sch_hfsc.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692
  1. /*
  2. * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version 2
  7. * of the License, or (at your option) any later version.
  8. *
  9. * 2003-10-17 - Ported from altq
  10. */
  11. /*
  12. * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
  13. *
  14. * Permission to use, copy, modify, and distribute this software and
  15. * its documentation is hereby granted (including for commercial or
  16. * for-profit use), provided that both the copyright notice and this
  17. * permission notice appear in all copies of the software, derivative
  18. * works, or modified versions, and any portions thereof.
  19. *
  20. * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
  21. * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
  22. * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
  23. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  24. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
  26. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  27. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  28. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  29. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  30. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  32. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  33. * DAMAGE.
  34. *
  35. * Carnegie Mellon encourages (but does not require) users of this
  36. * software to return any improvements or extensions that they make,
  37. * and to grant Carnegie Mellon the rights to redistribute these
  38. * changes without encumbrance.
  39. */
  40. /*
  41. * H-FSC is described in Proceedings of SIGCOMM'97,
  42. * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
  43. * Real-Time and Priority Service"
  44. * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
  45. *
  46. * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
  47. * when a class has an upperlimit, the fit-time is computed from the
  48. * upperlimit service curve. the link-sharing scheduler does not schedule
  49. * a class whose fit-time exceeds the current time.
  50. */
  51. #include <linux/kernel.h>
  52. #include <linux/module.h>
  53. #include <linux/types.h>
  54. #include <linux/errno.h>
  55. #include <linux/compiler.h>
  56. #include <linux/spinlock.h>
  57. #include <linux/skbuff.h>
  58. #include <linux/string.h>
  59. #include <linux/slab.h>
  60. #include <linux/list.h>
  61. #include <linux/rbtree.h>
  62. #include <linux/init.h>
  63. #include <linux/rtnetlink.h>
  64. #include <linux/pkt_sched.h>
  65. #include <net/netlink.h>
  66. #include <net/pkt_sched.h>
  67. #include <net/pkt_cls.h>
  68. #include <asm/div64.h>
  69. /*
  70. * kernel internal service curve representation:
  71. * coordinates are given by 64 bit unsigned integers.
  72. * x-axis: unit is clock count.
  73. * y-axis: unit is byte.
  74. *
  75. * The service curve parameters are converted to the internal
  76. * representation. The slope values are scaled to avoid overflow.
  77. * the inverse slope values as well as the y-projection of the 1st
  78. * segment are kept in order to avoid 64-bit divide operations
  79. * that are expensive on 32-bit architectures.
  80. */
  81. struct internal_sc {
  82. u64 sm1; /* scaled slope of the 1st segment */
  83. u64 ism1; /* scaled inverse-slope of the 1st segment */
  84. u64 dx; /* the x-projection of the 1st segment */
  85. u64 dy; /* the y-projection of the 1st segment */
  86. u64 sm2; /* scaled slope of the 2nd segment */
  87. u64 ism2; /* scaled inverse-slope of the 2nd segment */
  88. };
  89. /* runtime service curve */
  90. struct runtime_sc {
  91. u64 x; /* current starting position on x-axis */
  92. u64 y; /* current starting position on y-axis */
  93. u64 sm1; /* scaled slope of the 1st segment */
  94. u64 ism1; /* scaled inverse-slope of the 1st segment */
  95. u64 dx; /* the x-projection of the 1st segment */
  96. u64 dy; /* the y-projection of the 1st segment */
  97. u64 sm2; /* scaled slope of the 2nd segment */
  98. u64 ism2; /* scaled inverse-slope of the 2nd segment */
  99. };
  100. enum hfsc_class_flags {
  101. HFSC_RSC = 0x1,
  102. HFSC_FSC = 0x2,
  103. HFSC_USC = 0x4
  104. };
  105. struct hfsc_class {
  106. struct Qdisc_class_common cl_common;
  107. struct gnet_stats_basic_packed bstats;
  108. struct gnet_stats_queue qstats;
  109. struct net_rate_estimator __rcu *rate_est;
  110. struct tcf_proto __rcu *filter_list; /* filter list */
  111. struct tcf_block *block;
  112. unsigned int filter_cnt; /* filter count */
  113. unsigned int level; /* class level in hierarchy */
  114. struct hfsc_sched *sched; /* scheduler data */
  115. struct hfsc_class *cl_parent; /* parent class */
  116. struct list_head siblings; /* sibling classes */
  117. struct list_head children; /* child classes */
  118. struct Qdisc *qdisc; /* leaf qdisc */
  119. struct rb_node el_node; /* qdisc's eligible tree member */
  120. struct rb_root vt_tree; /* active children sorted by cl_vt */
  121. struct rb_node vt_node; /* parent's vt_tree member */
  122. struct rb_root cf_tree; /* active children sorted by cl_f */
  123. struct rb_node cf_node; /* parent's cf_heap member */
  124. u64 cl_total; /* total work in bytes */
  125. u64 cl_cumul; /* cumulative work in bytes done by
  126. real-time criteria */
  127. u64 cl_d; /* deadline*/
  128. u64 cl_e; /* eligible time */
  129. u64 cl_vt; /* virtual time */
  130. u64 cl_f; /* time when this class will fit for
  131. link-sharing, max(myf, cfmin) */
  132. u64 cl_myf; /* my fit-time (calculated from this
  133. class's own upperlimit curve) */
  134. u64 cl_cfmin; /* earliest children's fit-time (used
  135. with cl_myf to obtain cl_f) */
  136. u64 cl_cvtmin; /* minimal virtual time among the
  137. children fit for link-sharing
  138. (monotonic within a period) */
  139. u64 cl_vtadj; /* intra-period cumulative vt
  140. adjustment */
  141. u64 cl_cvtoff; /* largest virtual time seen among
  142. the children */
  143. struct internal_sc cl_rsc; /* internal real-time service curve */
  144. struct internal_sc cl_fsc; /* internal fair service curve */
  145. struct internal_sc cl_usc; /* internal upperlimit service curve */
  146. struct runtime_sc cl_deadline; /* deadline curve */
  147. struct runtime_sc cl_eligible; /* eligible curve */
  148. struct runtime_sc cl_virtual; /* virtual curve */
  149. struct runtime_sc cl_ulimit; /* upperlimit curve */
  150. u8 cl_flags; /* which curves are valid */
  151. u32 cl_vtperiod; /* vt period sequence number */
  152. u32 cl_parentperiod;/* parent's vt period sequence number*/
  153. u32 cl_nactive; /* number of active children */
  154. };
  155. struct hfsc_sched {
  156. u16 defcls; /* default class id */
  157. struct hfsc_class root; /* root class */
  158. struct Qdisc_class_hash clhash; /* class hash */
  159. struct rb_root eligible; /* eligible tree */
  160. struct qdisc_watchdog watchdog; /* watchdog timer */
  161. };
  162. #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
  163. /*
  164. * eligible tree holds backlogged classes being sorted by their eligible times.
