cls_flower.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/dst.h>
  25. #include <net/dst_metadata.h>
  26. struct fl_flow_key {
  27. int indev_ifindex;
  28. struct flow_dissector_key_control control;
  29. struct flow_dissector_key_control enc_control;
  30. struct flow_dissector_key_basic basic;
  31. struct flow_dissector_key_eth_addrs eth;
  32. struct flow_dissector_key_vlan vlan;
  33. union {
  34. struct flow_dissector_key_ipv4_addrs ipv4;
  35. struct flow_dissector_key_ipv6_addrs ipv6;
  36. };
  37. struct flow_dissector_key_ports tp;
  38. struct flow_dissector_key_icmp icmp;
  39. struct flow_dissector_key_arp arp;
  40. struct flow_dissector_key_keyid enc_key_id;
  41. union {
  42. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  43. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  44. };
  45. struct flow_dissector_key_ports enc_tp;
  46. struct flow_dissector_key_mpls mpls;
  47. struct flow_dissector_key_tcp tcp;
  48. struct flow_dissector_key_ip ip;
  49. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  50. struct fl_flow_mask_range {
  51. unsigned short int start;
  52. unsigned short int end;
  53. };
  54. struct fl_flow_mask {
  55. struct fl_flow_key key;
  56. struct fl_flow_mask_range range;
  57. struct rcu_head rcu;
  58. };
  59. struct cls_fl_head {
  60. struct rhashtable ht;
  61. struct fl_flow_mask mask;
  62. struct flow_dissector dissector;
  63. bool mask_assigned;
  64. struct list_head filters;
  65. struct rhashtable_params ht_params;
  66. union {
  67. struct work_struct work;
  68. struct rcu_head rcu;
  69. };
  70. struct idr handle_idr;
  71. };
  72. struct cls_fl_filter {
  73. struct rhash_head ht_node;
  74. struct fl_flow_key mkey;
  75. struct tcf_exts exts;
  76. struct tcf_result res;
  77. struct fl_flow_key key;
  78. struct list_head list;
  79. u32 handle;
  80. u32 flags;
  81. union {
  82. struct work_struct work;
  83. struct rcu_head rcu;
  84. };
  85. struct net_device *hw_dev;
  86. };
  87. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  88. {
  89. return mask->range.end - mask->range.start;
  90. }
  91. static void fl_mask_update_range(struct fl_flow_mask *mask)
  92. {
  93. const u8 *bytes = (const u8 *) &mask->key;
  94. size_t size = sizeof(mask->key);
  95. size_t i, first = 0, last = size - 1;
  96. for (i = 0; i < sizeof(mask->key); i++) {
  97. if (bytes[i]) {
  98. if (!first && i)
  99. first = i;
  100. last = i;
  101. }
  102. }
  103. mask->range.start = rounddown(first, sizeof(long));
  104. mask->range.end = roundup(last + 1, sizeof(long));
  105. }
  106. static void *fl_key_get_start(struct fl_flow_key *key,
  107. const struct fl_flow_mask *mask)
  108. {
  109. return (u8 *) key + mask->range.start;
  110. }
  111. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  112. struct fl_flow_mask *mask)
  113. {
  114. const long *lkey = fl_key_get_start(key, mask);
  115. const long *lmask = fl_key_get_start(&mask->key, mask);
  116. long *lmkey = fl_key_get_start(mkey, mask);
  117. int i;
  118. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  119. *lmkey++ = *lkey++ & *lmask++;
  120. }
  121. static void fl_clear_masked_range(struct fl_flow_key *key,
  122. struct fl_flow_mask *mask)
  123. {
  124. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  125. }
  126. static struct cls_fl_filter *fl_lookup(struct cls_fl_head *head,
  127. struct fl_flow_key *mkey)
  128. {
  129. return rhashtable_lookup_fast(&head->ht,
  130. fl_key_get_start(mkey, &head->mask),
  131. head->ht_params);
  132. }
  133. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  134. struct tcf_result *res)
  135. {
  136. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  137. struct cls_fl_filter *f;
  138. struct fl_flow_key skb_key;
  139. struct fl_flow_key skb_mkey;
  140. struct ip_tunnel_info *info;
  141. if (!atomic_read(&head->ht.nelems))
  142. return -1;
  143. fl_clear_masked_range(&skb_key, &head->mask);
  144. info = skb_tunnel_info(skb);
  145. if (info) {
  146. struct ip_tunnel_key *key = &info->key;
  147. switch (ip_tunnel_info_af(info)) {
  148. case AF_INET:
  149. skb_key.enc_control.addr_type =
  150. FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  151. skb_key.enc_ipv4.src = key->u.ipv4.src;
  152. skb_key.enc_ipv4.dst = key->u.ipv4.dst;
  153. break;
  154. case AF_INET6:
  155. skb_key.enc_control.addr_type =
  156. FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  157. skb_key.enc_ipv6.src = key->u.ipv6.src;
  158. skb_key.enc_ipv6.dst = key->u.ipv6.dst;
  159. break;
  160. }
  161. skb_key.enc_key_id.keyid = tunnel_id_to_key32(key->tun_id);
  162. skb_key.enc_tp.src = key->tp_src;
  163. skb_key.enc_tp.dst = key->tp_dst;
  164. }
  165. skb_key.indev_ifindex = skb->skb_iif;
  166. /* skb_flow_dissect() does not set n_proto in case an unknown protocol,
  167. * so do it rather here.
