (ino && ino_of_node(page) == ino) {
  1031. f2fs_wait_on_page_writeback(page, NODE);
  1032. if (TestClearPageError(page))
  1033. ret = -EIO;
  1034. }
  1035. }
  1036. pagevec_release(&pvec);
  1037. cond_resched();
  1038. }
  1039. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1040. ret2 = -ENOSPC;
  1041. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1042. ret2 = -EIO;
  1043. if (!ret)
  1044. ret = ret2;
  1045. return ret;
  1046. }
  1047. static int f2fs_write_node_page(struct page *page,
  1048. struct writeback_control *wbc)
  1049. {
  1050. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  1051. nid_t nid;
  1052. block_t new_addr;
  1053. struct node_info ni;
  1054. struct f2fs_io_info fio = {
  1055. .type = NODE,
  1056. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1057. };
  1058. trace_f2fs_writepage(page, NODE);
  1059. if (unlikely(sbi->por_doing))
  1060. goto redirty_out;
  1061. if (unlikely(f2fs_cp_error(sbi)))
  1062. goto redirty_out;
  1063. f2fs_wait_on_page_writeback(page, NODE);
  1064. /* get old block addr of this node page */
  1065. nid = nid_of_node(page);
  1066. f2fs_bug_on(page->index != nid);
  1067. get_node_info(sbi, nid, &ni);
  1068. /* This page is already truncated */
  1069. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1070. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1071. unlock_page(page);
  1072. return 0;
  1073. }
  1074. if (wbc->for_reclaim)
  1075. goto redirty_out;
  1076. down_read(&sbi->node_write);
  1077. set_page_writeback(page);
  1078. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1079. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1080. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1081. up_read(&sbi->node_write);
  1082. unlock_page(page);
  1083. return 0;
  1084. redirty_out:
  1085. redirty_page_for_writepage(wbc, page);
  1086. return AOP_WRITEPAGE_ACTIVATE;
  1087. }
  1088. static int f2fs_write_node_pages(struct address_space *mapping,
  1089. struct writeback_control *wbc)
  1090. {
  1091. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1092. long diff;
  1093. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1094. /* balancing f2fs's metadata in background */
  1095. f2fs_balance_fs_bg(sbi);
  1096. /* collect a number of dirty node pages and write together */
  1097. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1098. goto skip_write;
  1099. diff = nr_pages_to_write(sbi, NODE, wbc);
  1100. wbc->sync_mode = WB_SYNC_NONE;
  1101. sync_node_pages(sbi, 0, wbc);
  1102. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1103. return 0;
  1104. skip_write:
  1105. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1106. return 0;
  1107. }
  1108. static int f2fs_set_node_page_dirty(struct page *page)
  1109. {
  1110. struct address_space *mapping = page->mapping;
  1111. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1112. trace_f2fs_set_page_dirty(page, NODE);
  1113. SetPageUptodate(page);
  1114. if (!PageDirty(page)) {
  1115. __set_page_dirty_nobuffers(page);
  1116. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1117. SetPagePrivate(page);
  1118. return 1;
  1119. }
  1120. return 0;
  1121. }
  1122. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1123. unsigned int length)
  1124. {
  1125. struct inode *inode = page->mapping->host;
  1126. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1127. if (PageDirty(page))
  1128. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1129. ClearPagePrivate(page);
  1130. }
  1131. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1132. {
  1133. ClearPagePrivate(page);
  1134. return 1;
  1135. }
  1136. /*
  1137. * Structure of the f2fs node operations
  1138. */
  1139. const struct address_space_operations f2fs_node_aops = {
  1140. .writepage = f2fs_write_node_page,
  1141. .writepages = f2fs_write_node_pages,
  1142. .set_page_dirty = f2fs_set_node_page_dirty,
  1143. .invalidatepage = f2fs_invalidate_node_page,
  1144. .releasepage = f2fs_release_node_page,
  1145. };
  1146. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1147. nid_t n)
  1148. {
