mm.h 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. struct mempolicy;
  23. struct anon_vma;
  24. struct anon_vma_chain;
  25. struct file_ra_state;
  26. struct user_struct;
  27. struct writeback_control;
  28. struct bdi_writeback;
  29. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  30. extern unsigned long max_mapnr;
  31. static inline void set_max_mapnr(unsigned long limit)
  32. {
  33. max_mapnr = limit;
  34. }
  35. #else
  36. static inline void set_max_mapnr(unsigned long limit) { }
  37. #endif
  38. extern unsigned long totalram_pages;
  39. extern void * high_memory;
  40. extern int page_cluster;
  41. #ifdef CONFIG_SYSCTL
  42. extern int sysctl_legacy_va_layout;
  43. #else
  44. #define sysctl_legacy_va_layout 0
  45. #endif
  46. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  47. extern const int mmap_rnd_bits_min;
  48. extern const int mmap_rnd_bits_max;
  49. extern int mmap_rnd_bits __read_mostly;
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  52. extern const int mmap_rnd_compat_bits_min;
  53. extern const int mmap_rnd_compat_bits_max;
  54. extern int mmap_rnd_compat_bits __read_mostly;
  55. #endif
  56. #include <asm/page.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/processor.h>
  59. #ifndef __pa_symbol
  60. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  61. #endif
  62. /*
  63. * To prevent common memory management code establishing
  64. * a zero page mapping on a read fault.
  65. * This macro should be defined within <asm/pgtable.h>.
  66. * s390 does this to prevent multiplexing of hardware bits
  67. * related to the physical page in case of virtualization.
  68. */
  69. #ifndef mm_forbids_zeropage
  70. #define mm_forbids_zeropage(X) (0)
  71. #endif
  72. extern unsigned long sysctl_user_reserve_kbytes;
  73. extern unsigned long sysctl_admin_reserve_kbytes;
  74. extern int sysctl_overcommit_memory;
  75. extern int sysctl_overcommit_ratio;
  76. extern unsigned long sysctl_overcommit_kbytes;
  77. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  78. size_t *, loff_t *);
  79. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  80. size_t *, loff_t *);
  81. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  82. /* to align the pointer to the (next) page boundary */
  83. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  84. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  85. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  86. /*
  87. * Linux kernel virtual memory manager primitives.
  88. * The idea being to have a "virtual" mm in the same way
  89. * we have a virtual fs - giving a cleaner interface to the
  90. * mm details, and allowing different kinds of memory mappings
  91. * (from shared memory to executable loading to arbitrary
  92. * mmap() functions).
  93. */
  94. extern struct kmem_cache *vm_area_cachep;
  95. #ifndef CONFIG_MMU
  96. extern struct rb_root nommu_region_tree;
  97. extern struct rw_semaphore nommu_region_sem;
  98. extern unsigned int kobjsize(const void *objp);
  99. #endif
  100. /*
  101. * vm_flags in vm_area_struct, see mm_types.h.
  102. */
  103. #define VM_NONE 0x00000000
  104. #define VM_READ 0x00000001 /* currently active flags */
  105. #define VM_WRITE 0x00000002
  106. #define VM_EXEC 0x00000004
  107. #define VM_SHARED 0x00000008
  108. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  109. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  110. #define VM_MAYWRITE 0x00000020
  111. #define VM_MAYEXEC 0x00000040
  112. #define VM_MAYSHARE 0x00000080
  113. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  114. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  115. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  116. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  117. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  118. #define VM_LOCKED 0x00002000
  119. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  120. /* Used by sys_madvise() */
  121. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  122. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  123. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  124. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  125. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  126. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  127. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  128. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  129. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  130. #define VM_ARCH_2 0x02000000
  131. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  132. #ifdef CONFIG_MEM_SOFT_DIRTY
  133. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  134. #else
  135. # define VM_SOFTDIRTY 0
  136. #endif
  137. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  138. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  139. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  140. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  141. #if defined(CONFIG_X86)
  142. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  143. #elif defined(CONFIG_PPC)
  144. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  145. #elif defined(CONFIG_PARISC)
  146. # define VM_GROWSUP VM_ARCH_1
  147. #elif defined(CONFIG_METAG)
  148. # define VM_GROWSUP VM_ARCH_1
  149. #elif defined(CONFIG_IA64)
  150. # define VM_GROWSUP VM_ARCH_1
  151. #elif !defined(CONFIG_MMU)
  152. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  153. #endif
  154. #if defined(CONFIG_X86)
  155. /* MPX specific bounds table or bounds directory */
  156. # define VM_MPX VM_ARCH_2
  157. #endif
  158. #ifndef VM_GROWSUP
  159. # define VM_GROWSUP VM_NONE
  160. #endif
  161. /* Bits set in the VMA until the stack is in its final location */
  162. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  163. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  164. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  165. #endif
  166. #ifdef CONFIG_STACK_GROWSUP
  167. #define VM_STACK VM_GROWSUP
  168. #else
  169. #define VM_STACK VM_GROWSDOWN
  170. #endif
  171. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  172. /*
  173. * Special vmas that are non-mergable, non-mlock()able.
  174. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  175. */
  176. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  177. /* This mask defines which mm->def_flags a process can inherit its parent */
  178. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  179. /* This mask is used to clear all the VMA flags used by mlock */
  180. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  181. /*
  182. * mapping from the currently active vm_flags protection bits (the
  183. * low four bits) to a page protection mask..
  184. */
  185. extern pgprot_t protection_map[16];
  186. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  187. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  188. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  189. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  190. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  191. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  192. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  193. /*
  194. * vm_fault is filled by the the pagefault handler and passed to the vma's
  195. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  196. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  197. *
  198. * MM layer fills up gfp_mask for page allocations but fault handler might
  199. * alter it if its implementation requires a different allocation context.
  200. *
  201. * pgoff should be used in favour of virtual_address, if possible.
  202. */
  203. struct vm_fault {
  204. unsigned int flags; /* FAULT_FLAG_xxx flags */
  205. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  206. pgoff_t pgoff; /* Logical page offset based on vma */
  207. void __user *virtual_address; /* Faulting virtual address */
  208. struct page *cow_page; /* Handler may choose to COW */
  209. struct page *page; /* ->fault handlers should return a
  210. * page here, unless VM_FAULT_NOPAGE
  211. * is set (which is also implied by
  212. * VM_FAULT_ERROR).
  213. */
  214. /* for ->map_pages() only */
  215. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  216. * max_pgoff inclusive */
  217. pte_t *pte; /* pte entry associated with ->pgoff */
  218. };
  219. /*
  220. * These are the virtual MM functions - opening of an area, closing and
  221. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  222. * to the functions called when a no-page or a wp-page exception occurs.
  223. */
  224. struct vm_operations_struct {
  225. void (*open)(struct vm_area_struct * area);
  226. void (*close)(struct vm_area_struct * area);
  227. int (*mremap)(struct vm_area_struct * area);
  228. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  229. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  230. pmd_t *, unsigned int flags);
  231. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  232. /* notification that a previously read-only page is about to become
  233. * writable, if an error is returned it will cause a SIGBUS */
  234. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  235. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  236. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  237. /* called by access_process_vm when get_user_pages() fails, typically
  238. * for use by special VMAs that can switch between memory and hardware
  239. */
  240. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  241. void *buf, int len, int write);
  242. /* Called by the /proc/PID/maps code to ask the vma whether it
  243. * has a special name. Returning non-NULL will also cause this
  244. * vma to be dumped unconditionally. */
  245. const char *(*name)(struct vm_area_struct *vma);
  246. #ifdef CONFIG_NUMA
  247. /*
  248. * set_policy() op must add a reference to any non-NULL @new mempolicy
  249. * to hold the policy upon return. Caller should pass NULL @new to
  250. * remove a policy and fall back to surrounding context--i.e. do not
  251. * install a MPOL_DEFAULT policy, nor the task or system default
  252. * mempolicy.
  253. */
  254. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  255. /*
  256. * get_policy() op must add reference [mpol_get()] to any policy at
  257. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  258. * in mm/mempolicy.c will do this automatically.
  259. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  260. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  261. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  262. * must return NULL--i.e., do not "fallback" to task or system default
  263. * policy.