  168. */
  169. skb_key.basic.n_proto = skb->protocol;
  170. skb_flow_dissect(skb, &head->dissector, &skb_key, 0);
  171. fl_set_masked_key(&skb_mkey, &skb_key, &head->mask);
  172. f = fl_lookup(head, &skb_mkey);
  173. if (f && !tc_skip_sw(f->flags)) {
  174. *res = f->res;
  175. return tcf_exts_exec(skb, &f->exts, res);
  176. }
  177. return -1;
  178. }
  179. static int fl_init(struct tcf_proto *tp)
  180. {
  181. struct cls_fl_head *head;
  182. head = kzalloc(sizeof(*head), GFP_KERNEL);
  183. if (!head)
  184. return -ENOBUFS;
  185. INIT_LIST_HEAD_RCU(&head->filters);
  186. rcu_assign_pointer(tp->root, head);
  187. idr_init(&head->handle_idr);
  188. return 0;
  189. }
  190. static void __fl_destroy_filter(struct cls_fl_filter *f)
  191. {
  192. tcf_exts_destroy(&f->exts);
  193. tcf_exts_put_net(&f->exts);
  194. kfree(f);
  195. }
  196. static void fl_destroy_filter_work(struct work_struct *work)
  197. {
  198. struct cls_fl_filter *f = container_of(work, struct cls_fl_filter, work);
  199. rtnl_lock();
  200. __fl_destroy_filter(f);
  201. rtnl_unlock();
  202. }
  203. static void fl_destroy_filter(struct rcu_head *head)
  204. {
  205. struct cls_fl_filter *f = container_of(head, struct cls_fl_filter, rcu);
  206. INIT_WORK(&f->work, fl_destroy_filter_work);
  207. tcf_queue_work(&f->work);
  208. }
  209. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f)
  210. {
  211. struct tc_cls_flower_offload cls_flower = {};
  212. struct net_device *dev = f->hw_dev;
  213. if (!tc_can_offload(dev))
  214. return;
  215. tc_cls_common_offload_init(&cls_flower.common, tp);
  216. cls_flower.command = TC_CLSFLOWER_DESTROY;
  217. cls_flower.cookie = (unsigned long) f;
  218. cls_flower.egress_dev = f->hw_dev != tp->q->dev_queue->dev;
  219. dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER, &cls_flower);
  220. }
  221. static int fl_hw_replace_filter(struct tcf_proto *tp,
  222. struct flow_dissector *dissector,
  223. struct fl_flow_key *mask,
  224. struct cls_fl_filter *f)
  225. {
  226. struct net_device *dev = tp->q->dev_queue->dev;
  227. struct tc_cls_flower_offload cls_flower = {};
  228. int err;
  229. if (!tc_can_offload(dev)) {
  230. if (tcf_exts_get_dev(dev, &f->exts, &f->hw_dev) ||
  231. (f->hw_dev && !tc_can_offload(f->hw_dev))) {
  232. f->hw_dev = dev;
  233. return tc_skip_sw(f->flags) ? -EINVAL : 0;
  234. }
  235. dev = f->hw_dev;
  236. cls_flower.egress_dev = true;
  237. } else {
  238. f->hw_dev = dev;
  239. }
  240. tc_cls_common_offload_init(&cls_flower.common, tp);
  241. cls_flower.command = TC_CLSFLOWER_REPLACE;
  242. cls_flower.cookie = (unsigned long) f;
  243. cls_flower.dissector = dissector;
  244. cls_flower.mask = mask;
  245. cls_flower.key = &f->mkey;
  246. cls_flower.exts = &f->exts;
  247. err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER,
  248. &cls_flower);
  249. if (!err)
  250. f->flags |= TCA_CLS_FLAGS_IN_HW;
  251. if (tc_skip_sw(f->flags))
  252. return err;
  253. return 0;
  254. }
  255. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  256. {
  257. struct tc_cls_flower_offload cls_flower = {};
  258. struct net_device *dev = f->hw_dev;
  259. if (!tc_can_offload(dev))
  260. return;
  261. tc_cls_common_offload_init(&cls_flower.common, tp);
  262. cls_flower.command = TC_CLSFLOWER_STATS;
  263. cls_flower.cookie = (unsigned long) f;
  264. cls_flower.exts = &f->exts;
  265. cls_flower.egress_dev = f->hw_dev != tp->q->dev_queue->dev;
  266. dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER,
  267. &cls_flower);
  268. }
  269. static void __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f)
  270. {
  271. struct cls_fl_head *head = rtnl_dereference(tp->root);
  272. idr_remove_ext(&head->handle_idr, f->handle);
  273. list_del_rcu(&f->list);
  274. if (!tc_skip_hw(f->flags))
  275. fl_hw_destroy_filter(tp, f);
  276. tcf_unbind_filter(tp, &f->res);
  277. if (tcf_exts_get_net(&f->exts))
  278. call_rcu(&f->rcu, fl_destroy_filter);
  279. else
  280. __fl_destroy_filter(f);
  281. }
  282. static void fl_destroy_sleepable(struct work_struct *work)
  283. {
  284. struct cls_fl_head *head = container_of(work, struct cls_fl_head,
  285. work);
  286. if (head->mask_assigned)
  287. rhashtable_destroy(&head->ht);
  288. kfree(head);
  289. module_put(THIS_MODULE);
  290. }
  291. static void fl_destroy_rcu(struct rcu_head *rcu)
  292. {
  293. struct cls_fl_head *head = container_of(rcu, struct cls_fl_head, rcu);
  294. INIT_WORK(&head->work, fl_destroy_sleepable);
  295. schedule_work(&head->work);
  296. }
  297. static void fl_destroy(struct tcf_proto *tp)
  298. {
  299. struct cls_fl_head *head = rtnl_dereference(tp->root);
  300. struct cls_fl_filter *f, *next;
  301. list_for_each_entry_safe(f, next, &head->filters, list)
  302. __fl_delete(tp, f);
  303. idr_destroy(&head->handle_idr);
  304. __module_get(THIS_MODULE);
  305. call_rcu(&head->rcu, fl_destroy_rcu);
  306. }
  307. static void *fl_get(struct tcf_proto *tp, u32 handle)
  308. {
  309. struct cls_fl_head *head = rtnl_dereference(tp->root);
  310. return idr_find_ext(&head->handle_idr, handle);
  311. }
  312. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  313. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  314. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  315. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  316. .len = IFNAMSIZ },