  1149. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1150. }
  1151. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1152. struct free_nid *i)
  1153. {
  1154. list_del(&i->list);
  1155. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1156. }
  1157. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1158. {
  1159. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1160. struct free_nid *i;
  1161. struct nat_entry *ne;
  1162. bool allocated = false;
  1163. if (!available_free_memory(sbi, FREE_NIDS))
  1164. return -1;
  1165. /* 0 nid should not be used */
  1166. if (unlikely(nid == 0))
  1167. return 0;
  1168. if (build) {
  1169. /* do not add allocated nids */
  1170. read_lock(&nm_i->nat_tree_lock);
  1171. ne = __lookup_nat_cache(nm_i, nid);
  1172. if (ne &&
  1173. (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
  1174. allocated = true;
  1175. read_unlock(&nm_i->nat_tree_lock);
  1176. if (allocated)
  1177. return 0;
  1178. }
  1179. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1180. i->nid = nid;
  1181. i->state = NID_NEW;
  1182. spin_lock(&nm_i->free_nid_list_lock);
  1183. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1184. spin_unlock(&nm_i->free_nid_list_lock);
  1185. kmem_cache_free(free_nid_slab, i);
  1186. return 0;
  1187. }
  1188. list_add_tail(&i->list, &nm_i->free_nid_list);
  1189. nm_i->fcnt++;
  1190. spin_unlock(&nm_i->free_nid_list_lock);
  1191. return 1;
  1192. }
  1193. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1194. {
  1195. struct free_nid *i;
  1196. bool need_free = false;
  1197. spin_lock(&nm_i->free_nid_list_lock);
  1198. i = __lookup_free_nid_list(nm_i, nid);
  1199. if (i && i->state == NID_NEW) {
  1200. __del_from_free_nid_list(nm_i, i);
  1201. nm_i->fcnt--;
  1202. need_free = true;
  1203. }
  1204. spin_unlock(&nm_i->free_nid_list_lock);
  1205. if (need_free)
  1206. kmem_cache_free(free_nid_slab, i);
  1207. }
  1208. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1209. struct page *nat_page, nid_t start_nid)
  1210. {
  1211. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1212. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1213. block_t blk_addr;
  1214. int i;
  1215. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1216. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1217. if (unlikely(start_nid >= nm_i->max_nid))
  1218. break;
  1219. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1220. f2fs_bug_on(blk_addr == NEW_ADDR);
  1221. if (blk_addr == NULL_ADDR) {
  1222. if (add_free_nid(sbi, start_nid, true) < 0)
  1223. break;
  1224. }
  1225. }
  1226. }
  1227. static void build_free_nids(struct f2fs_sb_info *sbi)
  1228. {
  1229. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1230. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1231. struct f2fs_summary_block *sum = curseg->sum_blk;
  1232. int i = 0;
  1233. nid_t nid = nm_i->next_scan_nid;
  1234. /* Enough entries */
  1235. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1236. return;
  1237. /* readahead nat pages to be scanned */
  1238. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1239. while (1) {
  1240. struct page *page = get_current_nat_page(sbi, nid);
  1241. scan_nat_page(sbi, page, nid);
  1242. f2fs_put_page(page, 1);
  1243. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1244. if (unlikely(nid >= nm_i->max_nid))
  1245. nid = 0;
  1246. if (i++ == FREE_NID_PAGES)
  1247. break;
  1248. }
  1249. /* go to the next free nat pages to find free nids abundantly */
  1250. nm_i->next_scan_nid = nid;
  1251. /* find free nids from current sum_pages */
  1252. mutex_lock(&curseg->curseg_mutex);
  1253. for (i = 0; i < nats_in_cursum(sum); i++) {
  1254. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1255. nid = le32_to_cpu(nid_in_journal(sum, i));
  1256. if (addr == NULL_ADDR)
  1257. add_free_nid(sbi, nid, true);
  1258. else
  1259. remove_free_nid(nm_i, nid);
  1260. }
  1261. mutex_unlock(&curseg->curseg_mutex);
  1262. }
  1263. /*
  1264. * If this function returns success, caller can obtain a new nid
  1265. * from second parameter of this function.
