pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #define pid_hashfn(nr, ns) \
  41. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  42. static struct hlist_head *pid_hash;
  43. static unsigned int pidhash_shift = 4;
  44. struct pid init_struct_pid = INIT_STRUCT_PID;
  45. int pid_max = PID_MAX_DEFAULT;
  46. #define RESERVED_PIDS 300
  47. int pid_max_min = RESERVED_PIDS + 1;
  48. int pid_max_max = PID_MAX_LIMIT;
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = KREF_INIT(2),
  64. .pidmap = {
  65. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  66. },
  67. .last_pid = 0,
  68. .nr_hashed = PIDNS_HASH_ADDING,
  69. .level = 0,
  70. .child_reaper = &init_task,
  71. .user_ns = &init_user_ns,
  72. .ns.inum = PROC_PID_INIT_INO,
  73. #ifdef CONFIG_PID_NS
  74. .ns.ops = &pidns_operations,
  75. #endif
  76. };
  77. EXPORT_SYMBOL_GPL(init_pid_ns);
  78. /*
  79. * Note: disable interrupts while the pidmap_lock is held as an
  80. * interrupt might come in and do read_lock(&tasklist_lock).
  81. *
  82. * If we don't disable interrupts there is a nasty deadlock between
  83. * detach_pid()->free_pid() and another cpu that does
  84. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  85. * read_lock(&tasklist_lock);
  86. *
  87. * After we clean up the tasklist_lock and know there are no
  88. * irq handlers that take it we can leave the interrupts enabled.
  89. * For now it is easier to be safe than to prove it can't happen.
  90. */
  91. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  92. static void free_pidmap(struct upid *upid)
  93. {
  94. int nr = upid->nr;
  95. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  96. int offset = nr & BITS_PER_PAGE_MASK;
  97. clear_bit(offset, map->page);
  98. atomic_inc(&map->nr_free);
  99. }
  100. /*
  101. * If we started walking pids at 'base', is 'a' seen before 'b'?
  102. */
  103. static int pid_before(int base, int a, int b)
  104. {
  105. /*
  106. * This is the same as saying
  107. *
  108. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  109. * and that mapping orders 'a' and 'b' with respect to 'base'.
  110. */
  111. return (unsigned)(a - base) < (unsigned)(b - base);
  112. }
  113. /*
  114. * We might be racing with someone else trying to set pid_ns->last_pid
  115. * at the pid allocation time (there's also a sysctl for this, but racing
  116. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  117. * We want the winner to have the "later" value, because if the
  118. * "earlier" value prevails, then a pid may get reused immediately.
  119. *
  120. * Since pids rollover, it is not sufficient to just pick the bigger
  121. * value. We have to consider where we started counting from.
  122. *
  123. * 'base' is the value of pid_ns->last_pid that we observed when
  124. * we started looking for a pid.
  125. *
  126. * 'pid' is the pid that we eventually found.
  127. */
  128. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  129. {
  130. int prev;
  131. int last_write = base;
  132. do {
  133. prev = last_write;
  134. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  135. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  136. }
  137. static int alloc_pidmap(struct pid_namespace *pid_ns)
  138. {
  139. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  140. struct pidmap *map;
  141. pid = last + 1;
  142. if (pid >= pid_max)
  143. pid = RESERVED_PIDS;
  144. offset = pid & BITS_PER_PAGE_MASK;
  145. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  146. /*
  147. * If last_pid points into the middle of the map->page we
  148. * want to scan this bitmap block twice, the second time
  149. * we start with offset == 0 (or RESERVED_PIDS).
