disk-io.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  208. struct extent_map *em;
  209. int ret;
  210. read_lock(&em_tree->lock);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (em) {
  213. em->bdev =
  214. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, char *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X "
  299. "level %d",
  300. fs_info->sb->s_id, buf->start,
  301. val, found, btrfs_header_level(buf));
  302. if (result != (char *)&inline_result)
  303. kfree(result);
  304. return -EUCLEAN;
  305. }
  306. } else {
  307. write_extent_buffer(buf, result, 0, csum_size);
  308. }
  309. if (result != (char *)&inline_result)
  310. kfree(result);
  311. return 0;
  312. }
  313. /*
  314. * we can't consider a given block up to date unless the transid of the
  315. * block matches the transid in the parent node's pointer. This is how we
  316. * detect blocks that either didn't get written at all or got written
  317. * in the wrong place.
  318. */
  319. static int verify_parent_transid(struct extent_io_tree *io_tree,
  320. struct extent_buffer *eb, u64 parent_transid,
  321. int atomic)
  322. {
  323. struct extent_state *cached_state = NULL;
  324. int ret;
  325. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  326. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  327. return 0;
  328. if (atomic)
  329. return -EAGAIN;
  330. if (need_lock) {
  331. btrfs_tree_read_lock(eb);
  332. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  333. }
  334. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state);
  336. if (extent_buffer_uptodate(eb) &&
  337. btrfs_header_generation(eb) == parent_transid) {
  338. ret = 0;
  339. goto out;
  340. }
  341. btrfs_err_rl(eb->fs_info,
  342. "parent transid verify failed on %llu wanted %llu found %llu",
  343. eb->start,
  344. parent_transid, btrfs_header_generation(eb));
  345. ret = 1;
  346. /*
  347. * Things reading via commit roots that don't have normal protection,
  348. * like send, can have a really old block in cache that may point at a
  349. * block that has been freed and re-allocated. So don't clear uptodate
  350. * if we find an eb that is under IO (dirty/writeback) because we could
  351. * end up reading in the stale data and then writing it back out and
  352. * making everybody very sad.
  353. */
  354. if (!extent_buffer_under_io(eb))
  355. clear_extent_buffer_uptodate(eb);
  356. out:
  357. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  358. &cached_state, GFP_NOFS);
  359. if (need_lock)
  360. btrfs_tree_read_unlock_blocking(eb);
  361. return ret;
  362. }
  363. /*
  364. * Return 0 if the superblock checksum type matches the checksum value of that
  365. * algorithm. Pass the raw disk superblock data.
  366. */
  367. static int btrfs_check_super_csum(char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  400. struct extent_buffer *eb,
  401. u64 start, u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, start,
  413. WAIT_COMPLETE,
  414. btree_get_extent, mirror_num);
  415. if (!ret) {
  416. if (!verify_parent_transid(io_tree, eb,
  417. parent_transid, 0))
  418. break;
  419. else
  420. ret = -EIO;
  421. }
  422. /*
  423. * This buffer's crc is fine, but its contents are corrupted, so
  424. * there is no reason to read the other copies, they won't be
  425. * any less wrong.
  426. */
  427. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  428. break;
  429. num_copies = btrfs_num_copies(root->fs_info,
  430. eb->start, eb->len);
  431. if (num_copies == 1)
  432. break;
  433. if (!failed_mirror) {
  434. failed = 1;
  435. failed_mirror = eb->read_mirror;
  436. }
  437. mirror_num++;
  438. if (mirror_num == failed_mirror)
  439. mirror_num++;
  440. if (mirror_num > num_copies)
  441. break;
  442. }
  443. if (failed && !ret && failed_mirror)
  444. repair_eb_io_failure(root, eb, failed_mirror);
  445. return ret;
  446. }
  447. /*
  448. * checksum a dirty tree block before IO. This has extra checks to make sure
  449. * we only fill in the checksum field in the first page of a multi-page block
  450. */
  451. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  452. {
  453. u64 start = page_offset(page);
  454. u64 found_start;
  455. struct extent_buffer *eb;
  456. eb = (struct extent_buffer *)page->private;
  457. if (page != eb->pages[0])
  458. return 0;
  459. found_start = btrfs_header_bytenr(eb);
  460. /*
  461. * Please do not consolidate these warnings into a single if.
  462. * It is useful to know what went wrong.
  463. */
  464. if (WARN_ON(found_start != start))
  465. return -EUCLEAN;
  466. if (WARN_ON(!PageUptodate(page)))
  467. return -EUCLEAN;
  468. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  469. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  470. return csum_tree_block(fs_info, eb, 0);
  471. }
  472. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  473. struct extent_buffer *eb)
  474. {
  475. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  476. u8 fsid[BTRFS_UUID_SIZE];
  477. int ret = 1;
  478. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  479. while (fs_devices) {
  480. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  481. ret = 0;
  482. break;
  483. }
  484. fs_devices = fs_devices->seed;
  485. }
  486. return ret;
  487. }
  488. #define CORRUPT(reason, eb, root, slot) \
  489. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  490. "root=%llu, slot=%d", reason, \
  491. btrfs_header_bytenr(eb), root->objectid, slot)
  492. static noinline int check_leaf(struct btrfs_root *root,
  493. struct extent_buffer *leaf)
  494. {
  495. struct btrfs_key key;
  496. struct btrfs_key leaf_key;
  497. u32 nritems = btrfs_header_nritems(leaf);
  498. int slot;
  499. if (nritems == 0)
  500. return 0;
  501. /* Check the 0 item */
  502. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  503. BTRFS_LEAF_DATA_SIZE(root)) {
  504. CORRUPT("invalid item offset size pair", leaf, root, 0);
  505. return -EIO;
  506. }
  507. /*
  508. * Check to make sure each items keys are in the correct order and their
  509. * offsets make sense. We only have to loop through nritems-1 because
  510. * we check the current slot against the next slot, which verifies the
  511. * next slot's offset+size makes sense and that the current's slot
  512. * offset is correct.
  513. */
  514. for (slot = 0; slot < nritems - 1; slot++) {
  515. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  516. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  517. /* Make sure the keys are in the right order */
  518. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  519. CORRUPT("bad key order", leaf, root, slot);
  520. return -EIO;
  521. }
  522. /*
  523. * Make sure the offset and ends are right, remember that the
  524. * item data starts at the end of the leaf and grows towards the
  525. * front.
  526. */
  527. if (btrfs_item_offset_nr(leaf, slot) !=
  528. btrfs_item_end_nr(leaf, slot + 1)) {
  529. CORRUPT("slot offset bad", leaf, root, slot);
  530. return -EIO;
  531. }
  532. /*
  533. * Check to make sure that we don't point outside of the leaf,
  534. * just in case all the items are consistent to each other, but
  535. * all point outside of the leaf.
  536. */
  537. if (btrfs_item_end_nr(leaf, slot) >
  538. BTRFS_LEAF_DATA_SIZE(root)) {
  539. CORRUPT("slot end outside of leaf", leaf, root, slot);
  540. return -EIO;
  541. }
  542. }
  543. return 0;
  544. }
  545. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  546. u64 phy_offset, struct page *page,
  547. u64 start, u64 end, int mirror)
  548. {
  549. u64 found_start;
  550. int found_level;
  551. struct extent_buffer *eb;
  552. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  553. struct btrfs_fs_info *fs_info = root->fs_info;
  554. int ret = 0;
  555. int reads_done;
  556. if (!page->private)
  557. goto out;
  558. eb = (struct extent_buffer *)page->private;
  559. /* the pending IO might have been the only thing that kept this buffer
  560. * in memory. Make sure we have a ref for all this other checks
  561. */
  562. extent_buffer_get(eb);
  563. reads_done = atomic_dec_and_test(&eb->io_pages);
  564. if (!reads_done)
  565. goto err;
  566. eb->read_mirror = mirror;
  567. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. found_start = btrfs_header_bytenr(eb);
  572. if (found_start != eb->start) {
  573. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  574. found_start, eb->start);
  575. ret = -EIO;
  576. goto err;
  577. }
  578. if (check_tree_block_fsid(fs_info, eb)) {
  579. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  580. eb->start);
  581. ret = -EIO;
  582. goto err;
  583. }
  584. found_level = btrfs_header_level(eb);
  585. if (found_level >= BTRFS_MAX_LEVEL) {
  586. btrfs_err(fs_info, "bad tree block level %d",
  587. (int)btrfs_header_level(eb));
  588. ret = -EIO;
  589. goto err;
  590. }
  591. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  592. eb, found_level);
  593. ret = csum_tree_block(fs_info, eb, 1);
  594. if (ret)
  595. goto err;
  596. /*
  597. * If this is a leaf block and it is corrupt, set the corrupt bit so
  598. * that we don't try and read the other copies of this block, just
  599. * return -EIO.
  600. */
  601. if (found_level == 0 && check_leaf(root, eb)) {
  602. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  603. ret = -EIO;
  604. }
  605. if (!ret)
  606. set_extent_buffer_uptodate(eb);
  607. err:
  608. if (reads_done &&
  609. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  610. btree_readahead_hook(fs_info, eb, eb->start, ret);
  611. if (ret) {
  612. /*
  613. * our io error hook is going to dec the io pages
  614. * again, we have to make sure it has something
  615. * to decrement
  616. */
  617. atomic_inc(&eb->io_pages);
  618. clear_extent_buffer_uptodate(eb);
  619. }
  620. free_extent_buffer(eb);
  621. out:
  622. return ret;
  623. }
  624. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  625. {
  626. struct extent_buffer *eb;
  627. eb = (struct extent_buffer *)page->private;
  628. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  629. eb->read_mirror = failed_mirror;
  630. atomic_dec(&eb->io_pages);
  631. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  632. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  633. return -EIO; /* we fixed nothing */
  634. }
  635. static void end_workqueue_bio(struct bio *bio)
  636. {
  637. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  638. struct btrfs_fs_info *fs_info;
  639. struct btrfs_workqueue *wq;
  640. btrfs_work_func_t func;
  641. fs_info = end_io_wq->info;
  642. end_io_wq->error = bio->bi_error;
  643. if (bio_op(bio) == REQ_OP_WRITE) {
  644. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  645. wq = fs_info->endio_meta_write_workers;
  646. func = btrfs_endio_meta_write_helper;
  647. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  648. wq = fs_info->endio_freespace_worker;
  649. func = btrfs_freespace_write_helper;
  650. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  651. wq = fs_info->endio_raid56_workers;
  652. func = btrfs_endio_raid56_helper;
  653. } else {
  654. wq = fs_info->endio_write_workers;
  655. func = btrfs_endio_write_helper;
  656. }
  657. } else {
  658. if (unlikely(end_io_wq->metadata ==
  659. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  660. wq = fs_info->endio_repair_workers;
  661. func = btrfs_endio_repair_helper;
  662. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  663. wq = fs_info->endio_raid56_workers;
  664. func = btrfs_endio_raid56_helper;
  665. } else if (end_io_wq->metadata) {
  666. wq = fs_info->endio_meta_workers;
  667. func = btrfs_endio_meta_helper;
  668. } else {
  669. wq = fs_info->endio_workers;
  670. func = btrfs_endio_helper;
  671. }
  672. }
  673. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  674. btrfs_queue_work(wq, &end_io_wq->work);
  675. }
  676. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  677. enum btrfs_wq_endio_type metadata)
  678. {
  679. struct btrfs_end_io_wq *end_io_wq;
  680. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  681. if (!end_io_wq)
  682. return -ENOMEM;
  683. end_io_wq->private = bio->bi_private;
  684. end_io_wq->end_io = bio->bi_end_io;
  685. end_io_wq->info = info;
  686. end_io_wq->error = 0;
  687. end_io_wq->bio = bio;
  688. end_io_wq->metadata = metadata;
  689. bio->bi_private = end_io_wq;
  690. bio->bi_end_io = end_workqueue_bio;
  691. return 0;
  692. }
  693. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  694. {
  695. unsigned long limit = min_t(unsigned long,
  696. info->thread_pool_size,
  697. info->fs_devices->open_devices);
  698. return 256 * limit;
  699. }
  700. static void run_one_async_start(struct btrfs_work *work)
  701. {
  702. struct async_submit_bio *async;
  703. int ret;
  704. async = container_of(work, struct async_submit_bio, work);
  705. ret = async->submit_bio_start(async->inode, async->bio,
  706. async->mirror_num, async->bio_flags,
  707. async->bio_offset);
  708. if (ret)
  709. async->error = ret;
  710. }
  711. static void run_one_async_done(struct btrfs_work *work)
  712. {
  713. struct btrfs_fs_info *fs_info;
  714. struct async_submit_bio *async;
  715. int limit;
  716. async = container_of(work, struct async_submit_bio, work);
  717. fs_info = BTRFS_I(async->inode)->root->fs_info;
  718. limit = btrfs_async_submit_limit(fs_info);
  719. limit = limit * 2 / 3;
  720. /*
  721. * atomic_dec_return implies a barrier for waitqueue_active
  722. */
  723. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  724. waitqueue_active(&fs_info->async_submit_wait))
  725. wake_up(&fs_info->async_submit_wait);
  726. /* If an error occurred we just want to clean up the bio and move on */
  727. if (async->error) {
  728. async->bio->bi_error = async->error;
  729. bio_endio(async->bio);
  730. return;
  731. }
  732. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  733. async->bio_flags, async->bio_offset);
  734. }
  735. static void run_one_async_free(struct btrfs_work *work)
  736. {
  737. struct async_submit_bio *async;
  738. async = container_of(work, struct async_submit_bio, work);
  739. kfree(async);
  740. }
  741. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  742. struct bio *bio, int mirror_num,
  743. unsigned long bio_flags,
  744. u64 bio_offset,
  745. extent_submit_bio_hook_t *submit_bio_start,
  746. extent_submit_bio_hook_t *submit_bio_done)
  747. {
  748. struct async_submit_bio *async;
  749. async = kmalloc(sizeof(*async), GFP_NOFS);
  750. if (!async)
  751. return -ENOMEM;
  752. async->inode = inode;
  753. async->bio = bio;
  754. async->mirror_num = mirror_num;
  755. async->submit_bio_start = submit_bio_start;
  756. async->submit_bio_done = submit_bio_done;
  757. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  758. run_one_async_done, run_one_async_free);
  759. async->bio_flags = bio_flags;
  760. async->bio_offset = bio_offset;
  761. async->error = 0;
  762. atomic_inc(&fs_info->nr_async_submits);
  763. if (bio->bi_opf & REQ_SYNC)
  764. btrfs_set_work_high_priority(&async->work);
  765. btrfs_queue_work(fs_info->workers, &async->work);
  766. while (atomic_read(&fs_info->async_submit_draining) &&
  767. atomic_read(&fs_info->nr_async_submits)) {
  768. wait_event(fs_info->async_submit_wait,
  769. (atomic_read(&fs_info->nr_async_submits) == 0));
  770. }
  771. return 0;
  772. }
  773. static int btree_csum_one_bio(struct bio *bio)
  774. {
  775. struct bio_vec *bvec;
  776. struct btrfs_root *root;
  777. int i, ret = 0;
  778. bio_for_each_segment_all(bvec, bio, i) {
  779. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  780. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  781. if (ret)
  782. break;
  783. }
  784. return ret;
  785. }
  786. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  787. int mirror_num, unsigned long bio_flags,
  788. u64 bio_offset)
  789. {
  790. /*
  791. * when we're called for a write, we're already in the async
  792. * submission context. Just jump into btrfs_map_bio
  793. */
  794. return btree_csum_one_bio(bio);
  795. }
  796. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  797. int mirror_num, unsigned long bio_flags,
  798. u64 bio_offset)
  799. {
  800. int ret;
  801. /*
  802. * when we're called for a write, we're already in the async
  803. * submission context. Just jump into btrfs_map_bio
  804. */
  805. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
  806. if (ret) {
  807. bio->bi_error = ret;
  808. bio_endio(bio);
  809. }
  810. return ret;
  811. }
  812. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  813. {
  814. if (bio_flags & EXTENT_BIO_TREE_LOG)
  815. return 0;
  816. #ifdef CONFIG_X86
  817. if (static_cpu_has(X86_FEATURE_XMM4_2))
  818. return 0;
  819. #endif
  820. return 1;
  821. }
  822. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  823. int mirror_num, unsigned long bio_flags,
  824. u64 bio_offset)
  825. {
  826. int async = check_async_write(inode, bio_flags);
  827. int ret;
  828. if (bio_op(bio) != REQ_OP_WRITE) {
  829. /*
  830. * called for a read, do the setup so that checksum validation
  831. * can happen in the async kernel threads
  832. */
  833. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  834. bio, BTRFS_WQ_ENDIO_METADATA);
  835. if (ret)
  836. goto out_w_error;
  837. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  838. } else if (!async) {
  839. ret = btree_csum_one_bio(bio);
  840. if (ret)
  841. goto out_w_error;
  842. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  843. } else {
  844. /*
  845. * kthread helpers are used to submit writes so that
  846. * checksumming can happen in parallel across all CPUs
  847. */
  848. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  849. inode, bio, mirror_num, 0,
  850. bio_offset,
  851. __btree_submit_bio_start,
  852. __btree_submit_bio_done);
  853. }
  854. if (ret)
  855. goto out_w_error;
  856. return 0;
  857. out_w_error:
  858. bio->bi_error = ret;
  859. bio_endio(bio);
  860. return ret;
  861. }
  862. #ifdef CONFIG_MIGRATION
  863. static int btree_migratepage(struct address_space *mapping,
  864. struct page *newpage, struct page *page,
  865. enum migrate_mode mode)
  866. {
  867. /*
  868. * we can't safely write a btree page from here,
  869. * we haven't done the locking hook
  870. */
  871. if (PageDirty(page))
  872. return -EAGAIN;
  873. /*
  874. * Buffers may be managed in a filesystem specific way.