  165. * there is one eligible tree per hfsc instance.
  166. */
  167. static void
  168. eltree_insert(struct hfsc_class *cl)
  169. {
  170. struct rb_node **p = &cl->sched->eligible.rb_node;
  171. struct rb_node *parent = NULL;
  172. struct hfsc_class *cl1;
  173. while (*p != NULL) {
  174. parent = *p;
  175. cl1 = rb_entry(parent, struct hfsc_class, el_node);
  176. if (cl->cl_e >= cl1->cl_e)
  177. p = &parent->rb_right;
  178. else
  179. p = &parent->rb_left;
  180. }
  181. rb_link_node(&cl->el_node, parent, p);
  182. rb_insert_color(&cl->el_node, &cl->sched->eligible);
  183. }
  184. static inline void
  185. eltree_remove(struct hfsc_class *cl)
  186. {
  187. rb_erase(&cl->el_node, &cl->sched->eligible);
  188. }
  189. static inline void
  190. eltree_update(struct hfsc_class *cl)
  191. {
  192. eltree_remove(cl);
  193. eltree_insert(cl);
  194. }
  195. /* find the class with the minimum deadline among the eligible classes */
  196. static inline struct hfsc_class *
  197. eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
  198. {
  199. struct hfsc_class *p, *cl = NULL;
  200. struct rb_node *n;
  201. for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
  202. p = rb_entry(n, struct hfsc_class, el_node);
  203. if (p->cl_e > cur_time)
  204. break;
  205. if (cl == NULL || p->cl_d < cl->cl_d)
  206. cl = p;
  207. }
  208. return cl;
  209. }
  210. /* find the class with minimum eligible time among the eligible classes */
  211. static inline struct hfsc_class *
  212. eltree_get_minel(struct hfsc_sched *q)
  213. {
  214. struct rb_node *n;
  215. n = rb_first(&q->eligible);
  216. if (n == NULL)
  217. return NULL;
  218. return rb_entry(n, struct hfsc_class, el_node);
  219. }
  220. /*
  221. * vttree holds holds backlogged child classes being sorted by their virtual
  222. * time. each intermediate class has one vttree.
  223. */
  224. static void
  225. vttree_insert(struct hfsc_class *cl)
  226. {
  227. struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
  228. struct rb_node *parent = NULL;
  229. struct hfsc_class *cl1;
  230. while (*p != NULL) {
  231. parent = *p;
  232. cl1 = rb_entry(parent, struct hfsc_class, vt_node);
  233. if (cl->cl_vt >= cl1->cl_vt)
  234. p = &parent->rb_right;
  235. else
  236. p = &parent->rb_left;
  237. }
  238. rb_link_node(&cl->vt_node, parent, p);
  239. rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
  240. }
  241. static inline void
  242. vttree_remove(struct hfsc_class *cl)
  243. {
  244. rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
  245. }
  246. static inline void
  247. vttree_update(struct hfsc_class *cl)
  248. {
  249. vttree_remove(cl);
  250. vttree_insert(cl);
  251. }
  252. static inline struct hfsc_class *
  253. vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
  254. {
  255. struct hfsc_class *p;
  256. struct rb_node *n;
  257. for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
  258. p = rb_entry(n, struct hfsc_class, vt_node);
  259. if (p->cl_f <= cur_time)
  260. return p;
  261. }
  262. return NULL;
  263. }
  264. /*
  265. * get the leaf class with the minimum vt in the hierarchy
  266. */
  267. static struct hfsc_class *
  268. vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
  269. {
  270. /* if root-class's cfmin is bigger than cur_time nothing to do */
  271. if (cl->cl_cfmin > cur_time)
  272. return NULL;
  273. while (cl->level > 0) {
  274. cl = vttree_firstfit(cl, cur_time);
  275. if (cl == NULL)
  276. return NULL;
  277. /*
  278. * update parent's cl_cvtmin.
  279. */
  280. if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
  281. cl->cl_parent->cl_cvtmin = cl->cl_vt;
  282. }
  283. return cl;
  284. }
  285. static void
  286. cftree_insert(struct hfsc_class *cl)
  287. {
  288. struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
  289. struct rb_node *parent = NULL;
  290. struct hfsc_class *cl1;
  291. while (*p != NULL) {
  292. parent = *p;
  293. cl1 = rb_entry(parent, struct hfsc_class, cf_node);
  294. if (cl->cl_f >= cl1->cl_f)
  295. p = &parent->rb_right;
  296. else
  297. p = &parent->rb_left;
  298. }
  299. rb_link_node(&cl->cf_node, parent, p);
  300. rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
  301. }
  302. static inline void
  303. cftree_remove(struct hfsc_class *cl)
  304. {
  305. rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
  306. }
  307. static inline void
  308. cftree_update(struct hfsc_class *cl)
  309. {
  310. cftree_remove(cl);
  311. cftree_insert(cl);
  312. }
  313. /*
  314. * service curve support functions
  315. *
  316. * external service curve parameters
  317. * m: bps
  318. * d: us
  319. * internal service curve parameters
  320. * sm: (bytes/psched_us) << SM_SHIFT
  321. * ism: (psched_us/byte) << ISM_SHIFT
  322. * dx: psched_us
  323. *
  324. * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
  325. *
  326. * sm and ism are scaled in order to keep effective digits.
  327. * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
  328. * digits in decimal using the following table.
