af_key.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static unsigned int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static const struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. struct mutex dump_lock;
  61. };
  62. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  63. xfrm_address_t *saddr, xfrm_address_t *daddr,
  64. u16 *family);
  65. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  66. {
  67. return (struct pfkey_sock *)sk;
  68. }
  69. static int pfkey_can_dump(const struct sock *sk)
  70. {
  71. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  72. return 1;
  73. return 0;
  74. }
  75. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  76. {
  77. if (pfk->dump.dump) {
  78. if (pfk->dump.skb) {
  79. kfree_skb(pfk->dump.skb);
  80. pfk->dump.skb = NULL;
  81. }
  82. pfk->dump.done(pfk);
  83. pfk->dump.dump = NULL;
  84. pfk->dump.done = NULL;
  85. }
  86. }
  87. static void pfkey_sock_destruct(struct sock *sk)
  88. {
  89. struct net *net = sock_net(sk);
  90. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  91. pfkey_terminate_dump(pfkey_sk(sk));
  92. skb_queue_purge(&sk->sk_receive_queue);
  93. if (!sock_flag(sk, SOCK_DEAD)) {
  94. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  95. return;
  96. }
  97. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  98. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  99. atomic_dec(&net_pfkey->socks_nr);
  100. }
  101. static const struct proto_ops pfkey_ops;
  102. static void pfkey_insert(struct sock *sk)
  103. {
  104. struct net *net = sock_net(sk);
  105. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  106. mutex_lock(&pfkey_mutex);
  107. sk_add_node_rcu(sk, &net_pfkey->table);
  108. mutex_unlock(&pfkey_mutex);
  109. }
  110. static void pfkey_remove(struct sock *sk)
  111. {
  112. mutex_lock(&pfkey_mutex);
  113. sk_del_node_init_rcu(sk);
  114. mutex_unlock(&pfkey_mutex);
  115. }
  116. static struct proto key_proto = {
  117. .name = "KEY",
  118. .owner = THIS_MODULE,
  119. .obj_size = sizeof(struct pfkey_sock),
  120. };
  121. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  122. int kern)
  123. {
  124. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  125. struct sock *sk;
  126. struct pfkey_sock *pfk;
  127. int err;
  128. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  129. return -EPERM;
  130. if (sock->type != SOCK_RAW)
  131. return -ESOCKTNOSUPPORT;
  132. if (protocol != PF_KEY_V2)
  133. return -EPROTONOSUPPORT;
  134. err = -ENOMEM;
  135. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto, kern);
  136. if (sk == NULL)
  137. goto out;
  138. pfk = pfkey_sk(sk);
  139. mutex_init(&pfk->dump_lock);
  140. sock->ops = &pfkey_ops;
  141. sock_init_data(sock, sk);
  142. sk->sk_family = PF_KEY;
  143. sk->sk_destruct = pfkey_sock_destruct;
  144. atomic_inc(&net_pfkey->socks_nr);
  145. pfkey_insert(sk);
  146. return 0;
  147. out:
  148. return err;
  149. }
  150. static int pfkey_release(struct socket *sock)
  151. {
  152. struct sock *sk = sock->sk;
  153. if (!sk)
  154. return 0;
  155. pfkey_remove(sk);
  156. sock_orphan(sk);
  157. sock->sk = NULL;
  158. skb_queue_purge(&sk->sk_write_queue);
  159. synchronize_rcu();
  160. sock_put(sk);
  161. return 0;
  162. }
  163. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  164. gfp_t allocation, struct sock *sk)
  165. {
  166. int err = -ENOBUFS;
  167. sock_hold(sk);
  168. if (*skb2 == NULL) {
  169. if (refcount_read(&skb->users) != 1) {
  170. *skb2 = skb_clone(skb, allocation);
  171. } else {
  172. *skb2 = skb;
  173. refcount_inc(&skb->users);
  174. }
  175. }
  176. if (*skb2 != NULL) {
  177. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  178. skb_set_owner_r(*skb2, sk);
  179. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  180. sk->sk_data_ready(sk);
  181. *skb2 = NULL;
  182. err = 0;
  183. }
  184. }
  185. sock_put(sk);
  186. return err;
  187. }
  188. /* Send SKB to all pfkey sockets matching selected criteria. */
  189. #define BROADCAST_ALL 0
  190. #define BROADCAST_ONE 1
  191. #define BROADCAST_REGISTERED 2
  192. #define BROADCAST_PROMISC_ONLY 4
  193. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  194. int broadcast_flags, struct sock *one_sk,
  195. struct net *net)
  196. {
  197. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  198. struct sock *sk;
  199. struct sk_buff *skb2 = NULL;
  200. int err = -ESRCH;
  201. /* XXX Do we need something like netlink_overrun? I think
  202. * XXX PF_KEY socket apps will not mind current behavior.
  203. */
  204. if (!skb)
  205. return -ENOMEM;
  206. rcu_read_lock();
  207. sk_for_each_rcu(sk, &net_pfkey->table) {
  208. struct pfkey_sock *pfk = pfkey_sk(sk);
  209. int err2;
  210. /* Yes, it means that if you are meant to receive this
  211. * pfkey message you receive it twice as promiscuous
  212. * socket.
  213. */
  214. if (pfk->promisc)
  215. pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  216. /* the exact target will be processed later */
  217. if (sk == one_sk)
  218. continue;
  219. if (broadcast_flags != BROADCAST_ALL) {
  220. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  221. continue;
  222. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  223. !pfk->registered)
  224. continue;
  225. if (broadcast_flags & BROADCAST_ONE)
  226. continue;
  227. }
  228. err2 = pfkey_broadcast_one(skb, &skb2, GFP_ATOMIC, sk);
  229. /* Error is cleared after successful sending to at least one
  230. * registered KM */
  231. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  232. err = err2;
  233. }
  234. rcu_read_unlock();
  235. if (one_sk != NULL)
  236. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  237. kfree_skb(skb2);
  238. kfree_skb(skb);
  239. return err;
  240. }
  241. static int pfkey_do_dump(struct pfkey_sock *pfk)
  242. {
  243. struct sadb_msg *hdr;
  244. int rc;
  245. mutex_lock(&pfk->dump_lock);
  246. if (!pfk->dump.dump) {
  247. rc = 0;
  248. goto out;
  249. }
  250. rc = pfk->dump.dump(pfk);
  251. if (rc == -ENOBUFS) {
  252. rc = 0;
  253. goto out;
  254. }
  255. if (pfk->dump.skb) {
  256. if (!pfkey_can_dump(&pfk->sk)) {
  257. rc = 0;
  258. goto out;
  259. }
  260. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  261. hdr->sadb_msg_seq = 0;
  262. hdr->sadb_msg_errno = rc;
  263. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  264. &pfk->sk, sock_net(&pfk->sk));
  265. pfk->dump.skb = NULL;
  266. }
  267. pfkey_terminate_dump(pfk);
  268. out:
  269. mutex_unlock(&pfk->dump_lock);
  270. return rc;
  271. }
  272. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  273. const struct sadb_msg *orig)
  274. {
  275. *new = *orig;
  276. }
  277. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  278. {
  279. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  280. struct sadb_msg *hdr;
  281. if (!skb)
  282. return -ENOBUFS;
  283. /* Woe be to the platform trying to support PFKEY yet
  284. * having normal errnos outside the 1-255 range, inclusive.
  285. */
  286. err = -err;
  287. if (err == ERESTARTSYS ||
  288. err == ERESTARTNOHAND ||
  289. err == ERESTARTNOINTR)
  290. err = EINTR;
  291. if (err >= 512)
  292. err = EINVAL;
  293. BUG_ON(err <= 0 || err >= 256);
  294. hdr = skb_put(skb, sizeof(struct sadb_msg));
  295. pfkey_hdr_dup(hdr, orig);
  296. hdr->sadb_msg_errno = (uint8_t) err;
  297. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  298. sizeof(uint64_t));
  299. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  300. return 0;
  301. }
  302. static const u8 sadb_ext_min_len[] = {
  303. [SADB_EXT_RESERVED] = (u8) 0,
  304. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  305. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  306. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  307. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  308. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  309. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  310. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  311. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  312. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  313. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  314. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  315. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  316. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  317. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  318. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  319. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  320. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  321. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  322. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  323. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  324. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  325. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  326. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  327. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  328. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  329. [SADB_X_EXT_FILTER] = (u8) sizeof(struct sadb_x_filter),
  330. };
  331. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  332. static int verify_address_len(const void *p)
  333. {
  334. const struct sadb_address *sp = p;
  335. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  336. const struct sockaddr_in *sin;
  337. #if IS_ENABLED(CONFIG_IPV6)
  338. const struct sockaddr_in6 *sin6;
  339. #endif
  340. int len;
  341. switch (addr->sa_family) {
  342. case AF_INET:
  343. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  344. if (sp->sadb_address_len != len ||
  345. sp->sadb_address_prefixlen > 32)
  346. return -EINVAL;
  347. break;
  348. #if IS_ENABLED(CONFIG_IPV6)
  349. case AF_INET6:
  350. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  351. if (sp->sadb_address_len != len ||
  352. sp->sadb_address_prefixlen > 128)
  353. return -EINVAL;
  354. break;
  355. #endif
  356. default:
  357. /* It is user using kernel to keep track of security
  358. * associations for another protocol, such as
  359. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  360. * lengths.
  361. *
  362. * XXX Actually, association/policy database is not yet
  363. * XXX able to cope with arbitrary sockaddr families.
  364. * XXX When it can, remove this -EINVAL. -DaveM
  365. */
  366. return -EINVAL;
  367. }
  368. return 0;
  369. }
  370. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  373. sec_ctx->sadb_x_ctx_len,
  374. sizeof(uint64_t));
  375. }
  376. static inline int verify_sec_ctx_len(const void *p)
  377. {
  378. const struct sadb_x_sec_ctx *sec_ctx = p;
  379. int len = sec_ctx->sadb_x_ctx_len;
  380. if (len > PAGE_SIZE)
  381. return -EINVAL;
  382. len = pfkey_sec_ctx_len(sec_ctx);
  383. if (sec_ctx->sadb_x_sec_len != len)
  384. return -EINVAL;
  385. return 0;
  386. }
  387. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx,
  388. gfp_t gfp)
  389. {
  390. struct xfrm_user_sec_ctx *uctx = NULL;
  391. int ctx_size = sec_ctx->sadb_x_ctx_len;
  392. uctx = kmalloc((sizeof(*uctx)+ctx_size), gfp);
  393. if (!uctx)
  394. return NULL;
  395. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  396. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  397. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  398. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  399. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  400. memcpy(uctx + 1, sec_ctx + 1,
  401. uctx->ctx_len);
  402. return uctx;
  403. }
  404. static int present_and_same_family(const struct sadb_address *src,
  405. const struct sadb_address *dst)
  406. {
  407. const struct sockaddr *s_addr, *d_addr;
  408. if (!src || !dst)
  409. return 0;
  410. s_addr = (const struct sockaddr *)(src + 1);
  411. d_addr = (const struct sockaddr *)(dst + 1);
  412. if (s_addr->sa_family != d_addr->sa_family)
  413. return 0;
  414. if (s_addr->sa_family != AF_INET
  415. #if IS_ENABLED(CONFIG_IPV6)
  416. && s_addr->sa_family != AF_INET6
  417. #endif
  418. )
  419. return 0;
  420. return 1;
  421. }
  422. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  423. {
  424. const char *p = (char *) hdr;
  425. int len = skb->len;
  426. len -= sizeof(*hdr);
  427. p += sizeof(*hdr);
  428. while (len > 0) {
  429. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  430. uint16_t ext_type;
  431. int ext_len;
  432. ext_len = ehdr->sadb_ext_len;
  433. ext_len *= sizeof(uint64_t);
  434. ext_type = ehdr->sadb_ext_type;
  435. if (ext_len < sizeof(uint64_t) ||
  436. ext_len > len ||
  437. ext_type == SADB_EXT_RESERVED)
  438. return -EINVAL;
  439. if (ext_type <= SADB_EXT_MAX) {
  440. int min = (int) sadb_ext_min_len[ext_type];
  441. if (ext_len < min)
  442. return -EINVAL;
  443. if (ext_hdrs[ext_type-1] != NULL)
  444. return -EINVAL;
  445. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  446. ext_type == SADB_EXT_ADDRESS_DST ||
  447. ext_type == SADB_EXT_ADDRESS_PROXY ||
  448. ext_type == SADB_X_EXT_NAT_T_OA) {
  449. if (verify_address_len(p))
  450. return -EINVAL;
  451. }
  452. if (ext_type == SADB_X_EXT_SEC_CTX) {
  453. if (verify_sec_ctx_len(p))
  454. return -EINVAL;
  455. }
  456. ext_hdrs[ext_type-1] = (void *) p;
  457. }
  458. p += ext_len;
  459. len -= ext_len;
  460. }
  461. return 0;
  462. }
  463. static uint16_t
  464. pfkey_satype2proto(uint8_t satype)
  465. {
  466. switch (satype) {
  467. case SADB_SATYPE_UNSPEC:
  468. return IPSEC_PROTO_ANY;
  469. case SADB_SATYPE_AH:
  470. return IPPROTO_AH;
  471. case SADB_SATYPE_ESP:
  472. return IPPROTO_ESP;
  473. case SADB_X_SATYPE_IPCOMP:
  474. return IPPROTO_COMP;
  475. default:
  476. return 0;
  477. }
  478. /* NOTREACHED */
  479. }
  480. static uint8_t
  481. pfkey_proto2satype(uint16_t proto)
  482. {
  483. switch (proto) {
  484. case IPPROTO_AH:
  485. return SADB_SATYPE_AH;
  486. case IPPROTO_ESP:
  487. return SADB_SATYPE_ESP;
  488. case IPPROTO_COMP:
  489. return SADB_X_SATYPE_IPCOMP;
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  496. * say specifically 'just raw sockets' as we encode them as 255.