  317. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  318. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  319. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  320. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  321. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  322. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  323. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  324. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  325. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  326. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  327. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  328. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  329. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  330. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  331. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  332. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  333. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  334. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  335. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  336. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  337. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  338. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  339. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  340. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  341. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  342. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  343. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  344. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  345. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  346. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  347. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  348. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  349. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  350. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  351. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  352. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  353. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  354. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  355. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  356. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  357. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  358. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  359. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  360. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  361. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  362. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  363. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  364. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  365. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  366. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  367. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  368. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  369. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  370. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  371. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  372. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  373. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  374. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  375. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  376. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  377. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  378. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  379. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  380. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  381. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  382. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  383. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  384. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  385. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  386. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  387. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  388. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  389. };
  390. static void fl_set_key_val(struct nlattr **tb,
  391. void *val, int val_type,
  392. void *mask, int mask_type, int len)
  393. {
  394. if (!tb[val_type])
  395. return;
  396. memcpy(val, nla_data(tb[val_type]), len);
  397. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  398. memset(mask, 0xff, len);
  399. else
  400. memcpy(mask, nla_data(tb[mask_type]), len);
  401. }
  402. static int fl_set_key_mpls(struct nlattr **tb,
  403. struct flow_dissector_key_mpls *key_val,
  404. struct flow_dissector_key_mpls *key_mask)
  405. {
  406. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  407. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  408. key_mask->mpls_ttl = MPLS_TTL_MASK;
  409. }
  410. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  411. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  412. if (bos & ~MPLS_BOS_MASK)
  413. return -EINVAL;
  414. key_val->mpls_bos = bos;
  415. key_mask->mpls_bos = MPLS_BOS_MASK;
  416. }
  417. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  418. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  419. if (tc & ~MPLS_TC_MASK)
  420. return -EINVAL;
  421. key_val->mpls_tc = tc;
  422. key_mask->mpls_tc = MPLS_TC_MASK;
  423. }
  424. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  425. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  426. if (label & ~MPLS_LABEL_MASK)
  427. return -EINVAL;
  428. key_val->mpls_label = label;
  429. key_mask->mpls_label = MPLS_LABEL_MASK;
  430. }
  431. return 0;
  432. }
  433. static void fl_set_key_vlan(struct nlattr **tb,
  434. struct flow_dissector_key_vlan *key_val,
  435. struct flow_dissector_key_vlan *key_mask)
  436. {
  437. #define VLAN_PRIORITY_MASK 0x7
  438. if (tb[TCA_FLOWER_KEY_VLAN_ID]) {
  439. key_val->vlan_id =
  440. nla_get_u16(tb[TCA_FLOWER_KEY_VLAN_ID]) & VLAN_VID_MASK;
  441. key_mask->vlan_id = VLAN_VID_MASK;
  442. }
  443. if (tb[TCA_FLOWER_KEY_VLAN_PRIO]) {
  444. key_val->vlan_priority =
  445. nla_get_u8(tb[TCA_FLOWER_KEY_VLAN_PRIO]) &
  446. VLAN_PRIORITY_MASK;
  447. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  448. }
  449. }
  450. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  451. u32 *dissector_key, u32 *dissector_mask,
  452. u32 flower_flag_bit, u32 dissector_flag_bit)
  453. {
  454. if (flower_mask & flower_flag_bit) {
  455. *dissector_mask |= dissector_flag_bit;
  456. if (flower_key & flower_flag_bit)
  457. *dissector_key |= dissector_flag_bit;
  458. }
  459. }
  460. static int fl_set_key_flags(struct nlattr **tb,
  461. u32 *flags_key, u32 *flags_mask)
  462. {
  463. u32 key, mask;
  464. /* mask is mandatory for flags */
