sdma_v3_0.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  50. {
  51. SDMA0_REGISTER_OFFSET,
  52. SDMA1_REGISTER_OFFSET
  53. };
  54. static const u32 golden_settings_tonga_a11[] =
  55. {
  56. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  58. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  59. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  60. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  61. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  62. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  63. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  65. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  66. };
  67. static const u32 tonga_mgcg_cgcg_init[] =
  68. {
  69. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  70. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  71. };
  72. static const u32 cz_golden_settings_a11[] =
  73. {
  74. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  75. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  76. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  77. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  78. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  79. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  80. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  81. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  82. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  83. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  84. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  85. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  86. };
  87. static const u32 cz_mgcg_cgcg_init[] =
  88. {
  89. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  90. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  91. };
  92. /*
  93. * sDMA - System DMA
  94. * Starting with CIK, the GPU has new asynchronous
  95. * DMA engines. These engines are used for compute
  96. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  97. * and each one supports 1 ring buffer used for gfx
  98. * and 2 queues used for compute.
  99. *
  100. * The programming model is very similar to the CP
  101. * (ring buffer, IBs, etc.), but sDMA has it's own
  102. * packet format that is different from the PM4 format
  103. * used by the CP. sDMA supports copying data, writing
  104. * embedded data, solid fills, and a number of other
  105. * things. It also has support for tiling/detiling of
  106. * buffers.
  107. */
  108. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  109. {
  110. switch (adev->asic_type) {
  111. case CHIP_TONGA:
  112. amdgpu_program_register_sequence(adev,
  113. tonga_mgcg_cgcg_init,
  114. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  115. amdgpu_program_register_sequence(adev,
  116. golden_settings_tonga_a11,
  117. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  118. break;
  119. case CHIP_CARRIZO:
  120. amdgpu_program_register_sequence(adev,
  121. cz_mgcg_cgcg_init,
  122. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  123. amdgpu_program_register_sequence(adev,
  124. cz_golden_settings_a11,
  125. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  126. break;
  127. default:
  128. break;
  129. }
  130. }
  131. /**
  132. * sdma_v3_0_init_microcode - load ucode images from disk
  133. *
  134. * @adev: amdgpu_device pointer
  135. *
  136. * Use the firmware interface to load the ucode images into
  137. * the driver (not loaded into hw).
  138. * Returns 0 on success, error on failure.
  139. */
  140. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  141. {
  142. const char *chip_name;
  143. char fw_name[30];
  144. int err, i;
  145. struct amdgpu_firmware_info *info = NULL;
  146. const struct common_firmware_header *header = NULL;
  147. DRM_DEBUG("\n");
  148. switch (adev->asic_type) {
  149. case CHIP_TONGA:
  150. chip_name = "tonga";
  151. break;
  152. case CHIP_CARRIZO:
  153. chip_name = "carrizo";
  154. break;
  155. default: BUG();
  156. }
  157. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  158. if (i == 0)
  159. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  160. else
  161. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  162. err = request_firmware(&adev->sdma[i].fw, fw_name, adev->dev);
  163. if (err)
  164. goto out;
  165. err = amdgpu_ucode_validate(adev->sdma[i].fw);
  166. if (err)
  167. goto out;
  168. if (adev->firmware.smu_load) {
  169. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  170. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  171. info->fw = adev->sdma[i].fw;
  172. header = (const struct common_firmware_header *)info->fw->data;
  173. adev->firmware.fw_size +=
  174. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  175. }
  176. }
  177. out:
  178. if (err) {
  179. printk(KERN_ERR
  180. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  181. fw_name);
  182. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  183. release_firmware(adev->sdma[i].fw);
  184. adev->sdma[i].fw = NULL;
  185. }
  186. }
  187. return err;
  188. }
  189. /**
  190. * sdma_v3_0_ring_get_rptr - get the current read pointer
  191. *
  192. * @ring: amdgpu ring pointer
  193. *
  194. * Get the current rptr from the hardware (VI+).
  195. */
  196. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  197. {
  198. u32 rptr;
  199. /* XXX check if swapping is necessary on BE */
  200. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  201. return rptr;
  202. }
  203. /**
  204. * sdma_v3_0_ring_get_wptr - get the current write pointer
  205. *
  206. * @ring: amdgpu ring pointer
  207. *
  208. * Get the current wptr from the hardware (VI+).
  209. */
  210. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  211. {
  212. struct amdgpu_device *adev = ring->adev;
  213. u32 wptr;
  214. if (ring->use_doorbell) {
  215. /* XXX check if swapping is necessary on BE */
  216. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  217. } else {
  218. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  219. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  220. }
  221. return wptr;
  222. }
  223. /**
  224. * sdma_v3_0_ring_set_wptr - commit the write pointer
  225. *
  226. * @ring: amdgpu ring pointer
  227. *
  228. * Write the wptr back to the hardware (VI+).