  497. */
  498. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  499. {
  500. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  501. }
  502. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  503. {
  504. return proto ? proto : IPSEC_PROTO_ANY;
  505. }
  506. static inline int pfkey_sockaddr_len(sa_family_t family)
  507. {
  508. switch (family) {
  509. case AF_INET:
  510. return sizeof(struct sockaddr_in);
  511. #if IS_ENABLED(CONFIG_IPV6)
  512. case AF_INET6:
  513. return sizeof(struct sockaddr_in6);
  514. #endif
  515. }
  516. return 0;
  517. }
  518. static
  519. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  520. {
  521. switch (sa->sa_family) {
  522. case AF_INET:
  523. xaddr->a4 =
  524. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  525. return AF_INET;
  526. #if IS_ENABLED(CONFIG_IPV6)
  527. case AF_INET6:
  528. memcpy(xaddr->a6,
  529. &((struct sockaddr_in6 *)sa)->sin6_addr,
  530. sizeof(struct in6_addr));
  531. return AF_INET6;
  532. #endif
  533. }
  534. return 0;
  535. }
  536. static
  537. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  538. {
  539. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  540. xaddr);
  541. }
  542. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  543. {
  544. const struct sadb_sa *sa;
  545. const struct sadb_address *addr;
  546. uint16_t proto;
  547. unsigned short family;
  548. xfrm_address_t *xaddr;
  549. sa = ext_hdrs[SADB_EXT_SA - 1];
  550. if (sa == NULL)
  551. return NULL;
  552. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  553. if (proto == 0)
  554. return NULL;
  555. /* sadb_address_len should be checked by caller */
  556. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  557. if (addr == NULL)
  558. return NULL;
  559. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  560. switch (family) {
  561. case AF_INET:
  562. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  563. break;
  564. #if IS_ENABLED(CONFIG_IPV6)
  565. case AF_INET6:
  566. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  567. break;
  568. #endif
  569. default:
  570. xaddr = NULL;
  571. }
  572. if (!xaddr)
  573. return NULL;
  574. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  575. }
  576. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  577. static int
  578. pfkey_sockaddr_size(sa_family_t family)
  579. {
  580. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  581. }
  582. static inline int pfkey_mode_from_xfrm(int mode)
  583. {
  584. switch(mode) {
  585. case XFRM_MODE_TRANSPORT:
  586. return IPSEC_MODE_TRANSPORT;
  587. case XFRM_MODE_TUNNEL:
  588. return IPSEC_MODE_TUNNEL;
  589. case XFRM_MODE_BEET:
  590. return IPSEC_MODE_BEET;
  591. default:
  592. return -1;
  593. }
  594. }
  595. static inline int pfkey_mode_to_xfrm(int mode)
  596. {
  597. switch(mode) {
  598. case IPSEC_MODE_ANY: /*XXX*/
  599. case IPSEC_MODE_TRANSPORT:
  600. return XFRM_MODE_TRANSPORT;
  601. case IPSEC_MODE_TUNNEL:
  602. return XFRM_MODE_TUNNEL;
  603. case IPSEC_MODE_BEET:
  604. return XFRM_MODE_BEET;
  605. default:
  606. return -1;
  607. }
  608. }
  609. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  610. struct sockaddr *sa,
  611. unsigned short family)
  612. {
  613. switch (family) {
  614. case AF_INET:
  615. {
  616. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  617. sin->sin_family = AF_INET;
  618. sin->sin_port = port;
  619. sin->sin_addr.s_addr = xaddr->a4;
  620. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  621. return 32;
  622. }
  623. #if IS_ENABLED(CONFIG_IPV6)
  624. case AF_INET6:
  625. {
  626. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  627. sin6->sin6_family = AF_INET6;
  628. sin6->sin6_port = port;
  629. sin6->sin6_flowinfo = 0;
  630. sin6->sin6_addr = xaddr->in6;
  631. sin6->sin6_scope_id = 0;
  632. return 128;
  633. }
  634. #endif
  635. }
  636. return 0;
  637. }
  638. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  639. int add_keys, int hsc)
  640. {
  641. struct sk_buff *skb;
  642. struct sadb_msg *hdr;
  643. struct sadb_sa *sa;
  644. struct sadb_lifetime *lifetime;
  645. struct sadb_address *addr;
  646. struct sadb_key *key;
  647. struct sadb_x_sa2 *sa2;
  648. struct sadb_x_sec_ctx *sec_ctx;
  649. struct xfrm_sec_ctx *xfrm_ctx;
  650. int ctx_size = 0;
  651. int size;
  652. int auth_key_size = 0;
  653. int encrypt_key_size = 0;
  654. int sockaddr_size;
  655. struct xfrm_encap_tmpl *natt = NULL;
  656. int mode;
  657. /* address family check */
  658. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  659. if (!sockaddr_size)
  660. return ERR_PTR(-EINVAL);
  661. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  662. key(AE), (identity(SD),) (sensitivity)> */
  663. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  664. sizeof(struct sadb_lifetime) +
  665. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  666. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  667. sizeof(struct sadb_address)*2 +
  668. sockaddr_size*2 +
  669. sizeof(struct sadb_x_sa2);
  670. if ((xfrm_ctx = x->security)) {
  671. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  672. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  673. }
  674. /* identity & sensitivity */
  675. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  676. size += sizeof(struct sadb_address) + sockaddr_size;
  677. if (add_keys) {
  678. if (x->aalg && x->aalg->alg_key_len) {
  679. auth_key_size =
  680. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  681. size += sizeof(struct sadb_key) + auth_key_size;
  682. }
  683. if (x->ealg && x->ealg->alg_key_len) {
  684. encrypt_key_size =
  685. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  686. size += sizeof(struct sadb_key) + encrypt_key_size;
  687. }
  688. }
  689. if (x->encap)
  690. natt = x->encap;
  691. if (natt && natt->encap_type) {
  692. size += sizeof(struct sadb_x_nat_t_type);
  693. size += sizeof(struct sadb_x_nat_t_port);
  694. size += sizeof(struct sadb_x_nat_t_port);
  695. }
  696. skb = alloc_skb(size + 16, GFP_ATOMIC);
  697. if (skb == NULL)
  698. return ERR_PTR(-ENOBUFS);
  699. /* call should fill header later */
  700. hdr = skb_put(skb, sizeof(struct sadb_msg));
  701. memset(hdr, 0, size); /* XXX do we need this ? */
  702. hdr->sadb_msg_len = size / sizeof(uint64_t);
  703. /* sa */
  704. sa = skb_put(skb, sizeof(struct sadb_sa));
  705. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  706. sa->sadb_sa_exttype = SADB_EXT_SA;
  707. sa->sadb_sa_spi = x->id.spi;
  708. sa->sadb_sa_replay = x->props.replay_window;
  709. switch (x->km.state) {
  710. case XFRM_STATE_VALID:
  711. sa->sadb_sa_state = x->km.dying ?
  712. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  713. break;
  714. case XFRM_STATE_ACQ:
  715. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  716. break;
  717. default:
  718. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  719. break;
  720. }
  721. sa->sadb_sa_auth = 0;
  722. if (x->aalg) {
  723. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  724. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  725. a->desc.sadb_alg_id : 0;
  726. }
  727. sa->sadb_sa_encrypt = 0;
  728. BUG_ON(x->ealg && x->calg);
  729. if (x->ealg) {
  730. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  731. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  732. a->desc.sadb_alg_id : 0;
  733. }
  734. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  735. if (x->calg) {
  736. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  737. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  738. a->desc.sadb_alg_id : 0;
  739. }
  740. sa->sadb_sa_flags = 0;
  741. if (x->props.flags & XFRM_STATE_NOECN)
  742. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  743. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  744. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  745. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  746. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  747. /* hard time */
  748. if (hsc & 2) {
  749. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  750. lifetime->sadb_lifetime_len =
  751. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  752. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  753. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  754. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  755. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  756. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  757. }
  758. /* soft time */
  759. if (hsc & 1) {
  760. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  761. lifetime->sadb_lifetime_len =
  762. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  763. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  764. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  765. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  766. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  767. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  768. }
  769. /* current time */
  770. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  771. lifetime->sadb_lifetime_len =
  772. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  773. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  774. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  775. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  776. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  777. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  778. /* src address */
  779. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  780. addr->sadb_address_len =
  781. (sizeof(struct sadb_address)+sockaddr_size)/
  782. sizeof(uint64_t);
  783. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  784. /* "if the ports are non-zero, then the sadb_address_proto field,
  785. normally zero, MUST be filled in with the transport
  786. protocol's number." - RFC2367 */
  787. addr->sadb_address_proto = 0;
  788. addr->sadb_address_reserved = 0;
  789. addr->sadb_address_prefixlen =
  790. pfkey_sockaddr_fill(&x->props.saddr, 0,
  791. (struct sockaddr *) (addr + 1),
  792. x->props.family);
  793. if (!addr->sadb_address_prefixlen)
  794. BUG();
  795. /* dst address */
  796. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  797. addr->sadb_address_len =
  798. (sizeof(struct sadb_address)+sockaddr_size)/
  799. sizeof(uint64_t);
  800. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  801. addr->sadb_address_proto = 0;
  802. addr->sadb_address_reserved = 0;
  803. addr->sadb_address_prefixlen =
  804. pfkey_sockaddr_fill(&x->id.daddr, 0,
  805. (struct sockaddr *) (addr + 1),
  806. x->props.family);
  807. if (!addr->sadb_address_prefixlen)
  808. BUG();
  809. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  810. x->props.family)) {
  811. addr = skb_put(skb,
  812. sizeof(struct sadb_address) + sockaddr_size);
  813. addr->sadb_address_len =
  814. (sizeof(struct sadb_address)+sockaddr_size)/
  815. sizeof(uint64_t);
  816. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  817. addr->sadb_address_proto =
  818. pfkey_proto_from_xfrm(x->sel.proto);
  819. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  820. addr->sadb_address_reserved = 0;
  821. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  822. (struct sockaddr *) (addr + 1),
  823. x->props.family);
  824. }
  825. /* auth key */
  826. if (add_keys && auth_key_size) {
  827. key = skb_put(skb, sizeof(struct sadb_key) + auth_key_size);
  828. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  829. sizeof(uint64_t);
  830. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  831. key->sadb_key_bits = x->aalg->alg_key_len;
  832. key->sadb_key_reserved = 0;
  833. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  834. }
  835. /* encrypt key */
  836. if (add_keys && encrypt_key_size) {
  837. key = skb_put(skb, sizeof(struct sadb_key) + encrypt_key_size);
  838. key->sadb_key_len = (sizeof(struct sadb_key) +
  839. encrypt_key_size) / sizeof(uint64_t);
  840. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  841. key->sadb_key_bits = x->ealg->alg_key_len;
  842. key->sadb_key_reserved = 0;
  843. memcpy(key + 1, x->ealg->alg_key,
  844. (x->ealg->alg_key_len+7)/8);
  845. }
  846. /* sa */
  847. sa2 = skb_put(skb, sizeof(struct sadb_x_sa2));
  848. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  849. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  850. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  851. kfree_skb(skb);
  852. return ERR_PTR(-EINVAL);
  853. }
  854. sa2->sadb_x_sa2_mode = mode;
  855. sa2->sadb_x_sa2_reserved1 = 0;
  856. sa2->sadb_x_sa2_reserved2 = 0;
  857. sa2->sadb_x_sa2_sequence = 0;
  858. sa2->sadb_x_sa2_reqid = x->props.reqid;
  859. if (natt && natt->encap_type) {
  860. struct sadb_x_nat_t_type *n_type;
  861. struct sadb_x_nat_t_port *n_port;
  862. /* type */
  863. n_type = skb_put(skb, sizeof(*n_type));
  864. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  865. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  866. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  867. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  868. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  869. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  870. /* source port */
  871. n_port = skb_put(skb, sizeof(*n_port));
  872. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  873. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  874. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  875. n_port->sadb_x_nat_t_port_reserved = 0;
  876. /* dest port */
  877. n_port = skb_put(skb, sizeof(*n_port));
  878. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  879. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  880. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  881. n_port->sadb_x_nat_t_port_reserved = 0;
  882. }
  883. /* security context */
  884. if (xfrm_ctx) {
  885. sec_ctx = skb_put(skb,
  886. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  887. sec_ctx->sadb_x_sec_len =
  888. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  889. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  890. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  891. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  892. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  893. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  894. xfrm_ctx->ctx_len);
  895. }
  896. return skb;
  897. }
  898. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  899. {
  900. struct sk_buff *skb;
  901. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  902. return skb;
  903. }
  904. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  905. int hsc)
  906. {
  907. return __pfkey_xfrm_state2msg(x, 0, hsc);
  908. }
  909. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  910. const struct sadb_msg *hdr,
  911. void * const *ext_hdrs)
  912. {
  913. struct xfrm_state *x;
  914. const struct sadb_lifetime *lifetime;
  915. const struct sadb_sa *sa;
  916. const struct sadb_key *key;
  917. const struct sadb_x_sec_ctx *sec_ctx;
  918. uint16_t proto;
  919. int err;
  920. sa = ext_hdrs[SADB_EXT_SA - 1];
  921. if (!sa ||
  922. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  923. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  924. return ERR_PTR(-EINVAL);
  925. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  926. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  927. return ERR_PTR(-EINVAL);
  928. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  929. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  930. return ERR_PTR(-EINVAL);
  931. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  932. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  933. return ERR_PTR(-EINVAL);
  934. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  935. if (proto == 0)
  936. return ERR_PTR(-EINVAL);
  937. /* default error is no buffer space */
  938. err = -ENOBUFS;
  939. /* RFC2367:
  940. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  941. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  942. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  943. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  944. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  945. not true.