  329. *
  330. * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
  331. * ------------+-------------------------------------------------------
  332. * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
  333. *
  334. * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
  335. *
  336. * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
  337. */
  338. #define SM_SHIFT (30 - PSCHED_SHIFT)
  339. #define ISM_SHIFT (8 + PSCHED_SHIFT)
  340. #define SM_MASK ((1ULL << SM_SHIFT) - 1)
  341. #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
  342. static inline u64
  343. seg_x2y(u64 x, u64 sm)
  344. {
  345. u64 y;
  346. /*
  347. * compute
  348. * y = x * sm >> SM_SHIFT
  349. * but divide it for the upper and lower bits to avoid overflow
  350. */
  351. y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
  352. return y;
  353. }
  354. static inline u64
  355. seg_y2x(u64 y, u64 ism)
  356. {
  357. u64 x;
  358. if (y == 0)
  359. x = 0;
  360. else if (ism == HT_INFINITY)
  361. x = HT_INFINITY;
  362. else {
  363. x = (y >> ISM_SHIFT) * ism
  364. + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
  365. }
  366. return x;
  367. }
  368. /* Convert m (bps) into sm (bytes/psched us) */
  369. static u64
  370. m2sm(u32 m)
  371. {
  372. u64 sm;
  373. sm = ((u64)m << SM_SHIFT);
  374. sm += PSCHED_TICKS_PER_SEC - 1;
  375. do_div(sm, PSCHED_TICKS_PER_SEC);
  376. return sm;
  377. }
  378. /* convert m (bps) into ism (psched us/byte) */
  379. static u64
  380. m2ism(u32 m)
  381. {
  382. u64 ism;
  383. if (m == 0)
  384. ism = HT_INFINITY;
  385. else {
  386. ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
  387. ism += m - 1;
  388. do_div(ism, m);
  389. }
  390. return ism;
  391. }
  392. /* convert d (us) into dx (psched us) */
  393. static u64
  394. d2dx(u32 d)
  395. {
  396. u64 dx;
  397. dx = ((u64)d * PSCHED_TICKS_PER_SEC);
  398. dx += USEC_PER_SEC - 1;
  399. do_div(dx, USEC_PER_SEC);
  400. return dx;
  401. }
  402. /* convert sm (bytes/psched us) into m (bps) */
  403. static u32
  404. sm2m(u64 sm)
  405. {
  406. u64 m;
  407. m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
  408. return (u32)m;
  409. }
  410. /* convert dx (psched us) into d (us) */
  411. static u32
  412. dx2d(u64 dx)
  413. {
  414. u64 d;
  415. d = dx * USEC_PER_SEC;
  416. do_div(d, PSCHED_TICKS_PER_SEC);
  417. return (u32)d;
  418. }
  419. static void
  420. sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
  421. {
  422. isc->sm1 = m2sm(sc->m1);
  423. isc->ism1 = m2ism(sc->m1);
  424. isc->dx = d2dx(sc->d);
  425. isc->dy = seg_x2y(isc->dx, isc->sm1);
  426. isc->sm2 = m2sm(sc->m2);
  427. isc->ism2 = m2ism(sc->m2);
  428. }
  429. /*
  430. * initialize the runtime service curve with the given internal
  431. * service curve starting at (x, y).
  432. */
  433. static void
  434. rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
  435. {
  436. rtsc->x = x;
  437. rtsc->y = y;
  438. rtsc->sm1 = isc->sm1;
  439. rtsc->ism1 = isc->ism1;
  440. rtsc->dx = isc->dx;
  441. rtsc->dy = isc->dy;
  442. rtsc->sm2 = isc->sm2;
  443. rtsc->ism2 = isc->ism2;
  444. }
  445. /*
  446. * calculate the y-projection of the runtime service curve by the
  447. * given x-projection value
  448. */
  449. static u64
  450. rtsc_y2x(struct runtime_sc *rtsc, u64 y)
  451. {
  452. u64 x;
  453. if (y < rtsc->y)
  454. x = rtsc->x;
  455. else if (y <= rtsc->y + rtsc->dy) {
  456. /* x belongs to the 1st segment */
  457. if (rtsc->dy == 0)
  458. x = rtsc->x + rtsc->dx;
  459. else
  460. x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
  461. } else {
  462. /* x belongs to the 2nd segment */
  463. x = rtsc->x + rtsc->dx
  464. + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
  465. }
  466. return x;
  467. }
  468. static u64
  469. rtsc_x2y(struct runtime_sc *rtsc, u64 x)
  470. {
  471. u64 y;
  472. if (x <= rtsc->x)
  473. y = rtsc->y;
  474. else if (x <= rtsc->x + rtsc->dx)
  475. /* y belongs to the 1st segment */
  476. y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
  477. else
  478. /* y belongs to the 2nd segment */
  479. y = rtsc->y + rtsc->dy
  480. + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
  481. return y;
  482. }
  483. /*
  484. * update the runtime service curve by taking the minimum of the current
  485. * runtime service curve and the service curve starting at (x, y).
  486. */
  487. static void
  488. rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
  489. {
  490. u64 y1, y2, dx, dy;
  491. u32 dsm;
  492. if (isc->sm1 <= isc->sm2) {
  493. /* service curve is convex */
  494. y1 = rtsc_x2y(rtsc, x);
  495. if (y1 < y)
  496. /* the current rtsc is smaller */
  497. return;
  498. rtsc->x = x;
  499. rtsc->y = y;
  500. return;
  501. }
  502. /*
  503. * service curve is concave
  504. * compute the two y values of the current rtsc
  505. * y1: at x
  506. * y2: at (x + dx)
  507. */
  508. y1 = rtsc_x2y(rtsc, x);
  509. if (y1 <= y) {
  510. /* rtsc is below isc, no change to rtsc */
  511. return;
  512. }
  513. y2 = rtsc_x2y(rtsc, x + isc->dx);
  514. if (y2 >= y + isc->dy) {
  515. /* rtsc is above isc, replace rtsc by isc */
  516. rtsc->x = x;
  517. rtsc->y = y;
  518. rtsc->dx = isc->dx;
  519. rtsc->dy = isc->dy;
  520. return;
  521. }
  522. /*
  523. * the two curves intersect
  524. * compute the offsets (dx, dy) using the reverse
  525. * function of seg_x2y()
  526. * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
  527. */
  528. dx = (y1 - y) << SM_SHIFT;
  529. dsm = isc->sm1 - isc->sm2;
  530. do_div(dx, dsm);
  531. /*
  532. * check if (x, y1) belongs to the 1st segment of rtsc.
  533. * if so, add the offset.
  534. */
  535. if (rtsc->x + rtsc->dx > x)
  536. dx += rtsc->x + rtsc->dx - x;
  537. dy = seg_x2y(dx, isc->sm1);
  538. rtsc->x = x;
  539. rtsc->y = y;
  540. rtsc->dx = dx;
  541. rtsc->dy = dy;
  542. }
  543. static void
  544. init_ed(struct hfsc_class *cl, unsigned int next_len)
  545. {
  546. u64 cur_time = psched_get_time();
  547. /* update the deadline curve */
  548. rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
  549. /*
  550. * update the eligible curve.
  551. * for concave, it is equal to the deadline curve.
  552. * for convex, it is a linear curve with slope m2.
