vmx.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. * tools/testing/selftests/kvm/lib/x86.c
  3. *
  4. * Copyright (C) 2018, Google LLC.
  5. *
  6. * This work is licensed under the terms of the GNU GPL, version 2.
  7. */
  8. #define _GNU_SOURCE /* for program_invocation_name */
  9. #include "test_util.h"
  10. #include "kvm_util.h"
  11. #include "x86.h"
  12. #include "vmx.h"
  13. /* Create a default VM for VMX tests.
  14. *
  15. * Input Args:
  16. * vcpuid - The id of the single VCPU to add to the VM.
  17. * guest_code - The vCPU's entry point
  18. *
  19. * Output Args: None
  20. *
  21. * Return:
  22. * Pointer to opaque structure that describes the created VM.
  23. */
  24. struct kvm_vm *
  25. vm_create_default_vmx(uint32_t vcpuid, vmx_guest_code_t guest_code)
  26. {
  27. struct kvm_cpuid2 *cpuid;
  28. struct kvm_vm *vm;
  29. vm_vaddr_t vmxon_vaddr;
  30. vm_paddr_t vmxon_paddr;
  31. vm_vaddr_t vmcs_vaddr;
  32. vm_paddr_t vmcs_paddr;
  33. vm = vm_create_default(vcpuid, (void *) guest_code);
  34. /* Enable nesting in CPUID */
  35. vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
  36. /* Setup of a region of guest memory for the vmxon region. */
  37. vmxon_vaddr = vm_vaddr_alloc(vm, getpagesize(), 0, 0, 0);
  38. vmxon_paddr = addr_gva2gpa(vm, vmxon_vaddr);
  39. /* Setup of a region of guest memory for a vmcs. */
  40. vmcs_vaddr = vm_vaddr_alloc(vm, getpagesize(), 0, 0, 0);
  41. vmcs_paddr = addr_gva2gpa(vm, vmcs_vaddr);
  42. vcpu_args_set(vm, vcpuid, 4, vmxon_vaddr, vmxon_paddr, vmcs_vaddr,
  43. vmcs_paddr);
  44. return vm;
  45. }
  46. void prepare_for_vmx_operation(void)
  47. {
  48. uint64_t feature_control;
  49. uint64_t required;
  50. unsigned long cr0;
  51. unsigned long cr4;
  52. /*
  53. * Ensure bits in CR0 and CR4 are valid in VMX operation:
  54. * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
  55. * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
  56. */
  57. __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
  58. cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
  59. cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
  60. __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
  61. __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
  62. cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
  63. cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
  64. /* Enable VMX operation */
  65. cr4 |= X86_CR4_VMXE;
  66. __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
  67. /*
  68. * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
  69. * Bit 0: Lock bit. If clear, VMXON causes a #GP.
  70. * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
  71. * outside of SMX causes a #GP.
  72. */
  73. required = FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  74. required |= FEATURE_CONTROL_LOCKED;
  75. feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
  76. if ((feature_control & required) != required)
  77. wrmsr(MSR_IA32_FEATURE_CONTROL, feature_control | required);
  78. }
  79. /*
  80. * Initialize the control fields to the most basic settings possible.
  81. */
  82. static inline void init_vmcs_control_fields(void)
  83. {
  84. vmwrite(VIRTUAL_PROCESSOR_ID, 0);
  85. vmwrite(POSTED_INTR_NV, 0);
  86. vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_PINBASED_CTLS));
  87. vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_PROCBASED_CTLS));
  88. vmwrite(EXCEPTION_BITMAP, 0);
  89. vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
  90. vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
  91. vmwrite(CR3_TARGET_COUNT, 0);
  92. vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
  93. VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
  94. vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
  95. vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
  96. vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
  97. VM_ENTRY_IA32E_MODE); /* 64-bit guest */
  98. vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
  99. vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
  100. vmwrite(TPR_THRESHOLD, 0);
  101. vmwrite(SECONDARY_VM_EXEC_CONTROL, 0);
  102. vmwrite(CR0_GUEST_HOST_MASK, 0);
  103. vmwrite(CR4_GUEST_HOST_MASK, 0);
  104. vmwrite(CR0_READ_SHADOW, get_cr0());
  105. vmwrite(CR4_READ_SHADOW, get_cr4());
  106. }
  107. /*
  108. * Initialize the host state fields based on the current host state, with
  109. * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
  110. * or vmresume.