  946. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  947. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  948. */
  949. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  950. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  951. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  952. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  953. return ERR_PTR(-EINVAL);
  954. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  955. if (key != NULL &&
  956. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  957. ((key->sadb_key_bits+7) / 8 == 0 ||
  958. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  959. return ERR_PTR(-EINVAL);
  960. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  961. if (key != NULL &&
  962. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  963. ((key->sadb_key_bits+7) / 8 == 0 ||
  964. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  965. return ERR_PTR(-EINVAL);
  966. x = xfrm_state_alloc(net);
  967. if (x == NULL)
  968. return ERR_PTR(-ENOBUFS);
  969. x->id.proto = proto;
  970. x->id.spi = sa->sadb_sa_spi;
  971. x->props.replay_window = min_t(unsigned int, sa->sadb_sa_replay,
  972. (sizeof(x->replay.bitmap) * 8));
  973. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  974. x->props.flags |= XFRM_STATE_NOECN;
  975. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  976. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  977. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  978. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  979. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  980. if (lifetime != NULL) {
  981. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  982. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  983. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  984. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  985. }
  986. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  987. if (lifetime != NULL) {
  988. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  989. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  990. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  991. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  992. }
  993. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  994. if (sec_ctx != NULL) {
  995. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  996. if (!uctx)
  997. goto out;
  998. err = security_xfrm_state_alloc(x, uctx);
  999. kfree(uctx);
  1000. if (err)
  1001. goto out;
  1002. }
  1003. err = -ENOBUFS;
  1004. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  1005. if (sa->sadb_sa_auth) {
  1006. int keysize = 0;
  1007. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1008. if (!a || !a->pfkey_supported) {
  1009. err = -ENOSYS;
  1010. goto out;
  1011. }
  1012. if (key)
  1013. keysize = (key->sadb_key_bits + 7) / 8;
  1014. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1015. if (!x->aalg) {
  1016. err = -ENOMEM;
  1017. goto out;
  1018. }
  1019. strcpy(x->aalg->alg_name, a->name);
  1020. x->aalg->alg_key_len = 0;
  1021. if (key) {
  1022. x->aalg->alg_key_len = key->sadb_key_bits;
  1023. memcpy(x->aalg->alg_key, key+1, keysize);
  1024. }
  1025. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1026. x->props.aalgo = sa->sadb_sa_auth;
  1027. /* x->algo.flags = sa->sadb_sa_flags; */
  1028. }
  1029. if (sa->sadb_sa_encrypt) {
  1030. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1031. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1032. if (!a || !a->pfkey_supported) {
  1033. err = -ENOSYS;
  1034. goto out;
  1035. }
  1036. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1037. if (!x->calg) {
  1038. err = -ENOMEM;
  1039. goto out;
  1040. }
  1041. strcpy(x->calg->alg_name, a->name);
  1042. x->props.calgo = sa->sadb_sa_encrypt;
  1043. } else {
  1044. int keysize = 0;
  1045. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1046. if (!a || !a->pfkey_supported) {
  1047. err = -ENOSYS;
  1048. goto out;
  1049. }
  1050. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1051. if (key)
  1052. keysize = (key->sadb_key_bits + 7) / 8;
  1053. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1054. if (!x->ealg) {
  1055. err = -ENOMEM;
  1056. goto out;
  1057. }
  1058. strcpy(x->ealg->alg_name, a->name);
  1059. x->ealg->alg_key_len = 0;
  1060. if (key) {
  1061. x->ealg->alg_key_len = key->sadb_key_bits;
  1062. memcpy(x->ealg->alg_key, key+1, keysize);
  1063. }
  1064. x->props.ealgo = sa->sadb_sa_encrypt;
  1065. x->geniv = a->uinfo.encr.geniv;
  1066. }
  1067. }
  1068. /* x->algo.flags = sa->sadb_sa_flags; */
  1069. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1070. &x->props.saddr);
  1071. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1072. &x->id.daddr);
  1073. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1074. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1075. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1076. if (mode < 0) {
  1077. err = -EINVAL;
  1078. goto out;
  1079. }
  1080. x->props.mode = mode;
  1081. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1082. }
  1083. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1084. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1085. /* Nobody uses this, but we try. */
  1086. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1087. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1088. }
  1089. if (!x->sel.family)
  1090. x->sel.family = x->props.family;
  1091. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1092. const struct sadb_x_nat_t_type* n_type;
  1093. struct xfrm_encap_tmpl *natt;
  1094. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1095. if (!x->encap) {
  1096. err = -ENOMEM;
  1097. goto out;
  1098. }
  1099. natt = x->encap;
  1100. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1101. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1102. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1103. const struct sadb_x_nat_t_port *n_port =
  1104. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1105. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1106. }
  1107. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1108. const struct sadb_x_nat_t_port *n_port =
  1109. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1110. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1111. }
  1112. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1113. }
  1114. err = xfrm_init_state(x);
  1115. if (err)
  1116. goto out;
  1117. x->km.seq = hdr->sadb_msg_seq;
  1118. return x;
  1119. out:
  1120. x->km.state = XFRM_STATE_DEAD;
  1121. xfrm_state_put(x);
  1122. return ERR_PTR(err);
  1123. }
  1124. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1125. {
  1126. return -EOPNOTSUPP;
  1127. }
  1128. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1129. {
  1130. struct net *net = sock_net(sk);
  1131. struct sk_buff *resp_skb;
  1132. struct sadb_x_sa2 *sa2;
  1133. struct sadb_address *saddr, *daddr;
  1134. struct sadb_msg *out_hdr;
  1135. struct sadb_spirange *range;
  1136. struct xfrm_state *x = NULL;
  1137. int mode;
  1138. int err;
  1139. u32 min_spi, max_spi;
  1140. u32 reqid;
  1141. u8 proto;
  1142. unsigned short family;
  1143. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1144. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1145. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1146. return -EINVAL;
  1147. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1148. if (proto == 0)
  1149. return -EINVAL;
  1150. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1151. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1152. if (mode < 0)
  1153. return -EINVAL;
  1154. reqid = sa2->sadb_x_sa2_reqid;
  1155. } else {
  1156. mode = 0;
  1157. reqid = 0;
  1158. }
  1159. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1160. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1161. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1162. switch (family) {
  1163. case AF_INET:
  1164. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1165. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1166. break;
  1167. #if IS_ENABLED(CONFIG_IPV6)
  1168. case AF_INET6:
  1169. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1170. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1171. break;
  1172. #endif
  1173. }
  1174. if (hdr->sadb_msg_seq) {
  1175. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1176. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1177. xfrm_state_put(x);
  1178. x = NULL;
  1179. }
  1180. }
  1181. if (!x)
  1182. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1183. if (x == NULL)
  1184. return -ENOENT;
  1185. min_spi = 0x100;
  1186. max_spi = 0x0fffffff;
  1187. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1188. if (range) {
  1189. min_spi = range->sadb_spirange_min;
  1190. max_spi = range->sadb_spirange_max;
  1191. }
  1192. err = verify_spi_info(x->id.proto, min_spi, max_spi);
  1193. if (err) {
  1194. xfrm_state_put(x);
  1195. return err;
  1196. }
  1197. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1198. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1199. if (IS_ERR(resp_skb)) {
  1200. xfrm_state_put(x);
  1201. return PTR_ERR(resp_skb);
  1202. }
  1203. out_hdr = (struct sadb_msg *) resp_skb->data;
  1204. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1205. out_hdr->sadb_msg_type = SADB_GETSPI;
  1206. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1207. out_hdr->sadb_msg_errno = 0;
  1208. out_hdr->sadb_msg_reserved = 0;
  1209. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1210. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1211. xfrm_state_put(x);
  1212. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1213. return 0;
  1214. }
  1215. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1216. {
  1217. struct net *net = sock_net(sk);
  1218. struct xfrm_state *x;
  1219. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1220. return -EOPNOTSUPP;
  1221. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1222. return 0;
  1223. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1224. if (x == NULL)
  1225. return 0;
  1226. spin_lock_bh(&x->lock);
  1227. if (x->km.state == XFRM_STATE_ACQ)
  1228. x->km.state = XFRM_STATE_ERROR;
  1229. spin_unlock_bh(&x->lock);
  1230. xfrm_state_put(x);
  1231. return 0;
  1232. }
  1233. static inline int event2poltype(int event)
  1234. {
  1235. switch (event) {
  1236. case XFRM_MSG_DELPOLICY:
  1237. return SADB_X_SPDDELETE;
  1238. case XFRM_MSG_NEWPOLICY:
  1239. return SADB_X_SPDADD;
  1240. case XFRM_MSG_UPDPOLICY:
  1241. return SADB_X_SPDUPDATE;
  1242. case XFRM_MSG_POLEXPIRE:
  1243. // return SADB_X_SPDEXPIRE;
  1244. default:
  1245. pr_err("pfkey: Unknown policy event %d\n", event);
  1246. break;
  1247. }
  1248. return 0;
  1249. }
  1250. static inline int event2keytype(int event)
  1251. {
  1252. switch (event) {
  1253. case XFRM_MSG_DELSA:
  1254. return SADB_DELETE;
  1255. case XFRM_MSG_NEWSA:
  1256. return SADB_ADD;
  1257. case XFRM_MSG_UPDSA:
  1258. return SADB_UPDATE;
  1259. case XFRM_MSG_EXPIRE:
  1260. return SADB_EXPIRE;
  1261. default:
  1262. pr_err("pfkey: Unknown SA event %d\n", event);
  1263. break;
  1264. }
  1265. return 0;
  1266. }
  1267. /* ADD/UPD/DEL */
  1268. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1269. {
  1270. struct sk_buff *skb;
  1271. struct sadb_msg *hdr;
  1272. skb = pfkey_xfrm_state2msg(x);
  1273. if (IS_ERR(skb))
  1274. return PTR_ERR(skb);
  1275. hdr = (struct sadb_msg *) skb->data;
  1276. hdr->sadb_msg_version = PF_KEY_V2;
  1277. hdr->sadb_msg_type = event2keytype(c->event);
  1278. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1279. hdr->sadb_msg_errno = 0;
  1280. hdr->sadb_msg_reserved = 0;
  1281. hdr->sadb_msg_seq = c->seq;
  1282. hdr->sadb_msg_pid = c->portid;
  1283. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1284. return 0;
  1285. }
  1286. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1287. {
  1288. struct net *net = sock_net(sk);
  1289. struct xfrm_state *x;
  1290. int err;
  1291. struct km_event c;
  1292. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1293. if (IS_ERR(x))
  1294. return PTR_ERR(x);
  1295. xfrm_state_hold(x);
  1296. if (hdr->sadb_msg_type == SADB_ADD)
  1297. err = xfrm_state_add(x);
  1298. else
  1299. err = xfrm_state_update(x);
  1300. xfrm_audit_state_add(x, err ? 0 : 1, true);
  1301. if (err < 0) {
  1302. x->km.state = XFRM_STATE_DEAD;
  1303. __xfrm_state_put(x);
  1304. goto out;
  1305. }
  1306. if (hdr->sadb_msg_type == SADB_ADD)
  1307. c.event = XFRM_MSG_NEWSA;
  1308. else
  1309. c.event = XFRM_MSG_UPDSA;
  1310. c.seq = hdr->sadb_msg_seq;
  1311. c.portid = hdr->sadb_msg_pid;
  1312. km_state_notify(x, &c);
  1313. out:
  1314. xfrm_state_put(x);
  1315. return err;
  1316. }
  1317. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1318. {
  1319. struct net *net = sock_net(sk);
  1320. struct xfrm_state *x;
  1321. struct km_event c;
  1322. int err;
  1323. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1324. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1325. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1326. return -EINVAL;
  1327. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1328. if (x == NULL)
  1329. return -ESRCH;
  1330. if ((err = security_xfrm_state_delete(x)))
  1331. goto out;
  1332. if (xfrm_state_kern(x)) {
  1333. err = -EPERM;
  1334. goto out;
  1335. }
  1336. err = xfrm_state_delete(x);
  1337. if (err < 0)
  1338. goto out;
  1339. c.seq = hdr->sadb_msg_seq;
  1340. c.portid = hdr->sadb_msg_pid;
  1341. c.event = XFRM_MSG_DELSA;
  1342. km_state_notify(x, &c);
  1343. out:
  1344. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  1345. xfrm_state_put(x);
  1346. return err;
  1347. }
  1348. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1349. {
  1350. struct net *net = sock_net(sk);
  1351. __u8 proto;
  1352. struct sk_buff *out_skb;
  1353. struct sadb_msg *out_hdr;
  1354. struct xfrm_state *x;