  553. */
  554. cl->cl_eligible = cl->cl_deadline;
  555. if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
  556. cl->cl_eligible.dx = 0;
  557. cl->cl_eligible.dy = 0;
  558. }
  559. /* compute e and d */
  560. cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
  561. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  562. eltree_insert(cl);
  563. }
  564. static void
  565. update_ed(struct hfsc_class *cl, unsigned int next_len)
  566. {
  567. cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
  568. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  569. eltree_update(cl);
  570. }
  571. static inline void
  572. update_d(struct hfsc_class *cl, unsigned int next_len)
  573. {
  574. cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
  575. }
  576. static inline void
  577. update_cfmin(struct hfsc_class *cl)
  578. {
  579. struct rb_node *n = rb_first(&cl->cf_tree);
  580. struct hfsc_class *p;
  581. if (n == NULL) {
  582. cl->cl_cfmin = 0;
  583. return;
  584. }
  585. p = rb_entry(n, struct hfsc_class, cf_node);
  586. cl->cl_cfmin = p->cl_f;
  587. }
  588. static void
  589. init_vf(struct hfsc_class *cl, unsigned int len)
  590. {
  591. struct hfsc_class *max_cl;
  592. struct rb_node *n;
  593. u64 vt, f, cur_time;
  594. int go_active;
  595. cur_time = 0;
  596. go_active = 1;
  597. for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
  598. if (go_active && cl->cl_nactive++ == 0)
  599. go_active = 1;
  600. else
  601. go_active = 0;
  602. if (go_active) {
  603. n = rb_last(&cl->cl_parent->vt_tree);
  604. if (n != NULL) {
  605. max_cl = rb_entry(n, struct hfsc_class, vt_node);
  606. /*
  607. * set vt to the average of the min and max
  608. * classes. if the parent's period didn't
  609. * change, don't decrease vt of the class.
  610. */
  611. vt = max_cl->cl_vt;
  612. if (cl->cl_parent->cl_cvtmin != 0)
  613. vt = (cl->cl_parent->cl_cvtmin + vt)/2;
  614. if (cl->cl_parent->cl_vtperiod !=
  615. cl->cl_parentperiod || vt > cl->cl_vt)
  616. cl->cl_vt = vt;
  617. } else {
  618. /*
  619. * first child for a new parent backlog period.
  620. * initialize cl_vt to the highest value seen
  621. * among the siblings. this is analogous to
  622. * what cur_time would provide in realtime case.
  623. */
  624. cl->cl_vt = cl->cl_parent->cl_cvtoff;
  625. cl->cl_parent->cl_cvtmin = 0;
  626. }
  627. /* update the virtual curve */
  628. rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
  629. cl->cl_vtadj = 0;
  630. cl->cl_vtperiod++; /* increment vt period */
  631. cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
  632. if (cl->cl_parent->cl_nactive == 0)
  633. cl->cl_parentperiod++;
  634. cl->cl_f = 0;
  635. vttree_insert(cl);
  636. cftree_insert(cl);
  637. if (cl->cl_flags & HFSC_USC) {
  638. /* class has upper limit curve */
  639. if (cur_time == 0)
  640. cur_time = psched_get_time();
  641. /* update the ulimit curve */
  642. rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
  643. cl->cl_total);
  644. /* compute myf */
  645. cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
  646. cl->cl_total);
  647. }
  648. }
  649. f = max(cl->cl_myf, cl->cl_cfmin);
  650. if (f != cl->cl_f) {
  651. cl->cl_f = f;
  652. cftree_update(cl);
  653. }
  654. update_cfmin(cl->cl_parent);
  655. }
  656. }
  657. static void
  658. update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
  659. {
  660. u64 f; /* , myf_bound, delta; */
  661. int go_passive = 0;
  662. if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
  663. go_passive = 1;
  664. for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
  665. cl->cl_total += len;
  666. if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
  667. continue;
  668. if (go_passive && --cl->cl_nactive == 0)
  669. go_passive = 1;
  670. else
  671. go_passive = 0;
  672. /* update vt */
  673. cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj;
  674. /*
  675. * if vt of the class is smaller than cvtmin,
  676. * the class was skipped in the past due to non-fit.
  677. * if so, we need to adjust vtadj.
  678. */
  679. if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
  680. cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
  681. cl->cl_vt = cl->cl_parent->cl_cvtmin;
  682. }
  683. if (go_passive) {
  684. /* no more active child, going passive */
  685. /* update cvtoff of the parent class */
  686. if (cl->cl_vt > cl->cl_parent->cl_cvtoff)
  687. cl->cl_parent->cl_cvtoff = cl->cl_vt;
  688. /* remove this class from the vt tree */
  689. vttree_remove(cl);
  690. cftree_remove(cl);
  691. update_cfmin(cl->cl_parent);
  692. continue;
  693. }
  694. /* update the vt tree */
  695. vttree_update(cl);
  696. /* update f */
  697. if (cl->cl_flags & HFSC_USC) {
  698. cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
  699. #if 0
  700. cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
  701. cl->cl_total);
  702. /*
  703. * This code causes classes to stay way under their
  704. * limit when multiple classes are used at gigabit
  705. * speed. needs investigation. -kaber
  706. */
  707. /*
  708. * if myf lags behind by more than one clock tick
  709. * from the current time, adjust myfadj to prevent
  710. * a rate-limited class from going greedy.
  711. * in a steady state under rate-limiting, myf
  712. * fluctuates within one clock tick.