  229. */
  230. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  231. {
  232. struct amdgpu_device *adev = ring->adev;
  233. if (ring->use_doorbell) {
  234. /* XXX check if swapping is necessary on BE */
  235. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  236. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  237. } else {
  238. int me = (ring == &ring->adev->sdma[0].ring) ? 0 : 1;
  239. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  240. }
  241. }
  242. /**
  243. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  244. *
  245. * @ring: amdgpu ring pointer
  246. * @ib: IB object to schedule
  247. *
  248. * Schedule an IB in the DMA ring (VI).
  249. */
  250. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  251. struct amdgpu_ib *ib)
  252. {
  253. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  254. u32 next_rptr = ring->wptr + 5;
  255. while ((next_rptr & 7) != 2)
  256. next_rptr++;
  257. next_rptr += 6;
  258. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  259. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  260. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  261. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  262. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  263. amdgpu_ring_write(ring, next_rptr);
  264. /* IB packet must end on a 8 DW boundary */
  265. while ((ring->wptr & 7) != 2)
  266. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_NOP));
  267. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  268. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  269. /* base must be 32 byte aligned */
  270. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  271. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  272. amdgpu_ring_write(ring, ib->length_dw);
  273. amdgpu_ring_write(ring, 0);
  274. amdgpu_ring_write(ring, 0);
  275. }
  276. /**
  277. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  278. *
  279. * @ring: amdgpu ring pointer
  280. *
  281. * Emit an hdp flush packet on the requested DMA ring.
  282. */
  283. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  284. {
  285. u32 ref_and_mask = 0;
  286. if (ring == &ring->adev->sdma[0].ring)
  287. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  288. else
  289. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  290. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  291. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  292. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  293. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  294. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  295. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  296. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  297. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  298. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  299. }
  300. /**
  301. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  302. *
  303. * @ring: amdgpu ring pointer
  304. * @fence: amdgpu fence object
  305. *
  306. * Add a DMA fence packet to the ring to write
  307. * the fence seq number and DMA trap packet to generate
  308. * an interrupt if needed (VI).
  309. */
  310. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  311. bool write64bits)
  312. {
  313. /* write the fence */
  314. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  315. amdgpu_ring_write(ring, lower_32_bits(addr));
  316. amdgpu_ring_write(ring, upper_32_bits(addr));
  317. amdgpu_ring_write(ring, lower_32_bits(seq));
  318. /* optionally write high bits as well */
  319. if (write64bits) {
  320. addr += 4;
  321. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  322. amdgpu_ring_write(ring, lower_32_bits(addr));
  323. amdgpu_ring_write(ring, upper_32_bits(addr));
  324. amdgpu_ring_write(ring, upper_32_bits(seq));
  325. }
  326. /* generate an interrupt */
  327. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  328. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  329. }
  330. /**
  331. * sdma_v3_0_ring_emit_semaphore - emit a semaphore on the dma ring
  332. *
  333. * @ring: amdgpu_ring structure holding ring information
  334. * @semaphore: amdgpu semaphore object
  335. * @emit_wait: wait or signal semaphore
  336. *
  337. * Add a DMA semaphore packet to the ring wait on or signal
  338. * other rings (VI).
  339. */
  340. static bool sdma_v3_0_ring_emit_semaphore(struct amdgpu_ring *ring,
  341. struct amdgpu_semaphore *semaphore,
  342. bool emit_wait)
  343. {
  344. u64 addr = semaphore->gpu_addr;
  345. u32 sig = emit_wait ? 0 : 1;
  346. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SEM) |
  347. SDMA_PKT_SEMAPHORE_HEADER_SIGNAL(sig));
  348. amdgpu_ring_write(ring, lower_32_bits(addr) & 0xfffffff8);
  349. amdgpu_ring_write(ring, upper_32_bits(addr));
  350. return true;
  351. }
  352. /**
  353. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  354. *
  355. * @adev: amdgpu_device pointer
  356. *
  357. * Stop the gfx async dma ring buffers (VI).
  358. */
  359. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  360. {
  361. struct amdgpu_ring *sdma0 = &adev->sdma[0].ring;
  362. struct amdgpu_ring *sdma1 = &adev->sdma[1].ring;
  363. u32 rb_cntl, ib_cntl;
  364. int i;
  365. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  366. (adev->mman.buffer_funcs_ring == sdma1))
  367. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  368. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  369. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  370. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  371. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  372. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  373. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  374. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  375. }
  376. sdma0->ready = false;
  377. sdma1->ready = false;
  378. }
  379. /**
  380. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  381. *
  382. * @adev: amdgpu_device pointer
  383. *
  384. * Stop the compute async dma queues (VI).
  385. */
  386. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  387. {
  388. /* XXX todo */
  389. }
  390. /**
  391. * sdma_v3_0_enable - stop the async dma engines
  392. *
  393. * @adev: amdgpu_device pointer
  394. * @enable: enable/disable the DMA MEs.
  395. *
  396. * Halt or unhalt the async dma engines (VI).