  875. * We must have no buffers or drop them.
  876. */
  877. if (page_has_private(page) &&
  878. !try_to_release_page(page, GFP_KERNEL))
  879. return -EAGAIN;
  880. return migrate_page(mapping, newpage, page, mode);
  881. }
  882. #endif
  883. static int btree_writepages(struct address_space *mapping,
  884. struct writeback_control *wbc)
  885. {
  886. struct btrfs_fs_info *fs_info;
  887. int ret;
  888. if (wbc->sync_mode == WB_SYNC_NONE) {
  889. if (wbc->for_kupdate)
  890. return 0;
  891. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  892. /* this is a bit racy, but that's ok */
  893. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  894. BTRFS_DIRTY_METADATA_THRESH);
  895. if (ret < 0)
  896. return 0;
  897. }
  898. return btree_write_cache_pages(mapping, wbc);
  899. }
  900. static int btree_readpage(struct file *file, struct page *page)
  901. {
  902. struct extent_io_tree *tree;
  903. tree = &BTRFS_I(page->mapping->host)->io_tree;
  904. return extent_read_full_page(tree, page, btree_get_extent, 0);
  905. }
  906. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  907. {
  908. if (PageWriteback(page) || PageDirty(page))
  909. return 0;
  910. return try_release_extent_buffer(page);
  911. }
  912. static void btree_invalidatepage(struct page *page, unsigned int offset,
  913. unsigned int length)
  914. {
  915. struct extent_io_tree *tree;
  916. tree = &BTRFS_I(page->mapping->host)->io_tree;
  917. extent_invalidatepage(tree, page, offset);
  918. btree_releasepage(page, GFP_NOFS);
  919. if (PagePrivate(page)) {
  920. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  921. "page private not zero on page %llu",
  922. (unsigned long long)page_offset(page));
  923. ClearPagePrivate(page);
  924. set_page_private(page, 0);
  925. put_page(page);
  926. }
  927. }
  928. static int btree_set_page_dirty(struct page *page)
  929. {
  930. #ifdef DEBUG
  931. struct extent_buffer *eb;
  932. BUG_ON(!PagePrivate(page));
  933. eb = (struct extent_buffer *)page->private;
  934. BUG_ON(!eb);
  935. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  936. BUG_ON(!atomic_read(&eb->refs));
  937. btrfs_assert_tree_locked(eb);
  938. #endif
  939. return __set_page_dirty_nobuffers(page);
  940. }
  941. static const struct address_space_operations btree_aops = {
  942. .readpage = btree_readpage,
  943. .writepages = btree_writepages,
  944. .releasepage = btree_releasepage,
  945. .invalidatepage = btree_invalidatepage,
  946. #ifdef CONFIG_MIGRATION
  947. .migratepage = btree_migratepage,
  948. #endif
  949. .set_page_dirty = btree_set_page_dirty,
  950. };
  951. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  952. {
  953. struct extent_buffer *buf = NULL;
  954. struct inode *btree_inode = root->fs_info->btree_inode;
  955. buf = btrfs_find_create_tree_block(root, bytenr);
  956. if (IS_ERR(buf))
  957. return;
  958. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  959. buf, 0, WAIT_NONE, btree_get_extent, 0);
  960. free_extent_buffer(buf);
  961. }
  962. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  963. int mirror_num, struct extent_buffer **eb)
  964. {
  965. struct extent_buffer *buf = NULL;
  966. struct inode *btree_inode = root->fs_info->btree_inode;
  967. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  968. int ret;
  969. buf = btrfs_find_create_tree_block(root, bytenr);
  970. if (IS_ERR(buf))
  971. return 0;
  972. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  973. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  974. btree_get_extent, mirror_num);
  975. if (ret) {
  976. free_extent_buffer(buf);
  977. return ret;
  978. }
  979. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  980. free_extent_buffer(buf);
  981. return -EIO;
  982. } else if (extent_buffer_uptodate(buf)) {
  983. *eb = buf;
  984. } else {
  985. free_extent_buffer(buf);
  986. }
  987. return 0;
  988. }
  989. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  990. u64 bytenr)
  991. {
  992. return find_extent_buffer(fs_info, bytenr);
  993. }
  994. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  995. u64 bytenr)
  996. {
  997. if (btrfs_is_testing(root->fs_info))
  998. return alloc_test_extent_buffer(root->fs_info, bytenr,
  999. root->nodesize);
  1000. return alloc_extent_buffer(root->fs_info, bytenr);
  1001. }
  1002. int btrfs_write_tree_block(struct extent_buffer *buf)
  1003. {
  1004. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1005. buf->start + buf->len - 1);
  1006. }
  1007. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1008. {
  1009. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1010. buf->start, buf->start + buf->len - 1);
  1011. }
  1012. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1013. u64 parent_transid)
  1014. {
  1015. struct extent_buffer *buf = NULL;
  1016. int ret;
  1017. buf = btrfs_find_create_tree_block(root, bytenr);
  1018. if (IS_ERR(buf))
  1019. return buf;
  1020. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1021. if (ret) {
  1022. free_extent_buffer(buf);
  1023. return ERR_PTR(ret);
  1024. }
  1025. return buf;
  1026. }
  1027. void clean_tree_block(struct btrfs_trans_handle *trans,
  1028. struct btrfs_fs_info *fs_info,
  1029. struct extent_buffer *buf)
  1030. {
  1031. if (btrfs_header_generation(buf) ==
  1032. fs_info->running_transaction->transid) {
  1033. btrfs_assert_tree_locked(buf);
  1034. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1035. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1036. -buf->len,
  1037. fs_info->dirty_metadata_batch);
  1038. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1039. btrfs_set_lock_blocking(buf);
  1040. clear_extent_buffer_dirty(buf);
  1041. }
  1042. }
  1043. }
  1044. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1045. {
  1046. struct btrfs_subvolume_writers *writers;
  1047. int ret;
  1048. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1049. if (!writers)
  1050. return ERR_PTR(-ENOMEM);
  1051. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1052. if (ret < 0) {
  1053. kfree(writers);
  1054. return ERR_PTR(ret);
  1055. }
  1056. init_waitqueue_head(&writers->wait);
  1057. return writers;
  1058. }
  1059. static void
  1060. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1061. {
  1062. percpu_counter_destroy(&writers->counter);
  1063. kfree(writers);
  1064. }
  1065. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1066. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1067. u64 objectid)
  1068. {
  1069. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1070. root->node = NULL;
  1071. root->commit_root = NULL;
  1072. root->sectorsize = sectorsize;
  1073. root->nodesize = nodesize;
  1074. root->stripesize = stripesize;
  1075. root->state = 0;
  1076. root->orphan_cleanup_state = 0;
  1077. root->objectid = objectid;
  1078. root->last_trans = 0;
  1079. root->highest_objectid = 0;
  1080. root->nr_delalloc_inodes = 0;
  1081. root->nr_ordered_extents = 0;
  1082. root->name = NULL;
  1083. root->inode_tree = RB_ROOT;
  1084. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1085. root->block_rsv = NULL;
  1086. root->orphan_block_rsv = NULL;
  1087. INIT_LIST_HEAD(&root->dirty_list);
  1088. INIT_LIST_HEAD(&root->root_list);
  1089. INIT_LIST_HEAD(&root->delalloc_inodes);
  1090. INIT_LIST_HEAD(&root->delalloc_root);
  1091. INIT_LIST_HEAD(&root->ordered_extents);
  1092. INIT_LIST_HEAD(&root->ordered_root);
  1093. INIT_LIST_HEAD(&root->logged_list[0]);
  1094. INIT_LIST_HEAD(&root->logged_list[1]);
  1095. spin_lock_init(&root->orphan_lock);
  1096. spin_lock_init(&root->inode_lock);
  1097. spin_lock_init(&root->delalloc_lock);
  1098. spin_lock_init(&root->ordered_extent_lock);
  1099. spin_lock_init(&root->accounting_lock);
  1100. spin_lock_init(&root->log_extents_lock[0]);
  1101. spin_lock_init(&root->log_extents_lock[1]);
  1102. mutex_init(&root->objectid_mutex);
  1103. mutex_init(&root->log_mutex);
  1104. mutex_init(&root->ordered_extent_mutex);
  1105. mutex_init(&root->delalloc_mutex);
  1106. init_waitqueue_head(&root->log_writer_wait);
  1107. init_waitqueue_head(&root->log_commit_wait[0]);
  1108. init_waitqueue_head(&root->log_commit_wait[1]);
  1109. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1110. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1111. atomic_set(&root->log_commit[0], 0);
  1112. atomic_set(&root->log_commit[1], 0);
  1113. atomic_set(&root->log_writers, 0);
  1114. atomic_set(&root->log_batch, 0);
  1115. atomic_set(&root->orphan_inodes, 0);
  1116. atomic_set(&root->refs, 1);
  1117. atomic_set(&root->will_be_snapshoted, 0);
  1118. atomic_set(&root->qgroup_meta_rsv, 0);
  1119. root->log_transid = 0;
  1120. root->log_transid_committed = -1;
  1121. root->last_log_commit = 0;
  1122. if (!dummy)
  1123. extent_io_tree_init(&root->dirty_log_pages,
  1124. fs_info->btree_inode->i_mapping);
  1125. memset(&root->root_key, 0, sizeof(root->root_key));
  1126. memset(&root->root_item, 0, sizeof(root->root_item));
  1127. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1128. if (!dummy)
  1129. root->defrag_trans_start = fs_info->generation;
  1130. else
  1131. root->defrag_trans_start = 0;
  1132. root->root_key.objectid = objectid;
  1133. root->anon_dev = 0;
  1134. spin_lock_init(&root->root_item_lock);
  1135. }
  1136. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1137. gfp_t flags)
  1138. {
  1139. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1140. if (root)
  1141. root->fs_info = fs_info;
  1142. return root;
  1143. }
  1144. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1145. /* Should only be used by the testing infrastructure */
  1146. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
  1147. u32 sectorsize, u32 nodesize)
  1148. {
  1149. struct btrfs_root *root;
  1150. if (!fs_info)
  1151. return ERR_PTR(-EINVAL);
  1152. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1153. if (!root)
  1154. return ERR_PTR(-ENOMEM);
  1155. /* We don't use the stripesize in selftest, set it as sectorsize */
  1156. __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
  1157. BTRFS_ROOT_TREE_OBJECTID);
  1158. root->alloc_bytenr = 0;
  1159. return root;
  1160. }
  1161. #endif
  1162. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1163. struct btrfs_fs_info *fs_info,
  1164. u64 objectid)
  1165. {
  1166. struct extent_buffer *leaf;
  1167. struct btrfs_root *tree_root = fs_info->tree_root;
  1168. struct btrfs_root *root;
  1169. struct btrfs_key key;
  1170. int ret = 0;
  1171. uuid_le uuid;
  1172. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1173. if (!root)
  1174. return ERR_PTR(-ENOMEM);
  1175. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1176. tree_root->stripesize, root, fs_info, objectid);
  1177. root->root_key.objectid = objectid;
  1178. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1179. root->root_key.offset = 0;
  1180. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1181. if (IS_ERR(leaf)) {
  1182. ret = PTR_ERR(leaf);
  1183. leaf = NULL;
  1184. goto fail;
  1185. }
  1186. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1187. btrfs_set_header_bytenr(leaf, leaf->start);
  1188. btrfs_set_header_generation(leaf, trans->transid);
  1189. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1190. btrfs_set_header_owner(leaf, objectid);
  1191. root->node = leaf;
  1192. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1193. BTRFS_FSID_SIZE);
  1194. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1195. btrfs_header_chunk_tree_uuid(leaf),
  1196. BTRFS_UUID_SIZE);
  1197. btrfs_mark_buffer_dirty(leaf);
  1198. root->commit_root = btrfs_root_node(root);
  1199. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1200. root->root_item.flags = 0;
  1201. root->root_item.byte_limit = 0;
  1202. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1203. btrfs_set_root_generation(&root->root_item, trans->transid);
  1204. btrfs_set_root_level(&root->root_item, 0);
  1205. btrfs_set_root_refs(&root->root_item, 1);
  1206. btrfs_set_root_used(&root->root_item, leaf->len);
  1207. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1208. btrfs_set_root_dirid(&root->root_item, 0);
  1209. uuid_le_gen(&uuid);
  1210. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1211. root->root_item.drop_level = 0;
  1212. key.objectid = objectid;
  1213. key.type = BTRFS_ROOT_ITEM_KEY;
  1214. key.offset = 0;
  1215. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1216. if (ret)
  1217. goto fail;
  1218. btrfs_tree_unlock(leaf);
  1219. return root;
  1220. fail:
  1221. if (leaf) {
  1222. btrfs_tree_unlock(leaf);
  1223. free_extent_buffer(root->commit_root);
  1224. free_extent_buffer(leaf);
  1225. }
  1226. kfree(root);
  1227. return ERR_PTR(ret);
  1228. }
  1229. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1230. struct btrfs_fs_info *fs_info)
  1231. {
  1232. struct btrfs_root *root;
  1233. struct btrfs_root *tree_root = fs_info->tree_root;
  1234. struct extent_buffer *leaf;
  1235. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1236. if (!root)
  1237. return ERR_PTR(-ENOMEM);
  1238. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1239. tree_root->stripesize, root, fs_info,
  1240. BTRFS_TREE_LOG_OBJECTID);
  1241. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1242. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1243. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1244. /*
  1245. * DON'T set REF_COWS for log trees
  1246. *
  1247. * log trees do not get reference counted because they go away
  1248. * before a real commit is actually done. They do store pointers
  1249. * to file data extents, and those reference counts still get
  1250. * updated (along with back refs to the log tree).