  713. */
  714. myf_bound = cur_time - PSCHED_JIFFIE2US(1);
  715. if (cl->cl_myf < myf_bound) {
  716. delta = cur_time - cl->cl_myf;
  717. cl->cl_myfadj += delta;
  718. cl->cl_myf += delta;
  719. }
  720. #endif
  721. }
  722. f = max(cl->cl_myf, cl->cl_cfmin);
  723. if (f != cl->cl_f) {
  724. cl->cl_f = f;
  725. cftree_update(cl);
  726. update_cfmin(cl->cl_parent);
  727. }
  728. }
  729. }
  730. static unsigned int
  731. qdisc_peek_len(struct Qdisc *sch)
  732. {
  733. struct sk_buff *skb;
  734. unsigned int len;
  735. skb = sch->ops->peek(sch);
  736. if (unlikely(skb == NULL)) {
  737. qdisc_warn_nonwc("qdisc_peek_len", sch);
  738. return 0;
  739. }
  740. len = qdisc_pkt_len(skb);
  741. return len;
  742. }
  743. static void
  744. hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
  745. {
  746. unsigned int len = cl->qdisc->q.qlen;
  747. unsigned int backlog = cl->qdisc->qstats.backlog;
  748. qdisc_reset(cl->qdisc);
  749. qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
  750. }
  751. static void
  752. hfsc_adjust_levels(struct hfsc_class *cl)
  753. {
  754. struct hfsc_class *p;
  755. unsigned int level;
  756. do {
  757. level = 0;
  758. list_for_each_entry(p, &cl->children, siblings) {
  759. if (p->level >= level)
  760. level = p->level + 1;
  761. }
  762. cl->level = level;
  763. } while ((cl = cl->cl_parent) != NULL);
  764. }
  765. static inline struct hfsc_class *
  766. hfsc_find_class(u32 classid, struct Qdisc *sch)
  767. {
  768. struct hfsc_sched *q = qdisc_priv(sch);
  769. struct Qdisc_class_common *clc;
  770. clc = qdisc_class_find(&q->clhash, classid);
  771. if (clc == NULL)
  772. return NULL;
  773. return container_of(clc, struct hfsc_class, cl_common);
  774. }
  775. static void
  776. hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
  777. u64 cur_time)
  778. {
  779. sc2isc(rsc, &cl->cl_rsc);
  780. rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
  781. cl->cl_eligible = cl->cl_deadline;
  782. if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
  783. cl->cl_eligible.dx = 0;
  784. cl->cl_eligible.dy = 0;
  785. }
  786. cl->cl_flags |= HFSC_RSC;
  787. }
  788. static void
  789. hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
  790. {
  791. sc2isc(fsc, &cl->cl_fsc);
  792. rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
  793. cl->cl_flags |= HFSC_FSC;
  794. }
  795. static void
  796. hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
  797. u64 cur_time)
  798. {
  799. sc2isc(usc, &cl->cl_usc);
  800. rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
  801. cl->cl_flags |= HFSC_USC;
  802. }
  803. static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
  804. [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
  805. [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
  806. [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
  807. };
  808. static int
  809. hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  810. struct nlattr **tca, unsigned long *arg)
  811. {
  812. struct hfsc_sched *q = qdisc_priv(sch);
  813. struct hfsc_class *cl = (struct hfsc_class *)*arg;
  814. struct hfsc_class *parent = NULL;
  815. struct nlattr *opt = tca[TCA_OPTIONS];
  816. struct nlattr *tb[TCA_HFSC_MAX + 1];
  817. struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
  818. u64 cur_time;
  819. int err;
  820. if (opt == NULL)
  821. return -EINVAL;
  822. err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy, NULL);
  823. if (err < 0)
  824. return err;
  825. if (tb[TCA_HFSC_RSC]) {
  826. rsc = nla_data(tb[TCA_HFSC_RSC]);
  827. if (rsc->m1 == 0 && rsc->m2 == 0)
  828. rsc = NULL;
  829. }
  830. if (tb[TCA_HFSC_FSC]) {
  831. fsc = nla_data(tb[TCA_HFSC_FSC]);
  832. if (fsc->m1 == 0 && fsc->m2 == 0)
  833. fsc = NULL;
  834. }
  835. if (tb[TCA_HFSC_USC]) {
  836. usc = nla_data(tb[TCA_HFSC_USC]);
  837. if (usc->m1 == 0 && usc->m2 == 0)
  838. usc = NULL;
  839. }
  840. if (cl != NULL) {
  841. int old_flags;
  842. if (parentid) {
  843. if (cl->cl_parent &&
  844. cl->cl_parent->cl_common.classid != parentid)
  845. return -EINVAL;
  846. if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
  847. return -EINVAL;
  848. }
  849. cur_time = psched_get_time();
  850. if (tca[TCA_RATE]) {
  851. err = gen_replace_estimator(&cl->bstats, NULL,
  852. &cl->rate_est,
  853. NULL,
  854. qdisc_root_sleeping_running(sch),
  855. tca[TCA_RATE]);
  856. if (err)
  857. return err;
  858. }
  859. sch_tree_lock(sch);
  860. old_flags = cl->cl_flags;
  861. if (rsc != NULL)
  862. hfsc_change_rsc(cl, rsc, cur_time);
  863. if (fsc != NULL)
  864. hfsc_change_fsc(cl, fsc);
  865. if (usc != NULL)
  866. hfsc_change_usc(cl, usc, cur_time);
  867. if (cl->qdisc->q.qlen != 0) {
  868. int len = qdisc_peek_len(cl->qdisc);
  869. if (cl->cl_flags & HFSC_RSC) {
  870. if (old_flags & HFSC_RSC)
  871. update_ed(cl, len);
  872. else
  873. init_ed(cl, len);
  874. }
  875. if (cl->cl_flags & HFSC_FSC) {
  876. if (old_flags & HFSC_FSC)
  877. update_vf(cl, 0, cur_time);
  878. else
  879. init_vf(cl, len);
  880. }
  881. }
  882. sch_tree_unlock(sch);
  883. return 0;
  884. }
  885. if (parentid == TC_H_ROOT)
  886. return -EEXIST;
  887. parent = &q->root;
  888. if (parentid) {
  889. parent = hfsc_find_class(parentid, sch);
  890. if (parent == NULL)
  891. return -ENOENT;
  892. }
  893. if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
  894. return -EINVAL;
  895. if (hfsc_find_class(classid, sch))
  896. return -EEXIST;
  897. if (rsc == NULL && fsc == NULL)
  898. return -EINVAL;
  899. cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
  900. if (cl == NULL)
  901. return -ENOBUFS;
  902. err = tcf_block_get(&cl->block, &cl->filter_list);
  903. if (err) {
  904. kfree(cl);
  905. return err;
  906. }
  907. if (tca[TCA_RATE]) {
