smc_rx.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Shared Memory Communications over RDMA (SMC-R) and RoCE
  4. *
  5. * Manage RMBE
  6. * copy new RMBE data into user space
  7. *
  8. * Copyright IBM Corp. 2016
  9. *
  10. * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
  11. */
  12. #include <linux/net.h>
  13. #include <linux/rcupdate.h>
  14. #include <linux/sched/signal.h>
  15. #include <net/sock.h>
  16. #include "smc.h"
  17. #include "smc_core.h"
  18. #include "smc_cdc.h"
  19. #include "smc_tx.h" /* smc_tx_consumer_update() */
  20. #include "smc_rx.h"
  21. /* callback implementation for sk.sk_data_ready()
  22. * to wakeup rcvbuf consumers that blocked with smc_rx_wait_data().
  23. * indirectly called by smc_cdc_msg_recv_action().
  24. */
  25. static void smc_rx_data_ready(struct sock *sk)
  26. {
  27. struct socket_wq *wq;
  28. /* derived from sock_def_readable() */
  29. /* called already in smc_listen_work() */
  30. rcu_read_lock();
  31. wq = rcu_dereference(sk->sk_wq);
  32. if (skwq_has_sleeper(wq))
  33. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  34. POLLRDNORM | POLLRDBAND);
  35. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  36. if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
  37. (sk->sk_state == SMC_CLOSED))
  38. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  39. rcu_read_unlock();
  40. }
  41. /* blocks rcvbuf consumer until >=len bytes available or timeout or interrupted
  42. * @smc smc socket
  43. * @timeo pointer to max seconds to wait, pointer to value 0 for no timeout
  44. * Returns:
  45. * 1 if at least 1 byte available in rcvbuf or if socket error/shutdown.
  46. * 0 otherwise (nothing in rcvbuf nor timeout, e.g. interrupted).
  47. */
  48. static int smc_rx_wait_data(struct smc_sock *smc, long *timeo)
  49. {
  50. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  51. struct smc_connection *conn = &smc->conn;
  52. struct sock *sk = &smc->sk;
  53. int rc;
  54. if (atomic_read(&conn->bytes_to_rcv))
  55. return 1;
  56. sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  57. add_wait_queue(sk_sleep(sk), &wait);
  58. rc = sk_wait_event(sk, timeo,
  59. sk->sk_err ||
  60. sk->sk_shutdown & RCV_SHUTDOWN ||
  61. sock_flag(sk, SOCK_DONE) ||
  62. atomic_read(&conn->bytes_to_rcv) ||
  63. smc_cdc_rxed_any_close_or_senddone(conn),
  64. &wait);
  65. remove_wait_queue(sk_sleep(sk), &wait);
  66. sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
  67. return rc;
  68. }
  69. /* rcvbuf consumer: main API called by socket layer.
  70. * called under sk lock.
  71. */
  72. int smc_rx_recvmsg(struct smc_sock *smc, struct msghdr *msg, size_t len,
  73. int flags)
  74. {
  75. size_t copylen, read_done = 0, read_remaining = len;
  76. size_t chunk_len, chunk_off, chunk_len_sum;
  77. struct smc_connection *conn = &smc->conn;
  78. union smc_host_cursor cons;
  79. int readable, chunk;
  80. char *rcvbuf_base;
  81. struct sock *sk;
  82. long timeo;
  83. int target; /* Read at least these many bytes */
  84. int rc;
  85. if (unlikely(flags & MSG_ERRQUEUE))
  86. return -EINVAL; /* future work for sk.sk_family == AF_SMC */
  87. if (flags & MSG_OOB)
  88. return -EINVAL; /* future work */
  89. sk = &smc->sk;
  90. if (sk->sk_state == SMC_LISTEN)
  91. return -ENOTCONN;
  92. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  93. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  94. msg->msg_namelen = 0;
  95. /* we currently use 1 RMBE per RMB, so RMBE == RMB base addr */
  96. rcvbuf_base = conn->rmb_desc->cpu_addr;
  97. do { /* while (read_remaining) */
  98. if (read_done >= target)
  99. break;
  100. if (atomic_read(&conn->bytes_to_rcv))
  101. goto copy;
  102. if (read_done) {
  103. if (sk->sk_err ||
  104. sk->sk_state == SMC_CLOSED ||
  105. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  106. !timeo ||
  107. signal_pending(current) ||
  108. smc_cdc_rxed_any_close_or_senddone(conn) ||
  109. conn->local_tx_ctrl.conn_state_flags.