  264. */
  265. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  266. unsigned long addr);
  267. #endif
  268. /*
  269. * Called by vm_normal_page() for special PTEs to find the
  270. * page for @addr. This is useful if the default behavior
  271. * (using pte_page()) would not find the correct page.
  272. */
  273. struct page *(*find_special_page)(struct vm_area_struct *vma,
  274. unsigned long addr);
  275. };
  276. struct mmu_gather;
  277. struct inode;
  278. #define page_private(page) ((page)->private)
  279. #define set_page_private(page, v) ((page)->private = (v))
  280. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  281. static inline int pmd_devmap(pmd_t pmd)
  282. {
  283. return 0;
  284. }
  285. #endif
  286. /*
  287. * FIXME: take this include out, include page-flags.h in
  288. * files which need it (119 of them)
  289. */
  290. #include <linux/page-flags.h>
  291. #include <linux/huge_mm.h>
  292. /*
  293. * Methods to modify the page usage count.
  294. *
  295. * What counts for a page usage:
  296. * - cache mapping (page->mapping)
  297. * - private data (page->private)
  298. * - page mapped in a task's page tables, each mapping
  299. * is counted separately
  300. *
  301. * Also, many kernel routines increase the page count before a critical
  302. * routine so they can be sure the page doesn't go away from under them.
  303. */
  304. /*
  305. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  306. */
  307. static inline int put_page_testzero(struct page *page)
  308. {
  309. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  310. return atomic_dec_and_test(&page->_count);
  311. }
  312. /*
  313. * Try to grab a ref unless the page has a refcount of zero, return false if
  314. * that is the case.
  315. * This can be called when MMU is off so it must not access
  316. * any of the virtual mappings.
  317. */
  318. static inline int get_page_unless_zero(struct page *page)
  319. {
  320. return atomic_inc_not_zero(&page->_count);
  321. }
  322. extern int page_is_ram(unsigned long pfn);
  323. enum {
  324. REGION_INTERSECTS,
  325. REGION_DISJOINT,
  326. REGION_MIXED,
  327. };
  328. int region_intersects(resource_size_t offset, size_t size, const char *type);
  329. /* Support for virtually mapped pages */
  330. struct page *vmalloc_to_page(const void *addr);
  331. unsigned long vmalloc_to_pfn(const void *addr);
  332. /*
  333. * Determine if an address is within the vmalloc range
  334. *
  335. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  336. * is no special casing required.
  337. */
  338. static inline int is_vmalloc_addr(const void *x)
  339. {
  340. #ifdef CONFIG_MMU
  341. unsigned long addr = (unsigned long)x;
  342. return addr >= VMALLOC_START && addr < VMALLOC_END;
  343. #else
  344. return 0;
  345. #endif
  346. }
  347. #ifdef CONFIG_MMU
  348. extern int is_vmalloc_or_module_addr(const void *x);
  349. #else
  350. static inline int is_vmalloc_or_module_addr(const void *x)
  351. {
  352. return 0;
  353. }
  354. #endif
  355. extern void kvfree(const void *addr);
  356. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  357. {
  358. return &page[1].compound_mapcount;
  359. }
  360. static inline int compound_mapcount(struct page *page)
  361. {
  362. if (!PageCompound(page))
  363. return 0;
  364. page = compound_head(page);
  365. return atomic_read(compound_mapcount_ptr(page)) + 1;
  366. }
  367. /*
  368. * The atomic page->_mapcount, starts from -1: so that transitions
  369. * both from it and to it can be tracked, using atomic_inc_and_test
  370. * and atomic_add_negative(-1).
  371. */
  372. static inline void page_mapcount_reset(struct page *page)
  373. {
  374. atomic_set(&(page)->_mapcount, -1);
  375. }
  376. int __page_mapcount(struct page *page);
  377. static inline int page_mapcount(struct page *page)
  378. {
  379. VM_BUG_ON_PAGE(PageSlab(page), page);
  380. if (unlikely(PageCompound(page)))
  381. return __page_mapcount(page);
  382. return atomic_read(&page->_mapcount) + 1;
  383. }
  384. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  385. int total_mapcount(struct page *page);
  386. #else
  387. static inline int total_mapcount(struct page *page)
  388. {
  389. return page_mapcount(page);
  390. }
  391. #endif
  392. static inline int page_count(struct page *page)
  393. {
  394. return atomic_read(&compound_head(page)->_count);
  395. }
  396. static inline struct page *virt_to_head_page(const void *x)
  397. {
  398. struct page *page = virt_to_page(x);
  399. return compound_head(page);
  400. }
  401. /*
  402. * Setup the page count before being freed into the page allocator for
  403. * the first time (boot or memory hotplug)
  404. */
  405. static inline void init_page_count(struct page *page)
  406. {
  407. atomic_set(&page->_count, 1);
  408. }
  409. void __put_page(struct page *page);
  410. void put_pages_list(struct list_head *pages);
  411. void split_page(struct page *page, unsigned int order);
  412. int split_free_page(struct page *page);
  413. /*
  414. * Compound pages have a destructor function. Provide a
  415. * prototype for that function and accessor functions.
  416. * These are _only_ valid on the head of a compound page.
  417. */
  418. typedef void compound_page_dtor(struct page *);
  419. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  420. enum compound_dtor_id {
  421. NULL_COMPOUND_DTOR,
  422. COMPOUND_PAGE_DTOR,
  423. #ifdef CONFIG_HUGETLB_PAGE
  424. HUGETLB_PAGE_DTOR,
  425. #endif
  426. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  427. TRANSHUGE_PAGE_DTOR,
  428. #endif
  429. NR_COMPOUND_DTORS,
  430. };
  431. extern compound_page_dtor * const compound_page_dtors[];
  432. static inline void set_compound_page_dtor(struct page *page,
  433. enum compound_dtor_id compound_dtor)
  434. {
  435. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  436. page[1].compound_dtor = compound_dtor;
  437. }
  438. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  439. {
  440. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  441. return compound_page_dtors[page[1].compound_dtor];
  442. }
  443. static inline unsigned int compound_order(struct page *page)
  444. {
  445. if (!PageHead(page))
  446. return 0;
  447. return page[1].compound_order;
  448. }
  449. static inline void set_compound_order(struct page *page, unsigned int order)
  450. {
  451. page[1].compound_order = order;
  452. }
  453. void free_compound_page(struct page *page);
  454. #ifdef CONFIG_MMU
  455. /*
  456. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  457. * servicing faults for write access. In the normal case, do always want
  458. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  459. * that do not have writing enabled, when used by access_process_vm.
  460. */
  461. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  462. {
  463. if (likely(vma->vm_flags & VM_WRITE))
  464. pte = pte_mkwrite(pte);
  465. return pte;
  466. }
  467. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  468. struct page *page, pte_t *pte, bool write, bool anon);
  469. #endif
  470. /*
  471. * Multiple processes may "see" the same page. E.g. for untouched
  472. * mappings of /dev/null, all processes see the same page full of
  473. * zeroes, and text pages of executables and shared libraries have
  474. * only one copy in memory, at most, normally.
  475. *
  476. * For the non-reserved pages, page_count(page) denotes a reference count.
  477. * page_count() == 0 means the page is free. page->lru is then used for
  478. * freelist management in the buddy allocator.
  479. * page_count() > 0 means the page has been allocated.
  480. *
  481. * Pages are allocated by the slab allocator in order to provide memory
  482. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  483. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  484. * unless a particular usage is carefully commented. (the responsibility of
  485. * freeing the kmalloc memory is the caller's, of course).
  486. *
  487. * A page may be used by anyone else who does a __get_free_page().
  488. * In this case, page_count still tracks the references, and should only
  489. * be used through the normal accessor functions. The top bits of page->flags
  490. * and page->virtual store page management information, but all other fields
  491. * are unused and could be used privately, carefully. The management of this
  492. * page is the responsibility of the one who allocated it, and those who have
  493. * subsequently been given references to it.
  494. *
  495. * The other pages (we may call them "pagecache pages") are completely
  496. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  497. * The following discussion applies only to them.
  498. *
  499. * A pagecache page contains an opaque `private' member, which belongs to the
  500. * page's address_space. Usually, this is the address of a circular list of
  501. * the page's disk buffers. PG_private must be set to tell the VM to call
  502. * into the filesystem to release these pages.
  503. *
  504. * A page may belong to an inode's memory mapping. In this case, page->mapping
  505. * is the pointer to the inode, and page->index is the file offset of the page,
  506. * in units of PAGE_CACHE_SIZE.