  908. err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
  909. NULL,
  910. qdisc_root_sleeping_running(sch),
  911. tca[TCA_RATE]);
  912. if (err) {
  913. tcf_block_put(cl->block);
  914. kfree(cl);
  915. return err;
  916. }
  917. }
  918. if (rsc != NULL)
  919. hfsc_change_rsc(cl, rsc, 0);
  920. if (fsc != NULL)
  921. hfsc_change_fsc(cl, fsc);
  922. if (usc != NULL)
  923. hfsc_change_usc(cl, usc, 0);
  924. cl->cl_common.classid = classid;
  925. cl->sched = q;
  926. cl->cl_parent = parent;
  927. cl->qdisc = qdisc_create_dflt(sch->dev_queue,
  928. &pfifo_qdisc_ops, classid);
  929. if (cl->qdisc == NULL)
  930. cl->qdisc = &noop_qdisc;
  931. else
  932. qdisc_hash_add(cl->qdisc, true);
  933. INIT_LIST_HEAD(&cl->children);
  934. cl->vt_tree = RB_ROOT;
  935. cl->cf_tree = RB_ROOT;
  936. sch_tree_lock(sch);
  937. qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
  938. list_add_tail(&cl->siblings, &parent->children);
  939. if (parent->level == 0)
  940. hfsc_purge_queue(sch, parent);
  941. hfsc_adjust_levels(parent);
  942. sch_tree_unlock(sch);
  943. qdisc_class_hash_grow(sch, &q->clhash);
  944. *arg = (unsigned long)cl;
  945. return 0;
  946. }
  947. static void
  948. hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
  949. {
  950. struct hfsc_sched *q = qdisc_priv(sch);
  951. tcf_block_put(cl->block);
  952. qdisc_destroy(cl->qdisc);
  953. gen_kill_estimator(&cl->rate_est);
  954. if (cl != &q->root)
  955. kfree(cl);
  956. }
  957. static int
  958. hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
  959. {
  960. struct hfsc_sched *q = qdisc_priv(sch);
  961. struct hfsc_class *cl = (struct hfsc_class *)arg;
  962. if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
  963. return -EBUSY;
  964. sch_tree_lock(sch);
  965. list_del(&cl->siblings);
  966. hfsc_adjust_levels(cl->cl_parent);
  967. hfsc_purge_queue(sch, cl);
  968. qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
  969. sch_tree_unlock(sch);
  970. hfsc_destroy_class(sch, cl);
  971. return 0;
  972. }
  973. static struct hfsc_class *
  974. hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
  975. {
  976. struct hfsc_sched *q = qdisc_priv(sch);
  977. struct hfsc_class *head, *cl;
  978. struct tcf_result res;
  979. struct tcf_proto *tcf;
  980. int result;
  981. if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
  982. (cl = hfsc_find_class(skb->priority, sch)) != NULL)
  983. if (cl->level == 0)
  984. return cl;
  985. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  986. head = &q->root;
  987. tcf = rcu_dereference_bh(q->root.filter_list);
  988. while (tcf && (result = tcf_classify(skb, tcf, &res, false)) >= 0) {
  989. #ifdef CONFIG_NET_CLS_ACT
  990. switch (result) {
  991. case TC_ACT_QUEUED:
  992. case TC_ACT_STOLEN:
  993. case TC_ACT_TRAP:
  994. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  995. case TC_ACT_SHOT:
  996. return NULL;
  997. }
  998. #endif
  999. cl = (struct hfsc_class *)res.class;
  1000. if (!cl) {
  1001. cl = hfsc_find_class(res.classid, sch);
  1002. if (!cl)
  1003. break; /* filter selected invalid classid */
  1004. if (cl->level >= head->level)
  1005. break; /* filter may only point downwards */
  1006. }
  1007. if (cl->level == 0)
  1008. return cl; /* hit leaf class */
  1009. /* apply inner filter chain */
  1010. tcf = rcu_dereference_bh(cl->filter_list);
  1011. head = cl;
  1012. }
  1013. /* classification failed, try default class */
  1014. cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
  1015. if (cl == NULL || cl->level > 0)
  1016. return NULL;
  1017. return cl;
  1018. }
  1019. static int
  1020. hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
  1021. struct Qdisc **old)
  1022. {
  1023. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1024. if (cl->level > 0)
  1025. return -EINVAL;
  1026. if (new == NULL) {
  1027. new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
  1028. cl->cl_common.classid);
  1029. if (new == NULL)
  1030. new = &noop_qdisc;
  1031. }
  1032. *old = qdisc_replace(sch, new, &cl->qdisc);
  1033. return 0;
  1034. }
  1035. static struct Qdisc *
  1036. hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
  1037. {
  1038. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1039. if (cl->level == 0)
  1040. return cl->qdisc;
  1041. return NULL;
  1042. }
  1043. static void
  1044. hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
  1045. {
  1046. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1047. /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
  1048. * needs to be called explicitly to remove a class from vttree.
  1049. */
  1050. update_vf(cl, 0, 0);
  1051. if (cl->cl_flags & HFSC_RSC)
  1052. eltree_remove(cl);
  1053. }
  1054. static unsigned long
  1055. hfsc_search_class(struct Qdisc *sch, u32 classid)
  1056. {
  1057. return (unsigned long)hfsc_find_class(classid, sch);
  1058. }
  1059. static unsigned long
  1060. hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
  1061. {
  1062. struct hfsc_class *p = (struct hfsc_class *)parent;
  1063. struct hfsc_class *cl = hfsc_find_class(classid, sch);
  1064. if (cl != NULL) {
  1065. if (p != NULL && p->level <= cl->level)
  1066. return 0;
  1067. cl->filter_cnt++;
  1068. }
  1069. return (unsigned long)cl;
  1070. }
  1071. static void
  1072. hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
  1073. {
  1074. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1075. cl->filter_cnt--;
  1076. }
  1077. static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg)
  1078. {
  1079. struct hfsc_sched *q = qdisc_priv(sch);
  1080. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1081. if (cl == NULL)
  1082. cl = &q->root;
  1083. return cl->block;
  1084. }
  1085. static int
  1086. hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
  1087. {