  150. */
  151. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  152. for (i = 0; i <= max_scan; ++i) {
  153. if (unlikely(!map->page)) {
  154. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  155. /*
  156. * Free the page if someone raced with us
  157. * installing it:
  158. */
  159. spin_lock_irq(&pidmap_lock);
  160. if (!map->page) {
  161. map->page = page;
  162. page = NULL;
  163. }
  164. spin_unlock_irq(&pidmap_lock);
  165. kfree(page);
  166. if (unlikely(!map->page))
  167. return -ENOMEM;
  168. }
  169. if (likely(atomic_read(&map->nr_free))) {
  170. for ( ; ; ) {
  171. if (!test_and_set_bit(offset, map->page)) {
  172. atomic_dec(&map->nr_free);
  173. set_last_pid(pid_ns, last, pid);
  174. return pid;
  175. }
  176. offset = find_next_offset(map, offset);
  177. if (offset >= BITS_PER_PAGE)
  178. break;
  179. pid = mk_pid(pid_ns, map, offset);
  180. if (pid >= pid_max)
  181. break;
  182. }
  183. }
  184. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  185. ++map;
  186. offset = 0;
  187. } else {
  188. map = &pid_ns->pidmap[0];
  189. offset = RESERVED_PIDS;
  190. if (unlikely(last == offset))
  191. break;
  192. }
  193. pid = mk_pid(pid_ns, map, offset);
  194. }
  195. return -EAGAIN;
  196. }
  197. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  198. {
  199. int offset;
  200. struct pidmap *map, *end;
  201. if (last >= PID_MAX_LIMIT)
  202. return -1;
  203. offset = (last + 1) & BITS_PER_PAGE_MASK;
  204. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  205. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  206. for (; map < end; map++, offset = 0) {
  207. if (unlikely(!map->page))
  208. continue;
  209. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  210. if (offset < BITS_PER_PAGE)
  211. return mk_pid(pid_ns, map, offset);
  212. }
  213. return -1;
  214. }
  215. void put_pid(struct pid *pid)
  216. {
  217. struct pid_namespace *ns;
  218. if (!pid)
  219. return;
  220. ns = pid->numbers[pid->level].ns;
  221. if ((atomic_read(&pid->count) == 1) ||
  222. atomic_dec_and_test(&pid->count)) {
  223. kmem_cache_free(ns->pid_cachep, pid);
  224. put_pid_ns(ns);
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(put_pid);
  228. static void delayed_put_pid(struct rcu_head *rhp)
  229. {
  230. struct pid *pid = container_of(rhp, struct pid, rcu);
  231. put_pid(pid);
  232. }
  233. void free_pid(struct pid *pid)
  234. {
  235. /* We can be called with write_lock_irq(&tasklist_lock) held */
  236. int i;
  237. unsigned long flags;
  238. spin_lock_irqsave(&pidmap_lock, flags);
  239. for (i = 0; i <= pid->level; i++) {
  240. struct upid *upid = pid->numbers + i;
  241. struct pid_namespace *ns = upid->ns;
  242. hlist_del_rcu(&upid->pid_chain);
  243. switch(--ns->nr_hashed) {
  244. case 2:
  245. case 1:
  246. /* When all that is left in the pid namespace
  247. * is the reaper wake up the reaper. The reaper
  248. * may be sleeping in zap_pid_ns_processes().