  507. *
  508. * If pagecache pages are not associated with an inode, they are said to be
  509. * anonymous pages. These may become associated with the swapcache, and in that
  510. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  511. *
  512. * In either case (swapcache or inode backed), the pagecache itself holds one
  513. * reference to the page. Setting PG_private should also increment the
  514. * refcount. The each user mapping also has a reference to the page.
  515. *
  516. * The pagecache pages are stored in a per-mapping radix tree, which is
  517. * rooted at mapping->page_tree, and indexed by offset.
  518. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  519. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  520. *
  521. * All pagecache pages may be subject to I/O:
  522. * - inode pages may need to be read from disk,
  523. * - inode pages which have been modified and are MAP_SHARED may need
  524. * to be written back to the inode on disk,
  525. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  526. * modified may need to be swapped out to swap space and (later) to be read
  527. * back into memory.
  528. */
  529. /*
  530. * The zone field is never updated after free_area_init_core()
  531. * sets it, so none of the operations on it need to be atomic.
  532. */
  533. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  534. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  535. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  536. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  537. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  538. /*
  539. * Define the bit shifts to access each section. For non-existent
  540. * sections we define the shift as 0; that plus a 0 mask ensures
  541. * the compiler will optimise away reference to them.
  542. */
  543. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  544. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  545. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  546. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  547. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  548. #ifdef NODE_NOT_IN_PAGE_FLAGS
  549. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  550. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  551. SECTIONS_PGOFF : ZONES_PGOFF)
  552. #else
  553. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  554. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  555. NODES_PGOFF : ZONES_PGOFF)
  556. #endif
  557. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  558. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  559. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  560. #endif
  561. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  562. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  563. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  564. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  565. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  566. static inline enum zone_type page_zonenum(const struct page *page)
  567. {
  568. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  569. }
  570. #ifdef CONFIG_ZONE_DEVICE
  571. void get_zone_device_page(struct page *page);
  572. void put_zone_device_page(struct page *page);
  573. static inline bool is_zone_device_page(const struct page *page)
  574. {
  575. return page_zonenum(page) == ZONE_DEVICE;
  576. }
  577. #else
  578. static inline void get_zone_device_page(struct page *page)
  579. {
  580. }
  581. static inline void put_zone_device_page(struct page *page)
  582. {
  583. }
  584. static inline bool is_zone_device_page(const struct page *page)
  585. {
  586. return false;
  587. }
  588. #endif
  589. static inline void get_page(struct page *page)
  590. {
  591. page = compound_head(page);
  592. /*
  593. * Getting a normal page or the head of a compound page
  594. * requires to already have an elevated page->_count.
  595. */
  596. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  597. atomic_inc(&page->_count);
  598. if (unlikely(is_zone_device_page(page)))
  599. get_zone_device_page(page);
  600. }
  601. static inline void put_page(struct page *page)
  602. {
  603. page = compound_head(page);
  604. if (put_page_testzero(page))
  605. __put_page(page);
  606. if (unlikely(is_zone_device_page(page)))
  607. put_zone_device_page(page);
  608. }
  609. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  610. #define SECTION_IN_PAGE_FLAGS
  611. #endif
  612. /*
  613. * The identification function is mainly used by the buddy allocator for
  614. * determining if two pages could be buddies. We are not really identifying
  615. * the zone since we could be using the section number id if we do not have
  616. * node id available in page flags.
  617. * We only guarantee that it will return the same value for two combinable
  618. * pages in a zone.
  619. */
  620. static inline int page_zone_id(struct page *page)
  621. {
  622. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  623. }
  624. static inline int zone_to_nid(struct zone *zone)
  625. {
  626. #ifdef CONFIG_NUMA
  627. return zone->node;
  628. #else
  629. return 0;
  630. #endif
  631. }
  632. #ifdef NODE_NOT_IN_PAGE_FLAGS
  633. extern int page_to_nid(const struct page *page);
  634. #else
  635. static inline int page_to_nid(const struct page *page)
  636. {
  637. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  638. }
  639. #endif
  640. #ifdef CONFIG_NUMA_BALANCING
  641. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  642. {
  643. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  644. }
  645. static inline int cpupid_to_pid(int cpupid)
  646. {
  647. return cpupid & LAST__PID_MASK;
  648. }
  649. static inline int cpupid_to_cpu(int cpupid)
  650. {
  651. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  652. }
  653. static inline int cpupid_to_nid(int cpupid)
  654. {
  655. return cpu_to_node(cpupid_to_cpu(cpupid));
  656. }
  657. static inline bool cpupid_pid_unset(int cpupid)
  658. {
  659. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  660. }
  661. static inline bool cpupid_cpu_unset(int cpupid)
  662. {
  663. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  664. }
  665. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  666. {
  667. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  668. }
  669. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  670. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  671. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  672. {
  673. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  674. }
  675. static inline int page_cpupid_last(struct page *page)
  676. {
  677. return page->_last_cpupid;
  678. }
  679. static inline void page_cpupid_reset_last(struct page *page)
  680. {
  681. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  682. }
  683. #else
  684. static inline int page_cpupid_last(struct page *page)
  685. {
  686. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  687. }
  688. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  689. static inline void page_cpupid_reset_last(struct page *page)
  690. {
  691. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  692. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  693. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  694. }
  695. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  696. #else /* !CONFIG_NUMA_BALANCING */
  697. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  698. {
  699. return page_to_nid(page); /* XXX */
  700. }
  701. static inline int page_cpupid_last(struct page *page)
  702. {
  703. return page_to_nid(page); /* XXX */
  704. }
  705. static inline int cpupid_to_nid(int cpupid)
  706. {
  707. return -1;
  708. }
  709. static inline int cpupid_to_pid(int cpupid)
  710. {
  711. return -1;
  712. }
  713. static inline int cpupid_to_cpu(int cpupid)
  714. {
  715. return -1;
  716. }
  717. static inline int cpu_pid_to_cpupid(int nid, int pid)
  718. {
  719. return -1;
  720. }
  721. static inline bool cpupid_pid_unset(int cpupid)
  722. {
  723. return 1;
  724. }
  725. static inline void page_cpupid_reset_last(struct page *page)
  726. {
  727. }
  728. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  729. {
  730. return false;
  731. }
  732. #endif /* CONFIG_NUMA_BALANCING */
  733. static inline struct zone *page_zone(const struct page *page)
  734. {
  735. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  736. }
  737. #ifdef SECTION_IN_PAGE_FLAGS
  738. static inline void set_page_section(struct page *page, unsigned long section)
  739. {
  740. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  741. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  742. }
  743. static inline unsigned long page_to_section(const struct page *page)
  744. {
  745. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  746. }
  747. #endif
  748. static inline void set_page_zone(struct page *page, enum zone_type zone)
  749. {
  750. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  751. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  752. }
  753. static inline void set_page_node(struct page *page, unsigned long node)
  754. {
  755. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  756. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  757. }
  758. static inline void set_page_links(struct page *page, enum zone_type zone,
  759. unsigned long node, unsigned long pfn)
  760. {
  761. set_page_zone(page, zone);
  762. set_page_node(page, node);
  763. #ifdef SECTION_IN_PAGE_FLAGS
  764. set_page_section(page, pfn_to_section_nr(pfn));
  765. #endif
  766. }
  767. #ifdef CONFIG_MEMCG
  768. static inline struct mem_cgroup *page_memcg(struct page *page)
  769. {
  770. return page->mem_cgroup;
  771. }
  772. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  773. {
  774. page->mem_cgroup = memcg;
  775. }
  776. #else
  777. static inline struct mem_cgroup *page_memcg(struct page *page)
  778. {
  779. return NULL;
  780. }
  781. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  782. {
  783. }
  784. #endif
  785. /*
  786. * Some inline functions in vmstat.h depend on page_zone()
  787. */
  788. #include <linux/vmstat.h>
  789. static __always_inline void *lowmem_page_address(const struct page *page)
  790. {
  791. return __va(PFN_PHYS(page_to_pfn(page)));
  792. }
  793. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  794. #define HASHED_PAGE_VIRTUAL
  795. #endif
  796. #if defined(WANT_PAGE_VIRTUAL)
  797. static inline void *page_address(const struct page *page)
  798. {
  799. return page->virtual;
  800. }
  801. static inline void set_page_address(struct page *page, void *address)
  802. {
  803. page->virtual = address;
  804. }
  805. #define page_address_init() do { } while(0)
  806. #endif
  807. #if defined(HASHED_PAGE_VIRTUAL)
  808. void *page_address(const struct page *page);
  809. void set_page_address(struct page *page, void *virtual);
  810. void page_address_init(void);
  811. #endif
  812. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  813. #define page_address(page) lowmem_page_address(page)
  814. #define set_page_address(page, address) do { } while(0)
  815. #define page_address_init() do { } while(0)
  816. #endif
  817. extern void *page_rmapping(struct page *page);
  818. extern struct anon_vma *page_anon_vma(struct page *page);
  819. extern struct address_space *page_mapping(struct page *page);
  820. extern struct address_space *__page_file_mapping(struct page *);
  821. static inline
  822. struct address_space *page_file_mapping(struct page *page)
  823. {
  824. if (unlikely(PageSwapCache(page)))
  825. return __page_file_mapping(page);
  826. return page->mapping;
  827. }
  828. /*
  829. * Return the pagecache index of the passed page. Regular pagecache pages
  830. * use ->index whereas swapcache pages use ->private
  831. */
  832. static inline pgoff_t page_index(struct page *page)
  833. {
  834. if (unlikely(PageSwapCache(page)))
  835. return page_private(page);
  836. return page->index;
  837. }
  838. extern pgoff_t __page_file_index(struct page *page);
  839. /*
  840. * Return the file index of the page. Regular pagecache pages use ->index
  841. * whereas swapcache pages use swp_offset(->private)
  842. */
  843. static inline pgoff_t page_file_index(struct page *page)
  844. {
  845. if (unlikely(PageSwapCache(page)))
  846. return __page_file_index(page);
  847. return page->index;
  848. }
  849. /*
  850. * Return true if this page is mapped into pagetables.