  397. */
  398. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  399. {
  400. u32 f32_cntl;
  401. int i;
  402. if (enable == false) {
  403. sdma_v3_0_gfx_stop(adev);
  404. sdma_v3_0_rlc_stop(adev);
  405. }
  406. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  407. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  408. if (enable)
  409. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  410. else
  411. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  412. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  413. }
  414. }
  415. /**
  416. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  417. *
  418. * @adev: amdgpu_device pointer
  419. *
  420. * Set up the gfx DMA ring buffers and enable them (VI).
  421. * Returns 0 for success, error for failure.
  422. */
  423. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  424. {
  425. struct amdgpu_ring *ring;
  426. u32 rb_cntl, ib_cntl;
  427. u32 rb_bufsz;
  428. u32 wb_offset;
  429. u32 doorbell;
  430. int i, j, r;
  431. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  432. ring = &adev->sdma[i].ring;
  433. wb_offset = (ring->rptr_offs * 4);
  434. mutex_lock(&adev->srbm_mutex);
  435. for (j = 0; j < 16; j++) {
  436. vi_srbm_select(adev, 0, 0, 0, j);
  437. /* SDMA GFX */
  438. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  439. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  440. }
  441. vi_srbm_select(adev, 0, 0, 0, 0);
  442. mutex_unlock(&adev->srbm_mutex);
  443. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  444. /* Set ring buffer size in dwords */
  445. rb_bufsz = order_base_2(ring->ring_size / 4);
  446. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  447. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  448. #ifdef __BIG_ENDIAN
  449. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  450. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  451. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  452. #endif
  453. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  454. /* Initialize the ring buffer's read and write pointers */
  455. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  456. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  457. /* set the wb address whether it's enabled or not */
  458. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  459. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  460. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  461. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  462. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  463. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  464. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  465. ring->wptr = 0;
  466. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  467. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  468. if (ring->use_doorbell) {
  469. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  470. OFFSET, ring->doorbell_index);
  471. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  472. } else {
  473. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  474. }
  475. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  476. /* enable DMA RB */
  477. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  478. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  479. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  480. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  481. #ifdef __BIG_ENDIAN
  482. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  483. #endif
  484. /* enable DMA IBs */
  485. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  486. ring->ready = true;
  487. r = amdgpu_ring_test_ring(ring);
  488. if (r) {
  489. ring->ready = false;
  490. return r;
  491. }
  492. if (adev->mman.buffer_funcs_ring == ring)
  493. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  494. }
  495. return 0;
  496. }
  497. /**
  498. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  499. *
  500. * @adev: amdgpu_device pointer
  501. *
  502. * Set up the compute DMA queues and enable them (VI).
  503. * Returns 0 for success, error for failure.
  504. */
  505. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  506. {
  507. /* XXX todo */
  508. return 0;
  509. }
  510. /**
  511. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  512. *
  513. * @adev: amdgpu_device pointer
  514. *
  515. * Loads the sDMA0/1 ucode.
  516. * Returns 0 for success, -EINVAL if the ucode is not available.
  517. */
  518. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  519. {
  520. const struct sdma_firmware_header_v1_0 *hdr;
  521. const __le32 *fw_data;
  522. u32 fw_size;
  523. int i, j;
  524. if (!adev->sdma[0].fw || !adev->sdma[1].fw)
  525. return -EINVAL;
  526. /* halt the MEs */
  527. sdma_v3_0_enable(adev, false);
  528. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  529. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma[i].fw->data;
  530. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  531. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  532. adev->sdma[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  533. fw_data = (const __le32 *)
  534. (adev->sdma[i].fw->data +
  535. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  536. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  537. for (j = 0; j < fw_size; j++)
  538. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  539. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma[i].fw_version);
  540. }
  541. return 0;
  542. }
  543. /**
  544. * sdma_v3_0_start - setup and start the async dma engines
  545. *
  546. * @adev: amdgpu_device pointer
  547. *
  548. * Set up the DMA engines and enable them (VI).
  549. * Returns 0 for success, error for failure.
  550. */
  551. static int sdma_v3_0_start(struct amdgpu_device *adev)
  552. {
  553. int r;
  554. if (!adev->firmware.smu_load) {
  555. r = sdma_v3_0_load_microcode(adev);
  556. if (r)
  557. return r;
  558. } else {
  559. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  560. AMDGPU_UCODE_ID_SDMA0);
  561. if (r)
  562. return -EINVAL;
  563. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  564. AMDGPU_UCODE_ID_SDMA1);
  565. if (r)
  566. return -EINVAL;
  567. }
  568. /* unhalt the MEs */
  569. sdma_v3_0_enable(adev, true);
  570. /* start the gfx rings and rlc compute queues */
  571. r = sdma_v3_0_gfx_resume(adev);
  572. if (r)
  573. return r;
  574. r = sdma_v3_0_rlc_resume(adev);
  575. if (r)
  576. return r;
  577. return 0;
  578. }
  579. /**
  580. * sdma_v3_0_ring_test_ring - simple async dma engine test
  581. *
  582. * @ring: amdgpu_ring structure holding ring information
  583. *
  584. * Test the DMA engine by writing using it to write an
  585. * value to memory. (VI).
  586. * Returns 0 for success, error for failure.