  1088. struct tc_service_curve tsc;
  1089. tsc.m1 = sm2m(sc->sm1);
  1090. tsc.d = dx2d(sc->dx);
  1091. tsc.m2 = sm2m(sc->sm2);
  1092. if (nla_put(skb, attr, sizeof(tsc), &tsc))
  1093. goto nla_put_failure;
  1094. return skb->len;
  1095. nla_put_failure:
  1096. return -1;
  1097. }
  1098. static int
  1099. hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
  1100. {
  1101. if ((cl->cl_flags & HFSC_RSC) &&
  1102. (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
  1103. goto nla_put_failure;
  1104. if ((cl->cl_flags & HFSC_FSC) &&
  1105. (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
  1106. goto nla_put_failure;
  1107. if ((cl->cl_flags & HFSC_USC) &&
  1108. (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
  1109. goto nla_put_failure;
  1110. return skb->len;
  1111. nla_put_failure:
  1112. return -1;
  1113. }
  1114. static int
  1115. hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
  1116. struct tcmsg *tcm)
  1117. {
  1118. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1119. struct nlattr *nest;
  1120. tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
  1121. TC_H_ROOT;
  1122. tcm->tcm_handle = cl->cl_common.classid;
  1123. if (cl->level == 0)
  1124. tcm->tcm_info = cl->qdisc->handle;
  1125. nest = nla_nest_start(skb, TCA_OPTIONS);
  1126. if (nest == NULL)
  1127. goto nla_put_failure;
  1128. if (hfsc_dump_curves(skb, cl) < 0)
  1129. goto nla_put_failure;
  1130. return nla_nest_end(skb, nest);
  1131. nla_put_failure:
  1132. nla_nest_cancel(skb, nest);
  1133. return -EMSGSIZE;
  1134. }
  1135. static int
  1136. hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
  1137. struct gnet_dump *d)
  1138. {
  1139. struct hfsc_class *cl = (struct hfsc_class *)arg;
  1140. struct tc_hfsc_stats xstats;
  1141. cl->qstats.backlog = cl->qdisc->qstats.backlog;
  1142. xstats.level = cl->level;
  1143. xstats.period = cl->cl_vtperiod;
  1144. xstats.work = cl->cl_total;
  1145. xstats.rtwork = cl->cl_cumul;
  1146. if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), d, NULL, &cl->bstats) < 0 ||
  1147. gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
  1148. gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->qdisc->q.qlen) < 0)
  1149. return -1;
  1150. return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
  1151. }
  1152. static void
  1153. hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
  1154. {
  1155. struct hfsc_sched *q = qdisc_priv(sch);
  1156. struct hfsc_class *cl;
  1157. unsigned int i;
  1158. if (arg->stop)
  1159. return;
  1160. for (i = 0; i < q->clhash.hashsize; i++) {
  1161. hlist_for_each_entry(cl, &q->clhash.hash[i],
  1162. cl_common.hnode) {
  1163. if (arg->count < arg->skip) {
  1164. arg->count++;
  1165. continue;
  1166. }
  1167. if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
  1168. arg->stop = 1;
  1169. return;
  1170. }
  1171. arg->count++;
  1172. }
  1173. }
  1174. }
  1175. static void
  1176. hfsc_schedule_watchdog(struct Qdisc *sch)
  1177. {
  1178. struct hfsc_sched *q = qdisc_priv(sch);
  1179. struct hfsc_class *cl;
  1180. u64 next_time = 0;
  1181. cl = eltree_get_minel(q);
  1182. if (cl)
  1183. next_time = cl->cl_e;
  1184. if (q->root.cl_cfmin != 0) {
  1185. if (next_time == 0 || next_time > q->root.cl_cfmin)
  1186. next_time = q->root.cl_cfmin;
  1187. }
  1188. WARN_ON(next_time == 0);
  1189. qdisc_watchdog_schedule(&q->watchdog, next_time);
  1190. }
  1191. static int
  1192. hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1193. {
  1194. struct hfsc_sched *q = qdisc_priv(sch);
  1195. struct tc_hfsc_qopt *qopt;
  1196. int err;
  1197. qdisc_watchdog_init(&q->watchdog, sch);
  1198. if (opt == NULL || nla_len(opt) < sizeof(*qopt))
  1199. return -EINVAL;
  1200. qopt = nla_data(opt);
  1201. q->defcls = qopt->defcls;
  1202. err = qdisc_class_hash_init(&q->clhash);
  1203. if (err < 0)
  1204. return err;
  1205. q->eligible = RB_ROOT;
  1206. err = tcf_block_get(&q->root.block, &q->root.filter_list);
  1207. if (err)
  1208. return err;
  1209. q->root.cl_common.classid = sch->handle;
  1210. q->root.sched = q;
  1211. q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
  1212. sch->handle);
  1213. if (q->root.qdisc == NULL)
  1214. q->root.qdisc = &noop_qdisc;
  1215. else
  1216. qdisc_hash_add(q->root.qdisc, true);
  1217. INIT_LIST_HEAD(&q->root.children);
  1218. q->root.vt_tree = RB_ROOT;
  1219. q->root.cf_tree = RB_ROOT;
  1220. qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
  1221. qdisc_class_hash_grow(sch, &q->clhash);
  1222. return 0;
  1223. }
  1224. static int
  1225. hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1226. {
  1227. struct hfsc_sched *q = qdisc_priv(sch);
  1228. struct tc_hfsc_qopt *qopt;
  1229. if (opt == NULL || nla_len(opt) < sizeof(*qopt))
  1230. return -EINVAL;
  1231. qopt = nla_data(opt);
  1232. sch_tree_lock(sch);
  1233. q->defcls = qopt->defcls;
  1234. sch_tree_unlock(sch);
  1235. return 0;
  1236. }
  1237. static void
  1238. hfsc_reset_class(struct hfsc_class *cl)
  1239. {
  1240. cl->cl_total = 0;
  1241. cl->cl_cumul = 0;
  1242. cl->cl_d = 0;
  1243. cl->cl_e = 0;
  1244. cl->cl_vt = 0;
  1245. cl->cl_vtadj = 0;
  1246. cl->cl_cvtmin = 0;
  1247. cl->cl_cvtoff = 0;
  1248. cl->cl_vtperiod = 0;
  1249. cl->cl_parentperiod = 0;
  1250. cl->cl_f = 0;
  1251. cl->cl_myf = 0;
  1252. cl->cl_cfmin = 0;
  1253. cl->cl_nactive = 0;
  1254. cl->vt_tree = RB_ROOT;
  1255. cl->cf_tree = RB_ROOT;
  1256. qdisc_reset(cl->qdisc);
  1257. if (cl->cl_flags & HFSC_RSC)
  1258. rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
  1259. if (cl->cl_flags & HFSC_FSC)
  1260. rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
  1261. if (cl->cl_flags & HFSC_USC)
  1262. rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
  1263. }
  1264. static void