  1355. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1356. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1357. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1358. return -EINVAL;
  1359. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1360. if (x == NULL)
  1361. return -ESRCH;
  1362. out_skb = pfkey_xfrm_state2msg(x);
  1363. proto = x->id.proto;
  1364. xfrm_state_put(x);
  1365. if (IS_ERR(out_skb))
  1366. return PTR_ERR(out_skb);
  1367. out_hdr = (struct sadb_msg *) out_skb->data;
  1368. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1369. out_hdr->sadb_msg_type = SADB_GET;
  1370. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1371. out_hdr->sadb_msg_errno = 0;
  1372. out_hdr->sadb_msg_reserved = 0;
  1373. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1374. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1375. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1376. return 0;
  1377. }
  1378. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1379. gfp_t allocation)
  1380. {
  1381. struct sk_buff *skb;
  1382. struct sadb_msg *hdr;
  1383. int len, auth_len, enc_len, i;
  1384. auth_len = xfrm_count_pfkey_auth_supported();
  1385. if (auth_len) {
  1386. auth_len *= sizeof(struct sadb_alg);
  1387. auth_len += sizeof(struct sadb_supported);
  1388. }
  1389. enc_len = xfrm_count_pfkey_enc_supported();
  1390. if (enc_len) {
  1391. enc_len *= sizeof(struct sadb_alg);
  1392. enc_len += sizeof(struct sadb_supported);
  1393. }
  1394. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1395. skb = alloc_skb(len + 16, allocation);
  1396. if (!skb)
  1397. goto out_put_algs;
  1398. hdr = skb_put(skb, sizeof(*hdr));
  1399. pfkey_hdr_dup(hdr, orig);
  1400. hdr->sadb_msg_errno = 0;
  1401. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1402. if (auth_len) {
  1403. struct sadb_supported *sp;
  1404. struct sadb_alg *ap;
  1405. sp = skb_put(skb, auth_len);
  1406. ap = (struct sadb_alg *) (sp + 1);
  1407. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1408. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1409. for (i = 0; ; i++) {
  1410. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1411. if (!aalg)
  1412. break;
  1413. if (!aalg->pfkey_supported)
  1414. continue;
  1415. if (aalg->available)
  1416. *ap++ = aalg->desc;
  1417. }
  1418. }
  1419. if (enc_len) {
  1420. struct sadb_supported *sp;
  1421. struct sadb_alg *ap;
  1422. sp = skb_put(skb, enc_len);
  1423. ap = (struct sadb_alg *) (sp + 1);
  1424. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1425. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1426. for (i = 0; ; i++) {
  1427. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1428. if (!ealg)
  1429. break;
  1430. if (!ealg->pfkey_supported)
  1431. continue;
  1432. if (ealg->available)
  1433. *ap++ = ealg->desc;
  1434. }
  1435. }
  1436. out_put_algs:
  1437. return skb;
  1438. }
  1439. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1440. {
  1441. struct pfkey_sock *pfk = pfkey_sk(sk);
  1442. struct sk_buff *supp_skb;
  1443. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1444. return -EINVAL;
  1445. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1446. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1447. return -EEXIST;
  1448. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1449. }
  1450. xfrm_probe_algs();
  1451. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1452. if (!supp_skb) {
  1453. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1454. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1455. return -ENOBUFS;
  1456. }
  1457. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk,
  1458. sock_net(sk));
  1459. return 0;
  1460. }
  1461. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1462. {
  1463. struct sk_buff *skb;
  1464. struct sadb_msg *hdr;
  1465. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1466. if (!skb)
  1467. return -ENOBUFS;
  1468. hdr = skb_put_data(skb, ihdr, sizeof(struct sadb_msg));
  1469. hdr->sadb_msg_errno = (uint8_t) 0;
  1470. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1471. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk,
  1472. sock_net(sk));
  1473. }
  1474. static int key_notify_sa_flush(const struct km_event *c)
  1475. {
  1476. struct sk_buff *skb;
  1477. struct sadb_msg *hdr;
  1478. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1479. if (!skb)
  1480. return -ENOBUFS;
  1481. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1482. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1483. hdr->sadb_msg_type = SADB_FLUSH;
  1484. hdr->sadb_msg_seq = c->seq;
  1485. hdr->sadb_msg_pid = c->portid;
  1486. hdr->sadb_msg_version = PF_KEY_V2;
  1487. hdr->sadb_msg_errno = (uint8_t) 0;
  1488. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1489. hdr->sadb_msg_reserved = 0;
  1490. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1491. return 0;
  1492. }
  1493. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1494. {
  1495. struct net *net = sock_net(sk);
  1496. unsigned int proto;
  1497. struct km_event c;
  1498. int err, err2;
  1499. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1500. if (proto == 0)
  1501. return -EINVAL;
  1502. err = xfrm_state_flush(net, proto, true);
  1503. err2 = unicast_flush_resp(sk, hdr);
  1504. if (err || err2) {
  1505. if (err == -ESRCH) /* empty table - go quietly */
  1506. err = 0;
  1507. return err ? err : err2;
  1508. }
  1509. c.data.proto = proto;
  1510. c.seq = hdr->sadb_msg_seq;
  1511. c.portid = hdr->sadb_msg_pid;
  1512. c.event = XFRM_MSG_FLUSHSA;
  1513. c.net = net;
  1514. km_state_notify(NULL, &c);
  1515. return 0;
  1516. }
  1517. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1518. {
  1519. struct pfkey_sock *pfk = ptr;
  1520. struct sk_buff *out_skb;
  1521. struct sadb_msg *out_hdr;
  1522. if (!pfkey_can_dump(&pfk->sk))
  1523. return -ENOBUFS;
  1524. out_skb = pfkey_xfrm_state2msg(x);
  1525. if (IS_ERR(out_skb))
  1526. return PTR_ERR(out_skb);
  1527. out_hdr = (struct sadb_msg *) out_skb->data;
  1528. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1529. out_hdr->sadb_msg_type = SADB_DUMP;
  1530. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1531. out_hdr->sadb_msg_errno = 0;
  1532. out_hdr->sadb_msg_reserved = 0;
  1533. out_hdr->sadb_msg_seq = count + 1;
  1534. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1535. if (pfk->dump.skb)
  1536. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1537. &pfk->sk, sock_net(&pfk->sk));
  1538. pfk->dump.skb = out_skb;
  1539. return 0;
  1540. }
  1541. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1542. {
  1543. struct net *net = sock_net(&pfk->sk);
  1544. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1545. }
  1546. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1547. {
  1548. struct net *net = sock_net(&pfk->sk);
  1549. xfrm_state_walk_done(&pfk->dump.u.state, net);
  1550. }
  1551. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1552. {
  1553. u8 proto;
  1554. struct xfrm_address_filter *filter = NULL;
  1555. struct pfkey_sock *pfk = pfkey_sk(sk);
  1556. mutex_lock(&pfk->dump_lock);
  1557. if (pfk->dump.dump != NULL) {
  1558. mutex_unlock(&pfk->dump_lock);
  1559. return -EBUSY;
  1560. }
  1561. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1562. if (proto == 0) {
  1563. mutex_unlock(&pfk->dump_lock);
  1564. return -EINVAL;
  1565. }
  1566. if (ext_hdrs[SADB_X_EXT_FILTER - 1]) {
  1567. struct sadb_x_filter *xfilter = ext_hdrs[SADB_X_EXT_FILTER - 1];
  1568. filter = kmalloc(sizeof(*filter), GFP_KERNEL);
  1569. if (filter == NULL) {
  1570. mutex_unlock(&pfk->dump_lock);
  1571. return -ENOMEM;
  1572. }
  1573. memcpy(&filter->saddr, &xfilter->sadb_x_filter_saddr,
  1574. sizeof(xfrm_address_t));
  1575. memcpy(&filter->daddr, &xfilter->sadb_x_filter_daddr,
  1576. sizeof(xfrm_address_t));
  1577. filter->family = xfilter->sadb_x_filter_family;
  1578. filter->splen = xfilter->sadb_x_filter_splen;
  1579. filter->dplen = xfilter->sadb_x_filter_dplen;
  1580. }
  1581. pfk->dump.msg_version = hdr->sadb_msg_version;
  1582. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1583. pfk->dump.dump = pfkey_dump_sa;
  1584. pfk->dump.done = pfkey_dump_sa_done;
  1585. xfrm_state_walk_init(&pfk->dump.u.state, proto, filter);
  1586. mutex_unlock(&pfk->dump_lock);
  1587. return pfkey_do_dump(pfk);
  1588. }
  1589. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1590. {
  1591. struct pfkey_sock *pfk = pfkey_sk(sk);
  1592. int satype = hdr->sadb_msg_satype;
  1593. bool reset_errno = false;
  1594. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1595. reset_errno = true;
  1596. if (satype != 0 && satype != 1)
  1597. return -EINVAL;
  1598. pfk->promisc = satype;
  1599. }
  1600. if (reset_errno && skb_cloned(skb))
  1601. skb = skb_copy(skb, GFP_KERNEL);
  1602. else
  1603. skb = skb_clone(skb, GFP_KERNEL);
  1604. if (reset_errno && skb) {
  1605. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1606. new_hdr->sadb_msg_errno = 0;
  1607. }
  1608. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1609. return 0;
  1610. }
  1611. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1612. {
  1613. int i;
  1614. u32 reqid = *(u32*)ptr;
  1615. for (i=0; i<xp->xfrm_nr; i++) {
  1616. if (xp->xfrm_vec[i].reqid == reqid)
  1617. return -EEXIST;
  1618. }
  1619. return 0;
  1620. }
  1621. static u32 gen_reqid(struct net *net)
  1622. {
  1623. struct xfrm_policy_walk walk;
  1624. u32 start;
  1625. int rc;
  1626. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1627. start = reqid;
  1628. do {
  1629. ++reqid;
  1630. if (reqid == 0)
  1631. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1632. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1633. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1634. xfrm_policy_walk_done(&walk, net);
  1635. if (rc != -EEXIST)
  1636. return reqid;
  1637. } while (reqid != start);
  1638. return 0;
  1639. }
  1640. static int
  1641. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1642. {
  1643. struct net *net = xp_net(xp);
  1644. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1645. int mode;
  1646. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1647. return -ELOOP;
  1648. if (rq->sadb_x_ipsecrequest_mode == 0)
  1649. return -EINVAL;
  1650. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1651. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1652. return -EINVAL;
  1653. t->mode = mode;
  1654. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1655. t->optional = 1;
  1656. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1657. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1658. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1659. t->reqid = 0;
  1660. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1661. return -ENOBUFS;
  1662. }
  1663. /* addresses present only in tunnel mode */
  1664. if (t->mode == XFRM_MODE_TUNNEL) {
  1665. int err;
  1666. err = parse_sockaddr_pair(
  1667. (struct sockaddr *)(rq + 1),
  1668. rq->sadb_x_ipsecrequest_len - sizeof(*rq),
  1669. &t->saddr, &t->id.daddr, &t->encap_family);
  1670. if (err)
  1671. return err;
  1672. } else
  1673. t->encap_family = xp->family;
  1674. /* No way to set this via kame pfkey */
  1675. t->allalgs = 1;
  1676. xp->xfrm_nr++;
  1677. return 0;
  1678. }
  1679. static int
  1680. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1681. {
  1682. int err;
  1683. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1684. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1685. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1686. return -EINVAL;
  1687. while (len >= sizeof(*rq)) {
  1688. if (len < rq->sadb_x_ipsecrequest_len ||
  1689. rq->sadb_x_ipsecrequest_len < sizeof(*rq))
  1690. return -EINVAL;
  1691. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1692. return err;
  1693. len -= rq->sadb_x_ipsecrequest_len;
  1694. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1695. }
  1696. return 0;
  1697. }
  1698. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1699. {
  1700. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1701. if (xfrm_ctx) {
  1702. int len = sizeof(struct sadb_x_sec_ctx);
  1703. len += xfrm_ctx->ctx_len;
  1704. return PFKEY_ALIGN8(len);
  1705. }
  1706. return 0;
  1707. }
  1708. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1709. {
  1710. const struct xfrm_tmpl *t;
  1711. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1712. int socklen = 0;
  1713. int i;
  1714. for (i=0; i<xp->xfrm_nr; i++) {
  1715. t = xp->xfrm_vec + i;
  1716. socklen += pfkey_sockaddr_len(t->encap_family);
  1717. }
  1718. return sizeof(struct sadb_msg) +
  1719. (sizeof(struct sadb_lifetime) * 3) +
  1720. (sizeof(struct sadb_address) * 2) +
  1721. (sockaddr_size * 2) +
  1722. sizeof(struct sadb_x_policy) +
  1723. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1724. (socklen * 2) +
  1725. pfkey_xfrm_policy2sec_ctx_size(xp);
  1726. }
  1727. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1728. {
  1729. struct sk_buff *skb;
  1730. int size;
  1731. size = pfkey_xfrm_policy2msg_size(xp);
  1732. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1733. if (skb == NULL)
  1734. return ERR_PTR(-ENOBUFS);
  1735. return skb;
  1736. }
  1737. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1738. {
  1739. struct sadb_msg *hdr;
  1740. struct sadb_address *addr;
  1741. struct sadb_lifetime *lifetime;
  1742. struct sadb_x_policy *pol;
  1743. struct sadb_x_sec_ctx *sec_ctx;
  1744. struct xfrm_sec_ctx *xfrm_ctx;
  1745. int i;
  1746. int size;
  1747. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1748. int socklen = pfkey_sockaddr_len(xp->family);
  1749. size = pfkey_xfrm_policy2msg_size(xp);
  1750. /* call should fill header later */
  1751. hdr = skb_put(skb, sizeof(struct sadb_msg));
  1752. memset(hdr, 0, size); /* XXX do we need this ? */
  1753. /* src address */
  1754. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1755. addr->sadb_address_len =
  1756. (sizeof(struct sadb_address)+sockaddr_size)/