  851. * For compound page it returns true if any subpage of compound page is mapped.
  852. */
  853. static inline bool page_mapped(struct page *page)
  854. {
  855. int i;
  856. if (likely(!PageCompound(page)))
  857. return atomic_read(&page->_mapcount) >= 0;
  858. page = compound_head(page);
  859. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  860. return true;
  861. for (i = 0; i < hpage_nr_pages(page); i++) {
  862. if (atomic_read(&page[i]._mapcount) >= 0)
  863. return true;
  864. }
  865. return false;
  866. }
  867. /*
  868. * Return true only if the page has been allocated with
  869. * ALLOC_NO_WATERMARKS and the low watermark was not
  870. * met implying that the system is under some pressure.
  871. */
  872. static inline bool page_is_pfmemalloc(struct page *page)
  873. {
  874. /*
  875. * Page index cannot be this large so this must be
  876. * a pfmemalloc page.
  877. */
  878. return page->index == -1UL;
  879. }
  880. /*
  881. * Only to be called by the page allocator on a freshly allocated
  882. * page.
  883. */
  884. static inline void set_page_pfmemalloc(struct page *page)
  885. {
  886. page->index = -1UL;
  887. }
  888. static inline void clear_page_pfmemalloc(struct page *page)
  889. {
  890. page->index = 0;
  891. }
  892. /*
  893. * Different kinds of faults, as returned by handle_mm_fault().
  894. * Used to decide whether a process gets delivered SIGBUS or
  895. * just gets major/minor fault counters bumped up.
  896. */
  897. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  898. #define VM_FAULT_OOM 0x0001
  899. #define VM_FAULT_SIGBUS 0x0002
  900. #define VM_FAULT_MAJOR 0x0004
  901. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  902. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  903. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  904. #define VM_FAULT_SIGSEGV 0x0040
  905. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  906. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  907. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  908. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  909. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  910. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  911. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  912. VM_FAULT_FALLBACK)
  913. /* Encode hstate index for a hwpoisoned large page */
  914. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  915. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  916. /*
  917. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  918. */
  919. extern void pagefault_out_of_memory(void);
  920. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  921. /*
  922. * Flags passed to show_mem() and show_free_areas() to suppress output in
  923. * various contexts.
  924. */
  925. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  926. extern void show_free_areas(unsigned int flags);
  927. extern bool skip_free_areas_node(unsigned int flags, int nid);
  928. int shmem_zero_setup(struct vm_area_struct *);
  929. #ifdef CONFIG_SHMEM
  930. bool shmem_mapping(struct address_space *mapping);
  931. #else
  932. static inline bool shmem_mapping(struct address_space *mapping)
  933. {
  934. return false;
  935. }
  936. #endif
  937. extern bool can_do_mlock(void);
  938. extern int user_shm_lock(size_t, struct user_struct *);
  939. extern void user_shm_unlock(size_t, struct user_struct *);
  940. /*
  941. * Parameter block passed down to zap_pte_range in exceptional cases.
  942. */
  943. struct zap_details {
  944. struct address_space *check_mapping; /* Check page->mapping if set */
  945. pgoff_t first_index; /* Lowest page->index to unmap */
  946. pgoff_t last_index; /* Highest page->index to unmap */
  947. };
  948. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  949. pte_t pte);
  950. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  951. unsigned long size);
  952. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  953. unsigned long size, struct zap_details *);
  954. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  955. unsigned long start, unsigned long end);
  956. /**
  957. * mm_walk - callbacks for walk_page_range
  958. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  959. * this handler is required to be able to handle
  960. * pmd_trans_huge() pmds. They may simply choose to
  961. * split_huge_page() instead of handling it explicitly.
  962. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  963. * @pte_hole: if set, called for each hole at all levels
  964. * @hugetlb_entry: if set, called for each hugetlb entry
  965. * @test_walk: caller specific callback function to determine whether
  966. * we walk over the current vma or not. A positive returned
  967. * value means "do page table walk over the current vma,"
  968. * and a negative one means "abort current page table walk
  969. * right now." 0 means "skip the current vma."