  465. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  466. return -EINVAL;
  467. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  468. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  469. *flags_key = 0;
  470. *flags_mask = 0;
  471. fl_set_key_flag(key, mask, flags_key, flags_mask,
  472. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  473. return 0;
  474. }
  475. static void fl_set_key_ip(struct nlattr **tb,
  476. struct flow_dissector_key_ip *key,
  477. struct flow_dissector_key_ip *mask)
  478. {
  479. fl_set_key_val(tb, &key->tos, TCA_FLOWER_KEY_IP_TOS,
  480. &mask->tos, TCA_FLOWER_KEY_IP_TOS_MASK,
  481. sizeof(key->tos));
  482. fl_set_key_val(tb, &key->ttl, TCA_FLOWER_KEY_IP_TTL,
  483. &mask->ttl, TCA_FLOWER_KEY_IP_TTL_MASK,
  484. sizeof(key->ttl));
  485. }
  486. static int fl_set_key(struct net *net, struct nlattr **tb,
  487. struct fl_flow_key *key, struct fl_flow_key *mask)
  488. {
  489. __be16 ethertype;
  490. int ret = 0;
  491. #ifdef CONFIG_NET_CLS_IND
  492. if (tb[TCA_FLOWER_INDEV]) {
  493. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV]);
  494. if (err < 0)
  495. return err;
  496. key->indev_ifindex = err;
  497. mask->indev_ifindex = 0xffffffff;
  498. }
  499. #endif
  500. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  501. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  502. sizeof(key->eth.dst));
  503. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  504. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  505. sizeof(key->eth.src));
  506. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  507. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  508. if (ethertype == htons(ETH_P_8021Q)) {
  509. fl_set_key_vlan(tb, &key->vlan, &mask->vlan);
  510. fl_set_key_val(tb, &key->basic.n_proto,
  511. TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  512. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  513. sizeof(key->basic.n_proto));
  514. } else {
  515. key->basic.n_proto = ethertype;
  516. mask->basic.n_proto = cpu_to_be16(~0);
  517. }
  518. }
  519. if (key->basic.n_proto == htons(ETH_P_IP) ||
  520. key->basic.n_proto == htons(ETH_P_IPV6)) {
  521. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  522. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  523. sizeof(key->basic.ip_proto));
  524. fl_set_key_ip(tb, &key->ip, &mask->ip);
  525. }
  526. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  527. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  528. mask->control.addr_type = ~0;
  529. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  530. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  531. sizeof(key->ipv4.src));
  532. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  533. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  534. sizeof(key->ipv4.dst));
  535. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  536. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  537. mask->control.addr_type = ~0;
  538. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  539. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  540. sizeof(key->ipv6.src));
  541. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  542. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  543. sizeof(key->ipv6.dst));
  544. }
  545. if (key->basic.ip_proto == IPPROTO_TCP) {
  546. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  547. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  548. sizeof(key->tp.src));
  549. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  550. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  551. sizeof(key->tp.dst));
  552. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  553. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  554. sizeof(key->tcp.flags));
  555. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  556. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  557. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  558. sizeof(key->tp.src));
  559. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  560. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  561. sizeof(key->tp.dst));
  562. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  563. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  564. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  565. sizeof(key->tp.src));
  566. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  567. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  568. sizeof(key->tp.dst));
  569. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  570. key->basic.ip_proto == IPPROTO_ICMP) {
  571. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  572. &mask->icmp.type,
  573. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  574. sizeof(key->icmp.type));
  575. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  576. &mask->icmp.code,
  577. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  578. sizeof(key->icmp.code));
  579. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  580. key->basic.ip_proto == IPPROTO_ICMPV6) {
  581. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  582. &mask->icmp.type,
  583. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  584. sizeof(key->icmp.type));
  585. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  586. &mask->icmp.code,
  587. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  588. sizeof(key->icmp.code));
  589. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  590. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  591. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  592. if (ret)
  593. return ret;
  594. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  595. key->basic.n_proto == htons(ETH_P_RARP)) {
  596. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  597. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  598. sizeof(key->arp.sip));
  599. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  600. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  601. sizeof(key->arp.tip));
  602. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  603. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  604. sizeof(key->arp.op));