  1757. sizeof(uint64_t);
  1758. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1759. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1760. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1761. addr->sadb_address_reserved = 0;
  1762. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1763. xp->selector.sport,
  1764. (struct sockaddr *) (addr + 1),
  1765. xp->family))
  1766. BUG();
  1767. /* dst address */
  1768. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  1769. addr->sadb_address_len =
  1770. (sizeof(struct sadb_address)+sockaddr_size)/
  1771. sizeof(uint64_t);
  1772. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1773. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1774. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1775. addr->sadb_address_reserved = 0;
  1776. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1777. (struct sockaddr *) (addr + 1),
  1778. xp->family);
  1779. /* hard time */
  1780. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1781. lifetime->sadb_lifetime_len =
  1782. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1783. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1784. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1785. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1786. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1787. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1788. /* soft time */
  1789. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1790. lifetime->sadb_lifetime_len =
  1791. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1792. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1793. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1794. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1795. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1796. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1797. /* current time */
  1798. lifetime = skb_put(skb, sizeof(struct sadb_lifetime));
  1799. lifetime->sadb_lifetime_len =
  1800. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1801. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1802. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1803. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1804. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1805. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1806. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  1807. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1808. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1809. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1810. if (xp->action == XFRM_POLICY_ALLOW) {
  1811. if (xp->xfrm_nr)
  1812. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1813. else
  1814. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1815. }
  1816. pol->sadb_x_policy_dir = dir+1;
  1817. pol->sadb_x_policy_reserved = 0;
  1818. pol->sadb_x_policy_id = xp->index;
  1819. pol->sadb_x_policy_priority = xp->priority;
  1820. for (i=0; i<xp->xfrm_nr; i++) {
  1821. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1822. struct sadb_x_ipsecrequest *rq;
  1823. int req_size;
  1824. int mode;
  1825. req_size = sizeof(struct sadb_x_ipsecrequest);
  1826. if (t->mode == XFRM_MODE_TUNNEL) {
  1827. socklen = pfkey_sockaddr_len(t->encap_family);
  1828. req_size += socklen * 2;
  1829. } else {
  1830. size -= 2*socklen;
  1831. }
  1832. rq = skb_put(skb, req_size);
  1833. pol->sadb_x_policy_len += req_size/8;
  1834. memset(rq, 0, sizeof(*rq));
  1835. rq->sadb_x_ipsecrequest_len = req_size;
  1836. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1837. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1838. return -EINVAL;
  1839. rq->sadb_x_ipsecrequest_mode = mode;
  1840. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1841. if (t->reqid)
  1842. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1843. if (t->optional)
  1844. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1845. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1846. if (t->mode == XFRM_MODE_TUNNEL) {
  1847. u8 *sa = (void *)(rq + 1);
  1848. pfkey_sockaddr_fill(&t->saddr, 0,
  1849. (struct sockaddr *)sa,
  1850. t->encap_family);
  1851. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1852. (struct sockaddr *) (sa + socklen),
  1853. t->encap_family);
  1854. }
  1855. }
  1856. /* security context */
  1857. if ((xfrm_ctx = xp->security)) {
  1858. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1859. sec_ctx = skb_put(skb, ctx_size);
  1860. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1861. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1862. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1863. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1864. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1865. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1866. xfrm_ctx->ctx_len);
  1867. }
  1868. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1869. hdr->sadb_msg_reserved = refcount_read(&xp->refcnt);
  1870. return 0;
  1871. }
  1872. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1873. {
  1874. struct sk_buff *out_skb;
  1875. struct sadb_msg *out_hdr;
  1876. int err;
  1877. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1878. if (IS_ERR(out_skb))
  1879. return PTR_ERR(out_skb);
  1880. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1881. if (err < 0)
  1882. return err;
  1883. out_hdr = (struct sadb_msg *) out_skb->data;
  1884. out_hdr->sadb_msg_version = PF_KEY_V2;
  1885. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1886. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1887. else
  1888. out_hdr->sadb_msg_type = event2poltype(c->event);
  1889. out_hdr->sadb_msg_errno = 0;
  1890. out_hdr->sadb_msg_seq = c->seq;
  1891. out_hdr->sadb_msg_pid = c->portid;
  1892. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1893. return 0;
  1894. }
  1895. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1896. {
  1897. struct net *net = sock_net(sk);
  1898. int err = 0;
  1899. struct sadb_lifetime *lifetime;
  1900. struct sadb_address *sa;
  1901. struct sadb_x_policy *pol;
  1902. struct xfrm_policy *xp;
  1903. struct km_event c;
  1904. struct sadb_x_sec_ctx *sec_ctx;
  1905. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1906. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1907. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1908. return -EINVAL;
  1909. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1910. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1911. return -EINVAL;
  1912. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1913. return -EINVAL;
  1914. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1915. if (xp == NULL)
  1916. return -ENOBUFS;
  1917. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1918. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1919. xp->priority = pol->sadb_x_policy_priority;
  1920. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1921. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1922. xp->selector.family = xp->family;
  1923. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1924. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1925. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1926. if (xp->selector.sport)
  1927. xp->selector.sport_mask = htons(0xffff);
  1928. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1929. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1930. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1931. /* Amusing, we set this twice. KAME apps appear to set same value
  1932. * in both addresses.
  1933. */
  1934. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1935. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1936. if (xp->selector.dport)
  1937. xp->selector.dport_mask = htons(0xffff);
  1938. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1939. if (sec_ctx != NULL) {
  1940. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  1941. if (!uctx) {
  1942. err = -ENOBUFS;
  1943. goto out;
  1944. }
  1945. err = security_xfrm_policy_alloc(&xp->security, uctx, GFP_KERNEL);
  1946. kfree(uctx);
  1947. if (err)
  1948. goto out;
  1949. }
  1950. xp->lft.soft_byte_limit = XFRM_INF;
  1951. xp->lft.hard_byte_limit = XFRM_INF;
  1952. xp->lft.soft_packet_limit = XFRM_INF;
  1953. xp->lft.hard_packet_limit = XFRM_INF;
  1954. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1955. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1956. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1957. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1958. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1959. }
  1960. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1961. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1962. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1963. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1964. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1965. }
  1966. xp->xfrm_nr = 0;
  1967. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1968. (err = parse_ipsecrequests(xp, pol)) < 0)
  1969. goto out;
  1970. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1971. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1972. xfrm_audit_policy_add(xp, err ? 0 : 1, true);
  1973. if (err)
  1974. goto out;
  1975. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1976. c.event = XFRM_MSG_UPDPOLICY;
  1977. else
  1978. c.event = XFRM_MSG_NEWPOLICY;
  1979. c.seq = hdr->sadb_msg_seq;
  1980. c.portid = hdr->sadb_msg_pid;
  1981. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1982. xfrm_pol_put(xp);
  1983. return 0;
  1984. out:
  1985. xp->walk.dead = 1;
  1986. xfrm_policy_destroy(xp);
  1987. return err;
  1988. }
  1989. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1990. {
  1991. struct net *net = sock_net(sk);
  1992. int err;
  1993. struct sadb_address *sa;
  1994. struct sadb_x_policy *pol;
  1995. struct xfrm_policy *xp;
  1996. struct xfrm_selector sel;
  1997. struct km_event c;
  1998. struct sadb_x_sec_ctx *sec_ctx;
  1999. struct xfrm_sec_ctx *pol_ctx = NULL;
  2000. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2001. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2002. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2003. return -EINVAL;
  2004. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2005. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2006. return -EINVAL;
  2007. memset(&sel, 0, sizeof(sel));
  2008. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  2009. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2010. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2011. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2012. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2013. if (sel.sport)
  2014. sel.sport_mask = htons(0xffff);
  2015. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  2016. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2017. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2018. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2019. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2020. if (sel.dport)
  2021. sel.dport_mask = htons(0xffff);
  2022. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  2023. if (sec_ctx != NULL) {
  2024. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_KERNEL);
  2025. if (!uctx)
  2026. return -ENOMEM;
  2027. err = security_xfrm_policy_alloc(&pol_ctx, uctx, GFP_KERNEL);
  2028. kfree(uctx);
  2029. if (err)
  2030. return err;
  2031. }
  2032. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2033. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2034. 1, &err);
  2035. security_xfrm_policy_free(pol_ctx);
  2036. if (xp == NULL)
  2037. return -ENOENT;
  2038. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2039. if (err)
  2040. goto out;
  2041. c.seq = hdr->sadb_msg_seq;
  2042. c.portid = hdr->sadb_msg_pid;
  2043. c.data.byid = 0;
  2044. c.event = XFRM_MSG_DELPOLICY;
  2045. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2046. out:
  2047. xfrm_pol_put(xp);
  2048. return err;
  2049. }
  2050. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2051. {
  2052. int err;
  2053. struct sk_buff *out_skb;
  2054. struct sadb_msg *out_hdr;
  2055. err = 0;
  2056. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2057. if (IS_ERR(out_skb)) {
  2058. err = PTR_ERR(out_skb);
  2059. goto out;
  2060. }
  2061. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2062. if (err < 0)
  2063. goto out;
  2064. out_hdr = (struct sadb_msg *) out_skb->data;
  2065. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2066. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2067. out_hdr->sadb_msg_satype = 0;
  2068. out_hdr->sadb_msg_errno = 0;
  2069. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2070. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2071. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2072. err = 0;
  2073. out:
  2074. return err;
  2075. }
  2076. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2077. {
  2078. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2079. }
  2080. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2081. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2082. u16 *family)
  2083. {
  2084. int af, socklen;
  2085. if (ext_len < 2 || ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2086. return -EINVAL;
  2087. af = pfkey_sockaddr_extract(sa, saddr);
  2088. if (!af)
  2089. return -EINVAL;
  2090. socklen = pfkey_sockaddr_len(af);
  2091. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2092. daddr) != af)
  2093. return -EINVAL;
  2094. *family = af;
  2095. return 0;
  2096. }
  2097. #ifdef CONFIG_NET_KEY_MIGRATE
  2098. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2099. struct xfrm_migrate *m)
  2100. {
  2101. int err;
  2102. struct sadb_x_ipsecrequest *rq2;
  2103. int mode;
  2104. if (len < sizeof(*rq1) ||
  2105. len < rq1->sadb_x_ipsecrequest_len ||
  2106. rq1->sadb_x_ipsecrequest_len < sizeof(*rq1))
  2107. return -EINVAL;
  2108. /* old endoints */
  2109. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2110. rq1->sadb_x_ipsecrequest_len - sizeof(*rq1),