  970. * @mm: mm_struct representing the target process of page table walk
  971. * @vma: vma currently walked (NULL if walking outside vmas)
  972. * @private: private data for callbacks' usage
  973. *
  974. * (see the comment on walk_page_range() for more details)
  975. */
  976. struct mm_walk {
  977. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  978. unsigned long next, struct mm_walk *walk);
  979. int (*pte_entry)(pte_t *pte, unsigned long addr,
  980. unsigned long next, struct mm_walk *walk);
  981. int (*pte_hole)(unsigned long addr, unsigned long next,
  982. struct mm_walk *walk);
  983. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  984. unsigned long addr, unsigned long next,
  985. struct mm_walk *walk);
  986. int (*test_walk)(unsigned long addr, unsigned long next,
  987. struct mm_walk *walk);
  988. struct mm_struct *mm;
  989. struct vm_area_struct *vma;
  990. void *private;
  991. };
  992. int walk_page_range(unsigned long addr, unsigned long end,
  993. struct mm_walk *walk);
  994. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  995. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  996. unsigned long end, unsigned long floor, unsigned long ceiling);
  997. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  998. struct vm_area_struct *vma);
  999. void unmap_mapping_range(struct address_space *mapping,
  1000. loff_t const holebegin, loff_t const holelen, int even_cows);
  1001. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1002. unsigned long *pfn);
  1003. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1004. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1005. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1006. void *buf, int len, int write);
  1007. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1008. loff_t const holebegin, loff_t const holelen)
  1009. {
  1010. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1011. }
  1012. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1013. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1014. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1015. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1016. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1017. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1018. int invalidate_inode_page(struct page *page);
  1019. #ifdef CONFIG_MMU
  1020. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1021. unsigned long address, unsigned int flags);
  1022. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1023. unsigned long address, unsigned int fault_flags,
  1024. bool *unlocked);
  1025. #else
  1026. static inline int handle_mm_fault(struct mm_struct *mm,
  1027. struct vm_area_struct *vma, unsigned long address,
  1028. unsigned int flags)
  1029. {
  1030. /* should never happen if there's no MMU */
  1031. BUG();
  1032. return VM_FAULT_SIGBUS;
  1033. }
  1034. static inline int fixup_user_fault(struct task_struct *tsk,
  1035. struct mm_struct *mm, unsigned long address,
  1036. unsigned int fault_flags, bool *unlocked)
  1037. {
  1038. /* should never happen if there's no MMU */
  1039. BUG();
  1040. return -EFAULT;
  1041. }
  1042. #endif
  1043. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1044. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1045. void *buf, int len, int write);
  1046. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1047. unsigned long start, unsigned long nr_pages,
  1048. unsigned int foll_flags, struct page **pages,
  1049. struct vm_area_struct **vmas, int *nonblocking);
  1050. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1051. unsigned long start, unsigned long nr_pages,
  1052. int write, int force, struct page **pages,
  1053. struct vm_area_struct **vmas);
  1054. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1055. unsigned long start, unsigned long nr_pages,
  1056. int write, int force, struct page **pages,
  1057. struct vm_area_struct **vmas);
  1058. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1059. unsigned long start, unsigned long nr_pages,
  1060. int write, int force, struct page **pages,
  1061. int *locked);
  1062. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1063. unsigned long start, unsigned long nr_pages,
  1064. int write, int force, struct page **pages,
  1065. unsigned int gup_flags);
  1066. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1067. unsigned long start, unsigned long nr_pages,
  1068. int write, int force, struct page **pages);
  1069. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1070. struct page **pages);
  1071. /* Container for pinned pfns / pages */
  1072. struct frame_vector {
  1073. unsigned int nr_allocated; /* Number of frames we have space for */
  1074. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1075. bool got_ref; /* Did we pin pages by getting page ref? */
  1076. bool is_pfns; /* Does array contain pages or pfns? */
  1077. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1078. * pfns_vector_pages() or pfns_vector_pfns()
  1079. * for access */
  1080. };
  1081. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1082. void frame_vector_destroy(struct frame_vector *vec);
  1083. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1084. bool write, bool force, struct frame_vector *vec);
  1085. void put_vaddr_frames(struct frame_vector *vec);
  1086. int frame_vector_to_pages(struct frame_vector *vec);
  1087. void frame_vector_to_pfns(struct frame_vector *vec);
  1088. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1089. {
  1090. return vec->nr_frames;
  1091. }
  1092. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1093. {
  1094. if (vec->is_pfns) {
  1095. int err = frame_vector_to_pages(vec);
  1096. if (err)
  1097. return ERR_PTR(err);
  1098. }
  1099. return (struct page **)(vec->ptrs);
  1100. }
  1101. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1102. {
  1103. if (!vec->is_pfns)
  1104. frame_vector_to_pfns(vec);
  1105. return (unsigned long *)(vec->ptrs);
  1106. }
  1107. struct kvec;
  1108. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1109. struct page **pages);
  1110. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1111. struct page *get_dump_page(unsigned long addr);
  1112. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1113. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1114. unsigned int length);
  1115. int __set_page_dirty_nobuffers(struct page *page);
  1116. int __set_page_dirty_no_writeback(struct page *page);
  1117. int redirty_page_for_writepage(struct writeback_control *wbc,
  1118. struct page *page);
  1119. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1120. struct mem_cgroup *memcg);
  1121. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1122. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1123. int set_page_dirty(struct page *page);
  1124. int set_page_dirty_lock(struct page *page);
  1125. void cancel_dirty_page(struct page *page);
  1126. int clear_page_dirty_for_io(struct page *page);
  1127. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1128. /* Is the vma a continuation of the stack vma above it? */
  1129. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1130. {
  1131. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1132. }
  1133. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1134. {
  1135. return !vma->vm_ops;
  1136. }
  1137. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1138. unsigned long addr)
  1139. {
  1140. return (vma->vm_flags & VM_GROWSDOWN) &&
  1141. (vma->vm_start == addr) &&
  1142. !vma_growsdown(vma->vm_prev, addr);
  1143. }
  1144. /* Is the vma a continuation of the stack vma below it? */
  1145. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1146. {
  1147. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1148. }
  1149. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1150. unsigned long addr)
  1151. {
  1152. return (vma->vm_flags & VM_GROWSUP) &&
  1153. (vma->vm_end == addr) &&
  1154. !vma_growsup(vma->vm_next, addr);
  1155. }
  1156. int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
  1157. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1158. unsigned long old_addr, struct vm_area_struct *new_vma,
  1159. unsigned long new_addr, unsigned long len,
  1160. bool need_rmap_locks);
  1161. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1162. unsigned long end, pgprot_t newprot,
  1163. int dirty_accountable, int prot_numa);
  1164. extern int mprotect_fixup(struct vm_area_struct *vma,
  1165. struct vm_area_struct **pprev, unsigned long start,
  1166. unsigned long end, unsigned long newflags);
  1167. /*
  1168. * doesn't attempt to fault and will return short.
  1169. */
  1170. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1171. struct page **pages);
  1172. /*
  1173. * per-process(per-mm_struct) statistics.
  1174. */
  1175. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1176. {
  1177. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1178. #ifdef SPLIT_RSS_COUNTING
  1179. /*
  1180. * counter is updated in asynchronous manner and may go to minus.
  1181. * But it's never be expected number for users.
  1182. */
  1183. if (val < 0)
  1184. val = 0;
  1185. #endif
  1186. return (unsigned long)val;
  1187. }
  1188. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1189. {
  1190. atomic_long_add(value, &mm->rss_stat.count[member]);
  1191. }
  1192. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1193. {
  1194. atomic_long_inc(&mm->rss_stat.count[member]);
  1195. }
  1196. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1197. {
  1198. atomic_long_dec(&mm->rss_stat.count[member]);
  1199. }
  1200. /* Optimized variant when page is already known not to be PageAnon */
  1201. static inline int mm_counter_file(struct page *page)
  1202. {
  1203. if (PageSwapBacked(page))
  1204. return MM_SHMEMPAGES;
  1205. return MM_FILEPAGES;
  1206. }
  1207. static inline int mm_counter(struct page *page)
  1208. {
  1209. if (PageAnon(page))
  1210. return MM_ANONPAGES;
  1211. return mm_counter_file(page);
  1212. }
  1213. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1214. {
  1215. return get_mm_counter(mm, MM_FILEPAGES) +
  1216. get_mm_counter(mm, MM_ANONPAGES) +
  1217. get_mm_counter(mm, MM_SHMEMPAGES);
  1218. }
  1219. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1220. {
  1221. return max(mm->hiwater_rss, get_mm_rss(mm));
  1222. }
  1223. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1224. {
  1225. return max(mm->hiwater_vm, mm->total_vm);
  1226. }
  1227. static inline void update_hiwater_rss(struct mm_struct *mm)
  1228. {
  1229. unsigned long _rss = get_mm_rss(mm);
  1230. if ((mm)->hiwater_rss < _rss)
  1231. (mm)->hiwater_rss = _rss;
  1232. }
  1233. static inline void update_hiwater_vm(struct mm_struct *mm)
  1234. {
  1235. if (mm->hiwater_vm < mm->total_vm)
  1236. mm->hiwater_vm = mm->total_vm;
  1237. }
  1238. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1239. {
  1240. mm->hiwater_rss = get_mm_rss(mm);
  1241. }
  1242. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1243. struct mm_struct *mm)
  1244. {
  1245. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1246. if (*maxrss < hiwater_rss)
  1247. *maxrss = hiwater_rss;
  1248. }
  1249. #if defined(SPLIT_RSS_COUNTING)
  1250. void sync_mm_rss(struct mm_struct *mm);
  1251. #else
  1252. static inline void sync_mm_rss(struct mm_struct *mm)
  1253. {
  1254. }
  1255. #endif
  1256. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1257. static inline int pte_devmap(pte_t pte)
  1258. {
  1259. return 0;
  1260. }
  1261. #endif
  1262. int vma_wants_writenotify(struct vm_area_struct *vma);
  1263. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1264. spinlock_t **ptl);
  1265. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1266. spinlock_t **ptl)
  1267. {
  1268. pte_t *ptep;
  1269. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1270. return ptep;
  1271. }
  1272. #ifdef __PAGETABLE_PUD_FOLDED
  1273. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1274. unsigned long address)
  1275. {
  1276. return 0;
  1277. }
  1278. #else
  1279. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1280. #endif
  1281. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1282. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1283. unsigned long address)
  1284. {
  1285. return 0;
  1286. }
  1287. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1288. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1289. {
  1290. return 0;
  1291. }
  1292. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1293. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1294. #else
  1295. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1296. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1297. {
  1298. atomic_long_set(&mm->nr_pmds, 0);
  1299. }
  1300. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1301. {
  1302. return atomic_long_read(&mm->nr_pmds);
  1303. }
  1304. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1305. {
  1306. atomic_long_inc(&mm->nr_pmds);
  1307. }
  1308. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1309. {
  1310. atomic_long_dec(&mm->nr_pmds);
  1311. }
  1312. #endif
  1313. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1314. pmd_t *pmd, unsigned long address);
  1315. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1316. /*
  1317. * The following ifdef needed to get the 4level-fixup.h header to work.