  587. */
  588. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  589. {
  590. struct amdgpu_device *adev = ring->adev;
  591. unsigned i;
  592. unsigned index;
  593. int r;
  594. u32 tmp;
  595. u64 gpu_addr;
  596. r = amdgpu_wb_get(adev, &index);
  597. if (r) {
  598. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  599. return r;
  600. }
  601. gpu_addr = adev->wb.gpu_addr + (index * 4);
  602. tmp = 0xCAFEDEAD;
  603. adev->wb.wb[index] = cpu_to_le32(tmp);
  604. r = amdgpu_ring_lock(ring, 5);
  605. if (r) {
  606. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  607. amdgpu_wb_free(adev, index);
  608. return r;
  609. }
  610. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  611. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  612. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  613. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  614. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  615. amdgpu_ring_write(ring, 0xDEADBEEF);
  616. amdgpu_ring_unlock_commit(ring);
  617. for (i = 0; i < adev->usec_timeout; i++) {
  618. tmp = le32_to_cpu(adev->wb.wb[index]);
  619. if (tmp == 0xDEADBEEF)
  620. break;
  621. DRM_UDELAY(1);
  622. }
  623. if (i < adev->usec_timeout) {
  624. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  625. } else {
  626. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  627. ring->idx, tmp);
  628. r = -EINVAL;
  629. }
  630. amdgpu_wb_free(adev, index);
  631. return r;
  632. }
  633. /**
  634. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  635. *
  636. * @ring: amdgpu_ring structure holding ring information
  637. *
  638. * Test a simple IB in the DMA ring (VI).
  639. * Returns 0 on success, error on failure.
  640. */
  641. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  642. {
  643. struct amdgpu_device *adev = ring->adev;
  644. struct amdgpu_ib ib;
  645. unsigned i;
  646. unsigned index;
  647. int r;
  648. u32 tmp = 0;
  649. u64 gpu_addr;
  650. r = amdgpu_wb_get(adev, &index);
  651. if (r) {
  652. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  653. return r;
  654. }
  655. gpu_addr = adev->wb.gpu_addr + (index * 4);
  656. tmp = 0xCAFEDEAD;
  657. adev->wb.wb[index] = cpu_to_le32(tmp);
  658. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  659. if (r) {
  660. amdgpu_wb_free(adev, index);
  661. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  662. return r;
  663. }
  664. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  665. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  666. ib.ptr[1] = lower_32_bits(gpu_addr);
  667. ib.ptr[2] = upper_32_bits(gpu_addr);
  668. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  669. ib.ptr[4] = 0xDEADBEEF;
  670. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  671. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  672. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  673. ib.length_dw = 8;
  674. r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_UNDEFINED);
  675. if (r) {
  676. amdgpu_ib_free(adev, &ib);
  677. amdgpu_wb_free(adev, index);
  678. DRM_ERROR("amdgpu: failed to schedule ib (%d).\n", r);
  679. return r;
  680. }
  681. r = amdgpu_fence_wait(ib.fence, false);
  682. if (r) {
  683. amdgpu_ib_free(adev, &ib);
  684. amdgpu_wb_free(adev, index);
  685. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  686. return r;
  687. }
  688. for (i = 0; i < adev->usec_timeout; i++) {
  689. tmp = le32_to_cpu(adev->wb.wb[index]);
  690. if (tmp == 0xDEADBEEF)
  691. break;
  692. DRM_UDELAY(1);
  693. }
  694. if (i < adev->usec_timeout) {
  695. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  696. ib.fence->ring->idx, i);
  697. } else {
  698. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  699. r = -EINVAL;
  700. }
  701. amdgpu_ib_free(adev, &ib);
  702. amdgpu_wb_free(adev, index);
  703. return r;
  704. }
  705. /**
  706. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  707. *
  708. * @ib: indirect buffer to fill with commands
  709. * @pe: addr of the page entry
  710. * @src: src addr to copy from
  711. * @count: number of page entries to update
  712. *
  713. * Update PTEs by copying them from the GART using sDMA (CIK).
  714. */
  715. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  716. uint64_t pe, uint64_t src,
  717. unsigned count)
  718. {
  719. while (count) {
  720. unsigned bytes = count * 8;
  721. if (bytes > 0x1FFFF8)
  722. bytes = 0x1FFFF8;
  723. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  724. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  725. ib->ptr[ib->length_dw++] = bytes;
  726. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  727. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  728. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  729. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  730. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  731. pe += bytes;
  732. src += bytes;
  733. count -= bytes / 8;
  734. }
  735. }
  736. /**
  737. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  738. *
  739. * @ib: indirect buffer to fill with commands
  740. * @pe: addr of the page entry
  741. * @addr: dst addr to write into pe
  742. * @count: number of page entries to update
  743. * @incr: increase next addr by incr bytes
  744. * @flags: access flags
  745. *
  746. * Update PTEs by writing them manually using sDMA (CIK).