  2111. &m->old_saddr, &m->old_daddr,
  2112. &m->old_family);
  2113. if (err)
  2114. return err;
  2115. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2116. len -= rq1->sadb_x_ipsecrequest_len;
  2117. if (len <= sizeof(*rq2) ||
  2118. len < rq2->sadb_x_ipsecrequest_len ||
  2119. rq2->sadb_x_ipsecrequest_len < sizeof(*rq2))
  2120. return -EINVAL;
  2121. /* new endpoints */
  2122. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2123. rq2->sadb_x_ipsecrequest_len - sizeof(*rq2),
  2124. &m->new_saddr, &m->new_daddr,
  2125. &m->new_family);
  2126. if (err)
  2127. return err;
  2128. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2129. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2130. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2131. return -EINVAL;
  2132. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2133. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2134. return -EINVAL;
  2135. m->mode = mode;
  2136. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2137. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2138. rq2->sadb_x_ipsecrequest_len));
  2139. }
  2140. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2141. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2142. {
  2143. int i, len, ret, err = -EINVAL;
  2144. u8 dir;
  2145. struct sadb_address *sa;
  2146. struct sadb_x_kmaddress *kma;
  2147. struct sadb_x_policy *pol;
  2148. struct sadb_x_ipsecrequest *rq;
  2149. struct xfrm_selector sel;
  2150. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2151. struct xfrm_kmaddress k;
  2152. struct net *net = sock_net(sk);
  2153. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2154. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2155. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2156. err = -EINVAL;
  2157. goto out;
  2158. }
  2159. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2160. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2161. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2162. err = -EINVAL;
  2163. goto out;
  2164. }
  2165. if (kma) {
  2166. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2167. k.reserved = kma->sadb_x_kmaddress_reserved;
  2168. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2169. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2170. &k.local, &k.remote, &k.family);
  2171. if (ret < 0) {
  2172. err = ret;
  2173. goto out;
  2174. }
  2175. }
  2176. dir = pol->sadb_x_policy_dir - 1;
  2177. memset(&sel, 0, sizeof(sel));
  2178. /* set source address info of selector */
  2179. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2180. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2181. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2182. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2183. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2184. if (sel.sport)
  2185. sel.sport_mask = htons(0xffff);
  2186. /* set destination address info of selector */
  2187. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  2188. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2189. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2190. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2191. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2192. if (sel.dport)
  2193. sel.dport_mask = htons(0xffff);
  2194. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2195. /* extract ipsecrequests */
  2196. i = 0;
  2197. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2198. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2199. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2200. if (ret < 0) {
  2201. err = ret;
  2202. goto out;
  2203. } else {
  2204. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2205. len -= ret;
  2206. i++;
  2207. }
  2208. }
  2209. if (!i || len > 0) {
  2210. err = -EINVAL;
  2211. goto out;
  2212. }
  2213. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2214. kma ? &k : NULL, net, NULL);
  2215. out:
  2216. return err;
  2217. }
  2218. #else
  2219. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2220. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2221. {
  2222. return -ENOPROTOOPT;
  2223. }
  2224. #endif
  2225. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2226. {
  2227. struct net *net = sock_net(sk);
  2228. unsigned int dir;
  2229. int err = 0, delete;
  2230. struct sadb_x_policy *pol;
  2231. struct xfrm_policy *xp;
  2232. struct km_event c;
  2233. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2234. return -EINVAL;
  2235. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2236. if (dir >= XFRM_POLICY_MAX)
  2237. return -EINVAL;
  2238. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2239. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2240. dir, pol->sadb_x_policy_id, delete, &err);
  2241. if (xp == NULL)
  2242. return -ENOENT;
  2243. if (delete) {
  2244. xfrm_audit_policy_delete(xp, err ? 0 : 1, true);
  2245. if (err)
  2246. goto out;
  2247. c.seq = hdr->sadb_msg_seq;
  2248. c.portid = hdr->sadb_msg_pid;
  2249. c.data.byid = 1;
  2250. c.event = XFRM_MSG_DELPOLICY;
  2251. km_policy_notify(xp, dir, &c);
  2252. } else {
  2253. err = key_pol_get_resp(sk, xp, hdr, dir);
  2254. }
  2255. out:
  2256. xfrm_pol_put(xp);
  2257. return err;
  2258. }
  2259. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2260. {
  2261. struct pfkey_sock *pfk = ptr;
  2262. struct sk_buff *out_skb;
  2263. struct sadb_msg *out_hdr;
  2264. int err;
  2265. if (!pfkey_can_dump(&pfk->sk))
  2266. return -ENOBUFS;
  2267. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2268. if (IS_ERR(out_skb))
  2269. return PTR_ERR(out_skb);
  2270. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2271. if (err < 0)
  2272. return err;
  2273. out_hdr = (struct sadb_msg *) out_skb->data;
  2274. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2275. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2276. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2277. out_hdr->sadb_msg_errno = 0;
  2278. out_hdr->sadb_msg_seq = count + 1;
  2279. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2280. if (pfk->dump.skb)
  2281. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2282. &pfk->sk, sock_net(&pfk->sk));
  2283. pfk->dump.skb = out_skb;
  2284. return 0;
  2285. }
  2286. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2287. {
  2288. struct net *net = sock_net(&pfk->sk);
  2289. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2290. }
  2291. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2292. {
  2293. struct net *net = sock_net((struct sock *)pfk);
  2294. xfrm_policy_walk_done(&pfk->dump.u.policy, net);
  2295. }
  2296. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2297. {
  2298. struct pfkey_sock *pfk = pfkey_sk(sk);
  2299. mutex_lock(&pfk->dump_lock);
  2300. if (pfk->dump.dump != NULL) {
  2301. mutex_unlock(&pfk->dump_lock);
  2302. return -EBUSY;
  2303. }
  2304. pfk->dump.msg_version = hdr->sadb_msg_version;
  2305. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2306. pfk->dump.dump = pfkey_dump_sp;
  2307. pfk->dump.done = pfkey_dump_sp_done;
  2308. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2309. mutex_unlock(&pfk->dump_lock);
  2310. return pfkey_do_dump(pfk);
  2311. }
  2312. static int key_notify_policy_flush(const struct km_event *c)
  2313. {
  2314. struct sk_buff *skb_out;
  2315. struct sadb_msg *hdr;
  2316. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2317. if (!skb_out)
  2318. return -ENOBUFS;
  2319. hdr = skb_put(skb_out, sizeof(struct sadb_msg));
  2320. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2321. hdr->sadb_msg_seq = c->seq;
  2322. hdr->sadb_msg_pid = c->portid;
  2323. hdr->sadb_msg_version = PF_KEY_V2;
  2324. hdr->sadb_msg_errno = (uint8_t) 0;
  2325. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2326. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2327. hdr->sadb_msg_reserved = 0;
  2328. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2329. return 0;
  2330. }
  2331. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2332. {
  2333. struct net *net = sock_net(sk);
  2334. struct km_event c;
  2335. int err, err2;
  2336. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, true);
  2337. err2 = unicast_flush_resp(sk, hdr);
  2338. if (err || err2) {
  2339. if (err == -ESRCH) /* empty table - old silent behavior */
  2340. return 0;
  2341. return err;
  2342. }
  2343. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2344. c.event = XFRM_MSG_FLUSHPOLICY;
  2345. c.portid = hdr->sadb_msg_pid;
  2346. c.seq = hdr->sadb_msg_seq;
  2347. c.net = net;
  2348. km_policy_notify(NULL, 0, &c);
  2349. return 0;
  2350. }
  2351. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2352. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2353. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2354. [SADB_RESERVED] = pfkey_reserved,
  2355. [SADB_GETSPI] = pfkey_getspi,
  2356. [SADB_UPDATE] = pfkey_add,
  2357. [SADB_ADD] = pfkey_add,
  2358. [SADB_DELETE] = pfkey_delete,
  2359. [SADB_GET] = pfkey_get,
  2360. [SADB_ACQUIRE] = pfkey_acquire,
  2361. [SADB_REGISTER] = pfkey_register,
  2362. [SADB_EXPIRE] = NULL,
  2363. [SADB_FLUSH] = pfkey_flush,
  2364. [SADB_DUMP] = pfkey_dump,
  2365. [SADB_X_PROMISC] = pfkey_promisc,
  2366. [SADB_X_PCHANGE] = NULL,
  2367. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2368. [SADB_X_SPDADD] = pfkey_spdadd,
  2369. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2370. [SADB_X_SPDGET] = pfkey_spdget,
  2371. [SADB_X_SPDACQUIRE] = NULL,
  2372. [SADB_X_SPDDUMP] = pfkey_spddump,
  2373. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2374. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2375. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2376. [SADB_X_MIGRATE] = pfkey_migrate,
  2377. };
  2378. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2379. {
  2380. void *ext_hdrs[SADB_EXT_MAX];
  2381. int err;
  2382. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2383. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2384. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2385. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2386. if (!err) {
  2387. err = -EOPNOTSUPP;
  2388. if (pfkey_funcs[hdr->sadb_msg_type])
  2389. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2390. }
  2391. return err;
  2392. }
  2393. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2394. {
  2395. struct sadb_msg *hdr = NULL;
  2396. if (skb->len < sizeof(*hdr)) {
  2397. *errp = -EMSGSIZE;
  2398. } else {
  2399. hdr = (struct sadb_msg *) skb->data;
  2400. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2401. hdr->sadb_msg_reserved != 0 ||
  2402. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2403. hdr->sadb_msg_type > SADB_MAX)) {
  2404. hdr = NULL;
  2405. *errp = -EINVAL;
  2406. } else if (hdr->sadb_msg_len != (skb->len /
  2407. sizeof(uint64_t)) ||
  2408. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2409. sizeof(uint64_t))) {
  2410. hdr = NULL;
  2411. *errp = -EMSGSIZE;
  2412. } else {
  2413. *errp = 0;
  2414. }
  2415. }
  2416. return hdr;
  2417. }
  2418. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2419. const struct xfrm_algo_desc *d)
  2420. {
  2421. unsigned int id = d->desc.sadb_alg_id;
  2422. if (id >= sizeof(t->aalgos) * 8)
  2423. return 0;
  2424. return (t->aalgos >> id) & 1;
  2425. }
  2426. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2427. const struct xfrm_algo_desc *d)
  2428. {
  2429. unsigned int id = d->desc.sadb_alg_id;
  2430. if (id >= sizeof(t->ealgos) * 8)
  2431. return 0;
  2432. return (t->ealgos >> id) & 1;
  2433. }
  2434. static int count_ah_combs(const struct xfrm_tmpl *t)
  2435. {
  2436. int i, sz = 0;
  2437. for (i = 0; ; i++) {
  2438. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2439. if (!aalg)
  2440. break;
  2441. if (!aalg->pfkey_supported)
  2442. continue;
  2443. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2444. sz += sizeof(struct sadb_comb);
  2445. }
  2446. return sz + sizeof(struct sadb_prop);
  2447. }
  2448. static int count_esp_combs(const struct xfrm_tmpl *t)
  2449. {
  2450. int i, k, sz = 0;
  2451. for (i = 0; ; i++) {
  2452. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2453. if (!ealg)
  2454. break;
  2455. if (!ealg->pfkey_supported)
  2456. continue;
  2457. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2458. continue;
  2459. for (k = 1; ; k++) {
  2460. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2461. if (!aalg)
  2462. break;
  2463. if (!aalg->pfkey_supported)
  2464. continue;
  2465. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2466. sz += sizeof(struct sadb_comb);
  2467. }
  2468. }
  2469. return sz + sizeof(struct sadb_prop);
  2470. }
  2471. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2472. {
  2473. struct sadb_prop *p;
  2474. int i;
  2475. p = skb_put(skb, sizeof(struct sadb_prop));
  2476. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2477. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2478. p->sadb_prop_replay = 32;
  2479. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2480. for (i = 0; ; i++) {
  2481. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2482. if (!aalg)
  2483. break;
  2484. if (!aalg->pfkey_supported)
  2485. continue;
  2486. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2487. struct sadb_comb *c;
  2488. c = skb_put_zero(skb, sizeof(struct sadb_comb));
  2489. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2490. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2491. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2492. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2493. c->sadb_comb_hard_addtime = 24*60*60;
  2494. c->sadb_comb_soft_addtime = 20*60*60;
  2495. c->sadb_comb_hard_usetime = 8*60*60;
  2496. c->sadb_comb_soft_usetime = 7*60*60;
  2497. }
  2498. }
  2499. }
  2500. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2501. {
  2502. struct sadb_prop *p;
  2503. int i, k;
  2504. p = skb_put(skb, sizeof(struct sadb_prop));