  111. */
  112. static inline void init_vmcs_host_state(void)
  113. {
  114. uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
  115. vmwrite(HOST_ES_SELECTOR, get_es());
  116. vmwrite(HOST_CS_SELECTOR, get_cs());
  117. vmwrite(HOST_SS_SELECTOR, get_ss());
  118. vmwrite(HOST_DS_SELECTOR, get_ds());
  119. vmwrite(HOST_FS_SELECTOR, get_fs());
  120. vmwrite(HOST_GS_SELECTOR, get_gs());
  121. vmwrite(HOST_TR_SELECTOR, get_tr());
  122. if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
  123. vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
  124. if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
  125. vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
  126. if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  127. vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
  128. rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
  129. vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
  130. vmwrite(HOST_CR0, get_cr0());
  131. vmwrite(HOST_CR3, get_cr3());
  132. vmwrite(HOST_CR4, get_cr4());
  133. vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
  134. vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
  135. vmwrite(HOST_TR_BASE,
  136. get_desc64_base((struct desc64 *)(get_gdt_base() + get_tr())));
  137. vmwrite(HOST_GDTR_BASE, get_gdt_base());
  138. vmwrite(HOST_IDTR_BASE, get_idt_base());
  139. vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
  140. vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
  141. }
  142. /*
  143. * Initialize the guest state fields essentially as a clone of
  144. * the host state fields. Some host state fields have fixed
  145. * values, and we set the corresponding guest state fields accordingly.
  146. */
  147. static inline void init_vmcs_guest_state(void *rip, void *rsp)
  148. {
  149. vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
  150. vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
  151. vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
  152. vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
  153. vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
  154. vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
  155. vmwrite(GUEST_LDTR_SELECTOR, 0);
  156. vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
  157. vmwrite(GUEST_INTR_STATUS, 0);
  158. vmwrite(GUEST_PML_INDEX, 0);
  159. vmwrite(VMCS_LINK_POINTER, -1ll);
  160. vmwrite(GUEST_IA32_DEBUGCTL, 0);
  161. vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
  162. vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
  163. vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
  164. vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
  165. vmwrite(GUEST_ES_LIMIT, -1);
  166. vmwrite(GUEST_CS_LIMIT, -1);
  167. vmwrite(GUEST_SS_LIMIT, -1);
  168. vmwrite(GUEST_DS_LIMIT, -1);
  169. vmwrite(GUEST_FS_LIMIT, -1);
  170. vmwrite(GUEST_GS_LIMIT, -1);
  171. vmwrite(GUEST_LDTR_LIMIT, -1);
  172. vmwrite(GUEST_TR_LIMIT, 0x67);
  173. vmwrite(GUEST_GDTR_LIMIT, 0xffff);
  174. vmwrite(GUEST_IDTR_LIMIT, 0xffff);
  175. vmwrite(GUEST_ES_AR_BYTES,
  176. vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
  177. vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
  178. vmwrite(GUEST_SS_AR_BYTES, 0xc093);
  179. vmwrite(GUEST_DS_AR_BYTES,
  180. vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  181. vmwrite(GUEST_FS_AR_BYTES,
  182. vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  183. vmwrite(GUEST_GS_AR_BYTES,
  184. vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  185. vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
  186. vmwrite(GUEST_TR_AR_BYTES, 0x8b);
  187. vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
  188. vmwrite(GUEST_ACTIVITY_STATE, 0);
  189. vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
  190. vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
  191. vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
  192. vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
  193. vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
  194. vmwrite(GUEST_ES_BASE, 0);
  195. vmwrite(GUEST_CS_BASE, 0);
  196. vmwrite(GUEST_SS_BASE, 0);
  197. vmwrite(GUEST_DS_BASE, 0);
  198. vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
  199. vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
  200. vmwrite(GUEST_LDTR_BASE, 0);
  201. vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
  202. vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
  203. vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
  204. vmwrite(GUEST_DR7, 0x400);
  205. vmwrite(GUEST_RSP, (uint64_t)rsp);
  206. vmwrite(GUEST_RIP, (uint64_t)rip);
  207. vmwrite(GUEST_RFLAGS, 2);
  208. vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  209. vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
  210. vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
  211. }
  212. void prepare_vmcs(void *guest_rip, void *guest_rsp)
  213. {
  214. init_vmcs_control_fields();
  215. init_vmcs_host_state();
  216. init_vmcs_guest_state(guest_rip, guest_rsp);
  217. }