  1265. hfsc_reset_qdisc(struct Qdisc *sch)
  1266. {
  1267. struct hfsc_sched *q = qdisc_priv(sch);
  1268. struct hfsc_class *cl;
  1269. unsigned int i;
  1270. for (i = 0; i < q->clhash.hashsize; i++) {
  1271. hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
  1272. hfsc_reset_class(cl);
  1273. }
  1274. q->eligible = RB_ROOT;
  1275. qdisc_watchdog_cancel(&q->watchdog);
  1276. sch->qstats.backlog = 0;
  1277. sch->q.qlen = 0;
  1278. }
  1279. static void
  1280. hfsc_destroy_qdisc(struct Qdisc *sch)
  1281. {
  1282. struct hfsc_sched *q = qdisc_priv(sch);
  1283. struct hlist_node *next;
  1284. struct hfsc_class *cl;
  1285. unsigned int i;
  1286. for (i = 0; i < q->clhash.hashsize; i++) {
  1287. hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) {
  1288. tcf_block_put(cl->block);
  1289. cl->block = NULL;
  1290. }
  1291. }
  1292. for (i = 0; i < q->clhash.hashsize; i++) {
  1293. hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
  1294. cl_common.hnode)
  1295. hfsc_destroy_class(sch, cl);
  1296. }
  1297. qdisc_class_hash_destroy(&q->clhash);
  1298. qdisc_watchdog_cancel(&q->watchdog);
  1299. }
  1300. static int
  1301. hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
  1302. {
  1303. struct hfsc_sched *q = qdisc_priv(sch);
  1304. unsigned char *b = skb_tail_pointer(skb);
  1305. struct tc_hfsc_qopt qopt;
  1306. qopt.defcls = q->defcls;
  1307. if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
  1308. goto nla_put_failure;
  1309. return skb->len;
  1310. nla_put_failure:
  1311. nlmsg_trim(skb, b);
  1312. return -1;
  1313. }
  1314. static int
  1315. hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
  1316. {
  1317. struct hfsc_class *cl;
  1318. int uninitialized_var(err);
  1319. cl = hfsc_classify(skb, sch, &err);
  1320. if (cl == NULL) {
  1321. if (err & __NET_XMIT_BYPASS)
  1322. qdisc_qstats_drop(sch);
  1323. __qdisc_drop(skb, to_free);
  1324. return err;
  1325. }
  1326. err = qdisc_enqueue(skb, cl->qdisc, to_free);
  1327. if (unlikely(err != NET_XMIT_SUCCESS)) {
  1328. if (net_xmit_drop_count(err)) {
  1329. cl->qstats.drops++;
  1330. qdisc_qstats_drop(sch);
  1331. }
  1332. return err;
  1333. }
  1334. if (cl->qdisc->q.qlen == 1) {
  1335. unsigned int len = qdisc_pkt_len(skb);
  1336. if (cl->cl_flags & HFSC_RSC)
  1337. init_ed(cl, len);
  1338. if (cl->cl_flags & HFSC_FSC)
  1339. init_vf(cl, len);
  1340. /*
  1341. * If this is the first packet, isolate the head so an eventual
  1342. * head drop before the first dequeue operation has no chance
  1343. * to invalidate the deadline.
  1344. */
  1345. if (cl->cl_flags & HFSC_RSC)
  1346. cl->qdisc->ops->peek(cl->qdisc);
  1347. }
  1348. qdisc_qstats_backlog_inc(sch, skb);
  1349. sch->q.qlen++;
  1350. return NET_XMIT_SUCCESS;
  1351. }
  1352. static struct sk_buff *
  1353. hfsc_dequeue(struct Qdisc *sch)
  1354. {
  1355. struct hfsc_sched *q = qdisc_priv(sch);
  1356. struct hfsc_class *cl;
  1357. struct sk_buff *skb;
  1358. u64 cur_time;
  1359. unsigned int next_len;
  1360. int realtime = 0;
  1361. if (sch->q.qlen == 0)
  1362. return NULL;
  1363. cur_time = psched_get_time();
  1364. /*
  1365. * if there are eligible classes, use real-time criteria.
  1366. * find the class with the minimum deadline among
  1367. * the eligible classes.
  1368. */
  1369. cl = eltree_get_mindl(q, cur_time);
  1370. if (cl) {
  1371. realtime = 1;
  1372. } else {
  1373. /*
  1374. * use link-sharing criteria
  1375. * get the class with the minimum vt in the hierarchy
  1376. */
  1377. cl = vttree_get_minvt(&q->root, cur_time);
  1378. if (cl == NULL) {
  1379. qdisc_qstats_overlimit(sch);
  1380. hfsc_schedule_watchdog(sch);
  1381. return NULL;
  1382. }
  1383. }
  1384. skb = qdisc_dequeue_peeked(cl->qdisc);
  1385. if (skb == NULL) {
  1386. qdisc_warn_nonwc("HFSC", cl->qdisc);
  1387. return NULL;
  1388. }
  1389. bstats_update(&cl->bstats, skb);
  1390. update_vf(cl, qdisc_pkt_len(skb), cur_time);
  1391. if (realtime)
  1392. cl->cl_cumul += qdisc_pkt_len(skb);
  1393. if (cl->cl_flags & HFSC_RSC) {
  1394. if (cl->qdisc->q.qlen != 0) {
  1395. /* update ed */
  1396. next_len = qdisc_peek_len(cl->qdisc);
  1397. if (realtime)
  1398. update_ed(cl, next_len);
  1399. else
  1400. update_d(cl, next_len);
  1401. } else {
  1402. /* the class becomes passive */
  1403. eltree_remove(cl);
  1404. }
  1405. }
  1406. qdisc_bstats_update(sch, skb);
  1407. qdisc_qstats_backlog_dec(sch, skb);
  1408. sch->q.qlen--;
  1409. return skb;
  1410. }
  1411. static const struct Qdisc_class_ops hfsc_class_ops = {
  1412. .change = hfsc_change_class,
  1413. .delete = hfsc_delete_class,
  1414. .graft = hfsc_graft_class,
  1415. .leaf = hfsc_class_leaf,
  1416. .qlen_notify = hfsc_qlen_notify,
  1417. .find = hfsc_search_class,
  1418. .bind_tcf = hfsc_bind_tcf,
  1419. .unbind_tcf = hfsc_unbind_tcf,
  1420. .tcf_block = hfsc_tcf_block,
  1421. .dump = hfsc_dump_class,
  1422. .dump_stats = hfsc_dump_class_stats,
  1423. .walk = hfsc_walk
  1424. };
  1425. static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
  1426. .id = "hfsc",
  1427. .init = hfsc_init_qdisc,
  1428. .change = hfsc_change_qdisc,
  1429. .reset = hfsc_reset_qdisc,
  1430. .destroy = hfsc_destroy_qdisc,
  1431. .dump = hfsc_dump_qdisc,
  1432. .enqueue = hfsc_enqueue,
  1433. .dequeue = hfsc_dequeue,
  1434. .peek = qdisc_peek_dequeued,
  1435. .cl_ops = &hfsc_class_ops,
  1436. .priv_size = sizeof(struct hfsc_sched),
  1437. .owner = THIS_MODULE
  1438. };
  1439. static int __init
  1440. hfsc_init(void)
  1441. {
  1442. return register_qdisc(&hfsc_qdisc_ops);
  1443. }
  1444. static void __exit
  1445. hfsc_cleanup(void)
  1446. {
  1447. unregister_qdisc(&hfsc_qdisc_ops);
  1448. }
  1449. MODULE_LICENSE("GPL");
  1450. module_init(hfsc_init);
  1451. module_exit(hfsc_cleanup);