  1251. */
  1252. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1253. NULL, 0, 0, 0);
  1254. if (IS_ERR(leaf)) {
  1255. kfree(root);
  1256. return ERR_CAST(leaf);
  1257. }
  1258. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1259. btrfs_set_header_bytenr(leaf, leaf->start);
  1260. btrfs_set_header_generation(leaf, trans->transid);
  1261. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1262. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1263. root->node = leaf;
  1264. write_extent_buffer(root->node, root->fs_info->fsid,
  1265. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1266. btrfs_mark_buffer_dirty(root->node);
  1267. btrfs_tree_unlock(root->node);
  1268. return root;
  1269. }
  1270. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1271. struct btrfs_fs_info *fs_info)
  1272. {
  1273. struct btrfs_root *log_root;
  1274. log_root = alloc_log_tree(trans, fs_info);
  1275. if (IS_ERR(log_root))
  1276. return PTR_ERR(log_root);
  1277. WARN_ON(fs_info->log_root_tree);
  1278. fs_info->log_root_tree = log_root;
  1279. return 0;
  1280. }
  1281. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1282. struct btrfs_root *root)
  1283. {
  1284. struct btrfs_root *log_root;
  1285. struct btrfs_inode_item *inode_item;
  1286. log_root = alloc_log_tree(trans, root->fs_info);
  1287. if (IS_ERR(log_root))
  1288. return PTR_ERR(log_root);
  1289. log_root->last_trans = trans->transid;
  1290. log_root->root_key.offset = root->root_key.objectid;
  1291. inode_item = &log_root->root_item.inode;
  1292. btrfs_set_stack_inode_generation(inode_item, 1);
  1293. btrfs_set_stack_inode_size(inode_item, 3);
  1294. btrfs_set_stack_inode_nlink(inode_item, 1);
  1295. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1296. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1297. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1298. WARN_ON(root->log_root);
  1299. root->log_root = log_root;
  1300. root->log_transid = 0;
  1301. root->log_transid_committed = -1;
  1302. root->last_log_commit = 0;
  1303. return 0;
  1304. }
  1305. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1306. struct btrfs_key *key)
  1307. {
  1308. struct btrfs_root *root;
  1309. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1310. struct btrfs_path *path;
  1311. u64 generation;
  1312. int ret;
  1313. path = btrfs_alloc_path();
  1314. if (!path)
  1315. return ERR_PTR(-ENOMEM);
  1316. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1317. if (!root) {
  1318. ret = -ENOMEM;
  1319. goto alloc_fail;
  1320. }
  1321. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1322. tree_root->stripesize, root, fs_info, key->objectid);
  1323. ret = btrfs_find_root(tree_root, key, path,
  1324. &root->root_item, &root->root_key);
  1325. if (ret) {
  1326. if (ret > 0)
  1327. ret = -ENOENT;
  1328. goto find_fail;
  1329. }
  1330. generation = btrfs_root_generation(&root->root_item);
  1331. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1332. generation);
  1333. if (IS_ERR(root->node)) {
  1334. ret = PTR_ERR(root->node);
  1335. goto find_fail;
  1336. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1337. ret = -EIO;
  1338. free_extent_buffer(root->node);
  1339. goto find_fail;
  1340. }
  1341. root->commit_root = btrfs_root_node(root);
  1342. out:
  1343. btrfs_free_path(path);
  1344. return root;
  1345. find_fail:
  1346. kfree(root);
  1347. alloc_fail:
  1348. root = ERR_PTR(ret);
  1349. goto out;
  1350. }
  1351. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1352. struct btrfs_key *location)
  1353. {
  1354. struct btrfs_root *root;
  1355. root = btrfs_read_tree_root(tree_root, location);
  1356. if (IS_ERR(root))
  1357. return root;
  1358. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1359. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1360. btrfs_check_and_init_root_item(&root->root_item);
  1361. }
  1362. return root;
  1363. }
  1364. int btrfs_init_fs_root(struct btrfs_root *root)
  1365. {
  1366. int ret;
  1367. struct btrfs_subvolume_writers *writers;
  1368. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1369. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1370. GFP_NOFS);
  1371. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1372. ret = -ENOMEM;
  1373. goto fail;
  1374. }
  1375. writers = btrfs_alloc_subvolume_writers();
  1376. if (IS_ERR(writers)) {
  1377. ret = PTR_ERR(writers);
  1378. goto fail;
  1379. }
  1380. root->subv_writers = writers;
  1381. btrfs_init_free_ino_ctl(root);
  1382. spin_lock_init(&root->ino_cache_lock);
  1383. init_waitqueue_head(&root->ino_cache_wait);
  1384. ret = get_anon_bdev(&root->anon_dev);
  1385. if (ret)
  1386. goto fail;
  1387. mutex_lock(&root->objectid_mutex);
  1388. ret = btrfs_find_highest_objectid(root,
  1389. &root->highest_objectid);
  1390. if (ret) {
  1391. mutex_unlock(&root->objectid_mutex);
  1392. goto fail;
  1393. }
  1394. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1395. mutex_unlock(&root->objectid_mutex);
  1396. return 0;
  1397. fail:
  1398. /* the caller is responsible to call free_fs_root */
  1399. return ret;
  1400. }
  1401. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1402. u64 root_id)
  1403. {
  1404. struct btrfs_root *root;
  1405. spin_lock(&fs_info->fs_roots_radix_lock);
  1406. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1407. (unsigned long)root_id);
  1408. spin_unlock(&fs_info->fs_roots_radix_lock);
  1409. return root;
  1410. }
  1411. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1412. struct btrfs_root *root)
  1413. {
  1414. int ret;
  1415. ret = radix_tree_preload(GFP_NOFS);
  1416. if (ret)
  1417. return ret;
  1418. spin_lock(&fs_info->fs_roots_radix_lock);
  1419. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1420. (unsigned long)root->root_key.objectid,
  1421. root);
  1422. if (ret == 0)
  1423. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1424. spin_unlock(&fs_info->fs_roots_radix_lock);
  1425. radix_tree_preload_end();
  1426. return ret;
  1427. }
  1428. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1429. struct btrfs_key *location,
  1430. bool check_ref)
  1431. {
  1432. struct btrfs_root *root;
  1433. struct btrfs_path *path;
  1434. struct btrfs_key key;
  1435. int ret;
  1436. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1437. return fs_info->tree_root;
  1438. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1439. return fs_info->extent_root;
  1440. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1441. return fs_info->chunk_root;
  1442. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1443. return fs_info->dev_root;
  1444. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1445. return fs_info->csum_root;
  1446. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1447. return fs_info->quota_root ? fs_info->quota_root :
  1448. ERR_PTR(-ENOENT);
  1449. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1450. return fs_info->uuid_root ? fs_info->uuid_root :
  1451. ERR_PTR(-ENOENT);
  1452. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1453. return fs_info->free_space_root ? fs_info->free_space_root :
  1454. ERR_PTR(-ENOENT);
  1455. again:
  1456. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1457. if (root) {
  1458. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1459. return ERR_PTR(-ENOENT);
  1460. return root;
  1461. }
  1462. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1463. if (IS_ERR(root))
  1464. return root;
  1465. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1466. ret = -ENOENT;
  1467. goto fail;
  1468. }
  1469. ret = btrfs_init_fs_root(root);
  1470. if (ret)
  1471. goto fail;
  1472. path = btrfs_alloc_path();
  1473. if (!path) {
  1474. ret = -ENOMEM;
  1475. goto fail;
  1476. }
  1477. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1478. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1479. key.offset = location->objectid;
  1480. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1481. btrfs_free_path(path);
  1482. if (ret < 0)
  1483. goto fail;
  1484. if (ret == 0)
  1485. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1486. ret = btrfs_insert_fs_root(fs_info, root);
  1487. if (ret) {
  1488. if (ret == -EEXIST) {
  1489. free_fs_root(root);
  1490. goto again;
  1491. }
  1492. goto fail;
  1493. }
  1494. return root;
  1495. fail:
  1496. free_fs_root(root);
  1497. return ERR_PTR(ret);
  1498. }
  1499. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1500. {
  1501. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1502. int ret = 0;
  1503. struct btrfs_device *device;
  1504. struct backing_dev_info *bdi;
  1505. rcu_read_lock();
  1506. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1507. if (!device->bdev)
  1508. continue;
  1509. bdi = blk_get_backing_dev_info(device->bdev);
  1510. if (bdi_congested(bdi, bdi_bits)) {
  1511. ret = 1;
  1512. break;
  1513. }
  1514. }
  1515. rcu_read_unlock();
  1516. return ret;
  1517. }
  1518. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1519. {
  1520. int err;
  1521. err = bdi_setup_and_register(bdi, "btrfs");
  1522. if (err)
  1523. return err;
  1524. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1525. bdi->congested_fn = btrfs_congested_fn;
  1526. bdi->congested_data = info;
  1527. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1528. return 0;
  1529. }
  1530. /*
  1531. * called by the kthread helper functions to finally call the bio end_io
  1532. * functions. This is where read checksum verification actually happens
  1533. */
  1534. static void end_workqueue_fn(struct btrfs_work *work)
  1535. {
  1536. struct bio *bio;
  1537. struct btrfs_end_io_wq *end_io_wq;
  1538. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1539. bio = end_io_wq->bio;
  1540. bio->bi_error = end_io_wq->error;
  1541. bio->bi_private = end_io_wq->private;
  1542. bio->bi_end_io = end_io_wq->end_io;
  1543. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1544. bio_endio(bio);
  1545. }
  1546. static int cleaner_kthread(void *arg)
  1547. {
  1548. struct btrfs_root *root = arg;
  1549. int again;
  1550. struct btrfs_trans_handle *trans;
  1551. do {
  1552. again = 0;
  1553. /* Make the cleaner go to sleep early. */
  1554. if (btrfs_need_cleaner_sleep(root))
  1555. goto sleep;
  1556. /*
  1557. * Do not do anything if we might cause open_ctree() to block
  1558. * before we have finished mounting the filesystem.
  1559. */
  1560. if (!root->fs_info->open)
  1561. goto sleep;
  1562. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1563. goto sleep;
  1564. /*
  1565. * Avoid the problem that we change the status of the fs
  1566. * during the above check and trylock.
  1567. */
  1568. if (btrfs_need_cleaner_sleep(root)) {
  1569. mutex_unlock(&root->fs_info->cleaner_mutex);
  1570. goto sleep;
  1571. }
  1572. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1573. btrfs_run_delayed_iputs(root);
  1574. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1575. again = btrfs_clean_one_deleted_snapshot(root);
  1576. mutex_unlock(&root->fs_info->cleaner_mutex);
  1577. /*
  1578. * The defragger has dealt with the R/O remount and umount,
  1579. * needn't do anything special here.
  1580. */
  1581. btrfs_run_defrag_inodes(root->fs_info);
  1582. /*
  1583. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1584. * with relocation (btrfs_relocate_chunk) and relocation
  1585. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1586. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1587. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1588. * unused block groups.
  1589. */
  1590. btrfs_delete_unused_bgs(root->fs_info);
  1591. sleep:
  1592. if (!again) {
  1593. set_current_state(TASK_INTERRUPTIBLE);
  1594. if (!kthread_should_stop())
  1595. schedule();
  1596. __set_current_state(TASK_RUNNING);
  1597. }
  1598. } while (!kthread_should_stop());
  1599. /*
  1600. * Transaction kthread is stopped before us and wakes us up.
  1601. * However we might have started a new transaction and COWed some
  1602. * tree blocks when deleting unused block groups for example. So
  1603. * make sure we commit the transaction we started to have a clean
  1604. * shutdown when evicting the btree inode - if it has dirty pages
  1605. * when we do the final iput() on it, eviction will trigger a
  1606. * writeback for it which will fail with null pointer dereferences
  1607. * since work queues and other resources were already released and
  1608. * destroyed by the time the iput/eviction/writeback is made.
  1609. */
  1610. trans = btrfs_attach_transaction(root);
  1611. if (IS_ERR(trans)) {
  1612. if (PTR_ERR(trans) != -ENOENT)
  1613. btrfs_err(root->fs_info,
  1614. "cleaner transaction attach returned %ld",
  1615. PTR_ERR(trans));
  1616. } else {
  1617. int ret;
  1618. ret = btrfs_commit_transaction(trans, root);
  1619. if (ret)
  1620. btrfs_err(root->fs_info,
  1621. "cleaner open transaction commit returned %d",
  1622. ret);
  1623. }
  1624. return 0;
  1625. }
  1626. static int transaction_kthread(void *arg)
  1627. {
  1628. struct btrfs_root *root = arg;
  1629. struct btrfs_trans_handle *trans;
  1630. struct btrfs_transaction *cur;
  1631. u64 transid;
  1632. unsigned long now;
  1633. unsigned long delay;
  1634. bool cannot_commit;
  1635. do {
  1636. cannot_commit = false;
  1637. delay = HZ * root->fs_info->commit_interval;
  1638. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1639. spin_lock(&root->fs_info->trans_lock);
  1640. cur = root->fs_info->running_transaction;
  1641. if (!cur) {
  1642. spin_unlock(&root->fs_info->trans_lock);
  1643. goto sleep;
  1644. }
  1645. now = get_seconds();
  1646. if (cur->state < TRANS_STATE_BLOCKED &&
  1647. (now < cur->start_time ||
  1648. now - cur->start_time < root->fs_info->commit_interval)) {
  1649. spin_unlock(&root->fs_info->trans_lock);
  1650. delay = HZ * 5;
  1651. goto sleep;
  1652. }
  1653. transid = cur->transid;
  1654. spin_unlock(&root->fs_info->trans_lock);
  1655. /* If the file system is aborted, this will always fail. */
  1656. trans = btrfs_attach_transaction(root);
  1657. if (IS_ERR(trans)) {
  1658. if (PTR_ERR(trans) != -ENOENT)
  1659. cannot_commit = true;
  1660. goto sleep;
  1661. }
  1662. if (transid == trans->transid) {
  1663. btrfs_commit_transaction(trans, root);
  1664. } else {
  1665. btrfs_end_transaction(trans, root);
  1666. }
  1667. sleep:
  1668. wake_up_process(root->fs_info->cleaner_kthread);
  1669. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1670. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1671. &root->fs_info->fs_state)))
  1672. btrfs_cleanup_transaction(root);
  1673. set_current_state(TASK_INTERRUPTIBLE);
  1674. if (!kthread_should_stop() &&
  1675. (!btrfs_transaction_blocked(root->fs_info) ||
  1676. cannot_commit))
  1677. schedule_timeout(delay);
  1678. __set_current_state(TASK_RUNNING);
  1679. } while (!kthread_should_stop());
  1680. return 0;
  1681. }
  1682. /*
  1683. * this will find the highest generation in the array of
  1684. * root backups. The index of the highest array is returned,
  1685. * or -1 if we can't find anything.
  1686. *
  1687. * We check to make sure the array is valid by comparing the
  1688. * generation of the latest root in the array with the generation
  1689. * in the super block. If they don't match we pitch it.