  605. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  606. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  607. sizeof(key->arp.sha));
  608. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  609. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  610. sizeof(key->arp.tha));
  611. }
  612. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  613. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  614. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  615. mask->enc_control.addr_type = ~0;
  616. fl_set_key_val(tb, &key->enc_ipv4.src,
  617. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  618. &mask->enc_ipv4.src,
  619. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  620. sizeof(key->enc_ipv4.src));
  621. fl_set_key_val(tb, &key->enc_ipv4.dst,
  622. TCA_FLOWER_KEY_ENC_IPV4_DST,
  623. &mask->enc_ipv4.dst,
  624. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  625. sizeof(key->enc_ipv4.dst));
  626. }
  627. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  628. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  629. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  630. mask->enc_control.addr_type = ~0;
  631. fl_set_key_val(tb, &key->enc_ipv6.src,
  632. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  633. &mask->enc_ipv6.src,
  634. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  635. sizeof(key->enc_ipv6.src));
  636. fl_set_key_val(tb, &key->enc_ipv6.dst,
  637. TCA_FLOWER_KEY_ENC_IPV6_DST,
  638. &mask->enc_ipv6.dst,
  639. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  640. sizeof(key->enc_ipv6.dst));
  641. }
  642. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  643. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  644. sizeof(key->enc_key_id.keyid));
  645. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  646. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  647. sizeof(key->enc_tp.src));
  648. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  649. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  650. sizeof(key->enc_tp.dst));
  651. if (tb[TCA_FLOWER_KEY_FLAGS])
  652. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  653. return ret;
  654. }
  655. static bool fl_mask_eq(struct fl_flow_mask *mask1,
  656. struct fl_flow_mask *mask2)
  657. {
  658. const long *lmask1 = fl_key_get_start(&mask1->key, mask1);
  659. const long *lmask2 = fl_key_get_start(&mask2->key, mask2);
  660. return !memcmp(&mask1->range, &mask2->range, sizeof(mask1->range)) &&
  661. !memcmp(lmask1, lmask2, fl_mask_range(mask1));
  662. }
  663. static const struct rhashtable_params fl_ht_params = {
  664. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  665. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  666. .automatic_shrinking = true,
  667. };
  668. static int fl_init_hashtable(struct cls_fl_head *head,
  669. struct fl_flow_mask *mask)
  670. {
  671. head->ht_params = fl_ht_params;
  672. head->ht_params.key_len = fl_mask_range(mask);
  673. head->ht_params.key_offset += mask->range.start;
  674. return rhashtable_init(&head->ht, &head->ht_params);
  675. }
  676. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  677. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  678. #define FL_KEY_IS_MASKED(mask, member) \
  679. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  680. 0, FL_KEY_MEMBER_SIZE(member)) \
  681. #define FL_KEY_SET(keys, cnt, id, member) \
  682. do { \
  683. keys[cnt].key_id = id; \
  684. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  685. cnt++; \
  686. } while(0);
  687. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  688. do { \
  689. if (FL_KEY_IS_MASKED(mask, member)) \
  690. FL_KEY_SET(keys, cnt, id, member); \
  691. } while(0);
  692. static void fl_init_dissector(struct cls_fl_head *head,
  693. struct fl_flow_mask *mask)
  694. {
  695. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  696. size_t cnt = 0;
  697. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  698. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  699. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  700. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  701. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  702. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  703. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  704. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  705. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  706. FLOW_DISSECTOR_KEY_PORTS, tp);
  707. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  708. FLOW_DISSECTOR_KEY_IP, ip);
  709. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  710. FLOW_DISSECTOR_KEY_TCP, tcp);
  711. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  712. FLOW_DISSECTOR_KEY_ICMP, icmp);
  713. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  714. FLOW_DISSECTOR_KEY_ARP, arp);
  715. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  716. FLOW_DISSECTOR_KEY_MPLS, mpls);
  717. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  718. FLOW_DISSECTOR_KEY_VLAN, vlan);
  719. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  720. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  721. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  722. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  723. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  724. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  725. if (FL_KEY_IS_MASKED(&mask->key, enc_ipv4) ||
  726. FL_KEY_IS_MASKED(&mask->key, enc_ipv6))
  727. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  728. enc_control);
  729. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  730. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  731. skb_flow_dissector_init(&head->dissector, keys, cnt);
  732. }
  733. static int fl_check_assign_mask(struct cls_fl_head *head,
  734. struct fl_flow_mask *mask)
  735. {
  736. int err;
  737. if (head->mask_assigned) {
  738. if (!fl_mask_eq(&head->mask, mask))
  739. return -EINVAL;
  740. else
  741. return 0;
  742. }
  743. /* Mask is not assigned yet. So assign it and init hashtable
  744. * according to that.