  1318. * Remove it when 4level-fixup.h has been removed.
  1319. */
  1320. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1321. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1322. {
  1323. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1324. NULL: pud_offset(pgd, address);
  1325. }
  1326. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1327. {
  1328. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1329. NULL: pmd_offset(pud, address);
  1330. }
  1331. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1332. #if USE_SPLIT_PTE_PTLOCKS
  1333. #if ALLOC_SPLIT_PTLOCKS
  1334. void __init ptlock_cache_init(void);
  1335. extern bool ptlock_alloc(struct page *page);
  1336. extern void ptlock_free(struct page *page);
  1337. static inline spinlock_t *ptlock_ptr(struct page *page)
  1338. {
  1339. return page->ptl;
  1340. }
  1341. #else /* ALLOC_SPLIT_PTLOCKS */
  1342. static inline void ptlock_cache_init(void)
  1343. {
  1344. }
  1345. static inline bool ptlock_alloc(struct page *page)
  1346. {
  1347. return true;
  1348. }
  1349. static inline void ptlock_free(struct page *page)
  1350. {
  1351. }
  1352. static inline spinlock_t *ptlock_ptr(struct page *page)
  1353. {
  1354. return &page->ptl;
  1355. }
  1356. #endif /* ALLOC_SPLIT_PTLOCKS */
  1357. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1358. {
  1359. return ptlock_ptr(pmd_page(*pmd));
  1360. }
  1361. static inline bool ptlock_init(struct page *page)
  1362. {
  1363. /*
  1364. * prep_new_page() initialize page->private (and therefore page->ptl)
  1365. * with 0. Make sure nobody took it in use in between.
  1366. *
  1367. * It can happen if arch try to use slab for page table allocation:
  1368. * slab code uses page->slab_cache, which share storage with page->ptl.
  1369. */
  1370. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1371. if (!ptlock_alloc(page))
  1372. return false;
  1373. spin_lock_init(ptlock_ptr(page));
  1374. return true;
  1375. }
  1376. /* Reset page->mapping so free_pages_check won't complain. */
  1377. static inline void pte_lock_deinit(struct page *page)
  1378. {
  1379. page->mapping = NULL;
  1380. ptlock_free(page);
  1381. }
  1382. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1383. /*
  1384. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1385. */
  1386. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1387. {
  1388. return &mm->page_table_lock;
  1389. }
  1390. static inline void ptlock_cache_init(void) {}
  1391. static inline bool ptlock_init(struct page *page) { return true; }
  1392. static inline void pte_lock_deinit(struct page *page) {}
  1393. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1394. static inline void pgtable_init(void)
  1395. {
  1396. ptlock_cache_init();
  1397. pgtable_cache_init();
  1398. }
  1399. static inline bool pgtable_page_ctor(struct page *page)
  1400. {
  1401. if (!ptlock_init(page))
  1402. return false;
  1403. inc_zone_page_state(page, NR_PAGETABLE);
  1404. return true;
  1405. }
  1406. static inline void pgtable_page_dtor(struct page *page)
  1407. {
  1408. pte_lock_deinit(page);
  1409. dec_zone_page_state(page, NR_PAGETABLE);
  1410. }
  1411. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1412. ({ \
  1413. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1414. pte_t *__pte = pte_offset_map(pmd, address); \
  1415. *(ptlp) = __ptl; \
  1416. spin_lock(__ptl); \
  1417. __pte; \
  1418. })
  1419. #define pte_unmap_unlock(pte, ptl) do { \
  1420. spin_unlock(ptl); \
  1421. pte_unmap(pte); \
  1422. } while (0)
  1423. #define pte_alloc_map(mm, vma, pmd, address) \
  1424. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1425. pmd, address))? \
  1426. NULL: pte_offset_map(pmd, address))
  1427. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1428. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1429. pmd, address))? \
  1430. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1431. #define pte_alloc_kernel(pmd, address) \
  1432. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1433. NULL: pte_offset_kernel(pmd, address))
  1434. #if USE_SPLIT_PMD_PTLOCKS
  1435. static struct page *pmd_to_page(pmd_t *pmd)
  1436. {
  1437. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1438. return virt_to_page((void *)((unsigned long) pmd & mask));
  1439. }
  1440. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1441. {
  1442. return ptlock_ptr(pmd_to_page(pmd));
  1443. }
  1444. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1445. {
  1446. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1447. page->pmd_huge_pte = NULL;
  1448. #endif
  1449. return ptlock_init(page);
  1450. }
  1451. static inline void pgtable_pmd_page_dtor(struct page *page)
  1452. {
  1453. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1454. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1455. #endif
  1456. ptlock_free(page);
  1457. }
  1458. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1459. #else
  1460. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1461. {
  1462. return &mm->page_table_lock;
  1463. }
  1464. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1465. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1466. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1467. #endif
  1468. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1469. {
  1470. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1471. spin_lock(ptl);
  1472. return ptl;
  1473. }
  1474. extern void free_area_init(unsigned long * zones_size);
  1475. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1476. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1477. extern void free_initmem(void);
  1478. /*
  1479. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1480. * into the buddy system. The freed pages will be poisoned with pattern
  1481. * "poison" if it's within range [0, UCHAR_MAX].
  1482. * Return pages freed into the buddy system.
  1483. */
  1484. extern unsigned long free_reserved_area(void *start, void *end,
  1485. int poison, char *s);
  1486. #ifdef CONFIG_HIGHMEM
  1487. /*
  1488. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1489. * and totalram_pages.
  1490. */
  1491. extern void free_highmem_page(struct page *page);
  1492. #endif
  1493. extern void adjust_managed_page_count(struct page *page, long count);
  1494. extern void mem_init_print_info(const char *str);
  1495. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1496. /* Free the reserved page into the buddy system, so it gets managed. */
  1497. static inline void __free_reserved_page(struct page *page)
  1498. {
  1499. ClearPageReserved(page);
  1500. init_page_count(page);
  1501. __free_page(page);
  1502. }
  1503. static inline void free_reserved_page(struct page *page)
  1504. {
  1505. __free_reserved_page(page);
  1506. adjust_managed_page_count(page, 1);
  1507. }
  1508. static inline void mark_page_reserved(struct page *page)
  1509. {
  1510. SetPageReserved(page);
  1511. adjust_managed_page_count(page, -1);
  1512. }
  1513. /*
  1514. * Default method to free all the __init memory into the buddy system.
  1515. * The freed pages will be poisoned with pattern "poison" if it's within
  1516. * range [0, UCHAR_MAX].
  1517. * Return pages freed into the buddy system.
  1518. */
  1519. static inline unsigned long free_initmem_default(int poison)
  1520. {
  1521. extern char __init_begin[], __init_end[];
  1522. return free_reserved_area(&__init_begin, &__init_end,
  1523. poison, "unused kernel");
  1524. }
  1525. static inline unsigned long get_num_physpages(void)
  1526. {
  1527. int nid;
  1528. unsigned long phys_pages = 0;
  1529. for_each_online_node(nid)
  1530. phys_pages += node_present_pages(nid);
  1531. return phys_pages;
  1532. }
  1533. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1534. /*
  1535. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1536. * zones, allocate the backing mem_map and account for memory holes in a more
  1537. * architecture independent manner. This is a substitute for creating the
  1538. * zone_sizes[] and zholes_size[] arrays and passing them to
  1539. * free_area_init_node()
  1540. *
  1541. * An architecture is expected to register range of page frames backed by
  1542. * physical memory with memblock_add[_node]() before calling
  1543. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1544. * usage, an architecture is expected to do something like
  1545. *
  1546. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1547. * max_highmem_pfn};
  1548. * for_each_valid_physical_page_range()
  1549. * memblock_add_node(base, size, nid)
  1550. * free_area_init_nodes(max_zone_pfns);
  1551. *
  1552. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1553. * registered physical page range. Similarly
  1554. * sparse_memory_present_with_active_regions() calls memory_present() for
  1555. * each range when SPARSEMEM is enabled.