  1266. * The returned nid could be used ino as well as nid when inode is created.
  1267. */
  1268. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1269. {
  1270. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1271. struct free_nid *i = NULL;
  1272. retry:
  1273. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1274. return false;
  1275. spin_lock(&nm_i->free_nid_list_lock);
  1276. /* We should not use stale free nids created by build_free_nids */
  1277. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1278. f2fs_bug_on(list_empty(&nm_i->free_nid_list));
  1279. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1280. if (i->state == NID_NEW)
  1281. break;
  1282. f2fs_bug_on(i->state != NID_NEW);
  1283. *nid = i->nid;
  1284. i->state = NID_ALLOC;
  1285. nm_i->fcnt--;
  1286. spin_unlock(&nm_i->free_nid_list_lock);
  1287. return true;
  1288. }
  1289. spin_unlock(&nm_i->free_nid_list_lock);
  1290. /* Let's scan nat pages and its caches to get free nids */
  1291. mutex_lock(&nm_i->build_lock);
  1292. build_free_nids(sbi);
  1293. mutex_unlock(&nm_i->build_lock);
  1294. goto retry;
  1295. }
  1296. /*
  1297. * alloc_nid() should be called prior to this function.
  1298. */
  1299. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1300. {
  1301. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1302. struct free_nid *i;
  1303. spin_lock(&nm_i->free_nid_list_lock);
  1304. i = __lookup_free_nid_list(nm_i, nid);
  1305. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1306. __del_from_free_nid_list(nm_i, i);
  1307. spin_unlock(&nm_i->free_nid_list_lock);
  1308. kmem_cache_free(free_nid_slab, i);
  1309. }
  1310. /*
  1311. * alloc_nid() should be called prior to this function.
  1312. */
  1313. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1314. {
  1315. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1316. struct free_nid *i;
  1317. bool need_free = false;
  1318. if (!nid)
  1319. return;
  1320. spin_lock(&nm_i->free_nid_list_lock);
  1321. i = __lookup_free_nid_list(nm_i, nid);
  1322. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1323. if (!available_free_memory(sbi, FREE_NIDS)) {
  1324. __del_from_free_nid_list(nm_i, i);
  1325. need_free = true;
  1326. } else {
  1327. i->state = NID_NEW;
  1328. nm_i->fcnt++;
  1329. }
  1330. spin_unlock(&nm_i->free_nid_list_lock);
  1331. if (need_free)
  1332. kmem_cache_free(free_nid_slab, i);
  1333. }
  1334. void recover_inline_xattr(struct inode *inode, struct page *page)
  1335. {
  1336. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1337. void *src_addr, *dst_addr;
  1338. size_t inline_size;
  1339. struct page *ipage;
  1340. struct f2fs_inode *ri;
  1341. ipage = get_node_page(sbi, inode->i_ino);
  1342. f2fs_bug_on(IS_ERR(ipage));
  1343. ri = F2FS_INODE(page);
  1344. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1345. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1346. goto update_inode;
  1347. }
  1348. dst_addr = inline_xattr_addr(ipage);
  1349. src_addr = inline_xattr_addr(page);
  1350. inline_size = inline_xattr_size(inode);
  1351. f2fs_wait_on_page_writeback(ipage, NODE);
  1352. memcpy(dst_addr, src_addr, inline_size);
  1353. update_inode:
  1354. update_inode(inode, ipage);
  1355. f2fs_put_page(ipage, 1);
  1356. }
  1357. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1358. {
  1359. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1360. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1361. nid_t new_xnid = nid_of_node(page);
  1362. struct node_info ni;
  1363. /* 1: invalidate the previous xattr nid */
  1364. if (!prev_xnid)
  1365. goto recover_xnid;
  1366. /* Deallocate node address */
  1367. get_node_info(sbi, prev_xnid, &ni);
  1368. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  1369. invalidate_blocks(sbi, ni.blk_addr);
  1370. dec_valid_node_count(sbi, inode);