  745. */
  746. err = fl_init_hashtable(head, mask);
  747. if (err)
  748. return err;
  749. memcpy(&head->mask, mask, sizeof(head->mask));
  750. head->mask_assigned = true;
  751. fl_init_dissector(head, mask);
  752. return 0;
  753. }
  754. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  755. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  756. unsigned long base, struct nlattr **tb,
  757. struct nlattr *est, bool ovr)
  758. {
  759. int err;
  760. err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr);
  761. if (err < 0)
  762. return err;
  763. if (tb[TCA_FLOWER_CLASSID]) {
  764. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  765. tcf_bind_filter(tp, &f->res, base);
  766. }
  767. err = fl_set_key(net, tb, &f->key, &mask->key);
  768. if (err)
  769. return err;
  770. fl_mask_update_range(mask);
  771. fl_set_masked_key(&f->mkey, &f->key, mask);
  772. return 0;
  773. }
  774. static int fl_change(struct net *net, struct sk_buff *in_skb,
  775. struct tcf_proto *tp, unsigned long base,
  776. u32 handle, struct nlattr **tca,
  777. void **arg, bool ovr)
  778. {
  779. struct cls_fl_head *head = rtnl_dereference(tp->root);
  780. struct cls_fl_filter *fold = *arg;
  781. struct cls_fl_filter *fnew;
  782. struct nlattr **tb;
  783. struct fl_flow_mask mask = {};
  784. unsigned long idr_index;
  785. int err;
  786. if (!tca[TCA_OPTIONS])
  787. return -EINVAL;
  788. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  789. if (!tb)
  790. return -ENOBUFS;
  791. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  792. fl_policy, NULL);
  793. if (err < 0)
  794. goto errout_tb;
  795. if (fold && handle && fold->handle != handle) {
  796. err = -EINVAL;
  797. goto errout_tb;
  798. }
  799. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  800. if (!fnew) {
  801. err = -ENOBUFS;
  802. goto errout_tb;
  803. }
  804. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  805. if (err < 0)
  806. goto errout;
  807. if (!handle) {
  808. err = idr_alloc_ext(&head->handle_idr, fnew, &idr_index,
  809. 1, 0x80000000, GFP_KERNEL);
  810. if (err)
  811. goto errout;
  812. fnew->handle = idr_index;
  813. }
  814. /* user specifies a handle and it doesn't exist */
  815. if (handle && !fold) {
  816. err = idr_alloc_ext(&head->handle_idr, fnew, &idr_index,
  817. handle, handle + 1, GFP_KERNEL);
  818. if (err)
  819. goto errout;
  820. fnew->handle = idr_index;
  821. }
  822. if (tb[TCA_FLOWER_FLAGS]) {
  823. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  824. if (!tc_flags_valid(fnew->flags)) {
  825. err = -EINVAL;
  826. goto errout_idr;
  827. }
  828. }
  829. err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr);
  830. if (err)
  831. goto errout_idr;
  832. err = fl_check_assign_mask(head, &mask);
  833. if (err)
  834. goto errout_idr;
  835. if (!tc_skip_sw(fnew->flags)) {
  836. if (!fold && fl_lookup(head, &fnew->mkey)) {
  837. err = -EEXIST;
  838. goto errout_idr;
  839. }
  840. err = rhashtable_insert_fast(&head->ht, &fnew->ht_node,
  841. head->ht_params);
  842. if (err)
  843. goto errout_idr;
  844. }
  845. if (!tc_skip_hw(fnew->flags)) {
  846. err = fl_hw_replace_filter(tp,
  847. &head->dissector,
  848. &mask.key,
  849. fnew);
  850. if (err)
  851. goto errout_idr;
  852. }
  853. if (!tc_in_hw(fnew->flags))
  854. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  855. if (fold) {
  856. if (!tc_skip_sw(fold->flags))
  857. rhashtable_remove_fast(&head->ht, &fold->ht_node,
  858. head->ht_params);
  859. if (!tc_skip_hw(fold->flags))
  860. fl_hw_destroy_filter(tp, fold);
  861. }
  862. *arg = fnew;
  863. if (fold) {
  864. fnew->handle = handle;
  865. idr_replace_ext(&head->handle_idr, fnew, fnew->handle);
  866. list_replace_rcu(&fold->list, &fnew->list);
  867. tcf_unbind_filter(tp, &fold->res);
  868. tcf_exts_get_net(&fold->exts);
  869. call_rcu(&fold->rcu, fl_destroy_filter);
  870. } else {
  871. list_add_tail_rcu(&fnew->list, &head->filters);
  872. }
  873. kfree(tb);
  874. return 0;
  875. errout_idr:
  876. if (fnew->handle)
  877. idr_remove_ext(&head->handle_idr, fnew->handle);
  878. errout:
  879. tcf_exts_destroy(&fnew->exts);
  880. kfree(fnew);
  881. errout_tb:
  882. kfree(tb);
  883. return err;
  884. }
  885. static int fl_delete(struct tcf_proto *tp, void *arg, bool *last)
  886. {
  887. struct cls_fl_head *head = rtnl_dereference(tp->root);
  888. struct cls_fl_filter *f = arg;
  889. if (!tc_skip_sw(f->flags))
  890. rhashtable_remove_fast(&head->ht, &f->ht_node,
  891. head->ht_params);
  892. __fl_delete(tp, f);
  893. *last = list_empty(&head->filters);
  894. return 0;
  895. }
  896. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  897. {
  898. struct cls_fl_head *head = rtnl_dereference(tp->root);
  899. struct cls_fl_filter *f;
  900. list_for_each_entry_rcu(f, &head->filters, list) {
  901. if (arg->count < arg->skip)
  902. goto skip;
  903. if (arg->fn(tp, f, arg) < 0) {
  904. arg->stop = 1;
  905. break;
  906. }
  907. skip:
  908. arg->count++;
  909. }
  910. }
  911. static int fl_dump_key_val(struct sk_buff *skb,
  912. void *val, int val_type,
  913. void *mask, int mask_type, int len)
  914. {
  915. int err;
  916. if (!memchr_inv(mask, 0, len))
  917. return 0;
  918. err = nla_put(skb, val_type, len, val);
  919. if (err)
  920. return err;
  921. if (mask_type != TCA_FLOWER_UNSPEC) {
  922. err = nla_put(skb, mask_type, len, mask);
  923. if (err)
  924. return err;
  925. }
  926. return 0;
  927. }
  928. static int fl_dump_key_mpls(struct sk_buff *skb,
  929. struct flow_dissector_key_mpls *mpls_key,
  930. struct flow_dissector_key_mpls *mpls_mask)
  931. {
  932. int err;
  933. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  934. return 0;
  935. if (mpls_mask->mpls_ttl) {
  936. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  937. mpls_key->mpls_ttl);