  1690. */
  1691. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1692. {
  1693. u64 cur;
  1694. int newest_index = -1;
  1695. struct btrfs_root_backup *root_backup;
  1696. int i;
  1697. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1698. root_backup = info->super_copy->super_roots + i;
  1699. cur = btrfs_backup_tree_root_gen(root_backup);
  1700. if (cur == newest_gen)
  1701. newest_index = i;
  1702. }
  1703. /* check to see if we actually wrapped around */
  1704. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1705. root_backup = info->super_copy->super_roots;
  1706. cur = btrfs_backup_tree_root_gen(root_backup);
  1707. if (cur == newest_gen)
  1708. newest_index = 0;
  1709. }
  1710. return newest_index;
  1711. }
  1712. /*
  1713. * find the oldest backup so we know where to store new entries
  1714. * in the backup array. This will set the backup_root_index
  1715. * field in the fs_info struct
  1716. */
  1717. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1718. u64 newest_gen)
  1719. {
  1720. int newest_index = -1;
  1721. newest_index = find_newest_super_backup(info, newest_gen);
  1722. /* if there was garbage in there, just move along */
  1723. if (newest_index == -1) {
  1724. info->backup_root_index = 0;
  1725. } else {
  1726. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1727. }
  1728. }
  1729. /*
  1730. * copy all the root pointers into the super backup array.
  1731. * this will bump the backup pointer by one when it is
  1732. * done
  1733. */
  1734. static void backup_super_roots(struct btrfs_fs_info *info)
  1735. {
  1736. int next_backup;
  1737. struct btrfs_root_backup *root_backup;
  1738. int last_backup;
  1739. next_backup = info->backup_root_index;
  1740. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1741. BTRFS_NUM_BACKUP_ROOTS;
  1742. /*
  1743. * just overwrite the last backup if we're at the same generation
  1744. * this happens only at umount
  1745. */
  1746. root_backup = info->super_for_commit->super_roots + last_backup;
  1747. if (btrfs_backup_tree_root_gen(root_backup) ==
  1748. btrfs_header_generation(info->tree_root->node))
  1749. next_backup = last_backup;
  1750. root_backup = info->super_for_commit->super_roots + next_backup;
  1751. /*
  1752. * make sure all of our padding and empty slots get zero filled
  1753. * regardless of which ones we use today
  1754. */
  1755. memset(root_backup, 0, sizeof(*root_backup));
  1756. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1757. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1758. btrfs_set_backup_tree_root_gen(root_backup,
  1759. btrfs_header_generation(info->tree_root->node));
  1760. btrfs_set_backup_tree_root_level(root_backup,
  1761. btrfs_header_level(info->tree_root->node));
  1762. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1763. btrfs_set_backup_chunk_root_gen(root_backup,
  1764. btrfs_header_generation(info->chunk_root->node));
  1765. btrfs_set_backup_chunk_root_level(root_backup,
  1766. btrfs_header_level(info->chunk_root->node));
  1767. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1768. btrfs_set_backup_extent_root_gen(root_backup,
  1769. btrfs_header_generation(info->extent_root->node));
  1770. btrfs_set_backup_extent_root_level(root_backup,
  1771. btrfs_header_level(info->extent_root->node));
  1772. /*
  1773. * we might commit during log recovery, which happens before we set
  1774. * the fs_root. Make sure it is valid before we fill it in.
  1775. */
  1776. if (info->fs_root && info->fs_root->node) {
  1777. btrfs_set_backup_fs_root(root_backup,
  1778. info->fs_root->node->start);
  1779. btrfs_set_backup_fs_root_gen(root_backup,
  1780. btrfs_header_generation(info->fs_root->node));
  1781. btrfs_set_backup_fs_root_level(root_backup,
  1782. btrfs_header_level(info->fs_root->node));
  1783. }
  1784. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1785. btrfs_set_backup_dev_root_gen(root_backup,
  1786. btrfs_header_generation(info->dev_root->node));
  1787. btrfs_set_backup_dev_root_level(root_backup,
  1788. btrfs_header_level(info->dev_root->node));
  1789. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1790. btrfs_set_backup_csum_root_gen(root_backup,
  1791. btrfs_header_generation(info->csum_root->node));
  1792. btrfs_set_backup_csum_root_level(root_backup,
  1793. btrfs_header_level(info->csum_root->node));
  1794. btrfs_set_backup_total_bytes(root_backup,
  1795. btrfs_super_total_bytes(info->super_copy));
  1796. btrfs_set_backup_bytes_used(root_backup,
  1797. btrfs_super_bytes_used(info->super_copy));
  1798. btrfs_set_backup_num_devices(root_backup,
  1799. btrfs_super_num_devices(info->super_copy));
  1800. /*
  1801. * if we don't copy this out to the super_copy, it won't get remembered
  1802. * for the next commit
  1803. */
  1804. memcpy(&info->super_copy->super_roots,
  1805. &info->super_for_commit->super_roots,
  1806. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1807. }
  1808. /*
  1809. * this copies info out of the root backup array and back into
  1810. * the in-memory super block. It is meant to help iterate through
  1811. * the array, so you send it the number of backups you've already
  1812. * tried and the last backup index you used.
  1813. *
  1814. * this returns -1 when it has tried all the backups
  1815. */
  1816. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1817. struct btrfs_super_block *super,
  1818. int *num_backups_tried, int *backup_index)
  1819. {
  1820. struct btrfs_root_backup *root_backup;
  1821. int newest = *backup_index;
  1822. if (*num_backups_tried == 0) {
  1823. u64 gen = btrfs_super_generation(super);
  1824. newest = find_newest_super_backup(info, gen);
  1825. if (newest == -1)
  1826. return -1;
  1827. *backup_index = newest;
  1828. *num_backups_tried = 1;
  1829. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1830. /* we've tried all the backups, all done */
  1831. return -1;
  1832. } else {
  1833. /* jump to the next oldest backup */
  1834. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1835. BTRFS_NUM_BACKUP_ROOTS;
  1836. *backup_index = newest;
  1837. *num_backups_tried += 1;
  1838. }
  1839. root_backup = super->super_roots + newest;
  1840. btrfs_set_super_generation(super,
  1841. btrfs_backup_tree_root_gen(root_backup));
  1842. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1843. btrfs_set_super_root_level(super,
  1844. btrfs_backup_tree_root_level(root_backup));
  1845. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1846. /*
  1847. * fixme: the total bytes and num_devices need to match or we should
  1848. * need a fsck
  1849. */
  1850. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1851. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1852. return 0;
  1853. }
  1854. /* helper to cleanup workers */
  1855. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1856. {
  1857. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1858. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1859. btrfs_destroy_workqueue(fs_info->workers);
  1860. btrfs_destroy_workqueue(fs_info->endio_workers);
  1861. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1862. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1863. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1864. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1865. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1866. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1867. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1868. btrfs_destroy_workqueue(fs_info->submit_workers);
  1869. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1870. btrfs_destroy_workqueue(fs_info->caching_workers);
  1871. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1872. btrfs_destroy_workqueue(fs_info->flush_workers);
  1873. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1874. btrfs_destroy_workqueue(fs_info->extent_workers);
  1875. }
  1876. static void free_root_extent_buffers(struct btrfs_root *root)
  1877. {
  1878. if (root) {
  1879. free_extent_buffer(root->node);
  1880. free_extent_buffer(root->commit_root);
  1881. root->node = NULL;
  1882. root->commit_root = NULL;
  1883. }
  1884. }
  1885. /* helper to cleanup tree roots */
  1886. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1887. {
  1888. free_root_extent_buffers(info->tree_root);
  1889. free_root_extent_buffers(info->dev_root);
  1890. free_root_extent_buffers(info->extent_root);
  1891. free_root_extent_buffers(info->csum_root);
  1892. free_root_extent_buffers(info->quota_root);
  1893. free_root_extent_buffers(info->uuid_root);
  1894. if (chunk_root)
  1895. free_root_extent_buffers(info->chunk_root);
  1896. free_root_extent_buffers(info->free_space_root);
  1897. }
  1898. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1899. {
  1900. int ret;
  1901. struct btrfs_root *gang[8];
  1902. int i;
  1903. while (!list_empty(&fs_info->dead_roots)) {
  1904. gang[0] = list_entry(fs_info->dead_roots.next,
  1905. struct btrfs_root, root_list);
  1906. list_del(&gang[0]->root_list);
  1907. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1908. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1909. } else {
  1910. free_extent_buffer(gang[0]->node);
  1911. free_extent_buffer(gang[0]->commit_root);
  1912. btrfs_put_fs_root(gang[0]);
  1913. }
  1914. }
  1915. while (1) {
  1916. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1917. (void **)gang, 0,
  1918. ARRAY_SIZE(gang));
  1919. if (!ret)
  1920. break;
  1921. for (i = 0; i < ret; i++)
  1922. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1923. }
  1924. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1925. btrfs_free_log_root_tree(NULL, fs_info);
  1926. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1927. fs_info->pinned_extents);
  1928. }
  1929. }
  1930. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1931. {
  1932. mutex_init(&fs_info->scrub_lock);
  1933. atomic_set(&fs_info->scrubs_running, 0);
  1934. atomic_set(&fs_info->scrub_pause_req, 0);
  1935. atomic_set(&fs_info->scrubs_paused, 0);
  1936. atomic_set(&fs_info->scrub_cancel_req, 0);
  1937. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1938. fs_info->scrub_workers_refcnt = 0;
  1939. }
  1940. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1941. {
  1942. spin_lock_init(&fs_info->balance_lock);
  1943. mutex_init(&fs_info->balance_mutex);
  1944. atomic_set(&fs_info->balance_running, 0);
  1945. atomic_set(&fs_info->balance_pause_req, 0);
  1946. atomic_set(&fs_info->balance_cancel_req, 0);
  1947. fs_info->balance_ctl = NULL;
  1948. init_waitqueue_head(&fs_info->balance_wait_q);
  1949. }
  1950. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1951. struct btrfs_root *tree_root)
  1952. {
  1953. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1954. set_nlink(fs_info->btree_inode, 1);
  1955. /*
  1956. * we set the i_size on the btree inode to the max possible int.
  1957. * the real end of the address space is determined by all of
  1958. * the devices in the system
  1959. */
  1960. fs_info->btree_inode->i_size = OFFSET_MAX;
  1961. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1962. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1963. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1964. fs_info->btree_inode->i_mapping);
  1965. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1966. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1967. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1968. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1969. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1970. sizeof(struct btrfs_key));
  1971. set_bit(BTRFS_INODE_DUMMY,
  1972. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1973. btrfs_insert_inode_hash(fs_info->btree_inode);
  1974. }
  1975. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1976. {
  1977. fs_info->dev_replace.lock_owner = 0;
  1978. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1979. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1980. rwlock_init(&fs_info->dev_replace.lock);
  1981. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1982. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1983. init_waitqueue_head(&fs_info->replace_wait);
  1984. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1985. }
  1986. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1987. {
  1988. spin_lock_init(&fs_info->qgroup_lock);
  1989. mutex_init(&fs_info->qgroup_ioctl_lock);
  1990. fs_info->qgroup_tree = RB_ROOT;
  1991. fs_info->qgroup_op_tree = RB_ROOT;
  1992. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1993. fs_info->qgroup_seq = 1;
  1994. fs_info->quota_enabled = 0;
  1995. fs_info->pending_quota_state = 0;
  1996. fs_info->qgroup_ulist = NULL;
  1997. mutex_init(&fs_info->qgroup_rescan_lock);
  1998. }
  1999. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2000. struct btrfs_fs_devices *fs_devices)
  2001. {
  2002. int max_active = fs_info->thread_pool_size;
  2003. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2004. fs_info->workers =
  2005. btrfs_alloc_workqueue(fs_info, "worker",
  2006. flags | WQ_HIGHPRI, max_active, 16);
  2007. fs_info->delalloc_workers =
  2008. btrfs_alloc_workqueue(fs_info, "delalloc",
  2009. flags, max_active, 2);
  2010. fs_info->flush_workers =
  2011. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2012. flags, max_active, 0);
  2013. fs_info->caching_workers =
  2014. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2015. /*
  2016. * a higher idle thresh on the submit workers makes it much more
  2017. * likely that bios will be send down in a sane order to the
  2018. * devices
  2019. */
  2020. fs_info->submit_workers =
  2021. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2022. min_t(u64, fs_devices->num_devices,
  2023. max_active), 64);
  2024. fs_info->fixup_workers =
  2025. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2026. /*
  2027. * endios are largely parallel and should have a very
  2028. * low idle thresh
  2029. */
  2030. fs_info->endio_workers =
  2031. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2032. fs_info->endio_meta_workers =
  2033. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2034. max_active, 4);
  2035. fs_info->endio_meta_write_workers =
  2036. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2037. max_active, 2);
  2038. fs_info->endio_raid56_workers =
  2039. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2040. max_active, 4);
  2041. fs_info->endio_repair_workers =
  2042. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2043. fs_info->rmw_workers =
  2044. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2045. fs_info->endio_write_workers =
  2046. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2047. max_active, 2);
  2048. fs_info->endio_freespace_worker =
  2049. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2050. max_active, 0);
  2051. fs_info->delayed_workers =
  2052. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2053. max_active, 0);
  2054. fs_info->readahead_workers =
  2055. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2056. max_active, 2);
  2057. fs_info->qgroup_rescan_workers =
  2058. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2059. fs_info->extent_workers =
  2060. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2061. min_t(u64, fs_devices->num_devices,
  2062. max_active), 8);
  2063. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2064. fs_info->submit_workers && fs_info->flush_workers &&