  747. */
  748. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  749. uint64_t pe,
  750. uint64_t addr, unsigned count,
  751. uint32_t incr, uint32_t flags)
  752. {
  753. uint64_t value;
  754. unsigned ndw;
  755. while (count) {
  756. ndw = count * 2;
  757. if (ndw > 0xFFFFE)
  758. ndw = 0xFFFFE;
  759. /* for non-physically contiguous pages (system) */
  760. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  761. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  762. ib->ptr[ib->length_dw++] = pe;
  763. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  764. ib->ptr[ib->length_dw++] = ndw;
  765. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  766. if (flags & AMDGPU_PTE_SYSTEM) {
  767. value = amdgpu_vm_map_gart(ib->ring->adev, addr);
  768. value &= 0xFFFFFFFFFFFFF000ULL;
  769. } else if (flags & AMDGPU_PTE_VALID) {
  770. value = addr;
  771. } else {
  772. value = 0;
  773. }
  774. addr += incr;
  775. value |= flags;
  776. ib->ptr[ib->length_dw++] = value;
  777. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  778. }
  779. }
  780. }
  781. /**
  782. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  783. *
  784. * @ib: indirect buffer to fill with commands
  785. * @pe: addr of the page entry
  786. * @addr: dst addr to write into pe
  787. * @count: number of page entries to update
  788. * @incr: increase next addr by incr bytes
  789. * @flags: access flags
  790. *
  791. * Update the page tables using sDMA (CIK).
  792. */
  793. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  794. uint64_t pe,
  795. uint64_t addr, unsigned count,
  796. uint32_t incr, uint32_t flags)
  797. {
  798. uint64_t value;
  799. unsigned ndw;
  800. while (count) {
  801. ndw = count;
  802. if (ndw > 0x7FFFF)
  803. ndw = 0x7FFFF;
  804. if (flags & AMDGPU_PTE_VALID)
  805. value = addr;
  806. else
  807. value = 0;
  808. /* for physically contiguous pages (vram) */
  809. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  810. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  811. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  812. ib->ptr[ib->length_dw++] = flags; /* mask */
  813. ib->ptr[ib->length_dw++] = 0;
  814. ib->ptr[ib->length_dw++] = value; /* value */
  815. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  816. ib->ptr[ib->length_dw++] = incr; /* increment size */
  817. ib->ptr[ib->length_dw++] = 0;
  818. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  819. pe += ndw * 8;
  820. addr += ndw * incr;
  821. count -= ndw;
  822. }
  823. }
  824. /**
  825. * sdma_v3_0_vm_pad_ib - pad the IB to the required number of dw
  826. *
  827. * @ib: indirect buffer to fill with padding
  828. *
  829. */
  830. static void sdma_v3_0_vm_pad_ib(struct amdgpu_ib *ib)
  831. {
  832. while (ib->length_dw & 0x7)
  833. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  834. }
  835. /**
  836. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  837. *
  838. * @ring: amdgpu_ring pointer
  839. * @vm: amdgpu_vm pointer
  840. *
  841. * Update the page table base and flush the VM TLB
  842. * using sDMA (VI).
  843. */
  844. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  845. unsigned vm_id, uint64_t pd_addr)
  846. {
  847. u32 srbm_gfx_cntl = 0;
  848. u32 sh_mem_cfg = REG_SET_FIELD(0, SH_MEM_CONFIG, ALIGNMENT_MODE,
  849. SH_MEM_ALIGNMENT_MODE_UNALIGNED);
  850. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  851. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  852. if (vm_id < 8) {
  853. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  854. } else {
  855. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  856. }
  857. amdgpu_ring_write(ring, pd_addr >> 12);
  858. /* update SH_MEM_* regs */
  859. srbm_gfx_cntl = REG_SET_FIELD(srbm_gfx_cntl, SRBM_GFX_CNTL, VMID, vm_id);
  860. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  861. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  862. amdgpu_ring_write(ring, mmSRBM_GFX_CNTL);
  863. amdgpu_ring_write(ring, srbm_gfx_cntl);
  864. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  865. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  866. amdgpu_ring_write(ring, mmSH_MEM_BASES);
  867. amdgpu_ring_write(ring, 0);
  868. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  869. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  870. amdgpu_ring_write(ring, mmSH_MEM_CONFIG);
  871. amdgpu_ring_write(ring, sh_mem_cfg);
  872. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  873. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  874. amdgpu_ring_write(ring, mmSH_MEM_APE1_BASE);
  875. amdgpu_ring_write(ring, 1);
  876. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  877. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  878. amdgpu_ring_write(ring, mmSH_MEM_APE1_LIMIT);
  879. amdgpu_ring_write(ring, 0);
  880. srbm_gfx_cntl = REG_SET_FIELD(srbm_gfx_cntl, SRBM_GFX_CNTL, VMID, 0);
  881. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  882. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  883. amdgpu_ring_write(ring, mmSRBM_GFX_CNTL);
  884. amdgpu_ring_write(ring, srbm_gfx_cntl);
  885. /* flush TLB */
  886. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  887. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  888. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  889. amdgpu_ring_write(ring, 1 << vm_id);
  890. /* wait for flush */
  891. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  892. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  893. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  894. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  895. amdgpu_ring_write(ring, 0);