  1371. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1372. recover_xnid:
  1373. /* 2: allocate new xattr nid */
  1374. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1375. f2fs_bug_on(1);
  1376. remove_free_nid(NM_I(sbi), new_xnid);
  1377. get_node_info(sbi, new_xnid, &ni);
  1378. ni.ino = inode->i_ino;
  1379. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1380. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1381. /* 3: update xattr blkaddr */
  1382. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1383. set_node_addr(sbi, &ni, blkaddr, false);
  1384. update_inode_page(inode);
  1385. }
  1386. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1387. {
  1388. struct f2fs_inode *src, *dst;
  1389. nid_t ino = ino_of_node(page);
  1390. struct node_info old_ni, new_ni;
  1391. struct page *ipage;
  1392. get_node_info(sbi, ino, &old_ni);
  1393. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1394. return -EINVAL;
  1395. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1396. if (!ipage)
  1397. return -ENOMEM;
  1398. /* Should not use this inode from free nid list */
  1399. remove_free_nid(NM_I(sbi), ino);
  1400. SetPageUptodate(ipage);
  1401. fill_node_footer(ipage, ino, ino, 0, true);
  1402. src = F2FS_INODE(page);
  1403. dst = F2FS_INODE(ipage);
  1404. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1405. dst->i_size = 0;
  1406. dst->i_blocks = cpu_to_le64(1);
  1407. dst->i_links = cpu_to_le32(1);
  1408. dst->i_xattr_nid = 0;
  1409. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1410. new_ni = old_ni;
  1411. new_ni.ino = ino;
  1412. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1413. WARN_ON(1);
  1414. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1415. inc_valid_inode_count(sbi);
  1416. set_page_dirty(ipage);
  1417. f2fs_put_page(ipage, 1);
  1418. return 0;
  1419. }
  1420. /*
  1421. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1422. * these pre-read pages are allocated in bd_inode's mapping tree.
  1423. */
  1424. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
  1425. int start, int nrpages)
  1426. {
  1427. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1428. struct address_space *mapping = inode->i_mapping;
  1429. int i, page_idx = start;
  1430. struct f2fs_io_info fio = {
  1431. .type = META,
  1432. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1433. };
  1434. for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
  1435. /* alloc page in bd_inode for reading node summary info */
  1436. pages[i] = grab_cache_page(mapping, page_idx);
  1437. if (!pages[i])
  1438. break;
  1439. f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
  1440. }
  1441. f2fs_submit_merged_bio(sbi, META, READ);
  1442. return i;
  1443. }
  1444. int restore_node_summary(struct f2fs_sb_info *sbi,
  1445. unsigned int segno, struct f2fs_summary_block *sum)
  1446. {
  1447. struct f2fs_node *rn;
  1448. struct f2fs_summary *sum_entry;
  1449. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1450. block_t addr;
  1451. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  1452. struct page *pages[bio_blocks];
  1453. int i, idx, last_offset, nrpages, err = 0;
  1454. /* scan the node segment */
  1455. last_offset = sbi->blocks_per_seg;
  1456. addr = START_BLOCK(sbi, segno);
  1457. sum_entry = &sum->entries[0];
  1458. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1459. nrpages = min(last_offset - i, bio_blocks);
  1460. /* readahead node pages */
  1461. nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
  1462. if (!nrpages)
  1463. return -ENOMEM;
  1464. for (idx = 0; idx < nrpages; idx++) {
  1465. if (err)
  1466. goto skip;
  1467. lock_page(pages[idx]);
  1468. if (unlikely(!PageUptodate(pages[idx]))) {
  1469. err = -EIO;
  1470. } else {
  1471. rn = F2FS_NODE(pages[idx]);
  1472. sum_entry->nid = rn->footer.nid;