  249. */
  250. wake_up_process(ns->child_reaper);
  251. break;
  252. case PIDNS_HASH_ADDING:
  253. /* Handle a fork failure of the first process */
  254. WARN_ON(ns->child_reaper);
  255. ns->nr_hashed = 0;
  256. /* fall through */
  257. case 0:
  258. schedule_work(&ns->proc_work);
  259. break;
  260. }
  261. }
  262. spin_unlock_irqrestore(&pidmap_lock, flags);
  263. for (i = 0; i <= pid->level; i++)
  264. free_pidmap(pid->numbers + i);
  265. call_rcu(&pid->rcu, delayed_put_pid);
  266. }
  267. struct pid *alloc_pid(struct pid_namespace *ns)
  268. {
  269. struct pid *pid;
  270. enum pid_type type;
  271. int i, nr;
  272. struct pid_namespace *tmp;
  273. struct upid *upid;
  274. int retval = -ENOMEM;
  275. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  276. if (!pid)
  277. return ERR_PTR(retval);
  278. tmp = ns;
  279. pid->level = ns->level;
  280. for (i = ns->level; i >= 0; i--) {
  281. nr = alloc_pidmap(tmp);
  282. if (nr < 0) {
  283. retval = nr;
  284. goto out_free;
  285. }
  286. pid->numbers[i].nr = nr;
  287. pid->numbers[i].ns = tmp;
  288. tmp = tmp->parent;
  289. }
  290. if (unlikely(is_child_reaper(pid))) {
  291. if (pid_ns_prepare_proc(ns))
  292. goto out_free;
  293. }
  294. get_pid_ns(ns);
  295. atomic_set(&pid->count, 1);
  296. for (type = 0; type < PIDTYPE_MAX; ++type)
  297. INIT_HLIST_HEAD(&pid->tasks[type]);
  298. upid = pid->numbers + ns->level;
  299. spin_lock_irq(&pidmap_lock);
  300. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  301. goto out_unlock;
  302. for ( ; upid >= pid->numbers; --upid) {
  303. hlist_add_head_rcu(&upid->pid_chain,
  304. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  305. upid->ns->nr_hashed++;
  306. }
  307. spin_unlock_irq(&pidmap_lock);
  308. return pid;
  309. out_unlock:
  310. spin_unlock_irq(&pidmap_lock);
  311. put_pid_ns(ns);
  312. out_free:
  313. while (++i <= ns->level)
  314. free_pidmap(pid->numbers + i);
  315. kmem_cache_free(ns->pid_cachep, pid);
  316. return ERR_PTR(retval);
  317. }
  318. void disable_pid_allocation(struct pid_namespace *ns)
  319. {
  320. spin_lock_irq(&pidmap_lock);
  321. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  322. spin_unlock_irq(&pidmap_lock);
  323. }
  324. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  325. {
  326. struct upid *pnr;
  327. hlist_for_each_entry_rcu(pnr,
  328. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  329. if (pnr->nr == nr && pnr->ns == ns)
  330. return container_of(pnr, struct pid,
  331. numbers[ns->level]);
  332. return NULL;
  333. }
  334. EXPORT_SYMBOL_GPL(find_pid_ns);
  335. struct pid *find_vpid(int nr)
  336. {
  337. return find_pid_ns(nr, task_active_pid_ns(current));
  338. }
  339. EXPORT_SYMBOL_GPL(find_vpid);
  340. /*
  341. * attach_pid() must be called with the tasklist_lock write-held.
  342. */
  343. void attach_pid(struct task_struct *task, enum pid_type type)
  344. {
  345. struct pid_link *link = &task->pids[type];
  346. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  347. }
  348. static void __change_pid(struct task_struct *task, enum pid_type type,
  349. struct pid *new)
  350. {
  351. struct pid_link *link;
  352. struct pid *pid;
  353. int tmp;
  354. link = &task->pids[type];
  355. pid = link->pid;
  356. hlist_del_rcu(&link->node);
  357. link->pid = new;
  358. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  359. if (!hlist_empty(&pid->tasks[tmp]))
  360. return;
  361. free_pid(pid);
  362. }
  363. void detach_pid(struct task_struct *task, enum pid_type type)
  364. {
  365. __change_pid(task, type, NULL);
  366. }
  367. void change_pid(struct task_struct *task, enum pid_type type,
  368. struct pid *pid)
  369. {
  370. __change_pid(task, type, pid);
  371. attach_pid(task, type);
  372. }
  373. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  374. void transfer_pid(struct task_struct *old, struct task_struct *new,
  375. enum pid_type type)
  376. {
  377. new->pids[type].pid = old->pids[type].pid;
  378. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  379. }
  380. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  381. {
  382. struct task_struct *result = NULL;
  383. if (pid) {
  384. struct hlist_node *first;
  385. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  386. lockdep_tasklist_lock_is_held());
  387. if (first)
  388. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  389. }
  390. return result;
  391. }
  392. EXPORT_SYMBOL(pid_task);
  393. /*
  394. * Must be called under rcu_read_lock().