  896. amdgpu_ring_write(ring, 0); /* reference */
  897. amdgpu_ring_write(ring, 0); /* mask */
  898. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  899. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  900. }
  901. static int sdma_v3_0_early_init(struct amdgpu_device *adev)
  902. {
  903. sdma_v3_0_set_ring_funcs(adev);
  904. sdma_v3_0_set_buffer_funcs(adev);
  905. sdma_v3_0_set_vm_pte_funcs(adev);
  906. sdma_v3_0_set_irq_funcs(adev);
  907. return 0;
  908. }
  909. static int sdma_v3_0_sw_init(struct amdgpu_device *adev)
  910. {
  911. struct amdgpu_ring *ring;
  912. int r;
  913. /* SDMA trap event */
  914. r = amdgpu_irq_add_id(adev, 224, &adev->sdma_trap_irq);
  915. if (r)
  916. return r;
  917. /* SDMA Privileged inst */
  918. r = amdgpu_irq_add_id(adev, 241, &adev->sdma_illegal_inst_irq);
  919. if (r)
  920. return r;
  921. /* SDMA Privileged inst */
  922. r = amdgpu_irq_add_id(adev, 247, &adev->sdma_illegal_inst_irq);
  923. if (r)
  924. return r;
  925. r = sdma_v3_0_init_microcode(adev);
  926. if (r) {
  927. DRM_ERROR("Failed to load sdma firmware!\n");
  928. return r;
  929. }
  930. ring = &adev->sdma[0].ring;
  931. ring->ring_obj = NULL;
  932. ring->use_doorbell = true;
  933. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE0;
  934. ring = &adev->sdma[1].ring;
  935. ring->ring_obj = NULL;
  936. ring->use_doorbell = true;
  937. ring->doorbell_index = AMDGPU_DOORBELL_sDMA_ENGINE1;
  938. ring = &adev->sdma[0].ring;
  939. sprintf(ring->name, "sdma0");
  940. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  941. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  942. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP0,
  943. AMDGPU_RING_TYPE_SDMA);
  944. if (r)
  945. return r;
  946. ring = &adev->sdma[1].ring;
  947. sprintf(ring->name, "sdma1");
  948. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  949. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  950. &adev->sdma_trap_irq, AMDGPU_SDMA_IRQ_TRAP1,
  951. AMDGPU_RING_TYPE_SDMA);
  952. if (r)
  953. return r;
  954. return r;
  955. }
  956. static int sdma_v3_0_sw_fini(struct amdgpu_device *adev)
  957. {
  958. amdgpu_ring_fini(&adev->sdma[0].ring);
  959. amdgpu_ring_fini(&adev->sdma[1].ring);
  960. return 0;
  961. }
  962. static int sdma_v3_0_hw_init(struct amdgpu_device *adev)
  963. {
  964. int r;
  965. sdma_v3_0_init_golden_registers(adev);
  966. r = sdma_v3_0_start(adev);
  967. if (r)
  968. return r;
  969. return r;
  970. }
  971. static int sdma_v3_0_hw_fini(struct amdgpu_device *adev)
  972. {
  973. sdma_v3_0_enable(adev, false);
  974. return 0;
  975. }
  976. static int sdma_v3_0_suspend(struct amdgpu_device *adev)
  977. {
  978. return sdma_v3_0_hw_fini(adev);
  979. }
  980. static int sdma_v3_0_resume(struct amdgpu_device *adev)
  981. {
  982. return sdma_v3_0_hw_init(adev);
  983. }
  984. static bool sdma_v3_0_is_idle(struct amdgpu_device *adev)
  985. {
  986. u32 tmp = RREG32(mmSRBM_STATUS2);
  987. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  988. SRBM_STATUS2__SDMA1_BUSY_MASK))
  989. return false;
  990. return true;
  991. }
  992. static int sdma_v3_0_wait_for_idle(struct amdgpu_device *adev)
  993. {
  994. unsigned i;
  995. u32 tmp;
  996. for (i = 0; i < adev->usec_timeout; i++) {
  997. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  998. SRBM_STATUS2__SDMA1_BUSY_MASK);
  999. if (!tmp)
  1000. return 0;
  1001. udelay(1);
  1002. }
  1003. return -ETIMEDOUT;
  1004. }
  1005. static void sdma_v3_0_print_status(struct amdgpu_device *adev)
  1006. {
  1007. int i, j;
  1008. dev_info(adev->dev, "VI SDMA registers\n");
  1009. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1010. RREG32(mmSRBM_STATUS2));
  1011. for (i = 0; i < SDMA_MAX_INSTANCE; i++) {
  1012. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1013. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1014. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1015. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1016. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1017. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1018. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1019. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1020. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1021. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1022. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1023. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1024. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1025. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1026. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1027. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1028. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1029. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1030. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1031. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1032. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1033. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1034. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1035. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1036. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1037. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1038. mutex_lock(&adev->srbm_mutex);
  1039. for (j = 0; j < 16; j++) {
  1040. vi_srbm_select(adev, 0, 0, 0, j);
  1041. dev_info(adev->dev, " VM %d:\n", j);