  1473. sum_entry->version = 0;
  1474. sum_entry->ofs_in_node = 0;
  1475. sum_entry++;
  1476. }
  1477. unlock_page(pages[idx]);
  1478. skip:
  1479. page_cache_release(pages[idx]);
  1480. }
  1481. invalidate_mapping_pages(inode->i_mapping, addr,
  1482. addr + nrpages);
  1483. }
  1484. return err;
  1485. }
  1486. static struct nat_entry_set *grab_nat_entry_set(void)
  1487. {
  1488. struct nat_entry_set *nes =
  1489. f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  1490. nes->entry_cnt = 0;
  1491. INIT_LIST_HEAD(&nes->set_list);
  1492. INIT_LIST_HEAD(&nes->entry_list);
  1493. return nes;
  1494. }
  1495. static void release_nat_entry_set(struct nat_entry_set *nes,
  1496. struct f2fs_nm_info *nm_i)
  1497. {
  1498. f2fs_bug_on(!list_empty(&nes->entry_list));
  1499. nm_i->dirty_nat_cnt -= nes->entry_cnt;
  1500. list_del(&nes->set_list);
  1501. kmem_cache_free(nat_entry_set_slab, nes);
  1502. }
  1503. static void adjust_nat_entry_set(struct nat_entry_set *nes,
  1504. struct list_head *head)
  1505. {
  1506. struct nat_entry_set *next = nes;
  1507. if (list_is_last(&nes->set_list, head))
  1508. return;
  1509. list_for_each_entry_continue(next, head, set_list)
  1510. if (nes->entry_cnt <= next->entry_cnt)
  1511. break;
  1512. list_move_tail(&nes->set_list, &next->set_list);
  1513. }
  1514. static void add_nat_entry(struct nat_entry *ne, struct list_head *head)
  1515. {
  1516. struct nat_entry_set *nes;
  1517. nid_t start_nid = START_NID(ne->ni.nid);
  1518. list_for_each_entry(nes, head, set_list) {
  1519. if (nes->start_nid == start_nid) {
  1520. list_move_tail(&ne->list, &nes->entry_list);
  1521. nes->entry_cnt++;
  1522. adjust_nat_entry_set(nes, head);
  1523. return;
  1524. }
  1525. }
  1526. nes = grab_nat_entry_set();
  1527. nes->start_nid = start_nid;
  1528. list_move_tail(&ne->list, &nes->entry_list);
  1529. nes->entry_cnt++;
  1530. list_add(&nes->set_list, head);
  1531. }
  1532. static void merge_nats_in_set(struct f2fs_sb_info *sbi)
  1533. {
  1534. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1535. struct list_head *dirty_list = &nm_i->dirty_nat_entries;
  1536. struct list_head *set_list = &nm_i->nat_entry_set;
  1537. struct nat_entry *ne, *tmp;
  1538. write_lock(&nm_i->nat_tree_lock);
  1539. list_for_each_entry_safe(ne, tmp, dirty_list, list) {
  1540. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1541. continue;
  1542. add_nat_entry(ne, set_list);
  1543. nm_i->dirty_nat_cnt++;
  1544. }
  1545. write_unlock(&nm_i->nat_tree_lock);
  1546. }
  1547. static bool __has_cursum_space(struct f2fs_summary_block *sum, int size)
  1548. {
  1549. if (nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES)
  1550. return true;
  1551. else
  1552. return false;
  1553. }
  1554. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1555. {
  1556. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1557. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1558. struct f2fs_summary_block *sum = curseg->sum_blk;
  1559. int i;
  1560. mutex_lock(&curseg->curseg_mutex);
  1561. for (i = 0; i < nats_in_cursum(sum); i++) {
  1562. struct nat_entry *ne;
  1563. struct f2fs_nat_entry raw_ne;
  1564. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1565. raw_ne = nat_in_journal(sum, i);
  1566. retry:
  1567. write_lock(&nm_i->nat_tree_lock);
  1568. ne = __lookup_nat_cache(nm_i, nid);
  1569. if (ne)
  1570. goto found;
  1571. ne = grab_nat_entry(nm_i, nid);
  1572. if (!ne) {
  1573. write_unlock(&nm_i->nat_tree_lock);
  1574. goto retry;
  1575. }
  1576. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1577. found:
  1578. __set_nat_cache_dirty(nm_i, ne);
  1579. write_unlock(&nm_i->nat_tree_lock);
  1580. }
  1581. update_nats_in_cursum(sum, -i);
  1582. mutex_unlock(&curseg->curseg_mutex);
  1583. }
  1584. /*
  1585. * This function is called during the checkpointing process.