  1556. *
  1557. * See mm/page_alloc.c for more information on each function exposed by
  1558. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1559. */
  1560. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1561. unsigned long node_map_pfn_alignment(void);
  1562. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1563. unsigned long end_pfn);
  1564. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1565. unsigned long end_pfn);
  1566. extern void get_pfn_range_for_nid(unsigned int nid,
  1567. unsigned long *start_pfn, unsigned long *end_pfn);
  1568. extern unsigned long find_min_pfn_with_active_regions(void);
  1569. extern void free_bootmem_with_active_regions(int nid,
  1570. unsigned long max_low_pfn);
  1571. extern void sparse_memory_present_with_active_regions(int nid);
  1572. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1573. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1574. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1575. static inline int __early_pfn_to_nid(unsigned long pfn,
  1576. struct mminit_pfnnid_cache *state)
  1577. {
  1578. return 0;
  1579. }
  1580. #else
  1581. /* please see mm/page_alloc.c */
  1582. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1583. /* there is a per-arch backend function. */
  1584. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1585. struct mminit_pfnnid_cache *state);
  1586. #endif
  1587. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1588. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1589. unsigned long, enum memmap_context);
  1590. extern void setup_per_zone_wmarks(void);
  1591. extern int __meminit init_per_zone_wmark_min(void);
  1592. extern void mem_init(void);
  1593. extern void __init mmap_init(void);
  1594. extern void show_mem(unsigned int flags);
  1595. extern void si_meminfo(struct sysinfo * val);
  1596. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1597. extern __printf(3, 4)
  1598. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
  1599. const char *fmt, ...);
  1600. extern void setup_per_cpu_pageset(void);
  1601. extern void zone_pcp_update(struct zone *zone);
  1602. extern void zone_pcp_reset(struct zone *zone);
  1603. /* page_alloc.c */
  1604. extern int min_free_kbytes;
  1605. /* nommu.c */
  1606. extern atomic_long_t mmap_pages_allocated;
  1607. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1608. /* interval_tree.c */
  1609. void vma_interval_tree_insert(struct vm_area_struct *node,
  1610. struct rb_root *root);
  1611. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1612. struct vm_area_struct *prev,
  1613. struct rb_root *root);
  1614. void vma_interval_tree_remove(struct vm_area_struct *node,
  1615. struct rb_root *root);
  1616. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1617. unsigned long start, unsigned long last);
  1618. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1619. unsigned long start, unsigned long last);
  1620. #define vma_interval_tree_foreach(vma, root, start, last) \
  1621. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1622. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1623. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1624. struct rb_root *root);
  1625. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1626. struct rb_root *root);
  1627. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1628. struct rb_root *root, unsigned long start, unsigned long last);
  1629. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1630. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1631. #ifdef CONFIG_DEBUG_VM_RB
  1632. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1633. #endif
  1634. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1635. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1636. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1637. /* mmap.c */
  1638. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1639. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1640. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1641. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1642. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1643. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1644. struct mempolicy *, struct vm_userfaultfd_ctx);
  1645. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1646. extern int split_vma(struct mm_struct *,
  1647. struct vm_area_struct *, unsigned long addr, int new_below);
  1648. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1649. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1650. struct rb_node **, struct rb_node *);
  1651. extern void unlink_file_vma(struct vm_area_struct *);
  1652. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1653. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1654. bool *need_rmap_locks);
  1655. extern void exit_mmap(struct mm_struct *);
  1656. static inline int check_data_rlimit(unsigned long rlim,
  1657. unsigned long new,
  1658. unsigned long start,
  1659. unsigned long end_data,
  1660. unsigned long start_data)
  1661. {
  1662. if (rlim < RLIM_INFINITY) {
  1663. if (((new - start) + (end_data - start_data)) > rlim)
  1664. return -ENOSPC;
  1665. }
  1666. return 0;
  1667. }
  1668. extern int mm_take_all_locks(struct mm_struct *mm);
  1669. extern void mm_drop_all_locks(struct mm_struct *mm);
  1670. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1671. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1672. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1673. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1674. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1675. unsigned long addr, unsigned long len,
  1676. unsigned long flags,
  1677. const struct vm_special_mapping *spec);
  1678. /* This is an obsolete alternative to _install_special_mapping. */
  1679. extern int install_special_mapping(struct mm_struct *mm,
  1680. unsigned long addr, unsigned long len,
  1681. unsigned long flags, struct page **pages);
  1682. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1683. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1684. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1685. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1686. unsigned long len, unsigned long prot, unsigned long flags,
  1687. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1688. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1689. static inline unsigned long
  1690. do_mmap_pgoff(struct file *file, unsigned long addr,
  1691. unsigned long len, unsigned long prot, unsigned long flags,
  1692. unsigned long pgoff, unsigned long *populate)
  1693. {
  1694. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1695. }
  1696. #ifdef CONFIG_MMU
  1697. extern int __mm_populate(unsigned long addr, unsigned long len,
  1698. int ignore_errors);
  1699. static inline void mm_populate(unsigned long addr, unsigned long len)
  1700. {
  1701. /* Ignore errors */
  1702. (void) __mm_populate(addr, len, 1);
  1703. }
  1704. #else
  1705. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1706. #endif
  1707. /* These take the mm semaphore themselves */
  1708. extern unsigned long vm_brk(unsigned long, unsigned long);
  1709. extern int vm_munmap(unsigned long, size_t);
  1710. extern unsigned long vm_mmap(struct file *, unsigned long,
  1711. unsigned long, unsigned long,
  1712. unsigned long, unsigned long);
  1713. struct vm_unmapped_area_info {
  1714. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1715. unsigned long flags;
  1716. unsigned long length;
  1717. unsigned long low_limit;
  1718. unsigned long high_limit;
  1719. unsigned long align_mask;
  1720. unsigned long align_offset;
  1721. };
  1722. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1723. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1724. /*
  1725. * Search for an unmapped address range.
  1726. *
  1727. * We are looking for a range that:
  1728. * - does not intersect with any VMA;
  1729. * - is contained within the [low_limit, high_limit) interval;
  1730. * - is at least the desired size.