  2505. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2506. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2507. p->sadb_prop_replay = 32;
  2508. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2509. for (i=0; ; i++) {
  2510. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2511. if (!ealg)
  2512. break;
  2513. if (!ealg->pfkey_supported)
  2514. continue;
  2515. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2516. continue;
  2517. for (k = 1; ; k++) {
  2518. struct sadb_comb *c;
  2519. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2520. if (!aalg)
  2521. break;
  2522. if (!aalg->pfkey_supported)
  2523. continue;
  2524. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2525. continue;
  2526. c = skb_put(skb, sizeof(struct sadb_comb));
  2527. memset(c, 0, sizeof(*c));
  2528. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2529. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2530. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2531. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2532. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2533. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2534. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2535. c->sadb_comb_hard_addtime = 24*60*60;
  2536. c->sadb_comb_soft_addtime = 20*60*60;
  2537. c->sadb_comb_hard_usetime = 8*60*60;
  2538. c->sadb_comb_soft_usetime = 7*60*60;
  2539. }
  2540. }
  2541. }
  2542. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2543. {
  2544. return 0;
  2545. }
  2546. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2547. {
  2548. struct sk_buff *out_skb;
  2549. struct sadb_msg *out_hdr;
  2550. int hard;
  2551. int hsc;
  2552. hard = c->data.hard;
  2553. if (hard)
  2554. hsc = 2;
  2555. else
  2556. hsc = 1;
  2557. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2558. if (IS_ERR(out_skb))
  2559. return PTR_ERR(out_skb);
  2560. out_hdr = (struct sadb_msg *) out_skb->data;
  2561. out_hdr->sadb_msg_version = PF_KEY_V2;
  2562. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2563. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2564. out_hdr->sadb_msg_errno = 0;
  2565. out_hdr->sadb_msg_reserved = 0;
  2566. out_hdr->sadb_msg_seq = 0;
  2567. out_hdr->sadb_msg_pid = 0;
  2568. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2569. xs_net(x));
  2570. return 0;
  2571. }
  2572. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2573. {
  2574. struct net *net = x ? xs_net(x) : c->net;
  2575. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2576. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2577. return 0;
  2578. switch (c->event) {
  2579. case XFRM_MSG_EXPIRE:
  2580. return key_notify_sa_expire(x, c);
  2581. case XFRM_MSG_DELSA:
  2582. case XFRM_MSG_NEWSA:
  2583. case XFRM_MSG_UPDSA:
  2584. return key_notify_sa(x, c);
  2585. case XFRM_MSG_FLUSHSA:
  2586. return key_notify_sa_flush(c);
  2587. case XFRM_MSG_NEWAE: /* not yet supported */
  2588. break;
  2589. default:
  2590. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2591. break;
  2592. }
  2593. return 0;
  2594. }
  2595. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2596. {
  2597. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2598. return 0;
  2599. switch (c->event) {
  2600. case XFRM_MSG_POLEXPIRE:
  2601. return key_notify_policy_expire(xp, c);
  2602. case XFRM_MSG_DELPOLICY:
  2603. case XFRM_MSG_NEWPOLICY:
  2604. case XFRM_MSG_UPDPOLICY:
  2605. return key_notify_policy(xp, dir, c);
  2606. case XFRM_MSG_FLUSHPOLICY:
  2607. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2608. break;
  2609. return key_notify_policy_flush(c);
  2610. default:
  2611. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2612. break;
  2613. }
  2614. return 0;
  2615. }
  2616. static u32 get_acqseq(void)
  2617. {
  2618. u32 res;
  2619. static atomic_t acqseq;
  2620. do {
  2621. res = atomic_inc_return(&acqseq);
  2622. } while (!res);
  2623. return res;
  2624. }
  2625. static bool pfkey_is_alive(const struct km_event *c)
  2626. {
  2627. struct netns_pfkey *net_pfkey = net_generic(c->net, pfkey_net_id);
  2628. struct sock *sk;
  2629. bool is_alive = false;
  2630. rcu_read_lock();
  2631. sk_for_each_rcu(sk, &net_pfkey->table) {
  2632. if (pfkey_sk(sk)->registered) {
  2633. is_alive = true;
  2634. break;
  2635. }
  2636. }
  2637. rcu_read_unlock();
  2638. return is_alive;
  2639. }
  2640. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2641. {
  2642. struct sk_buff *skb;
  2643. struct sadb_msg *hdr;
  2644. struct sadb_address *addr;
  2645. struct sadb_x_policy *pol;
  2646. int sockaddr_size;
  2647. int size;
  2648. struct sadb_x_sec_ctx *sec_ctx;
  2649. struct xfrm_sec_ctx *xfrm_ctx;
  2650. int ctx_size = 0;
  2651. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2652. if (!sockaddr_size)
  2653. return -EINVAL;
  2654. size = sizeof(struct sadb_msg) +
  2655. (sizeof(struct sadb_address) * 2) +
  2656. (sockaddr_size * 2) +
  2657. sizeof(struct sadb_x_policy);
  2658. if (x->id.proto == IPPROTO_AH)
  2659. size += count_ah_combs(t);
  2660. else if (x->id.proto == IPPROTO_ESP)
  2661. size += count_esp_combs(t);
  2662. if ((xfrm_ctx = x->security)) {
  2663. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2664. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2665. }
  2666. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2667. if (skb == NULL)
  2668. return -ENOMEM;
  2669. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2670. hdr->sadb_msg_version = PF_KEY_V2;
  2671. hdr->sadb_msg_type = SADB_ACQUIRE;
  2672. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2673. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2674. hdr->sadb_msg_errno = 0;
  2675. hdr->sadb_msg_reserved = 0;
  2676. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2677. hdr->sadb_msg_pid = 0;
  2678. /* src address */
  2679. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2680. addr->sadb_address_len =
  2681. (sizeof(struct sadb_address)+sockaddr_size)/
  2682. sizeof(uint64_t);
  2683. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2684. addr->sadb_address_proto = 0;
  2685. addr->sadb_address_reserved = 0;
  2686. addr->sadb_address_prefixlen =
  2687. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2688. (struct sockaddr *) (addr + 1),
  2689. x->props.family);
  2690. if (!addr->sadb_address_prefixlen)
  2691. BUG();
  2692. /* dst address */
  2693. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2694. addr->sadb_address_len =
  2695. (sizeof(struct sadb_address)+sockaddr_size)/
  2696. sizeof(uint64_t);
  2697. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2698. addr->sadb_address_proto = 0;
  2699. addr->sadb_address_reserved = 0;
  2700. addr->sadb_address_prefixlen =
  2701. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2702. (struct sockaddr *) (addr + 1),
  2703. x->props.family);
  2704. if (!addr->sadb_address_prefixlen)
  2705. BUG();
  2706. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  2707. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2708. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2709. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2710. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2711. pol->sadb_x_policy_reserved = 0;
  2712. pol->sadb_x_policy_id = xp->index;
  2713. pol->sadb_x_policy_priority = xp->priority;
  2714. /* Set sadb_comb's. */
  2715. if (x->id.proto == IPPROTO_AH)
  2716. dump_ah_combs(skb, t);
  2717. else if (x->id.proto == IPPROTO_ESP)
  2718. dump_esp_combs(skb, t);
  2719. /* security context */
  2720. if (xfrm_ctx) {
  2721. sec_ctx = skb_put(skb,
  2722. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2723. sec_ctx->sadb_x_sec_len =
  2724. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2725. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2726. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2727. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2728. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2729. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2730. xfrm_ctx->ctx_len);
  2731. }
  2732. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2733. xs_net(x));
  2734. }
  2735. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2736. u8 *data, int len, int *dir)
  2737. {
  2738. struct net *net = sock_net(sk);
  2739. struct xfrm_policy *xp;
  2740. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2741. struct sadb_x_sec_ctx *sec_ctx;
  2742. switch (sk->sk_family) {
  2743. case AF_INET:
  2744. if (opt != IP_IPSEC_POLICY) {
  2745. *dir = -EOPNOTSUPP;
  2746. return NULL;
  2747. }
  2748. break;
  2749. #if IS_ENABLED(CONFIG_IPV6)
  2750. case AF_INET6:
  2751. if (opt != IPV6_IPSEC_POLICY) {
  2752. *dir = -EOPNOTSUPP;
  2753. return NULL;
  2754. }
  2755. break;
  2756. #endif
  2757. default:
  2758. *dir = -EINVAL;
  2759. return NULL;
  2760. }
  2761. *dir = -EINVAL;
  2762. if (len < sizeof(struct sadb_x_policy) ||
  2763. pol->sadb_x_policy_len*8 > len ||
  2764. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2765. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2766. return NULL;
  2767. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2768. if (xp == NULL) {
  2769. *dir = -ENOBUFS;
  2770. return NULL;
  2771. }
  2772. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2773. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2774. xp->lft.soft_byte_limit = XFRM_INF;
  2775. xp->lft.hard_byte_limit = XFRM_INF;
  2776. xp->lft.soft_packet_limit = XFRM_INF;
  2777. xp->lft.hard_packet_limit = XFRM_INF;
  2778. xp->family = sk->sk_family;
  2779. xp->xfrm_nr = 0;
  2780. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2781. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2782. goto out;
  2783. /* security context too */
  2784. if (len >= (pol->sadb_x_policy_len*8 +
  2785. sizeof(struct sadb_x_sec_ctx))) {
  2786. char *p = (char *)pol;
  2787. struct xfrm_user_sec_ctx *uctx;
  2788. p += pol->sadb_x_policy_len*8;
  2789. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2790. if (len < pol->sadb_x_policy_len*8 +
  2791. sec_ctx->sadb_x_sec_len*8) {
  2792. *dir = -EINVAL;
  2793. goto out;
  2794. }
  2795. if ((*dir = verify_sec_ctx_len(p)))
  2796. goto out;
  2797. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx, GFP_ATOMIC);
  2798. *dir = security_xfrm_policy_alloc(&xp->security, uctx, GFP_ATOMIC);
  2799. kfree(uctx);
  2800. if (*dir)
  2801. goto out;
  2802. }
  2803. *dir = pol->sadb_x_policy_dir-1;
  2804. return xp;
  2805. out:
  2806. xp->walk.dead = 1;
  2807. xfrm_policy_destroy(xp);
  2808. return NULL;
  2809. }
  2810. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2811. {
  2812. struct sk_buff *skb;
  2813. struct sadb_msg *hdr;
  2814. struct sadb_sa *sa;
  2815. struct sadb_address *addr;
  2816. struct sadb_x_nat_t_port *n_port;
  2817. int sockaddr_size;
  2818. int size;
  2819. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2820. struct xfrm_encap_tmpl *natt = NULL;
  2821. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2822. if (!sockaddr_size)
  2823. return -EINVAL;
  2824. if (!satype)
  2825. return -EINVAL;
  2826. if (!x->encap)
  2827. return -EINVAL;
  2828. natt = x->encap;
  2829. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2830. *
  2831. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2832. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2833. */
  2834. size = sizeof(struct sadb_msg) +
  2835. sizeof(struct sadb_sa) +
  2836. (sizeof(struct sadb_address) * 2) +
  2837. (sockaddr_size * 2) +
  2838. (sizeof(struct sadb_x_nat_t_port) * 2);
  2839. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2840. if (skb == NULL)
  2841. return -ENOMEM;
  2842. hdr = skb_put(skb, sizeof(struct sadb_msg));
  2843. hdr->sadb_msg_version = PF_KEY_V2;
  2844. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2845. hdr->sadb_msg_satype = satype;
  2846. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2847. hdr->sadb_msg_errno = 0;
  2848. hdr->sadb_msg_reserved = 0;
  2849. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2850. hdr->sadb_msg_pid = 0;
  2851. /* SA */
  2852. sa = skb_put(skb, sizeof(struct sadb_sa));
  2853. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2854. sa->sadb_sa_exttype = SADB_EXT_SA;
  2855. sa->sadb_sa_spi = x->id.spi;
  2856. sa->sadb_sa_replay = 0;
  2857. sa->sadb_sa_state = 0;
  2858. sa->sadb_sa_auth = 0;
  2859. sa->sadb_sa_encrypt = 0;
  2860. sa->sadb_sa_flags = 0;
  2861. /* ADDRESS_SRC (old addr) */
  2862. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2863. addr->sadb_address_len =
  2864. (sizeof(struct sadb_address)+sockaddr_size)/
  2865. sizeof(uint64_t);
  2866. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2867. addr->sadb_address_proto = 0;
  2868. addr->sadb_address_reserved = 0;
  2869. addr->sadb_address_prefixlen =
  2870. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2871. (struct sockaddr *) (addr + 1),
  2872. x->props.family);
  2873. if (!addr->sadb_address_prefixlen)
  2874. BUG();
  2875. /* NAT_T_SPORT (old port) */
  2876. n_port = skb_put(skb, sizeof(*n_port));
  2877. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2878. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2879. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2880. n_port->sadb_x_nat_t_port_reserved = 0;
  2881. /* ADDRESS_DST (new addr) */
  2882. addr = skb_put(skb, sizeof(struct sadb_address) + sockaddr_size);
  2883. addr->sadb_address_len =
  2884. (sizeof(struct sadb_address)+sockaddr_size)/
  2885. sizeof(uint64_t);
  2886. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2887. addr->sadb_address_proto = 0;
  2888. addr->sadb_address_reserved = 0;
  2889. addr->sadb_address_prefixlen =
  2890. pfkey_sockaddr_fill(ipaddr, 0,
  2891. (struct sockaddr *) (addr + 1),
  2892. x->props.family);
  2893. if (!addr->sadb_address_prefixlen)
  2894. BUG();
  2895. /* NAT_T_DPORT (new port) */
  2896. n_port = skb_put(skb, sizeof(*n_port));
  2897. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2898. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2899. n_port->sadb_x_nat_t_port_port = sport;