  1586. */
  1587. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1588. {
  1589. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1590. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1591. struct f2fs_summary_block *sum = curseg->sum_blk;
  1592. struct nat_entry_set *nes, *tmp;
  1593. struct list_head *head = &nm_i->nat_entry_set;
  1594. bool to_journal = true;
  1595. /* merge nat entries of dirty list to nat entry set temporarily */
  1596. merge_nats_in_set(sbi);
  1597. /*
  1598. * if there are no enough space in journal to store dirty nat
  1599. * entries, remove all entries from journal and merge them
  1600. * into nat entry set.
  1601. */
  1602. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt)) {
  1603. remove_nats_in_journal(sbi);
  1604. /*
  1605. * merge nat entries of dirty list to nat entry set temporarily
  1606. */
  1607. merge_nats_in_set(sbi);
  1608. }
  1609. if (!nm_i->dirty_nat_cnt)
  1610. return;
  1611. /*
  1612. * there are two steps to flush nat entries:
  1613. * #1, flush nat entries to journal in current hot data summary block.
  1614. * #2, flush nat entries to nat page.
  1615. */
  1616. list_for_each_entry_safe(nes, tmp, head, set_list) {
  1617. struct f2fs_nat_block *nat_blk;
  1618. struct nat_entry *ne, *cur;
  1619. struct page *page;
  1620. nid_t start_nid = nes->start_nid;
  1621. if (to_journal && !__has_cursum_space(sum, nes->entry_cnt))
  1622. to_journal = false;
  1623. if (to_journal) {
  1624. mutex_lock(&curseg->curseg_mutex);
  1625. } else {
  1626. page = get_next_nat_page(sbi, start_nid);
  1627. nat_blk = page_address(page);
  1628. f2fs_bug_on(!nat_blk);
  1629. }
  1630. /* flush dirty nats in nat entry set */
  1631. list_for_each_entry_safe(ne, cur, &nes->entry_list, list) {
  1632. struct f2fs_nat_entry *raw_ne;
  1633. nid_t nid = nat_get_nid(ne);
  1634. int offset;
  1635. if (to_journal) {
  1636. offset = lookup_journal_in_cursum(sum,
  1637. NAT_JOURNAL, nid, 1);
  1638. f2fs_bug_on(offset < 0);
  1639. raw_ne = &nat_in_journal(sum, offset);
  1640. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1641. } else {
  1642. raw_ne = &nat_blk->entries[nid - start_nid];
  1643. }
  1644. raw_nat_from_node_info(raw_ne, &ne->ni);
  1645. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1646. add_free_nid(sbi, nid, false) <= 0) {
  1647. write_lock(&nm_i->nat_tree_lock);
  1648. __del_from_nat_cache(nm_i, ne);
  1649. write_unlock(&nm_i->nat_tree_lock);
  1650. } else {
  1651. write_lock(&nm_i->nat_tree_lock);
  1652. __clear_nat_cache_dirty(nm_i, ne);
  1653. write_unlock(&nm_i->nat_tree_lock);
  1654. }
  1655. }
  1656. if (to_journal)
  1657. mutex_unlock(&curseg->curseg_mutex);
  1658. else
  1659. f2fs_put_page(page, 1);
  1660. release_nat_entry_set(nes, nm_i);
  1661. }
  1662. f2fs_bug_on(!list_empty(head));
  1663. f2fs_bug_on(nm_i->dirty_nat_cnt);
  1664. }
  1665. static int init_node_manager(struct f2fs_sb_info *sbi)
  1666. {
  1667. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1668. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1669. unsigned char *version_bitmap;
  1670. unsigned int nat_segs, nat_blocks;
  1671. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1672. /* segment_count_nat includes pair segment so divide to 2. */
  1673. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1674. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1675. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1676. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1677. nm_i->available_nids = nm_i->max_nid - 3;