  1042. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1043. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1044. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1045. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1046. }
  1047. vi_srbm_select(adev, 0, 0, 0, 0);
  1048. mutex_unlock(&adev->srbm_mutex);
  1049. }
  1050. }
  1051. static int sdma_v3_0_soft_reset(struct amdgpu_device *adev)
  1052. {
  1053. u32 srbm_soft_reset = 0;
  1054. u32 tmp = RREG32(mmSRBM_STATUS2);
  1055. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1056. /* sdma0 */
  1057. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1058. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1059. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1060. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1061. }
  1062. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1063. /* sdma1 */
  1064. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1065. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1066. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1067. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1068. }
  1069. if (srbm_soft_reset) {
  1070. sdma_v3_0_print_status(adev);
  1071. tmp = RREG32(mmSRBM_SOFT_RESET);
  1072. tmp |= srbm_soft_reset;
  1073. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1074. WREG32(mmSRBM_SOFT_RESET, tmp);
  1075. tmp = RREG32(mmSRBM_SOFT_RESET);
  1076. udelay(50);
  1077. tmp &= ~srbm_soft_reset;
  1078. WREG32(mmSRBM_SOFT_RESET, tmp);
  1079. tmp = RREG32(mmSRBM_SOFT_RESET);
  1080. /* Wait a little for things to settle down */
  1081. udelay(50);
  1082. sdma_v3_0_print_status(adev);
  1083. }
  1084. return 0;
  1085. }
  1086. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1087. struct amdgpu_irq_src *source,
  1088. unsigned type,
  1089. enum amdgpu_interrupt_state state)
  1090. {
  1091. u32 sdma_cntl;
  1092. switch (type) {
  1093. case AMDGPU_SDMA_IRQ_TRAP0:
  1094. switch (state) {
  1095. case AMDGPU_IRQ_STATE_DISABLE:
  1096. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1097. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1098. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1099. break;
  1100. case AMDGPU_IRQ_STATE_ENABLE:
  1101. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1102. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1103. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1104. break;
  1105. default:
  1106. break;
  1107. }
  1108. break;
  1109. case AMDGPU_SDMA_IRQ_TRAP1:
  1110. switch (state) {
  1111. case AMDGPU_IRQ_STATE_DISABLE:
  1112. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1113. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1114. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1115. break;
  1116. case AMDGPU_IRQ_STATE_ENABLE:
  1117. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1118. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1119. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1120. break;
  1121. default:
  1122. break;
  1123. }
  1124. break;
  1125. default:
  1126. break;
  1127. }
  1128. return 0;
  1129. }
  1130. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1131. struct amdgpu_irq_src *source,
  1132. struct amdgpu_iv_entry *entry)
  1133. {
  1134. u8 instance_id, queue_id;
  1135. instance_id = (entry->ring_id & 0x3) >> 0;
  1136. queue_id = (entry->ring_id & 0xc) >> 2;
  1137. DRM_DEBUG("IH: SDMA trap\n");
  1138. switch (instance_id) {
  1139. case 0:
  1140. switch (queue_id) {
  1141. case 0:
  1142. amdgpu_fence_process(&adev->sdma[0].ring);
  1143. break;
  1144. case 1:
  1145. /* XXX compute */
  1146. break;
  1147. case 2:
  1148. /* XXX compute */
  1149. break;
  1150. }
  1151. break;
  1152. case 1:
  1153. switch (queue_id) {
  1154. case 0:
  1155. amdgpu_fence_process(&adev->sdma[1].ring);
  1156. break;
  1157. case 1:
  1158. /* XXX compute */
  1159. break;
  1160. case 2:
  1161. /* XXX compute */
  1162. break;
  1163. }
  1164. break;
  1165. }
  1166. return 0;
  1167. }
  1168. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1169. struct amdgpu_irq_src *source,
  1170. struct amdgpu_iv_entry *entry)
  1171. {
  1172. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1173. schedule_work(&adev->reset_work);
  1174. return 0;
  1175. }
  1176. static int sdma_v3_0_set_clockgating_state(struct amdgpu_device *adev,
  1177. enum amdgpu_clockgating_state state)
  1178. {
  1179. /* XXX handled via the smc on VI */
  1180. return 0;
  1181. }
  1182. static int sdma_v3_0_set_powergating_state(struct amdgpu_device *adev,
  1183. enum amdgpu_powergating_state state)
  1184. {
  1185. return 0;
  1186. }
  1187. const struct amdgpu_ip_funcs sdma_v3_0_ip_funcs = {
  1188. .early_init = sdma_v3_0_early_init,
  1189. .late_init = NULL,
  1190. .sw_init = sdma_v3_0_sw_init,
  1191. .sw_fini = sdma_v3_0_sw_fini,
  1192. .hw_init = sdma_v3_0_hw_init,
  1193. .hw_fini = sdma_v3_0_hw_fini,
  1194. .suspend = sdma_v3_0_suspend,
  1195. .resume = sdma_v3_0_resume,
  1196. .is_idle = sdma_v3_0_is_idle,
  1197. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1198. .soft_reset = sdma_v3_0_soft_reset,
  1199. .print_status = sdma_v3_0_print_status,
  1200. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1201. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1202. };
  1203. /**
  1204. * sdma_v3_0_ring_is_lockup - Check if the DMA engine is locked up
  1205. *
  1206. * @ring: amdgpu_ring structure holding ring information
  1207. *
  1208. * Check if the async DMA engine is locked up (VI).