  2900. n_port->sadb_x_nat_t_port_reserved = 0;
  2901. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL,
  2902. xs_net(x));
  2903. }
  2904. #ifdef CONFIG_NET_KEY_MIGRATE
  2905. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2906. const struct xfrm_selector *sel)
  2907. {
  2908. struct sadb_address *addr;
  2909. addr = skb_put(skb, sizeof(struct sadb_address) + sasize);
  2910. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2911. addr->sadb_address_exttype = type;
  2912. addr->sadb_address_proto = sel->proto;
  2913. addr->sadb_address_reserved = 0;
  2914. switch (type) {
  2915. case SADB_EXT_ADDRESS_SRC:
  2916. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2917. pfkey_sockaddr_fill(&sel->saddr, 0,
  2918. (struct sockaddr *)(addr + 1),
  2919. sel->family);
  2920. break;
  2921. case SADB_EXT_ADDRESS_DST:
  2922. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2923. pfkey_sockaddr_fill(&sel->daddr, 0,
  2924. (struct sockaddr *)(addr + 1),
  2925. sel->family);
  2926. break;
  2927. default:
  2928. return -EINVAL;
  2929. }
  2930. return 0;
  2931. }
  2932. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2933. {
  2934. struct sadb_x_kmaddress *kma;
  2935. u8 *sa;
  2936. int family = k->family;
  2937. int socklen = pfkey_sockaddr_len(family);
  2938. int size_req;
  2939. size_req = (sizeof(struct sadb_x_kmaddress) +
  2940. pfkey_sockaddr_pair_size(family));
  2941. kma = skb_put_zero(skb, size_req);
  2942. kma->sadb_x_kmaddress_len = size_req / 8;
  2943. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2944. kma->sadb_x_kmaddress_reserved = k->reserved;
  2945. sa = (u8 *)(kma + 1);
  2946. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2947. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2948. return -EINVAL;
  2949. return 0;
  2950. }
  2951. static int set_ipsecrequest(struct sk_buff *skb,
  2952. uint8_t proto, uint8_t mode, int level,
  2953. uint32_t reqid, uint8_t family,
  2954. const xfrm_address_t *src, const xfrm_address_t *dst)
  2955. {
  2956. struct sadb_x_ipsecrequest *rq;
  2957. u8 *sa;
  2958. int socklen = pfkey_sockaddr_len(family);
  2959. int size_req;
  2960. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2961. pfkey_sockaddr_pair_size(family);
  2962. rq = skb_put_zero(skb, size_req);
  2963. rq->sadb_x_ipsecrequest_len = size_req;
  2964. rq->sadb_x_ipsecrequest_proto = proto;
  2965. rq->sadb_x_ipsecrequest_mode = mode;
  2966. rq->sadb_x_ipsecrequest_level = level;
  2967. rq->sadb_x_ipsecrequest_reqid = reqid;
  2968. sa = (u8 *) (rq + 1);
  2969. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2970. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2971. return -EINVAL;
  2972. return 0;
  2973. }
  2974. #endif
  2975. #ifdef CONFIG_NET_KEY_MIGRATE
  2976. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2977. const struct xfrm_migrate *m, int num_bundles,
  2978. const struct xfrm_kmaddress *k,
  2979. const struct xfrm_encap_tmpl *encap)
  2980. {
  2981. int i;
  2982. int sasize_sel;
  2983. int size = 0;
  2984. int size_pol = 0;
  2985. struct sk_buff *skb;
  2986. struct sadb_msg *hdr;
  2987. struct sadb_x_policy *pol;
  2988. const struct xfrm_migrate *mp;
  2989. if (type != XFRM_POLICY_TYPE_MAIN)
  2990. return 0;
  2991. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2992. return -EINVAL;
  2993. if (k != NULL) {
  2994. /* addresses for KM */
  2995. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2996. pfkey_sockaddr_pair_size(k->family));
  2997. }
  2998. /* selector */
  2999. sasize_sel = pfkey_sockaddr_size(sel->family);
  3000. if (!sasize_sel)
  3001. return -EINVAL;
  3002. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3003. /* policy info */
  3004. size_pol += sizeof(struct sadb_x_policy);
  3005. /* ipsecrequests */
  3006. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3007. /* old locator pair */
  3008. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3009. pfkey_sockaddr_pair_size(mp->old_family);
  3010. /* new locator pair */
  3011. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3012. pfkey_sockaddr_pair_size(mp->new_family);
  3013. }
  3014. size += sizeof(struct sadb_msg) + size_pol;
  3015. /* alloc buffer */
  3016. skb = alloc_skb(size, GFP_ATOMIC);
  3017. if (skb == NULL)
  3018. return -ENOMEM;
  3019. hdr = skb_put(skb, sizeof(struct sadb_msg));
  3020. hdr->sadb_msg_version = PF_KEY_V2;
  3021. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3022. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3023. hdr->sadb_msg_len = size / 8;
  3024. hdr->sadb_msg_errno = 0;
  3025. hdr->sadb_msg_reserved = 0;
  3026. hdr->sadb_msg_seq = 0;
  3027. hdr->sadb_msg_pid = 0;
  3028. /* Addresses to be used by KM for negotiation, if ext is available */
  3029. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  3030. goto err;
  3031. /* selector src */
  3032. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3033. /* selector dst */
  3034. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3035. /* policy information */
  3036. pol = skb_put(skb, sizeof(struct sadb_x_policy));
  3037. pol->sadb_x_policy_len = size_pol / 8;
  3038. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3039. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3040. pol->sadb_x_policy_dir = dir + 1;
  3041. pol->sadb_x_policy_reserved = 0;
  3042. pol->sadb_x_policy_id = 0;
  3043. pol->sadb_x_policy_priority = 0;
  3044. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3045. /* old ipsecrequest */
  3046. int mode = pfkey_mode_from_xfrm(mp->mode);
  3047. if (mode < 0)
  3048. goto err;
  3049. if (set_ipsecrequest(skb, mp->proto, mode,
  3050. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3051. mp->reqid, mp->old_family,
  3052. &mp->old_saddr, &mp->old_daddr) < 0)
  3053. goto err;
  3054. /* new ipsecrequest */
  3055. if (set_ipsecrequest(skb, mp->proto, mode,
  3056. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3057. mp->reqid, mp->new_family,
  3058. &mp->new_saddr, &mp->new_daddr) < 0)
  3059. goto err;
  3060. }
  3061. /* broadcast migrate message to sockets */
  3062. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3063. return 0;
  3064. err:
  3065. kfree_skb(skb);
  3066. return -EINVAL;
  3067. }
  3068. #else
  3069. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3070. const struct xfrm_migrate *m, int num_bundles,
  3071. const struct xfrm_kmaddress *k,
  3072. const struct xfrm_encap_tmpl *encap)
  3073. {
  3074. return -ENOPROTOOPT;
  3075. }
  3076. #endif
  3077. static int pfkey_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  3078. {
  3079. struct sock *sk = sock->sk;
  3080. struct sk_buff *skb = NULL;
  3081. struct sadb_msg *hdr = NULL;
  3082. int err;
  3083. struct net *net = sock_net(sk);
  3084. err = -EOPNOTSUPP;
  3085. if (msg->msg_flags & MSG_OOB)
  3086. goto out;
  3087. err = -EMSGSIZE;
  3088. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3089. goto out;
  3090. err = -ENOBUFS;
  3091. skb = alloc_skb(len, GFP_KERNEL);
  3092. if (skb == NULL)
  3093. goto out;
  3094. err = -EFAULT;
  3095. if (memcpy_from_msg(skb_put(skb,len), msg, len))
  3096. goto out;
  3097. hdr = pfkey_get_base_msg(skb, &err);
  3098. if (!hdr)
  3099. goto out;
  3100. mutex_lock(&net->xfrm.xfrm_cfg_mutex);
  3101. err = pfkey_process(sk, skb, hdr);
  3102. mutex_unlock(&net->xfrm.xfrm_cfg_mutex);
  3103. out:
  3104. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3105. err = 0;
  3106. kfree_skb(skb);
  3107. return err ? : len;
  3108. }
  3109. static int pfkey_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  3110. int flags)
  3111. {
  3112. struct sock *sk = sock->sk;
  3113. struct pfkey_sock *pfk = pfkey_sk(sk);
  3114. struct sk_buff *skb;
  3115. int copied, err;
  3116. err = -EINVAL;
  3117. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3118. goto out;
  3119. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3120. if (skb == NULL)
  3121. goto out;
  3122. copied = skb->len;
  3123. if (copied > len) {
  3124. msg->msg_flags |= MSG_TRUNC;
  3125. copied = len;
  3126. }
  3127. skb_reset_transport_header(skb);
  3128. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  3129. if (err)
  3130. goto out_free;
  3131. sock_recv_ts_and_drops(msg, sk, skb);
  3132. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3133. if (pfk->dump.dump != NULL &&
  3134. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3135. pfkey_do_dump(pfk);
  3136. out_free:
  3137. skb_free_datagram(sk, skb);
  3138. out:
  3139. return err;
  3140. }
  3141. static const struct proto_ops pfkey_ops = {
  3142. .family = PF_KEY,
  3143. .owner = THIS_MODULE,
  3144. /* Operations that make no sense on pfkey sockets. */
  3145. .bind = sock_no_bind,
  3146. .connect = sock_no_connect,
  3147. .socketpair = sock_no_socketpair,
  3148. .accept = sock_no_accept,
  3149. .getname = sock_no_getname,
  3150. .ioctl = sock_no_ioctl,
  3151. .listen = sock_no_listen,
  3152. .shutdown = sock_no_shutdown,
  3153. .setsockopt = sock_no_setsockopt,
  3154. .getsockopt = sock_no_getsockopt,
  3155. .mmap = sock_no_mmap,
  3156. .sendpage = sock_no_sendpage,
  3157. /* Now the operations that really occur. */
  3158. .release = pfkey_release,
  3159. .poll = datagram_poll,
  3160. .sendmsg = pfkey_sendmsg,
  3161. .recvmsg = pfkey_recvmsg,
  3162. };
  3163. static const struct net_proto_family pfkey_family_ops = {
  3164. .family = PF_KEY,
  3165. .create = pfkey_create,
  3166. .owner = THIS_MODULE,
  3167. };
  3168. #ifdef CONFIG_PROC_FS
  3169. static int pfkey_seq_show(struct seq_file *f, void *v)
  3170. {
  3171. struct sock *s = sk_entry(v);
  3172. if (v == SEQ_START_TOKEN)
  3173. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3174. else
  3175. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3176. s,
  3177. refcount_read(&s->sk_refcnt),
  3178. sk_rmem_alloc_get(s),
  3179. sk_wmem_alloc_get(s),
  3180. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3181. sock_i_ino(s)
  3182. );
  3183. return 0;
  3184. }
  3185. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3186. __acquires(rcu)
  3187. {
  3188. struct net *net = seq_file_net(f);
  3189. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3190. rcu_read_lock();
  3191. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3192. }
  3193. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3194. {
  3195. struct net *net = seq_file_net(f);
  3196. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3197. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3198. }
  3199. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3200. __releases(rcu)
  3201. {
  3202. rcu_read_unlock();
  3203. }
  3204. static const struct seq_operations pfkey_seq_ops = {
  3205. .start = pfkey_seq_start,
  3206. .next = pfkey_seq_next,
  3207. .stop = pfkey_seq_stop,
  3208. .show = pfkey_seq_show,
  3209. };
  3210. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3211. {
  3212. return seq_open_net(inode, file, &pfkey_seq_ops,
  3213. sizeof(struct seq_net_private));
  3214. }
  3215. static const struct file_operations pfkey_proc_ops = {
  3216. .open = pfkey_seq_open,
  3217. .read = seq_read,
  3218. .llseek = seq_lseek,
  3219. .release = seq_release_net,
  3220. };
  3221. static int __net_init pfkey_init_proc(struct net *net)
  3222. {
  3223. struct proc_dir_entry *e;
  3224. e = proc_create("pfkey", 0, net->proc_net, &pfkey_proc_ops);
  3225. if (e == NULL)
  3226. return -ENOMEM;
  3227. return 0;
  3228. }
  3229. static void __net_exit pfkey_exit_proc(struct net *net)
  3230. {
  3231. remove_proc_entry("pfkey", net->proc_net);
  3232. }
  3233. #else
  3234. static inline int pfkey_init_proc(struct net *net)
  3235. {
  3236. return 0;
  3237. }
  3238. static inline void pfkey_exit_proc(struct net *net)
  3239. {
  3240. }
  3241. #endif
  3242. static struct xfrm_mgr pfkeyv2_mgr =
  3243. {
  3244. .notify = pfkey_send_notify,
  3245. .acquire = pfkey_send_acquire,
  3246. .compile_policy = pfkey_compile_policy,
  3247. .new_mapping = pfkey_send_new_mapping,
  3248. .notify_policy = pfkey_send_policy_notify,
  3249. .migrate = pfkey_send_migrate,
  3250. .is_alive = pfkey_is_alive,
  3251. };
  3252. static int __net_init pfkey_net_init(struct net *net)
  3253. {
  3254. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3255. int rv;
  3256. INIT_HLIST_HEAD(&net_pfkey->table);
  3257. atomic_set(&net_pfkey->socks_nr, 0);
  3258. rv = pfkey_init_proc(net);
  3259. return rv;
  3260. }
  3261. static void __net_exit pfkey_net_exit(struct net *net)
  3262. {
  3263. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3264. pfkey_exit_proc(net);
  3265. BUG_ON(!hlist_empty(&net_pfkey->table));
  3266. }
  3267. static struct pernet_operations pfkey_net_ops = {
  3268. .init = pfkey_net_init,
  3269. .exit = pfkey_net_exit,
  3270. .id = &pfkey_net_id,
  3271. .size = sizeof(struct netns_pfkey),
  3272. };
  3273. static void __exit ipsec_pfkey_exit(void)
  3274. {
  3275. xfrm_unregister_km(&pfkeyv2_mgr);
  3276. sock_unregister(PF_KEY);
  3277. unregister_pernet_subsys(&pfkey_net_ops);
  3278. proto_unregister(&key_proto);
  3279. }
  3280. static int __init ipsec_pfkey_init(void)
  3281. {
  3282. int err = proto_register(&key_proto, 0);
  3283. if (err != 0)
  3284. goto out;
  3285. err = register_pernet_subsys(&pfkey_net_ops);
  3286. if (err != 0)
  3287. goto out_unregister_key_proto;
  3288. err = sock_register(&pfkey_family_ops);
  3289. if (err != 0)
  3290. goto out_unregister_pernet;
  3291. err = xfrm_register_km(&pfkeyv2_mgr);
  3292. if (err != 0)
  3293. goto out_sock_unregister;
  3294. out:
  3295. return err;
  3296. out_sock_unregister:
  3297. sock_unregister(PF_KEY);
  3298. out_unregister_pernet:
  3299. unregister_pernet_subsys(&pfkey_net_ops);
  3300. out_unregister_key_proto:
  3301. proto_unregister(&key_proto);
  3302. goto out;
  3303. }
  3304. module_init(ipsec_pfkey_init);
  3305. module_exit(ipsec_pfkey_exit);
  3306. MODULE_LICENSE("GPL");
  3307. MODULE_ALIAS_NETPROTO(PF_KEY);