  395. */
  396. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  397. {
  398. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  399. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  400. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  401. }
  402. struct task_struct *find_task_by_vpid(pid_t vnr)
  403. {
  404. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  405. }
  406. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  407. {
  408. struct pid *pid;
  409. rcu_read_lock();
  410. if (type != PIDTYPE_PID)
  411. task = task->group_leader;
  412. pid = get_pid(rcu_dereference(task->pids[type].pid));
  413. rcu_read_unlock();
  414. return pid;
  415. }
  416. EXPORT_SYMBOL_GPL(get_task_pid);
  417. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  418. {
  419. struct task_struct *result;
  420. rcu_read_lock();
  421. result = pid_task(pid, type);
  422. if (result)
  423. get_task_struct(result);
  424. rcu_read_unlock();
  425. return result;
  426. }
  427. EXPORT_SYMBOL_GPL(get_pid_task);
  428. struct pid *find_get_pid(pid_t nr)
  429. {
  430. struct pid *pid;
  431. rcu_read_lock();
  432. pid = get_pid(find_vpid(nr));
  433. rcu_read_unlock();
  434. return pid;
  435. }
  436. EXPORT_SYMBOL_GPL(find_get_pid);
  437. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  438. {
  439. struct upid *upid;
  440. pid_t nr = 0;
  441. if (pid && ns->level <= pid->level) {
  442. upid = &pid->numbers[ns->level];
  443. if (upid->ns == ns)
  444. nr = upid->nr;
  445. }
  446. return nr;
  447. }
  448. EXPORT_SYMBOL_GPL(pid_nr_ns);
  449. pid_t pid_vnr(struct pid *pid)
  450. {
  451. return pid_nr_ns(pid, task_active_pid_ns(current));
  452. }
  453. EXPORT_SYMBOL_GPL(pid_vnr);
  454. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  455. struct pid_namespace *ns)
  456. {
  457. pid_t nr = 0;
  458. rcu_read_lock();
  459. if (!ns)
  460. ns = task_active_pid_ns(current);
  461. if (likely(pid_alive(task))) {
  462. if (type != PIDTYPE_PID)
  463. task = task->group_leader;
  464. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  465. }
  466. rcu_read_unlock();
  467. return nr;
  468. }
  469. EXPORT_SYMBOL(__task_pid_nr_ns);
  470. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  471. {
  472. return pid_nr_ns(task_tgid(tsk), ns);
  473. }
  474. EXPORT_SYMBOL(task_tgid_nr_ns);
  475. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  476. {
  477. return ns_of_pid(task_pid(tsk));
  478. }
  479. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  480. /*
  481. * Used by proc to find the first pid that is greater than or equal to nr.
  482. *
  483. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  484. */
  485. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  486. {
  487. struct pid *pid;
  488. do {
  489. pid = find_pid_ns(nr, ns);
  490. if (pid)
  491. break;
  492. nr = next_pidmap(ns, nr);
  493. } while (nr > 0);
  494. return pid;
  495. }
  496. /*
  497. * The pid hash table is scaled according to the amount of memory in the
  498. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  499. * more.
  500. */
  501. void __init pidhash_init(void)
  502. {
  503. unsigned int i, pidhash_size;
  504. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  505. HASH_EARLY | HASH_SMALL,
  506. &pidhash_shift, NULL,
  507. 0, 4096);
  508. pidhash_size = 1U << pidhash_shift;
  509. for (i = 0; i < pidhash_size; i++)
  510. INIT_HLIST_HEAD(&pid_hash[i]);
  511. }
  512. void __init pidmap_init(void)
  513. {
  514. /* Verify no one has done anything silly: */
  515. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  516. /* bump default and minimum pid_max based on number of cpus */
  517. pid_max = min(pid_max_max, max_t(int, pid_max,
  518. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  519. pid_max_min = max_t(int, pid_max_min,
  520. PIDS_PER_CPU_MIN * num_possible_cpus());
  521. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  522. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  523. /* Reserve PID 0. We never call free_pidmap(0) */
  524. set_bit(0, init_pid_ns.pidmap[0].page);
  525. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  526. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  527. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  528. }