  2065. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2066. fs_info->endio_meta_write_workers &&
  2067. fs_info->endio_repair_workers &&
  2068. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2069. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2070. fs_info->caching_workers && fs_info->readahead_workers &&
  2071. fs_info->fixup_workers && fs_info->delayed_workers &&
  2072. fs_info->extent_workers &&
  2073. fs_info->qgroup_rescan_workers)) {
  2074. return -ENOMEM;
  2075. }
  2076. return 0;
  2077. }
  2078. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2079. struct btrfs_fs_devices *fs_devices)
  2080. {
  2081. int ret;
  2082. struct btrfs_root *tree_root = fs_info->tree_root;
  2083. struct btrfs_root *log_tree_root;
  2084. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2085. u64 bytenr = btrfs_super_log_root(disk_super);
  2086. if (fs_devices->rw_devices == 0) {
  2087. btrfs_warn(fs_info, "log replay required on RO media");
  2088. return -EIO;
  2089. }
  2090. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2091. if (!log_tree_root)
  2092. return -ENOMEM;
  2093. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2094. tree_root->stripesize, log_tree_root, fs_info,
  2095. BTRFS_TREE_LOG_OBJECTID);
  2096. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2097. fs_info->generation + 1);
  2098. if (IS_ERR(log_tree_root->node)) {
  2099. btrfs_warn(fs_info, "failed to read log tree");
  2100. ret = PTR_ERR(log_tree_root->node);
  2101. kfree(log_tree_root);
  2102. return ret;
  2103. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2104. btrfs_err(fs_info, "failed to read log tree");
  2105. free_extent_buffer(log_tree_root->node);
  2106. kfree(log_tree_root);
  2107. return -EIO;
  2108. }
  2109. /* returns with log_tree_root freed on success */
  2110. ret = btrfs_recover_log_trees(log_tree_root);
  2111. if (ret) {
  2112. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2113. "Failed to recover log tree");
  2114. free_extent_buffer(log_tree_root->node);
  2115. kfree(log_tree_root);
  2116. return ret;
  2117. }
  2118. if (fs_info->sb->s_flags & MS_RDONLY) {
  2119. ret = btrfs_commit_super(tree_root);
  2120. if (ret)
  2121. return ret;
  2122. }
  2123. return 0;
  2124. }
  2125. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2126. struct btrfs_root *tree_root)
  2127. {
  2128. struct btrfs_root *root;
  2129. struct btrfs_key location;
  2130. int ret;
  2131. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2132. location.type = BTRFS_ROOT_ITEM_KEY;
  2133. location.offset = 0;
  2134. root = btrfs_read_tree_root(tree_root, &location);
  2135. if (IS_ERR(root))
  2136. return PTR_ERR(root);
  2137. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2138. fs_info->extent_root = root;
  2139. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2140. root = btrfs_read_tree_root(tree_root, &location);
  2141. if (IS_ERR(root))
  2142. return PTR_ERR(root);
  2143. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2144. fs_info->dev_root = root;
  2145. btrfs_init_devices_late(fs_info);
  2146. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2147. root = btrfs_read_tree_root(tree_root, &location);
  2148. if (IS_ERR(root))
  2149. return PTR_ERR(root);
  2150. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2151. fs_info->csum_root = root;
  2152. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2153. root = btrfs_read_tree_root(tree_root, &location);
  2154. if (!IS_ERR(root)) {
  2155. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2156. fs_info->quota_enabled = 1;
  2157. fs_info->pending_quota_state = 1;
  2158. fs_info->quota_root = root;
  2159. }
  2160. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2161. root = btrfs_read_tree_root(tree_root, &location);
  2162. if (IS_ERR(root)) {
  2163. ret = PTR_ERR(root);
  2164. if (ret != -ENOENT)
  2165. return ret;
  2166. } else {
  2167. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2168. fs_info->uuid_root = root;
  2169. }
  2170. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2171. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2172. root = btrfs_read_tree_root(tree_root, &location);
  2173. if (IS_ERR(root))
  2174. return PTR_ERR(root);
  2175. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2176. fs_info->free_space_root = root;
  2177. }
  2178. return 0;
  2179. }
  2180. int open_ctree(struct super_block *sb,
  2181. struct btrfs_fs_devices *fs_devices,
  2182. char *options)
  2183. {
  2184. u32 sectorsize;
  2185. u32 nodesize;
  2186. u32 stripesize;
  2187. u64 generation;
  2188. u64 features;
  2189. struct btrfs_key location;
  2190. struct buffer_head *bh;
  2191. struct btrfs_super_block *disk_super;
  2192. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2193. struct btrfs_root *tree_root;
  2194. struct btrfs_root *chunk_root;
  2195. int ret;
  2196. int err = -EINVAL;
  2197. int num_backups_tried = 0;
  2198. int backup_index = 0;
  2199. int max_active;
  2200. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2201. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2202. if (!tree_root || !chunk_root) {
  2203. err = -ENOMEM;
  2204. goto fail;
  2205. }
  2206. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2207. if (ret) {
  2208. err = ret;
  2209. goto fail;
  2210. }
  2211. ret = setup_bdi(fs_info, &fs_info->bdi);
  2212. if (ret) {
  2213. err = ret;
  2214. goto fail_srcu;
  2215. }
  2216. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2217. if (ret) {
  2218. err = ret;
  2219. goto fail_bdi;
  2220. }
  2221. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2222. (1 + ilog2(nr_cpu_ids));
  2223. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2224. if (ret) {
  2225. err = ret;
  2226. goto fail_dirty_metadata_bytes;
  2227. }
  2228. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2229. if (ret) {
  2230. err = ret;
  2231. goto fail_delalloc_bytes;
  2232. }
  2233. fs_info->btree_inode = new_inode(sb);
  2234. if (!fs_info->btree_inode) {
  2235. err = -ENOMEM;
  2236. goto fail_bio_counter;
  2237. }
  2238. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2239. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2240. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2241. INIT_LIST_HEAD(&fs_info->trans_list);
  2242. INIT_LIST_HEAD(&fs_info->dead_roots);
  2243. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2244. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2245. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2246. spin_lock_init(&fs_info->delalloc_root_lock);
  2247. spin_lock_init(&fs_info->trans_lock);
  2248. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2249. spin_lock_init(&fs_info->delayed_iput_lock);
  2250. spin_lock_init(&fs_info->defrag_inodes_lock);
  2251. spin_lock_init(&fs_info->free_chunk_lock);
  2252. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2253. spin_lock_init(&fs_info->super_lock);
  2254. spin_lock_init(&fs_info->qgroup_op_lock);
  2255. spin_lock_init(&fs_info->buffer_lock);
  2256. spin_lock_init(&fs_info->unused_bgs_lock);
  2257. rwlock_init(&fs_info->tree_mod_log_lock);
  2258. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2259. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2260. mutex_init(&fs_info->reloc_mutex);
  2261. mutex_init(&fs_info->delalloc_root_mutex);
  2262. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2263. seqlock_init(&fs_info->profiles_lock);
  2264. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2265. INIT_LIST_HEAD(&fs_info->space_info);
  2266. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2267. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2268. btrfs_mapping_init(&fs_info->mapping_tree);
  2269. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2270. BTRFS_BLOCK_RSV_GLOBAL);
  2271. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2272. BTRFS_BLOCK_RSV_DELALLOC);
  2273. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2274. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2275. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2276. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2277. BTRFS_BLOCK_RSV_DELOPS);
  2278. atomic_set(&fs_info->nr_async_submits, 0);
  2279. atomic_set(&fs_info->async_delalloc_pages, 0);
  2280. atomic_set(&fs_info->async_submit_draining, 0);
  2281. atomic_set(&fs_info->nr_async_bios, 0);
  2282. atomic_set(&fs_info->defrag_running, 0);
  2283. atomic_set(&fs_info->qgroup_op_seq, 0);
  2284. atomic_set(&fs_info->reada_works_cnt, 0);
  2285. atomic64_set(&fs_info->tree_mod_seq, 0);
  2286. fs_info->sb = sb;
  2287. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2288. fs_info->metadata_ratio = 0;
  2289. fs_info->defrag_inodes = RB_ROOT;
  2290. fs_info->free_chunk_space = 0;
  2291. fs_info->tree_mod_log = RB_ROOT;
  2292. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2293. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2294. /* readahead state */
  2295. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2296. spin_lock_init(&fs_info->reada_lock);
  2297. fs_info->thread_pool_size = min_t(unsigned long,
  2298. num_online_cpus() + 2, 8);
  2299. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2300. spin_lock_init(&fs_info->ordered_root_lock);
  2301. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2302. GFP_KERNEL);
  2303. if (!fs_info->delayed_root) {
  2304. err = -ENOMEM;
  2305. goto fail_iput;
  2306. }
  2307. btrfs_init_delayed_root(fs_info->delayed_root);
  2308. btrfs_init_scrub(fs_info);
  2309. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2310. fs_info->check_integrity_print_mask = 0;
  2311. #endif
  2312. btrfs_init_balance(fs_info);
  2313. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2314. sb->s_blocksize = 4096;
  2315. sb->s_blocksize_bits = blksize_bits(4096);
  2316. sb->s_bdi = &fs_info->bdi;
  2317. btrfs_init_btree_inode(fs_info, tree_root);
  2318. spin_lock_init(&fs_info->block_group_cache_lock);
  2319. fs_info->block_group_cache_tree = RB_ROOT;
  2320. fs_info->first_logical_byte = (u64)-1;
  2321. extent_io_tree_init(&fs_info->freed_extents[0],
  2322. fs_info->btree_inode->i_mapping);
  2323. extent_io_tree_init(&fs_info->freed_extents[1],
  2324. fs_info->btree_inode->i_mapping);
  2325. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2326. fs_info->do_barriers = 1;
  2327. mutex_init(&fs_info->ordered_operations_mutex);
  2328. mutex_init(&fs_info->tree_log_mutex);
  2329. mutex_init(&fs_info->chunk_mutex);
  2330. mutex_init(&fs_info->transaction_kthread_mutex);
  2331. mutex_init(&fs_info->cleaner_mutex);
  2332. mutex_init(&fs_info->volume_mutex);
  2333. mutex_init(&fs_info->ro_block_group_mutex);
  2334. init_rwsem(&fs_info->commit_root_sem);
  2335. init_rwsem(&fs_info->cleanup_work_sem);
  2336. init_rwsem(&fs_info->subvol_sem);
  2337. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2338. btrfs_init_dev_replace_locks(fs_info);
  2339. btrfs_init_qgroup(fs_info);
  2340. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2341. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2342. init_waitqueue_head(&fs_info->transaction_throttle);
  2343. init_waitqueue_head(&fs_info->transaction_wait);
  2344. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2345. init_waitqueue_head(&fs_info->async_submit_wait);
  2346. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2347. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2348. if (ret) {
  2349. err = ret;
  2350. goto fail_alloc;
  2351. }
  2352. __setup_root(4096, 4096, 4096, tree_root,
  2353. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2354. invalidate_bdev(fs_devices->latest_bdev);
  2355. /*
  2356. * Read super block and check the signature bytes only
  2357. */
  2358. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2359. if (IS_ERR(bh)) {
  2360. err = PTR_ERR(bh);
  2361. goto fail_alloc;
  2362. }
  2363. /*
  2364. * We want to check superblock checksum, the type is stored inside.
  2365. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2366. */
  2367. if (btrfs_check_super_csum(bh->b_data)) {
  2368. btrfs_err(fs_info, "superblock checksum mismatch");
  2369. err = -EINVAL;
  2370. brelse(bh);
  2371. goto fail_alloc;
  2372. }
  2373. /*
  2374. * super_copy is zeroed at allocation time and we never touch the
  2375. * following bytes up to INFO_SIZE, the checksum is calculated from
  2376. * the whole block of INFO_SIZE
  2377. */
  2378. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2379. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2380. sizeof(*fs_info->super_for_commit));
  2381. brelse(bh);
  2382. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2383. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2384. if (ret) {
  2385. btrfs_err(fs_info, "superblock contains fatal errors");
  2386. err = -EINVAL;
  2387. goto fail_alloc;
  2388. }
  2389. disk_super = fs_info->super_copy;
  2390. if (!btrfs_super_root(disk_super))
  2391. goto fail_alloc;
  2392. /* check FS state, whether FS is broken. */
  2393. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2394. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2395. /*
  2396. * run through our array of backup supers and setup
  2397. * our ring pointer to the oldest one
  2398. */
  2399. generation = btrfs_super_generation(disk_super);
  2400. find_oldest_super_backup(fs_info, generation);
  2401. /*
  2402. * In the long term, we'll store the compression type in the super
  2403. * block, and it'll be used for per file compression control.
  2404. */
  2405. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2406. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2407. if (ret) {
  2408. err = ret;
  2409. goto fail_alloc;
  2410. }
  2411. features = btrfs_super_incompat_flags(disk_super) &
  2412. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2413. if (features) {
  2414. btrfs_err(fs_info,
  2415. "cannot mount because of unsupported optional features (%llx)",
  2416. features);
  2417. err = -EINVAL;
  2418. goto fail_alloc;
  2419. }
  2420. features = btrfs_super_incompat_flags(disk_super);
  2421. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2422. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2423. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2424. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2425. btrfs_info(fs_info, "has skinny extents");
  2426. /*
  2427. * flag our filesystem as having big metadata blocks if
  2428. * they are bigger than the page size
  2429. */
  2430. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2431. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2432. btrfs_info(fs_info,
  2433. "flagging fs with big metadata feature");
  2434. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2435. }
  2436. nodesize = btrfs_super_nodesize(disk_super);
  2437. sectorsize = btrfs_super_sectorsize(disk_super);
  2438. stripesize = sectorsize;
  2439. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2440. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2441. /*
  2442. * mixed block groups end up with duplicate but slightly offset
  2443. * extent buffers for the same range. It leads to corruptions
  2444. */
  2445. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2446. (sectorsize != nodesize)) {
  2447. btrfs_err(fs_info,
  2448. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2449. nodesize, sectorsize);
  2450. goto fail_alloc;
  2451. }
  2452. /*
  2453. * Needn't use the lock because there is no other task which will
  2454. * update the flag.