  1678. nm_i->fcnt = 0;
  1679. nm_i->nat_cnt = 0;
  1680. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1681. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1682. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1683. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1684. INIT_LIST_HEAD(&nm_i->nat_entries);
  1685. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1686. INIT_LIST_HEAD(&nm_i->nat_entry_set);
  1687. mutex_init(&nm_i->build_lock);
  1688. spin_lock_init(&nm_i->free_nid_list_lock);
  1689. rwlock_init(&nm_i->nat_tree_lock);
  1690. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1691. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1692. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1693. if (!version_bitmap)
  1694. return -EFAULT;
  1695. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1696. GFP_KERNEL);
  1697. if (!nm_i->nat_bitmap)
  1698. return -ENOMEM;
  1699. return 0;
  1700. }
  1701. int build_node_manager(struct f2fs_sb_info *sbi)
  1702. {
  1703. int err;
  1704. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1705. if (!sbi->nm_info)
  1706. return -ENOMEM;
  1707. err = init_node_manager(sbi);
  1708. if (err)
  1709. return err;
  1710. build_free_nids(sbi);
  1711. return 0;
  1712. }
  1713. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1714. {
  1715. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1716. struct free_nid *i, *next_i;
  1717. struct nat_entry *natvec[NATVEC_SIZE];
  1718. nid_t nid = 0;
  1719. unsigned int found;
  1720. if (!nm_i)
  1721. return;
  1722. /* destroy free nid list */
  1723. spin_lock(&nm_i->free_nid_list_lock);
  1724. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1725. f2fs_bug_on(i->state == NID_ALLOC);
  1726. __del_from_free_nid_list(nm_i, i);
  1727. nm_i->fcnt--;
  1728. spin_unlock(&nm_i->free_nid_list_lock);
  1729. kmem_cache_free(free_nid_slab, i);
  1730. spin_lock(&nm_i->free_nid_list_lock);
  1731. }
  1732. f2fs_bug_on(nm_i->fcnt);
  1733. spin_unlock(&nm_i->free_nid_list_lock);
  1734. /* destroy nat cache */
  1735. write_lock(&nm_i->nat_tree_lock);
  1736. while ((found = __gang_lookup_nat_cache(nm_i,
  1737. nid, NATVEC_SIZE, natvec))) {
  1738. unsigned idx;
  1739. nid = nat_get_nid(natvec[found - 1]) + 1;
  1740. for (idx = 0; idx < found; idx++)
  1741. __del_from_nat_cache(nm_i, natvec[idx]);
  1742. }
  1743. f2fs_bug_on(nm_i->nat_cnt);
  1744. write_unlock(&nm_i->nat_tree_lock);
  1745. kfree(nm_i->nat_bitmap);
  1746. sbi->nm_info = NULL;
  1747. kfree(nm_i);
  1748. }
  1749. int __init create_node_manager_caches(void)
  1750. {
  1751. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1752. sizeof(struct nat_entry));
  1753. if (!nat_entry_slab)
  1754. goto fail;
  1755. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1756. sizeof(struct free_nid));
  1757. if (!free_nid_slab)
  1758. goto destory_nat_entry;
  1759. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1760. sizeof(struct nat_entry_set));
  1761. if (!nat_entry_set_slab)
  1762. goto destory_free_nid;
  1763. return 0;
  1764. destory_free_nid:
  1765. kmem_cache_destroy(free_nid_slab);
  1766. destory_nat_entry:
  1767. kmem_cache_destroy(nat_entry_slab);
  1768. fail:
  1769. return -ENOMEM;
  1770. }
  1771. void destroy_node_manager_caches(void)
  1772. {
  1773. kmem_cache_destroy(nat_entry_set_slab);
  1774. kmem_cache_destroy(free_nid_slab);
  1775. kmem_cache_destroy(nat_entry_slab);
  1776. }