  1209. * Returns true if the engine appears to be locked up, false if not.
  1210. */
  1211. static bool sdma_v3_0_ring_is_lockup(struct amdgpu_ring *ring)
  1212. {
  1213. if (sdma_v3_0_is_idle(ring->adev)) {
  1214. amdgpu_ring_lockup_update(ring);
  1215. return false;
  1216. }
  1217. return amdgpu_ring_test_lockup(ring);
  1218. }
  1219. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1220. .get_rptr = sdma_v3_0_ring_get_rptr,
  1221. .get_wptr = sdma_v3_0_ring_get_wptr,
  1222. .set_wptr = sdma_v3_0_ring_set_wptr,
  1223. .parse_cs = NULL,
  1224. .emit_ib = sdma_v3_0_ring_emit_ib,
  1225. .emit_fence = sdma_v3_0_ring_emit_fence,
  1226. .emit_semaphore = sdma_v3_0_ring_emit_semaphore,
  1227. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1228. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1229. .test_ring = sdma_v3_0_ring_test_ring,
  1230. .test_ib = sdma_v3_0_ring_test_ib,
  1231. .is_lockup = sdma_v3_0_ring_is_lockup,
  1232. };
  1233. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1234. {
  1235. adev->sdma[0].ring.funcs = &sdma_v3_0_ring_funcs;
  1236. adev->sdma[1].ring.funcs = &sdma_v3_0_ring_funcs;
  1237. }
  1238. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1239. .set = sdma_v3_0_set_trap_irq_state,
  1240. .process = sdma_v3_0_process_trap_irq,
  1241. };
  1242. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1243. .process = sdma_v3_0_process_illegal_inst_irq,
  1244. };
  1245. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1246. {
  1247. adev->sdma_trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1248. adev->sdma_trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1249. adev->sdma_illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1250. }
  1251. /**
  1252. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1253. *
  1254. * @ring: amdgpu_ring structure holding ring information
  1255. * @src_offset: src GPU address
  1256. * @dst_offset: dst GPU address
  1257. * @byte_count: number of bytes to xfer
  1258. *
  1259. * Copy GPU buffers using the DMA engine (VI).
  1260. * Used by the amdgpu ttm implementation to move pages if
  1261. * registered as the asic copy callback.
  1262. */
  1263. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ring *ring,
  1264. uint64_t src_offset,
  1265. uint64_t dst_offset,
  1266. uint32_t byte_count)
  1267. {
  1268. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1269. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR));
  1270. amdgpu_ring_write(ring, byte_count);
  1271. amdgpu_ring_write(ring, 0); /* src/dst endian swap */
  1272. amdgpu_ring_write(ring, lower_32_bits(src_offset));
  1273. amdgpu_ring_write(ring, upper_32_bits(src_offset));
  1274. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1275. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1276. }
  1277. /**
  1278. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1279. *
  1280. * @ring: amdgpu_ring structure holding ring information
  1281. * @src_data: value to write to buffer
  1282. * @dst_offset: dst GPU address
  1283. * @byte_count: number of bytes to xfer
  1284. *
  1285. * Fill GPU buffers using the DMA engine (VI).
  1286. */
  1287. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ring *ring,
  1288. uint32_t src_data,
  1289. uint64_t dst_offset,
  1290. uint32_t byte_count)
  1291. {
  1292. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL));
  1293. amdgpu_ring_write(ring, lower_32_bits(dst_offset));
  1294. amdgpu_ring_write(ring, upper_32_bits(dst_offset));
  1295. amdgpu_ring_write(ring, src_data);
  1296. amdgpu_ring_write(ring, byte_count);
  1297. }
  1298. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1299. .copy_max_bytes = 0x1fffff,
  1300. .copy_num_dw = 7,
  1301. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1302. .fill_max_bytes = 0x1fffff,
  1303. .fill_num_dw = 5,
  1304. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1305. };
  1306. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1307. {
  1308. if (adev->mman.buffer_funcs == NULL) {
  1309. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1310. adev->mman.buffer_funcs_ring = &adev->sdma[0].ring;
  1311. }
  1312. }
  1313. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1314. .copy_pte = sdma_v3_0_vm_copy_pte,
  1315. .write_pte = sdma_v3_0_vm_write_pte,
  1316. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1317. .pad_ib = sdma_v3_0_vm_pad_ib,
  1318. };
  1319. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1320. {
  1321. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1322. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1323. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma[0].ring;
  1324. }
  1325. }