  1731. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1732. */
  1733. static inline unsigned long
  1734. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1735. {
  1736. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1737. return unmapped_area_topdown(info);
  1738. else
  1739. return unmapped_area(info);
  1740. }
  1741. /* truncate.c */
  1742. extern void truncate_inode_pages(struct address_space *, loff_t);
  1743. extern void truncate_inode_pages_range(struct address_space *,
  1744. loff_t lstart, loff_t lend);
  1745. extern void truncate_inode_pages_final(struct address_space *);
  1746. /* generic vm_area_ops exported for stackable file systems */
  1747. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1748. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1749. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1750. /* mm/page-writeback.c */
  1751. int write_one_page(struct page *page, int wait);
  1752. void task_dirty_inc(struct task_struct *tsk);
  1753. /* readahead.c */
  1754. #define VM_MAX_READAHEAD 128 /* kbytes */
  1755. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1756. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1757. pgoff_t offset, unsigned long nr_to_read);
  1758. void page_cache_sync_readahead(struct address_space *mapping,
  1759. struct file_ra_state *ra,
  1760. struct file *filp,
  1761. pgoff_t offset,
  1762. unsigned long size);
  1763. void page_cache_async_readahead(struct address_space *mapping,
  1764. struct file_ra_state *ra,
  1765. struct file *filp,
  1766. struct page *pg,
  1767. pgoff_t offset,
  1768. unsigned long size);
  1769. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1770. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1771. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1772. extern int expand_downwards(struct vm_area_struct *vma,
  1773. unsigned long address);
  1774. #if VM_GROWSUP
  1775. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1776. #else
  1777. #define expand_upwards(vma, address) (0)
  1778. #endif
  1779. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1780. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1781. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1782. struct vm_area_struct **pprev);
  1783. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1784. NULL if none. Assume start_addr < end_addr. */
  1785. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1786. {
  1787. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1788. if (vma && end_addr <= vma->vm_start)
  1789. vma = NULL;
  1790. return vma;
  1791. }
  1792. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1793. {
  1794. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1795. }
  1796. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1797. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1798. unsigned long vm_start, unsigned long vm_end)
  1799. {
  1800. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1801. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1802. vma = NULL;
  1803. return vma;
  1804. }
  1805. #ifdef CONFIG_MMU
  1806. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1807. void vma_set_page_prot(struct vm_area_struct *vma);
  1808. #else
  1809. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1810. {
  1811. return __pgprot(0);
  1812. }
  1813. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1814. {
  1815. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1816. }
  1817. #endif
  1818. #ifdef CONFIG_NUMA_BALANCING
  1819. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1820. unsigned long start, unsigned long end);
  1821. #endif
  1822. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1823. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1824. unsigned long pfn, unsigned long size, pgprot_t);
  1825. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1826. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1827. unsigned long pfn);
  1828. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1829. unsigned long pfn, pgprot_t pgprot);
  1830. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1831. pfn_t pfn);
  1832. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1833. struct page *follow_page_mask(struct vm_area_struct *vma,
  1834. unsigned long address, unsigned int foll_flags,
  1835. unsigned int *page_mask);
  1836. static inline struct page *follow_page(struct vm_area_struct *vma,
  1837. unsigned long address, unsigned int foll_flags)
  1838. {
  1839. unsigned int unused_page_mask;
  1840. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1841. }
  1842. #define FOLL_WRITE 0x01 /* check pte is writable */
  1843. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1844. #define FOLL_GET 0x04 /* do get_page on page */
  1845. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1846. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1847. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1848. * and return without waiting upon it */
  1849. #define FOLL_POPULATE 0x40 /* fault in page */
  1850. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1851. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1852. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1853. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1854. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1855. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1856. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1857. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1858. void *data);
  1859. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1860. unsigned long size, pte_fn_t fn, void *data);
  1861. #ifdef CONFIG_DEBUG_PAGEALLOC
  1862. extern bool _debug_pagealloc_enabled;
  1863. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1864. static inline bool debug_pagealloc_enabled(void)
  1865. {
  1866. return _debug_pagealloc_enabled;
  1867. }
  1868. static inline void
  1869. kernel_map_pages(struct page *page, int numpages, int enable)
  1870. {
  1871. if (!debug_pagealloc_enabled())
  1872. return;
  1873. __kernel_map_pages(page, numpages, enable);
  1874. }
  1875. #ifdef CONFIG_HIBERNATION
  1876. extern bool kernel_page_present(struct page *page);
  1877. #endif /* CONFIG_HIBERNATION */
  1878. #else
  1879. static inline void
  1880. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1881. #ifdef CONFIG_HIBERNATION
  1882. static inline bool kernel_page_present(struct page *page) { return true; }
  1883. #endif /* CONFIG_HIBERNATION */
  1884. #endif
  1885. #ifdef __HAVE_ARCH_GATE_AREA
  1886. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1887. extern int in_gate_area_no_mm(unsigned long addr);
  1888. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1889. #else
  1890. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1891. {
  1892. return NULL;
  1893. }
  1894. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1895. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1896. {
  1897. return 0;
  1898. }
  1899. #endif /* __HAVE_ARCH_GATE_AREA */
  1900. #ifdef CONFIG_SYSCTL
  1901. extern int sysctl_drop_caches;
  1902. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1903. void __user *, size_t *, loff_t *);
  1904. #endif
  1905. void drop_slab(void);
  1906. void drop_slab_node(int nid);
  1907. #ifndef CONFIG_MMU
  1908. #define randomize_va_space 0
  1909. #else
  1910. extern int randomize_va_space;
  1911. #endif
  1912. const char * arch_vma_name(struct vm_area_struct *vma);
  1913. void print_vma_addr(char *prefix, unsigned long rip);
  1914. void sparse_mem_maps_populate_node(struct page **map_map,
  1915. unsigned long pnum_begin,
  1916. unsigned long pnum_end,
  1917. unsigned long map_count,
  1918. int nodeid);
  1919. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1920. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1921. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1922. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1923. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1924. void *vmemmap_alloc_block(unsigned long size, int node);
  1925. struct vmem_altmap;
  1926. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1927. struct vmem_altmap *altmap);
  1928. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1929. {
  1930. return __vmemmap_alloc_block_buf(size, node, NULL);
  1931. }
  1932. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1933. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1934. int node);
  1935. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1936. void vmemmap_populate_print_last(void);
  1937. #ifdef CONFIG_MEMORY_HOTPLUG
  1938. void vmemmap_free(unsigned long start, unsigned long end);
  1939. #endif
  1940. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1941. unsigned long size);
  1942. enum mf_flags {
  1943. MF_COUNT_INCREASED = 1 << 0,
  1944. MF_ACTION_REQUIRED = 1 << 1,
  1945. MF_MUST_KILL = 1 << 2,
  1946. MF_SOFT_OFFLINE = 1 << 3,
  1947. };
  1948. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1949. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1950. extern int unpoison_memory(unsigned long pfn);
  1951. extern int get_hwpoison_page(struct page *page);
  1952. #define put_hwpoison_page(page) put_page(page)
  1953. extern int sysctl_memory_failure_early_kill;
  1954. extern int sysctl_memory_failure_recovery;
  1955. extern void shake_page(struct page *p, int access);
  1956. extern atomic_long_t num_poisoned_pages;
  1957. extern int soft_offline_page(struct page *page, int flags);
  1958. /*
  1959. * Error handlers for various types of pages.
  1960. */
  1961. enum mf_result {
  1962. MF_IGNORED, /* Error: cannot be handled */
  1963. MF_FAILED, /* Error: handling failed */
  1964. MF_DELAYED, /* Will be handled later */
  1965. MF_RECOVERED, /* Successfully recovered */
  1966. };
  1967. enum mf_action_page_type {
  1968. MF_MSG_KERNEL,
  1969. MF_MSG_KERNEL_HIGH_ORDER,
  1970. MF_MSG_SLAB,
  1971. MF_MSG_DIFFERENT_COMPOUND,
  1972. MF_MSG_POISONED_HUGE,
  1973. MF_MSG_HUGE,
  1974. MF_MSG_FREE_HUGE,
  1975. MF_MSG_UNMAP_FAILED,
  1976. MF_MSG_DIRTY_SWAPCACHE,
  1977. MF_MSG_CLEAN_SWAPCACHE,
  1978. MF_MSG_DIRTY_MLOCKED_LRU,
  1979. MF_MSG_CLEAN_MLOCKED_LRU,
  1980. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  1981. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  1982. MF_MSG_DIRTY_LRU,
  1983. MF_MSG_CLEAN_LRU,
  1984. MF_MSG_TRUNCATED_LRU,
  1985. MF_MSG_BUDDY,
  1986. MF_MSG_BUDDY_2ND,
  1987. MF_MSG_UNKNOWN,
  1988. };
  1989. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1990. extern void clear_huge_page(struct page *page,
  1991. unsigned long addr,
  1992. unsigned int pages_per_huge_page);
  1993. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1994. unsigned long addr, struct vm_area_struct *vma,
  1995. unsigned int pages_per_huge_page);
  1996. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1997. extern struct page_ext_operations debug_guardpage_ops;
  1998. extern struct page_ext_operations page_poisoning_ops;
  1999. #ifdef CONFIG_DEBUG_PAGEALLOC
  2000. extern unsigned int _debug_guardpage_minorder;
  2001. extern bool _debug_guardpage_enabled;
  2002. static inline unsigned int debug_guardpage_minorder(void)
  2003. {
  2004. return _debug_guardpage_minorder;
  2005. }
  2006. static inline bool debug_guardpage_enabled(void)
  2007. {
  2008. return _debug_guardpage_enabled;
  2009. }
  2010. static inline bool page_is_guard(struct page *page)
  2011. {
  2012. struct page_ext *page_ext;
  2013. if (!debug_guardpage_enabled())
  2014. return false;
  2015. page_ext = lookup_page_ext(page);
  2016. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2017. }
  2018. #else
  2019. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2020. static inline bool debug_guardpage_enabled(void) { return false; }
  2021. static inline bool page_is_guard(struct page *page) { return false; }
  2022. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2023. #if MAX_NUMNODES > 1
  2024. void __init setup_nr_node_ids(void);
  2025. #else
  2026. static inline void setup_nr_node_ids(void) {}
  2027. #endif
  2028. #endif /* __KERNEL__ */
  2029. #endif /* _LINUX_MM_H */