  110. peer_conn_abort)
  111. break;
  112. } else {
  113. if (sock_flag(sk, SOCK_DONE))
  114. break;
  115. if (sk->sk_err) {
  116. read_done = sock_error(sk);
  117. break;
  118. }
  119. if (sk->sk_shutdown & RCV_SHUTDOWN ||
  120. smc_cdc_rxed_any_close_or_senddone(conn) ||
  121. conn->local_tx_ctrl.conn_state_flags.
  122. peer_conn_abort)
  123. break;
  124. if (sk->sk_state == SMC_CLOSED) {
  125. if (!sock_flag(sk, SOCK_DONE)) {
  126. /* This occurs when user tries to read
  127. * from never connected socket.
  128. */
  129. read_done = -ENOTCONN;
  130. break;
  131. }
  132. break;
  133. }
  134. if (signal_pending(current)) {
  135. read_done = sock_intr_errno(timeo);
  136. break;
  137. }
  138. if (!timeo)
  139. return -EAGAIN;
  140. }
  141. if (!atomic_read(&conn->bytes_to_rcv)) {
  142. smc_rx_wait_data(smc, &timeo);
  143. continue;
  144. }
  145. copy:
  146. /* initialize variables for 1st iteration of subsequent loop */
  147. /* could be just 1 byte, even after smc_rx_wait_data above */
  148. readable = atomic_read(&conn->bytes_to_rcv);
  149. /* not more than what user space asked for */
  150. copylen = min_t(size_t, read_remaining, readable);
  151. smc_curs_write(&cons,
  152. smc_curs_read(&conn->local_tx_ctrl.cons, conn),
  153. conn);
  154. /* determine chunks where to read from rcvbuf */
  155. /* either unwrapped case, or 1st chunk of wrapped case */
  156. chunk_len = min_t(size_t,
  157. copylen, conn->rmbe_size - cons.count);
  158. chunk_len_sum = chunk_len;
  159. chunk_off = cons.count;
  160. smc_rmb_sync_sg_for_cpu(conn);
  161. for (chunk = 0; chunk < 2; chunk++) {
  162. if (!(flags & MSG_TRUNC)) {
  163. rc = memcpy_to_msg(msg, rcvbuf_base + chunk_off,
  164. chunk_len);
  165. if (rc) {
  166. if (!read_done)
  167. read_done = -EFAULT;
  168. smc_rmb_sync_sg_for_device(conn);
  169. goto out;
  170. }
  171. }
  172. read_remaining -= chunk_len;
  173. read_done += chunk_len;
  174. if (chunk_len_sum == copylen)
  175. break; /* either on 1st or 2nd iteration */
  176. /* prepare next (== 2nd) iteration */
  177. chunk_len = copylen - chunk_len; /* remainder */
  178. chunk_len_sum += chunk_len;
  179. chunk_off = 0; /* modulo offset in recv ring buffer */
  180. }
  181. smc_rmb_sync_sg_for_device(conn);
  182. /* update cursors */
  183. if (!(flags & MSG_PEEK)) {
  184. smc_curs_add(conn->rmbe_size, &cons, copylen);
  185. /* increased in recv tasklet smc_cdc_msg_rcv() */
  186. smp_mb__before_atomic();
  187. atomic_sub(copylen, &conn->bytes_to_rcv);
  188. /* guarantee 0 <= bytes_to_rcv <= rmbe_size */
  189. smp_mb__after_atomic();
  190. smc_curs_write(&conn->local_tx_ctrl.cons,
  191. smc_curs_read(&cons, conn),
  192. conn);
  193. /* send consumer cursor update if required */
  194. /* similar to advertising new TCP rcv_wnd if required */
  195. smc_tx_consumer_update(conn);
  196. }
  197. } while (read_remaining);
  198. out:
  199. return read_done;
  200. }
  201. /* Initialize receive properties on connection establishment. NB: not __init! */
  202. void smc_rx_init(struct smc_sock *smc)
  203. {
  204. smc->sk.sk_data_ready = smc_rx_data_ready;
  205. }