  938. if (err)
  939. return err;
  940. }
  941. if (mpls_mask->mpls_tc) {
  942. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  943. mpls_key->mpls_tc);
  944. if (err)
  945. return err;
  946. }
  947. if (mpls_mask->mpls_label) {
  948. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  949. mpls_key->mpls_label);
  950. if (err)
  951. return err;
  952. }
  953. if (mpls_mask->mpls_bos) {
  954. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  955. mpls_key->mpls_bos);
  956. if (err)
  957. return err;
  958. }
  959. return 0;
  960. }
  961. static int fl_dump_key_ip(struct sk_buff *skb,
  962. struct flow_dissector_key_ip *key,
  963. struct flow_dissector_key_ip *mask)
  964. {
  965. if (fl_dump_key_val(skb, &key->tos, TCA_FLOWER_KEY_IP_TOS, &mask->tos,
  966. TCA_FLOWER_KEY_IP_TOS_MASK, sizeof(key->tos)) ||
  967. fl_dump_key_val(skb, &key->ttl, TCA_FLOWER_KEY_IP_TTL, &mask->ttl,
  968. TCA_FLOWER_KEY_IP_TTL_MASK, sizeof(key->ttl)))
  969. return -1;
  970. return 0;
  971. }
  972. static int fl_dump_key_vlan(struct sk_buff *skb,
  973. struct flow_dissector_key_vlan *vlan_key,
  974. struct flow_dissector_key_vlan *vlan_mask)
  975. {
  976. int err;
  977. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  978. return 0;
  979. if (vlan_mask->vlan_id) {
  980. err = nla_put_u16(skb, TCA_FLOWER_KEY_VLAN_ID,
  981. vlan_key->vlan_id);
  982. if (err)
  983. return err;
  984. }
  985. if (vlan_mask->vlan_priority) {
  986. err = nla_put_u8(skb, TCA_FLOWER_KEY_VLAN_PRIO,
  987. vlan_key->vlan_priority);
  988. if (err)
  989. return err;
  990. }
  991. return 0;
  992. }
  993. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  994. u32 *flower_key, u32 *flower_mask,
  995. u32 flower_flag_bit, u32 dissector_flag_bit)
  996. {
  997. if (dissector_mask & dissector_flag_bit) {
  998. *flower_mask |= flower_flag_bit;
  999. if (dissector_key & dissector_flag_bit)
  1000. *flower_key |= flower_flag_bit;
  1001. }
  1002. }
  1003. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  1004. {
  1005. u32 key, mask;
  1006. __be32 _key, _mask;
  1007. int err;
  1008. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  1009. return 0;
  1010. key = 0;
  1011. mask = 0;
  1012. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1013. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  1014. _key = cpu_to_be32(key);
  1015. _mask = cpu_to_be32(mask);
  1016. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  1017. if (err)
  1018. return err;
  1019. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1020. }
  1021. static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
  1022. struct sk_buff *skb, struct tcmsg *t)
  1023. {
  1024. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1025. struct cls_fl_filter *f = fh;
  1026. struct nlattr *nest;
  1027. struct fl_flow_key *key, *mask;
  1028. if (!f)
  1029. return skb->len;
  1030. t->tcm_handle = f->handle;
  1031. nest = nla_nest_start(skb, TCA_OPTIONS);
  1032. if (!nest)
  1033. goto nla_put_failure;
  1034. if (f->res.classid &&
  1035. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1036. goto nla_put_failure;
  1037. key = &f->key;
  1038. mask = &head->mask.key;
  1039. if (mask->indev_ifindex) {
  1040. struct net_device *dev;
  1041. dev = __dev_get_by_index(net, key->indev_ifindex);
  1042. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1043. goto nla_put_failure;
  1044. }
  1045. if (!tc_skip_hw(f->flags))
  1046. fl_hw_update_stats(tp, f);
  1047. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1048. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1049. sizeof(key->eth.dst)) ||
  1050. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1051. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1052. sizeof(key->eth.src)) ||
  1053. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1054. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1055. sizeof(key->basic.n_proto)))
  1056. goto nla_put_failure;
  1057. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1058. goto nla_put_failure;
  1059. if (fl_dump_key_vlan(skb, &key->vlan, &mask->vlan))
  1060. goto nla_put_failure;
  1061. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1062. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1063. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1064. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1065. sizeof(key->basic.ip_proto)) ||
  1066. fl_dump_key_ip(skb, &key->ip, &mask->ip)))
  1067. goto nla_put_failure;
  1068. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1069. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1070. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1071. sizeof(key->ipv4.src)) ||
  1072. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1073. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1074. sizeof(key->ipv4.dst))))
  1075. goto nla_put_failure;
  1076. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1077. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1078. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1079. sizeof(key->ipv6.src)) ||
  1080. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1081. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1082. sizeof(key->ipv6.dst))))
  1083. goto nla_put_failure;
  1084. if (key->basic.ip_proto == IPPROTO_TCP &&
  1085. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1086. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1087. sizeof(key->tp.src)) ||
  1088. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1089. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1090. sizeof(key->tp.dst)) ||
  1091. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1092. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1093. sizeof(key->tcp.flags))))
  1094. goto nla_put_failure;