  2455. */
  2456. btrfs_set_super_incompat_flags(disk_super, features);
  2457. features = btrfs_super_compat_ro_flags(disk_super) &
  2458. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2459. if (!(sb->s_flags & MS_RDONLY) && features) {
  2460. btrfs_err(fs_info,
  2461. "cannot mount read-write because of unsupported optional features (%llx)",
  2462. features);
  2463. err = -EINVAL;
  2464. goto fail_alloc;
  2465. }
  2466. max_active = fs_info->thread_pool_size;
  2467. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2468. if (ret) {
  2469. err = ret;
  2470. goto fail_sb_buffer;
  2471. }
  2472. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2473. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2474. SZ_4M / PAGE_SIZE);
  2475. tree_root->nodesize = nodesize;
  2476. tree_root->sectorsize = sectorsize;
  2477. tree_root->stripesize = stripesize;
  2478. sb->s_blocksize = sectorsize;
  2479. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2480. mutex_lock(&fs_info->chunk_mutex);
  2481. ret = btrfs_read_sys_array(tree_root);
  2482. mutex_unlock(&fs_info->chunk_mutex);
  2483. if (ret) {
  2484. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2485. goto fail_sb_buffer;
  2486. }
  2487. generation = btrfs_super_chunk_root_generation(disk_super);
  2488. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2489. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2490. chunk_root->node = read_tree_block(chunk_root,
  2491. btrfs_super_chunk_root(disk_super),
  2492. generation);
  2493. if (IS_ERR(chunk_root->node) ||
  2494. !extent_buffer_uptodate(chunk_root->node)) {
  2495. btrfs_err(fs_info, "failed to read chunk root");
  2496. if (!IS_ERR(chunk_root->node))
  2497. free_extent_buffer(chunk_root->node);
  2498. chunk_root->node = NULL;
  2499. goto fail_tree_roots;
  2500. }
  2501. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2502. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2503. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2504. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2505. ret = btrfs_read_chunk_tree(chunk_root);
  2506. if (ret) {
  2507. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2508. goto fail_tree_roots;
  2509. }
  2510. /*
  2511. * keep the device that is marked to be the target device for the
  2512. * dev_replace procedure
  2513. */
  2514. btrfs_close_extra_devices(fs_devices, 0);
  2515. if (!fs_devices->latest_bdev) {
  2516. btrfs_err(fs_info, "failed to read devices");
  2517. goto fail_tree_roots;
  2518. }
  2519. retry_root_backup:
  2520. generation = btrfs_super_generation(disk_super);
  2521. tree_root->node = read_tree_block(tree_root,
  2522. btrfs_super_root(disk_super),
  2523. generation);
  2524. if (IS_ERR(tree_root->node) ||
  2525. !extent_buffer_uptodate(tree_root->node)) {
  2526. btrfs_warn(fs_info, "failed to read tree root");
  2527. if (!IS_ERR(tree_root->node))
  2528. free_extent_buffer(tree_root->node);
  2529. tree_root->node = NULL;
  2530. goto recovery_tree_root;
  2531. }
  2532. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2533. tree_root->commit_root = btrfs_root_node(tree_root);
  2534. btrfs_set_root_refs(&tree_root->root_item, 1);
  2535. mutex_lock(&tree_root->objectid_mutex);
  2536. ret = btrfs_find_highest_objectid(tree_root,
  2537. &tree_root->highest_objectid);
  2538. if (ret) {
  2539. mutex_unlock(&tree_root->objectid_mutex);
  2540. goto recovery_tree_root;
  2541. }
  2542. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2543. mutex_unlock(&tree_root->objectid_mutex);
  2544. ret = btrfs_read_roots(fs_info, tree_root);
  2545. if (ret)
  2546. goto recovery_tree_root;
  2547. fs_info->generation = generation;
  2548. fs_info->last_trans_committed = generation;
  2549. ret = btrfs_recover_balance(fs_info);
  2550. if (ret) {
  2551. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2552. goto fail_block_groups;
  2553. }
  2554. ret = btrfs_init_dev_stats(fs_info);
  2555. if (ret) {
  2556. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2557. goto fail_block_groups;
  2558. }
  2559. ret = btrfs_init_dev_replace(fs_info);
  2560. if (ret) {
  2561. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2562. goto fail_block_groups;
  2563. }
  2564. btrfs_close_extra_devices(fs_devices, 1);
  2565. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2566. if (ret) {
  2567. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2568. ret);
  2569. goto fail_block_groups;
  2570. }
  2571. ret = btrfs_sysfs_add_device(fs_devices);
  2572. if (ret) {
  2573. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2574. ret);
  2575. goto fail_fsdev_sysfs;
  2576. }
  2577. ret = btrfs_sysfs_add_mounted(fs_info);
  2578. if (ret) {
  2579. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2580. goto fail_fsdev_sysfs;
  2581. }
  2582. ret = btrfs_init_space_info(fs_info);
  2583. if (ret) {
  2584. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2585. goto fail_sysfs;
  2586. }
  2587. ret = btrfs_read_block_groups(fs_info->extent_root);
  2588. if (ret) {
  2589. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2590. goto fail_sysfs;
  2591. }
  2592. fs_info->num_tolerated_disk_barrier_failures =
  2593. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2594. if (fs_info->fs_devices->missing_devices >
  2595. fs_info->num_tolerated_disk_barrier_failures &&
  2596. !(sb->s_flags & MS_RDONLY)) {
  2597. btrfs_warn(fs_info,
  2598. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2599. fs_info->fs_devices->missing_devices,
  2600. fs_info->num_tolerated_disk_barrier_failures);
  2601. goto fail_sysfs;
  2602. }
  2603. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2604. "btrfs-cleaner");
  2605. if (IS_ERR(fs_info->cleaner_kthread))
  2606. goto fail_sysfs;
  2607. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2608. tree_root,
  2609. "btrfs-transaction");
  2610. if (IS_ERR(fs_info->transaction_kthread))
  2611. goto fail_cleaner;
  2612. if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
  2613. !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
  2614. !fs_info->fs_devices->rotating) {
  2615. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2616. btrfs_set_opt(fs_info->mount_opt, SSD);
  2617. }
  2618. /*
  2619. * Mount does not set all options immediately, we can do it now and do
  2620. * not have to wait for transaction commit
  2621. */
  2622. btrfs_apply_pending_changes(fs_info);
  2623. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2624. if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
  2625. ret = btrfsic_mount(tree_root, fs_devices,
  2626. btrfs_test_opt(tree_root->fs_info,
  2627. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2628. 1 : 0,
  2629. fs_info->check_integrity_print_mask);
  2630. if (ret)
  2631. btrfs_warn(fs_info,
  2632. "failed to initialize integrity check module: %d",
  2633. ret);
  2634. }
  2635. #endif
  2636. ret = btrfs_read_qgroup_config(fs_info);
  2637. if (ret)
  2638. goto fail_trans_kthread;
  2639. /* do not make disk changes in broken FS or nologreplay is given */
  2640. if (btrfs_super_log_root(disk_super) != 0 &&
  2641. !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
  2642. ret = btrfs_replay_log(fs_info, fs_devices);
  2643. if (ret) {
  2644. err = ret;
  2645. goto fail_qgroup;
  2646. }
  2647. }
  2648. ret = btrfs_find_orphan_roots(tree_root);
  2649. if (ret)
  2650. goto fail_qgroup;
  2651. if (!(sb->s_flags & MS_RDONLY)) {
  2652. ret = btrfs_cleanup_fs_roots(fs_info);
  2653. if (ret)
  2654. goto fail_qgroup;
  2655. mutex_lock(&fs_info->cleaner_mutex);
  2656. ret = btrfs_recover_relocation(tree_root);
  2657. mutex_unlock(&fs_info->cleaner_mutex);
  2658. if (ret < 0) {
  2659. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2660. ret);
  2661. err = -EINVAL;
  2662. goto fail_qgroup;
  2663. }
  2664. }
  2665. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2666. location.type = BTRFS_ROOT_ITEM_KEY;
  2667. location.offset = 0;
  2668. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2669. if (IS_ERR(fs_info->fs_root)) {
  2670. err = PTR_ERR(fs_info->fs_root);
  2671. goto fail_qgroup;
  2672. }
  2673. if (sb->s_flags & MS_RDONLY)
  2674. return 0;
  2675. if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
  2676. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2677. btrfs_info(fs_info, "creating free space tree");
  2678. ret = btrfs_create_free_space_tree(fs_info);
  2679. if (ret) {
  2680. btrfs_warn(fs_info,
  2681. "failed to create free space tree: %d", ret);
  2682. close_ctree(tree_root);
  2683. return ret;
  2684. }
  2685. }
  2686. down_read(&fs_info->cleanup_work_sem);
  2687. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2688. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2689. up_read(&fs_info->cleanup_work_sem);
  2690. close_ctree(tree_root);
  2691. return ret;
  2692. }
  2693. up_read(&fs_info->cleanup_work_sem);
  2694. ret = btrfs_resume_balance_async(fs_info);
  2695. if (ret) {
  2696. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2697. close_ctree(tree_root);
  2698. return ret;
  2699. }
  2700. ret = btrfs_resume_dev_replace_async(fs_info);
  2701. if (ret) {
  2702. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2703. close_ctree(tree_root);
  2704. return ret;
  2705. }
  2706. btrfs_qgroup_rescan_resume(fs_info);
  2707. if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
  2708. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2709. btrfs_info(fs_info, "clearing free space tree");
  2710. ret = btrfs_clear_free_space_tree(fs_info);
  2711. if (ret) {
  2712. btrfs_warn(fs_info,
  2713. "failed to clear free space tree: %d", ret);
  2714. close_ctree(tree_root);
  2715. return ret;
  2716. }
  2717. }
  2718. if (!fs_info->uuid_root) {
  2719. btrfs_info(fs_info, "creating UUID tree");
  2720. ret = btrfs_create_uuid_tree(fs_info);
  2721. if (ret) {
  2722. btrfs_warn(fs_info,
  2723. "failed to create the UUID tree: %d", ret);
  2724. close_ctree(tree_root);
  2725. return ret;
  2726. }
  2727. } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
  2728. fs_info->generation !=
  2729. btrfs_super_uuid_tree_generation(disk_super)) {
  2730. btrfs_info(fs_info, "checking UUID tree");
  2731. ret = btrfs_check_uuid_tree(fs_info);
  2732. if (ret) {
  2733. btrfs_warn(fs_info,
  2734. "failed to check the UUID tree: %d", ret);
  2735. close_ctree(tree_root);
  2736. return ret;
  2737. }
  2738. } else {
  2739. fs_info->update_uuid_tree_gen = 1;
  2740. }
  2741. fs_info->open = 1;
  2742. /*
  2743. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2744. * no need to keep the flag
  2745. */
  2746. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2747. return 0;
  2748. fail_qgroup:
  2749. btrfs_free_qgroup_config(fs_info);
  2750. fail_trans_kthread:
  2751. kthread_stop(fs_info->transaction_kthread);
  2752. btrfs_cleanup_transaction(fs_info->tree_root);
  2753. btrfs_free_fs_roots(fs_info);
  2754. fail_cleaner:
  2755. kthread_stop(fs_info->cleaner_kthread);
  2756. /*
  2757. * make sure we're done with the btree inode before we stop our
  2758. * kthreads
  2759. */
  2760. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2761. fail_sysfs:
  2762. btrfs_sysfs_remove_mounted(fs_info);
  2763. fail_fsdev_sysfs:
  2764. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2765. fail_block_groups:
  2766. btrfs_put_block_group_cache(fs_info);
  2767. btrfs_free_block_groups(fs_info);
  2768. fail_tree_roots:
  2769. free_root_pointers(fs_info, 1);
  2770. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2771. fail_sb_buffer:
  2772. btrfs_stop_all_workers(fs_info);
  2773. fail_alloc:
  2774. fail_iput:
  2775. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2776. iput(fs_info->btree_inode);
  2777. fail_bio_counter:
  2778. percpu_counter_destroy(&fs_info->bio_counter);
  2779. fail_delalloc_bytes:
  2780. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2781. fail_dirty_metadata_bytes:
  2782. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2783. fail_bdi:
  2784. bdi_destroy(&fs_info->bdi);
  2785. fail_srcu:
  2786. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2787. fail:
  2788. btrfs_free_stripe_hash_table(fs_info);
  2789. btrfs_close_devices(fs_info->fs_devices);
  2790. return err;
  2791. recovery_tree_root:
  2792. if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
  2793. goto fail_tree_roots;
  2794. free_root_pointers(fs_info, 0);
  2795. /* don't use the log in recovery mode, it won't be valid */
  2796. btrfs_set_super_log_root(disk_super, 0);
  2797. /* we can't trust the free space cache either */
  2798. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2799. ret = next_root_backup(fs_info, fs_info->super_copy,
  2800. &num_backups_tried, &backup_index);
  2801. if (ret == -1)
  2802. goto fail_block_groups;
  2803. goto retry_root_backup;
  2804. }
  2805. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2806. {
  2807. if (uptodate) {
  2808. set_buffer_uptodate(bh);
  2809. } else {
  2810. struct btrfs_device *device = (struct btrfs_device *)
  2811. bh->b_private;
  2812. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2813. "lost page write due to IO error on %s",
  2814. rcu_str_deref(device->name));
  2815. /* note, we don't set_buffer_write_io_error because we have
  2816. * our own ways of dealing with the IO errors
  2817. */
  2818. clear_buffer_uptodate(bh);
  2819. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2820. }
  2821. unlock_buffer(bh);
  2822. put_bh(bh);
  2823. }
  2824. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2825. struct buffer_head **bh_ret)
  2826. {
  2827. struct buffer_head *bh;
  2828. struct btrfs_super_block *super;
  2829. u64 bytenr;
  2830. bytenr = btrfs_sb_offset(copy_num);
  2831. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2832. return -EINVAL;
  2833. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2834. /*
  2835. * If we fail to read from the underlying devices, as of now
  2836. * the best option we have is to mark it EIO.
  2837. */
  2838. if (!bh)
  2839. return -EIO;
  2840. super = (struct btrfs_super_block *)bh->b_data;
  2841. if (btrfs_super_bytenr(super) != bytenr ||
  2842. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2843. brelse(bh);
  2844. return -EINVAL;
  2845. }
  2846. *bh_ret = bh;
  2847. return 0;
  2848. }
  2849. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2850. {
  2851. struct buffer_head *bh;
  2852. struct buffer_head *latest = NULL;
  2853. struct btrfs_super_block *super;
  2854. int i;
  2855. u64 transid = 0;
  2856. int ret = -EINVAL;
  2857. /* we would like to check all the supers, but that would make
  2858. * a btrfs mount succeed after a mkfs from a different FS.
  2859. * So, we need to add a special mount option to scan for
  2860. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2861. */
  2862. for (i = 0; i < 1; i++) {
  2863. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2864. if (ret)
  2865. continue;
  2866. super = (struct btrfs_super_block *)bh->b_data;
  2867. if (!latest || btrfs_super_generation(super) > transid) {
  2868. brelse(latest);
  2869. latest = bh;
  2870. transid = btrfs_super_generation(super);
  2871. } else {
  2872. brelse(bh);
  2873. }
  2874. }
  2875. if (!latest)
  2876. return ERR_PTR(ret);
  2877. return latest;
  2878. }
  2879. /*
  2880. * this should be called twice, once with wait == 0 and
  2881. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2882. * we write are pinned.
  2883. *
  2884. * They are released when wait == 1 is done.
  2885. * max_mirrors must be the same for both runs, and it indicates how
  2886. * many supers on this one device should be written.
  2887. *
  2888. * max_mirrors == 0 means to write them all.
  2889. */
  2890. static int write_dev_supers(struct btrfs_device *device,
  2891. struct btrfs_super_block *sb,
  2892. int do_barriers, int wait, int max_mirrors)
  2893. {
  2894. struct buffer_head *bh;
  2895. int i;
  2896. int ret;
  2897. int errors = 0;
  2898. u32 crc;
  2899. u64 bytenr;
  2900. if (max_mirrors == 0)
  2901. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2902. for (i = 0; i < max_mirrors; i++) {
  2903. bytenr = btrfs_sb_offset(i);
  2904. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2905. device->commit_total_bytes)
  2906. break;
  2907. if (wait) {
  2908. bh = __find_get_block(device->bdev, bytenr / 4096,
  2909. BTRFS_SUPER_INFO_SIZE);
  2910. if (!bh) {
  2911. errors++;
  2912. continue;
  2913. }
  2914. wait_on_buffer(bh);
  2915. if (!buffer_uptodate(bh))
  2916. errors++;
  2917. /* drop our reference */
  2918. brelse(bh);
  2919. /* drop the reference from the wait == 0 run */
  2920. brelse(bh);
  2921. continue;
  2922. } else {
  2923. btrfs_set_super_bytenr(sb, bytenr);
  2924. crc = ~(u32)0;
  2925. crc = btrfs_csum_data((char *)sb +
  2926. BTRFS_CSUM_SIZE, crc,
  2927. BTRFS_SUPER_INFO_SIZE -
  2928. BTRFS_CSUM_SIZE);
  2929. btrfs_csum_final(crc, sb->csum);
  2930. /*
  2931. * one reference for us, and we leave it for the
  2932. * caller
  2933. */
  2934. bh = __getblk(device->bdev, bytenr / 4096,
  2935. BTRFS_SUPER_INFO_SIZE);
  2936. if (!bh) {
  2937. btrfs_err(device->dev_root->fs_info,
  2938. "couldn't get super buffer head for bytenr %llu",
  2939. bytenr);
  2940. errors++;
  2941. continue;
  2942. }
  2943. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2944. /* one reference for submit_bh */
  2945. get_bh(bh);
  2946. set_buffer_uptodate(bh);
  2947. lock_buffer(bh);
  2948. bh->b_end_io = btrfs_end_buffer_write_sync;
  2949. bh->b_private = device;
  2950. }
  2951. /*
  2952. * we fua the first super. The others we allow
  2953. * to go down lazy.
  2954. */
  2955. if (i == 0)
  2956. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  2957. else
  2958. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  2959. if (ret)
  2960. errors++;
  2961. }
  2962. return errors < i ? 0 : -1;
  2963. }
  2964. /*
  2965. * endio for the write_dev_flush, this will wake anyone waiting
  2966. * for the barrier when it is done
  2967. */
  2968. static void btrfs_end_empty_barrier(struct bio *bio)
  2969. {
  2970. if (bio->bi_private)
  2971. complete(bio->bi_private);
  2972. bio_put(bio);
  2973. }
  2974. /*
  2975. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2976. * sent down. With wait == 1, it waits for the previous flush.