  1095. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1096. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1097. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1098. sizeof(key->tp.src)) ||
  1099. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1100. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1101. sizeof(key->tp.dst))))
  1102. goto nla_put_failure;
  1103. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1104. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1105. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1106. sizeof(key->tp.src)) ||
  1107. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1108. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1109. sizeof(key->tp.dst))))
  1110. goto nla_put_failure;
  1111. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1112. key->basic.ip_proto == IPPROTO_ICMP &&
  1113. (fl_dump_key_val(skb, &key->icmp.type,
  1114. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1115. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1116. sizeof(key->icmp.type)) ||
  1117. fl_dump_key_val(skb, &key->icmp.code,
  1118. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1119. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1120. sizeof(key->icmp.code))))
  1121. goto nla_put_failure;
  1122. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1123. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1124. (fl_dump_key_val(skb, &key->icmp.type,
  1125. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1126. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1127. sizeof(key->icmp.type)) ||
  1128. fl_dump_key_val(skb, &key->icmp.code,
  1129. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1130. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1131. sizeof(key->icmp.code))))
  1132. goto nla_put_failure;
  1133. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1134. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1135. (fl_dump_key_val(skb, &key->arp.sip,
  1136. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1137. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1138. sizeof(key->arp.sip)) ||
  1139. fl_dump_key_val(skb, &key->arp.tip,
  1140. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1141. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1142. sizeof(key->arp.tip)) ||
  1143. fl_dump_key_val(skb, &key->arp.op,
  1144. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1145. TCA_FLOWER_KEY_ARP_OP_MASK,
  1146. sizeof(key->arp.op)) ||
  1147. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1148. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1149. sizeof(key->arp.sha)) ||
  1150. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1151. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1152. sizeof(key->arp.tha))))
  1153. goto nla_put_failure;
  1154. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1155. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1156. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1157. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1158. sizeof(key->enc_ipv4.src)) ||
  1159. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1160. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1161. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1162. sizeof(key->enc_ipv4.dst))))
  1163. goto nla_put_failure;
  1164. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1165. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1166. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1167. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1168. sizeof(key->enc_ipv6.src)) ||
  1169. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1170. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1171. &mask->enc_ipv6.dst,
  1172. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1173. sizeof(key->enc_ipv6.dst))))
  1174. goto nla_put_failure;
  1175. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1176. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1177. sizeof(key->enc_key_id)) ||
  1178. fl_dump_key_val(skb, &key->enc_tp.src,
  1179. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1180. &mask->enc_tp.src,
  1181. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1182. sizeof(key->enc_tp.src)) ||
  1183. fl_dump_key_val(skb, &key->enc_tp.dst,
  1184. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1185. &mask->enc_tp.dst,
  1186. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1187. sizeof(key->enc_tp.dst)))
  1188. goto nla_put_failure;
  1189. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1190. goto nla_put_failure;
  1191. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1192. goto nla_put_failure;
  1193. if (tcf_exts_dump(skb, &f->exts))
  1194. goto nla_put_failure;
  1195. nla_nest_end(skb, nest);
  1196. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1197. goto nla_put_failure;
  1198. return skb->len;
  1199. nla_put_failure:
  1200. nla_nest_cancel(skb, nest);
  1201. return -1;
  1202. }
  1203. static void fl_bind_class(void *fh, u32 classid, unsigned long cl)
  1204. {
  1205. struct cls_fl_filter *f = fh;
  1206. if (f && f->res.classid == classid)
  1207. f->res.class = cl;
  1208. }
  1209. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1210. .kind = "flower",
  1211. .classify = fl_classify,
  1212. .init = fl_init,
  1213. .destroy = fl_destroy,
  1214. .get = fl_get,
  1215. .change = fl_change,
  1216. .delete = fl_delete,
  1217. .walk = fl_walk,
  1218. .dump = fl_dump,
  1219. .bind_class = fl_bind_class,
  1220. .owner = THIS_MODULE,
  1221. };
  1222. static int __init cls_fl_init(void)
  1223. {
  1224. return register_tcf_proto_ops(&cls_fl_ops);
  1225. }
  1226. static void __exit cls_fl_exit(void)
  1227. {
  1228. unregister_tcf_proto_ops(&cls_fl_ops);
  1229. }
  1230. module_init(cls_fl_init);
  1231. module_exit(cls_fl_exit);
  1232. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1233. MODULE_DESCRIPTION("Flower classifier");
  1234. MODULE_LICENSE("GPL v2");