  2977. *
  2978. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2979. * capable
  2980. */
  2981. static int write_dev_flush(struct btrfs_device *device, int wait)
  2982. {
  2983. struct bio *bio;
  2984. int ret = 0;
  2985. if (device->nobarriers)
  2986. return 0;
  2987. if (wait) {
  2988. bio = device->flush_bio;
  2989. if (!bio)
  2990. return 0;
  2991. wait_for_completion(&device->flush_wait);
  2992. if (bio->bi_error) {
  2993. ret = bio->bi_error;
  2994. btrfs_dev_stat_inc_and_print(device,
  2995. BTRFS_DEV_STAT_FLUSH_ERRS);
  2996. }
  2997. /* drop the reference from the wait == 0 run */
  2998. bio_put(bio);
  2999. device->flush_bio = NULL;
  3000. return ret;
  3001. }
  3002. /*
  3003. * one reference for us, and we leave it for the
  3004. * caller
  3005. */
  3006. device->flush_bio = NULL;
  3007. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3008. if (!bio)
  3009. return -ENOMEM;
  3010. bio->bi_end_io = btrfs_end_empty_barrier;
  3011. bio->bi_bdev = device->bdev;
  3012. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  3013. init_completion(&device->flush_wait);
  3014. bio->bi_private = &device->flush_wait;
  3015. device->flush_bio = bio;
  3016. bio_get(bio);
  3017. btrfsic_submit_bio(bio);
  3018. return 0;
  3019. }
  3020. /*
  3021. * send an empty flush down to each device in parallel,
  3022. * then wait for them
  3023. */
  3024. static int barrier_all_devices(struct btrfs_fs_info *info)
  3025. {
  3026. struct list_head *head;
  3027. struct btrfs_device *dev;
  3028. int errors_send = 0;
  3029. int errors_wait = 0;
  3030. int ret;
  3031. /* send down all the barriers */
  3032. head = &info->fs_devices->devices;
  3033. list_for_each_entry_rcu(dev, head, dev_list) {
  3034. if (dev->missing)
  3035. continue;
  3036. if (!dev->bdev) {
  3037. errors_send++;
  3038. continue;
  3039. }
  3040. if (!dev->in_fs_metadata || !dev->writeable)
  3041. continue;
  3042. ret = write_dev_flush(dev, 0);
  3043. if (ret)
  3044. errors_send++;
  3045. }
  3046. /* wait for all the barriers */
  3047. list_for_each_entry_rcu(dev, head, dev_list) {
  3048. if (dev->missing)
  3049. continue;
  3050. if (!dev->bdev) {
  3051. errors_wait++;
  3052. continue;
  3053. }
  3054. if (!dev->in_fs_metadata || !dev->writeable)
  3055. continue;
  3056. ret = write_dev_flush(dev, 1);
  3057. if (ret)
  3058. errors_wait++;
  3059. }
  3060. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3061. errors_wait > info->num_tolerated_disk_barrier_failures)
  3062. return -EIO;
  3063. return 0;
  3064. }
  3065. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3066. {
  3067. int raid_type;
  3068. int min_tolerated = INT_MAX;
  3069. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3070. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3071. min_tolerated = min(min_tolerated,
  3072. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3073. tolerated_failures);
  3074. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3075. if (raid_type == BTRFS_RAID_SINGLE)
  3076. continue;
  3077. if (!(flags & btrfs_raid_group[raid_type]))
  3078. continue;
  3079. min_tolerated = min(min_tolerated,
  3080. btrfs_raid_array[raid_type].
  3081. tolerated_failures);
  3082. }
  3083. if (min_tolerated == INT_MAX) {
  3084. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3085. min_tolerated = 0;
  3086. }
  3087. return min_tolerated;
  3088. }
  3089. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3090. struct btrfs_fs_info *fs_info)
  3091. {
  3092. struct btrfs_ioctl_space_info space;
  3093. struct btrfs_space_info *sinfo;
  3094. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3095. BTRFS_BLOCK_GROUP_SYSTEM,
  3096. BTRFS_BLOCK_GROUP_METADATA,
  3097. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3098. int i;
  3099. int c;
  3100. int num_tolerated_disk_barrier_failures =
  3101. (int)fs_info->fs_devices->num_devices;
  3102. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3103. struct btrfs_space_info *tmp;
  3104. sinfo = NULL;
  3105. rcu_read_lock();
  3106. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3107. if (tmp->flags == types[i]) {
  3108. sinfo = tmp;
  3109. break;
  3110. }
  3111. }
  3112. rcu_read_unlock();
  3113. if (!sinfo)
  3114. continue;
  3115. down_read(&sinfo->groups_sem);
  3116. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3117. u64 flags;
  3118. if (list_empty(&sinfo->block_groups[c]))
  3119. continue;
  3120. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3121. &space);
  3122. if (space.total_bytes == 0 || space.used_bytes == 0)
  3123. continue;
  3124. flags = space.flags;
  3125. num_tolerated_disk_barrier_failures = min(
  3126. num_tolerated_disk_barrier_failures,
  3127. btrfs_get_num_tolerated_disk_barrier_failures(
  3128. flags));
  3129. }
  3130. up_read(&sinfo->groups_sem);
  3131. }
  3132. return num_tolerated_disk_barrier_failures;
  3133. }
  3134. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3135. {
  3136. struct list_head *head;
  3137. struct btrfs_device *dev;
  3138. struct btrfs_super_block *sb;
  3139. struct btrfs_dev_item *dev_item;
  3140. int ret;
  3141. int do_barriers;
  3142. int max_errors;
  3143. int total_errors = 0;
  3144. u64 flags;
  3145. do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
  3146. backup_super_roots(root->fs_info);
  3147. sb = root->fs_info->super_for_commit;
  3148. dev_item = &sb->dev_item;
  3149. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3150. head = &root->fs_info->fs_devices->devices;
  3151. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3152. if (do_barriers) {
  3153. ret = barrier_all_devices(root->fs_info);
  3154. if (ret) {
  3155. mutex_unlock(
  3156. &root->fs_info->fs_devices->device_list_mutex);
  3157. btrfs_handle_fs_error(root->fs_info, ret,
  3158. "errors while submitting device barriers.");
  3159. return ret;
  3160. }
  3161. }
  3162. list_for_each_entry_rcu(dev, head, dev_list) {
  3163. if (!dev->bdev) {
  3164. total_errors++;
  3165. continue;
  3166. }
  3167. if (!dev->in_fs_metadata || !dev->writeable)
  3168. continue;
  3169. btrfs_set_stack_device_generation(dev_item, 0);
  3170. btrfs_set_stack_device_type(dev_item, dev->type);
  3171. btrfs_set_stack_device_id(dev_item, dev->devid);
  3172. btrfs_set_stack_device_total_bytes(dev_item,
  3173. dev->commit_total_bytes);
  3174. btrfs_set_stack_device_bytes_used(dev_item,
  3175. dev->commit_bytes_used);
  3176. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3177. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3178. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3179. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3180. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3181. flags = btrfs_super_flags(sb);
  3182. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3183. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3184. if (ret)
  3185. total_errors++;
  3186. }
  3187. if (total_errors > max_errors) {
  3188. btrfs_err(root->fs_info, "%d errors while writing supers",
  3189. total_errors);
  3190. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3191. /* FUA is masked off if unsupported and can't be the reason */
  3192. btrfs_handle_fs_error(root->fs_info, -EIO,
  3193. "%d errors while writing supers", total_errors);
  3194. return -EIO;
  3195. }
  3196. total_errors = 0;
  3197. list_for_each_entry_rcu(dev, head, dev_list) {
  3198. if (!dev->bdev)
  3199. continue;
  3200. if (!dev->in_fs_metadata || !dev->writeable)
  3201. continue;
  3202. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3203. if (ret)
  3204. total_errors++;
  3205. }
  3206. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3207. if (total_errors > max_errors) {
  3208. btrfs_handle_fs_error(root->fs_info, -EIO,
  3209. "%d errors while writing supers", total_errors);
  3210. return -EIO;
  3211. }
  3212. return 0;
  3213. }
  3214. int write_ctree_super(struct btrfs_trans_handle *trans,
  3215. struct btrfs_root *root, int max_mirrors)
  3216. {
  3217. return write_all_supers(root, max_mirrors);
  3218. }
  3219. /* Drop a fs root from the radix tree and free it. */
  3220. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3221. struct btrfs_root *root)
  3222. {
  3223. spin_lock(&fs_info->fs_roots_radix_lock);
  3224. radix_tree_delete(&fs_info->fs_roots_radix,
  3225. (unsigned long)root->root_key.objectid);
  3226. spin_unlock(&fs_info->fs_roots_radix_lock);
  3227. if (btrfs_root_refs(&root->root_item) == 0)
  3228. synchronize_srcu(&fs_info->subvol_srcu);
  3229. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3230. btrfs_free_log(NULL, root);
  3231. if (root->free_ino_pinned)
  3232. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3233. if (root->free_ino_ctl)
  3234. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3235. free_fs_root(root);
  3236. }
  3237. static void free_fs_root(struct btrfs_root *root)
  3238. {
  3239. iput(root->ino_cache_inode);
  3240. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3241. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3242. root->orphan_block_rsv = NULL;
  3243. if (root->anon_dev)
  3244. free_anon_bdev(root->anon_dev);
  3245. if (root->subv_writers)
  3246. btrfs_free_subvolume_writers(root->subv_writers);
  3247. free_extent_buffer(root->node);
  3248. free_extent_buffer(root->commit_root);
  3249. kfree(root->free_ino_ctl);
  3250. kfree(root->free_ino_pinned);
  3251. kfree(root->name);
  3252. btrfs_put_fs_root(root);
  3253. }
  3254. void btrfs_free_fs_root(struct btrfs_root *root)
  3255. {
  3256. free_fs_root(root);
  3257. }
  3258. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3259. {
  3260. u64 root_objectid = 0;
  3261. struct btrfs_root *gang[8];
  3262. int i = 0;
  3263. int err = 0;
  3264. unsigned int ret = 0;
  3265. int index;
  3266. while (1) {
  3267. index = srcu_read_lock(&fs_info->subvol_srcu);
  3268. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3269. (void **)gang, root_objectid,
  3270. ARRAY_SIZE(gang));
  3271. if (!ret) {
  3272. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3273. break;
  3274. }
  3275. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3276. for (i = 0; i < ret; i++) {
  3277. /* Avoid to grab roots in dead_roots */
  3278. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3279. gang[i] = NULL;
  3280. continue;
  3281. }
  3282. /* grab all the search result for later use */
  3283. gang[i] = btrfs_grab_fs_root(gang[i]);
  3284. }
  3285. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3286. for (i = 0; i < ret; i++) {
  3287. if (!gang[i])
  3288. continue;
  3289. root_objectid = gang[i]->root_key.objectid;
  3290. err = btrfs_orphan_cleanup(gang[i]);
  3291. if (err)
  3292. break;
  3293. btrfs_put_fs_root(gang[i]);
  3294. }
  3295. root_objectid++;
  3296. }
  3297. /* release the uncleaned roots due to error */
  3298. for (; i < ret; i++) {
  3299. if (gang[i])
  3300. btrfs_put_fs_root(gang[i]);
  3301. }
  3302. return err;
  3303. }
  3304. int btrfs_commit_super(struct btrfs_root *root)
  3305. {
  3306. struct btrfs_trans_handle *trans;
  3307. mutex_lock(&root->fs_info->cleaner_mutex);
  3308. btrfs_run_delayed_iputs(root);
  3309. mutex_unlock(&root->fs_info->cleaner_mutex);
  3310. wake_up_process(root->fs_info->cleaner_kthread);
  3311. /* wait until ongoing cleanup work done */
  3312. down_write(&root->fs_info->cleanup_work_sem);
  3313. up_write(&root->fs_info->cleanup_work_sem);
  3314. trans = btrfs_join_transaction(root);
  3315. if (IS_ERR(trans))
  3316. return PTR_ERR(trans);
  3317. return btrfs_commit_transaction(trans, root);
  3318. }
  3319. void close_ctree(struct btrfs_root *root)
  3320. {
  3321. struct btrfs_fs_info *fs_info = root->fs_info;
  3322. int ret;
  3323. fs_info->closing = 1;
  3324. smp_mb();
  3325. /* wait for the qgroup rescan worker to stop */
  3326. btrfs_qgroup_wait_for_completion(fs_info);
  3327. /* wait for the uuid_scan task to finish */
  3328. down(&fs_info->uuid_tree_rescan_sem);
  3329. /* avoid complains from lockdep et al., set sem back to initial state */
  3330. up(&fs_info->uuid_tree_rescan_sem);
  3331. /* pause restriper - we want to resume on mount */
  3332. btrfs_pause_balance(fs_info);
  3333. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3334. btrfs_scrub_cancel(fs_info);
  3335. /* wait for any defraggers to finish */
  3336. wait_event(fs_info->transaction_wait,
  3337. (atomic_read(&fs_info->defrag_running) == 0));
  3338. /* clear out the rbtree of defraggable inodes */
  3339. btrfs_cleanup_defrag_inodes(fs_info);
  3340. cancel_work_sync(&fs_info->async_reclaim_work);
  3341. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3342. /*
  3343. * If the cleaner thread is stopped and there are
  3344. * block groups queued for removal, the deletion will be
  3345. * skipped when we quit the cleaner thread.
  3346. */
  3347. btrfs_delete_unused_bgs(root->fs_info);
  3348. ret = btrfs_commit_super(root);
  3349. if (ret)
  3350. btrfs_err(fs_info, "commit super ret %d", ret);
  3351. }
  3352. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3353. btrfs_error_commit_super(root);
  3354. kthread_stop(fs_info->transaction_kthread);
  3355. kthread_stop(fs_info->cleaner_kthread);
  3356. fs_info->closing = 2;
  3357. smp_mb();
  3358. btrfs_free_qgroup_config(fs_info);
  3359. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3360. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3361. percpu_counter_sum(&fs_info->delalloc_bytes));
  3362. }
  3363. btrfs_sysfs_remove_mounted(fs_info);
  3364. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3365. btrfs_free_fs_roots(fs_info);
  3366. btrfs_put_block_group_cache(fs_info);
  3367. btrfs_free_block_groups(fs_info);
  3368. /*
  3369. * we must make sure there is not any read request to
  3370. * submit after we stopping all workers.
  3371. */
  3372. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3373. btrfs_stop_all_workers(fs_info);
  3374. fs_info->open = 0;
  3375. free_root_pointers(fs_info, 1);
  3376. iput(fs_info->btree_inode);
  3377. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3378. if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
  3379. btrfsic_unmount(root, fs_info->fs_devices);
  3380. #endif
  3381. btrfs_close_devices(fs_info->fs_devices);
  3382. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3383. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3384. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3385. percpu_counter_destroy(&fs_info->bio_counter);
  3386. bdi_destroy(&fs_info->bdi);
  3387. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3388. btrfs_free_stripe_hash_table(fs_info);
  3389. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3390. root->orphan_block_rsv = NULL;
  3391. lock_chunks(root);
  3392. while (!list_empty(&fs_info->pinned_chunks)) {
  3393. struct extent_map *em;
  3394. em = list_first_entry(&fs_info->pinned_chunks,
  3395. struct extent_map, list);
  3396. list_del_init(&em->list);
  3397. free_extent_map(em);
  3398. }
  3399. unlock_chunks(root);
  3400. }
  3401. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3402. int atomic)
  3403. {
  3404. int ret;
  3405. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3406. ret = extent_buffer_uptodate(buf);
  3407. if (!ret)
  3408. return ret;
  3409. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3410. parent_transid, atomic);
  3411. if (ret == -EAGAIN)
  3412. return ret;
  3413. return !ret;
  3414. }
  3415. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3416. {
  3417. struct btrfs_root *root;
  3418. u64 transid = btrfs_header_generation(buf);
  3419. int was_dirty;
  3420. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3421. /*
  3422. * This is a fast path so only do this check if we have sanity tests
  3423. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3424. * outside of the sanity tests.
  3425. */
  3426. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3427. return;
  3428. #endif
  3429. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3430. btrfs_assert_tree_locked(buf);
  3431. if (transid != root->fs_info->generation)
  3432. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3433. "found %llu running %llu\n",
  3434. buf->start, transid, root->fs_info->generation);
  3435. was_dirty = set_extent_buffer_dirty(buf);
  3436. if (!was_dirty)
  3437. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3438. buf->len,
  3439. root->fs_info->dirty_metadata_batch);
  3440. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3441. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3442. btrfs_print_leaf(root, buf);
  3443. ASSERT(0);
  3444. }
  3445. #endif
  3446. }
  3447. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3448. int flush_delayed)
  3449. {
  3450. /*
  3451. * looks as though older kernels can get into trouble with
  3452. * this code, they end up stuck in balance_dirty_pages forever
  3453. */
  3454. int ret;
  3455. if (current->flags & PF_MEMALLOC)
  3456. return;
  3457. if (flush_delayed)
  3458. btrfs_balance_delayed_items(root);
  3459. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3460. BTRFS_DIRTY_METADATA_THRESH);
  3461. if (ret > 0) {
  3462. balance_dirty_pages_ratelimited(
  3463. root->fs_info->btree_inode->i_mapping);
  3464. }
  3465. }
  3466. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3467. {
  3468. __btrfs_btree_balance_dirty(root, 1);
  3469. }
  3470. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3471. {
  3472. __btrfs_btree_balance_dirty(root, 0);
  3473. }
  3474. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3475. {
  3476. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3477. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3478. }
  3479. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3480. int read_only)
  3481. {
  3482. struct btrfs_super_block *sb = fs_info->super_copy;
  3483. u64 nodesize = btrfs_super_nodesize(sb);
  3484. u64 sectorsize = btrfs_super_sectorsize(sb);
  3485. int ret = 0;
  3486. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3487. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3488. ret = -EINVAL;
  3489. }
  3490. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3491. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3492. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3493. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3494. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3495. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3496. ret = -EINVAL;
  3497. }
  3498. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3499. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3500. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3501. ret = -EINVAL;
  3502. }
  3503. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3504. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3505. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3506. ret = -EINVAL;
  3507. }
  3508. /*
  3509. * Check sectorsize and nodesize first, other check will need it.
  3510. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3511. */
  3512. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3513. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3514. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3515. ret = -EINVAL;
  3516. }
  3517. /* Only PAGE SIZE is supported yet */
  3518. if (sectorsize != PAGE_SIZE) {
  3519. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3520. sectorsize, PAGE_SIZE);
  3521. ret = -EINVAL;
  3522. }
  3523. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3524. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3525. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3526. ret = -EINVAL;
  3527. }
  3528. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3529. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3530. le32_to_cpu(sb->__unused_leafsize),
  3531. nodesize);
  3532. ret = -EINVAL;
  3533. }
  3534. /* Root alignment check */
  3535. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3536. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3537. btrfs_super_root(sb));
  3538. ret = -EINVAL;
  3539. }
  3540. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3541. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3542. btrfs_super_chunk_root(sb));
  3543. ret = -EINVAL;
  3544. }
  3545. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3546. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3547. btrfs_super_log_root(sb));
  3548. ret = -EINVAL;
  3549. }
  3550. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3551. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3552. fs_info->fsid, sb->dev_item.fsid);
  3553. ret = -EINVAL;
  3554. }
  3555. /*
  3556. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3557. * done later
  3558. */
  3559. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3560. btrfs_err(fs_info, "bytes_used is too small %llu",
  3561. btrfs_super_bytes_used(sb));
  3562. ret = -EINVAL;
  3563. }
  3564. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3565. btrfs_err(fs_info, "invalid stripesize %u",
  3566. btrfs_super_stripesize(sb));
  3567. ret = -EINVAL;
  3568. }
  3569. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3570. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3571. btrfs_super_num_devices(sb));
  3572. if (btrfs_super_num_devices(sb) == 0) {
  3573. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3574. ret = -EINVAL;
  3575. }
  3576. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3577. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3578. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3579. ret = -EINVAL;
  3580. }
  3581. /*
  3582. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3583. * and one chunk
  3584. */
  3585. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3586. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3587. btrfs_super_sys_array_size(sb),
  3588. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3589. ret = -EINVAL;
  3590. }
  3591. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3592. + sizeof(struct btrfs_chunk)) {
  3593. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3594. btrfs_super_sys_array_size(sb),
  3595. sizeof(struct btrfs_disk_key)
  3596. + sizeof(struct btrfs_chunk));
  3597. ret = -EINVAL;
  3598. }
  3599. /*
  3600. * The generation is a global counter, we'll trust it more than the others
  3601. * but it's still possible that it's the one that's wrong.
  3602. */
  3603. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3604. printk(KERN_WARNING
  3605. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3606. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3607. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3608. && btrfs_super_cache_generation(sb) != (u64)-1)
  3609. printk(KERN_WARNING
  3610. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3611. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3612. return ret;
  3613. }
  3614. static void btrfs_error_commit_super(struct btrfs_root *root)
  3615. {
  3616. mutex_lock(&root->fs_info->cleaner_mutex);
  3617. btrfs_run_delayed_iputs(root);
  3618. mutex_unlock(&root->fs_info->cleaner_mutex);
  3619. down_write(&root->fs_info->cleanup_work_sem);
  3620. up_write(&root->fs_info->cleanup_work_sem);
  3621. /* cleanup FS via transaction */
  3622. btrfs_cleanup_transaction(root);
  3623. }
  3624. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3625. {
  3626. struct btrfs_ordered_extent *ordered;
  3627. spin_lock(&root->ordered_extent_lock);
  3628. /*
  3629. * This will just short circuit the ordered completion stuff which will
  3630. * make sure the ordered extent gets properly cleaned up.
  3631. */
  3632. list_for_each_entry(ordered, &root->ordered_extents,
  3633. root_extent_list)
  3634. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3635. spin_unlock(&root->ordered_extent_lock);
  3636. }
  3637. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3638. {
  3639. struct btrfs_root *root;
  3640. struct list_head splice;
  3641. INIT_LIST_HEAD(&splice);
  3642. spin_lock(&fs_info->ordered_root_lock);
  3643. list_splice_init(&fs_info->ordered_roots, &splice);
  3644. while (!list_empty(&splice)) {
  3645. root = list_first_entry(&splice, struct btrfs_root,
  3646. ordered_root);
  3647. list_move_tail(&root->ordered_root,
  3648. &fs_info->ordered_roots);
  3649. spin_unlock(&fs_info->ordered_root_lock);
  3650. btrfs_destroy_ordered_extents(root);
  3651. cond_resched();
  3652. spin_lock(&fs_info->ordered_root_lock);
  3653. }
  3654. spin_unlock(&fs_info->ordered_root_lock);
  3655. }
  3656. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3657. struct btrfs_root *root)
  3658. {
  3659. struct rb_node *node;
  3660. struct btrfs_delayed_ref_root *delayed_refs;
  3661. struct btrfs_delayed_ref_node *ref;
  3662. int ret = 0;
  3663. delayed_refs = &trans->delayed_refs;
  3664. spin_lock(&delayed_refs->lock);
  3665. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3666. spin_unlock(&delayed_refs->lock);
  3667. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3668. return ret;
  3669. }
  3670. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3671. struct btrfs_delayed_ref_head *head;
  3672. struct btrfs_delayed_ref_node *tmp;
  3673. bool pin_bytes = false;
  3674. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3675. href_node);
  3676. if (!mutex_trylock(&head->mutex)) {
  3677. atomic_inc(&head->node.refs);
  3678. spin_unlock(&delayed_refs->lock);
  3679. mutex_lock(&head->mutex);
  3680. mutex_unlock(&head->mutex);
  3681. btrfs_put_delayed_ref(&head->node);
  3682. spin_lock(&delayed_refs->lock);
  3683. continue;
  3684. }
  3685. spin_lock(&head->lock);
  3686. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3687. list) {
  3688. ref->in_tree = 0;
  3689. list_del(&ref->list);
  3690. atomic_dec(&delayed_refs->num_entries);
  3691. btrfs_put_delayed_ref(ref);
  3692. }
  3693. if (head->must_insert_reserved)
  3694. pin_bytes = true;
  3695. btrfs_free_delayed_extent_op(head->extent_op);
  3696. delayed_refs->num_heads--;
  3697. if (head->processing == 0)
  3698. delayed_refs->num_heads_ready--;
  3699. atomic_dec(&delayed_refs->num_entries);
  3700. head->node.in_tree = 0;
  3701. rb_erase(&head->href_node, &delayed_refs->href_root);
  3702. spin_unlock(&head->lock);
  3703. spin_unlock(&delayed_refs->lock);
  3704. mutex_unlock(&head->mutex);
  3705. if (pin_bytes)
  3706. btrfs_pin_extent(root, head->node.bytenr,
  3707. head->node.num_bytes, 1);
  3708. btrfs_put_delayed_ref(&head->node);
  3709. cond_resched();
  3710. spin_lock(&delayed_refs->lock);
  3711. }
  3712. spin_unlock(&delayed_refs->lock);
  3713. return ret;
  3714. }
  3715. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3716. {
  3717. struct btrfs_inode *btrfs_inode;
  3718. struct list_head splice;
  3719. INIT_LIST_HEAD(&splice);
  3720. spin_lock(&root->delalloc_lock);
  3721. list_splice_init(&root->delalloc_inodes, &splice);
  3722. while (!list_empty(&splice)) {
  3723. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3724. delalloc_inodes);
  3725. list_del_init(&btrfs_inode->delalloc_inodes);
  3726. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3727. &btrfs_inode->runtime_flags);
  3728. spin_unlock(&root->delalloc_lock);
  3729. btrfs_invalidate_inodes(btrfs_inode->root);
  3730. spin_lock(&root->delalloc_lock);
  3731. }
  3732. spin_unlock(&root->delalloc_lock);
  3733. }
  3734. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3735. {
  3736. struct btrfs_root *root;
  3737. struct list_head splice;
  3738. INIT_LIST_HEAD(&splice);
  3739. spin_lock(&fs_info->delalloc_root_lock);
  3740. list_splice_init(&fs_info->delalloc_roots, &splice);
  3741. while (!list_empty(&splice)) {
  3742. root = list_first_entry(&splice, struct btrfs_root,
  3743. delalloc_root);
  3744. list_del_init(&root->delalloc_root);
  3745. root = btrfs_grab_fs_root(root);
  3746. BUG_ON(!root);
  3747. spin_unlock(&fs_info->delalloc_root_lock);
  3748. btrfs_destroy_delalloc_inodes(root);
  3749. btrfs_put_fs_root(root);
  3750. spin_lock(&fs_info->delalloc_root_lock);
  3751. }
  3752. spin_unlock(&fs_info->delalloc_root_lock);
  3753. }
  3754. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3755. struct extent_io_tree *dirty_pages,
  3756. int mark)
  3757. {
  3758. int ret;
  3759. struct extent_buffer *eb;
  3760. u64 start = 0;
  3761. u64 end;
  3762. while (1) {
  3763. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3764. mark, NULL);
  3765. if (ret)
  3766. break;
  3767. clear_extent_bits(dirty_pages, start, end, mark);
  3768. while (start <= end) {
  3769. eb = btrfs_find_tree_block(root->fs_info, start);
  3770. start += root->nodesize;
  3771. if (!eb)
  3772. continue;
  3773. wait_on_extent_buffer_writeback(eb);
  3774. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3775. &eb->bflags))
  3776. clear_extent_buffer_dirty(eb);
  3777. free_extent_buffer_stale(eb);
  3778. }
  3779. }
  3780. return ret;
  3781. }
  3782. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3783. struct extent_io_tree *pinned_extents)
  3784. {
  3785. struct extent_io_tree *unpin;
  3786. u64 start;
  3787. u64 end;
  3788. int ret;
  3789. bool loop = true;
  3790. unpin = pinned_extents;
  3791. again:
  3792. while (1) {
  3793. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3794. EXTENT_DIRTY, NULL);
  3795. if (ret)
  3796. break;
  3797. clear_extent_dirty(unpin, start, end);
  3798. btrfs_error_unpin_extent_range(root, start, end);
  3799. cond_resched();
  3800. }
  3801. if (loop) {
  3802. if (unpin == &root->fs_info->freed_extents[0])
  3803. unpin = &root->fs_info->freed_extents[1];
  3804. else
  3805. unpin = &root->fs_info->freed_extents[0];
  3806. loop = false;
  3807. goto again;
  3808. }
  3809. return 0;
  3810. }
  3811. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3812. struct btrfs_root *root)
  3813. {
  3814. btrfs_destroy_delayed_refs(cur_trans, root);
  3815. cur_trans->state = TRANS_STATE_COMMIT_START;
  3816. wake_up(&root->fs_info->transaction_blocked_wait);
  3817. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3818. wake_up(&root->fs_info->transaction_wait);
  3819. btrfs_destroy_delayed_inodes(root);
  3820. btrfs_assert_delayed_root_empty(root);
  3821. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3822. EXTENT_DIRTY);
  3823. btrfs_destroy_pinned_extent(root,
  3824. root->fs_info->pinned_extents);
  3825. cur_trans->state =TRANS_STATE_COMPLETED;
  3826. wake_up(&cur_trans->commit_wait);
  3827. /*
  3828. memset(cur_trans, 0, sizeof(*cur_trans));
  3829. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3830. */
  3831. }
  3832. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3833. {
  3834. struct btrfs_transaction *t;
  3835. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3836. spin_lock(&root->fs_info->trans_lock);
  3837. while (!list_empty(&root->fs_info->trans_list)) {
  3838. t = list_first_entry(&root->fs_info->trans_list,
  3839. struct btrfs_transaction, list);
  3840. if (t->state >= TRANS_STATE_COMMIT_START) {
  3841. atomic_inc(&t->use_count);
  3842. spin_unlock(&root->fs_info->trans_lock);
  3843. btrfs_wait_for_commit(root, t->transid);
  3844. btrfs_put_transaction(t);
  3845. spin_lock(&root->fs_info->trans_lock);
  3846. continue;
  3847. }
  3848. if (t == root->fs_info->running_transaction) {
  3849. t->state = TRANS_STATE_COMMIT_DOING;
  3850. spin_unlock(&root->fs_info->trans_lock);
  3851. /*
  3852. * We wait for 0 num_writers since we don't hold a trans
  3853. * handle open currently for this transaction.
  3854. */
  3855. wait_event(t->writer_wait,
  3856. atomic_read(&t->num_writers) == 0);
  3857. } else {
  3858. spin_unlock(&root->fs_info->trans_lock);
  3859. }
  3860. btrfs_cleanup_one_transaction(t, root);
  3861. spin_lock(&root->fs_info->trans_lock);
  3862. if (t == root->fs_info->running_transaction)
  3863. root->fs_info->running_transaction = NULL;
  3864. list_del_init(&t->list);
  3865. spin_unlock(&root->fs_info->trans_lock);
  3866. btrfs_put_transaction(t);
  3867. trace_btrfs_transaction_commit(root);
  3868. spin_lock(&root->fs_info->trans_lock);
  3869. }
  3870. spin_unlock(&root->fs_info->trans_lock);
  3871. btrfs_destroy_all_ordered_extents(root->fs_info);
  3872. btrfs_destroy_delayed_inodes(root);
  3873. btrfs_assert_delayed_root_empty(root);
  3874. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3875. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3876. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3877. return 0;
  3878. }
  3879. static const struct extent_io_ops btree_extent_io_ops = {
  3880. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3881. .readpage_io_failed_hook = btree_io_failed_hook,
  3882. .submit_bio_hook = btree_submit_bio_hook,
  3883. /* note we're sharing with inode.c for the merge bio hook */
  3884. .merge_bio_hook = btrfs_merge_bio_hook,
  3885. };