tcp_input.c 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * INET An implementation of the TCP/IP protocol suite for the LINUX
  4. * operating system. INET is implemented using the BSD Socket
  5. * interface as the means of communication with the user level.
  6. *
  7. * Implementation of the Transmission Control Protocol(TCP).
  8. *
  9. * Authors: Ross Biro
  10. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  12. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  13. * Florian La Roche, <flla@stud.uni-sb.de>
  14. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  16. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  17. * Matthew Dillon, <dillon@apollo.west.oic.com>
  18. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19. * Jorge Cwik, <jorge@laser.satlink.net>
  20. */
  21. /*
  22. * Changes:
  23. * Pedro Roque : Fast Retransmit/Recovery.
  24. * Two receive queues.
  25. * Retransmit queue handled by TCP.
  26. * Better retransmit timer handling.
  27. * New congestion avoidance.
  28. * Header prediction.
  29. * Variable renaming.
  30. *
  31. * Eric : Fast Retransmit.
  32. * Randy Scott : MSS option defines.
  33. * Eric Schenk : Fixes to slow start algorithm.
  34. * Eric Schenk : Yet another double ACK bug.
  35. * Eric Schenk : Delayed ACK bug fixes.
  36. * Eric Schenk : Floyd style fast retrans war avoidance.
  37. * David S. Miller : Don't allow zero congestion window.
  38. * Eric Schenk : Fix retransmitter so that it sends
  39. * next packet on ack of previous packet.
  40. * Andi Kleen : Moved open_request checking here
  41. * and process RSTs for open_requests.
  42. * Andi Kleen : Better prune_queue, and other fixes.
  43. * Andrey Savochkin: Fix RTT measurements in the presence of
  44. * timestamps.
  45. * Andrey Savochkin: Check sequence numbers correctly when
  46. * removing SACKs due to in sequence incoming
  47. * data segments.
  48. * Andi Kleen: Make sure we never ack data there is not
  49. * enough room for. Also make this condition
  50. * a fatal error if it might still happen.
  51. * Andi Kleen: Add tcp_measure_rcv_mss to make
  52. * connections with MSS<min(MTU,ann. MSS)
  53. * work without delayed acks.
  54. * Andi Kleen: Process packets with PSH set in the
  55. * fast path.
  56. * J Hadi Salim: ECN support
  57. * Andrei Gurtov,
  58. * Pasi Sarolahti,
  59. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  60. * engine. Lots of bugs are found.
  61. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  62. */
  63. #define pr_fmt(fmt) "TCP: " fmt
  64. #include <linux/mm.h>
  65. #include <linux/slab.h>
  66. #include <linux/module.h>
  67. #include <linux/sysctl.h>
  68. #include <linux/kernel.h>
  69. #include <linux/prefetch.h>
  70. #include <net/dst.h>
  71. #include <net/tcp.h>
  72. #include <net/inet_common.h>
  73. #include <linux/ipsec.h>
  74. #include <asm/unaligned.h>
  75. #include <linux/errqueue.h>
  76. int sysctl_tcp_fack __read_mostly;
  77. int sysctl_tcp_max_reordering __read_mostly = 300;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  81. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  82. /* rfc5961 challenge ack rate limiting */
  83. int sysctl_tcp_challenge_ack_limit = 1000;
  84. int sysctl_tcp_stdurg __read_mostly;
  85. int sysctl_tcp_rfc1337 __read_mostly;
  86. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  87. int sysctl_tcp_frto __read_mostly = 2;
  88. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  89. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  90. int sysctl_tcp_early_retrans __read_mostly = 3;
  91. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  92. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  93. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  94. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  95. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  96. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  97. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  98. #define FLAG_ECE 0x40 /* ECE in this ACK */
  99. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  105. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  106. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  107. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  113. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  114. #define REXMIT_NONE 0 /* no loss recovery to do */
  115. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  116. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  117. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  118. unsigned int len)
  119. {
  120. static bool __once __read_mostly;
  121. if (!__once) {
  122. struct net_device *dev;
  123. __once = true;
  124. rcu_read_lock();
  125. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  126. if (!dev || len >= dev->mtu)
  127. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  128. dev ? dev->name : "Unknown driver");
  129. rcu_read_unlock();
  130. }
  131. }
  132. /* Adapt the MSS value used to make delayed ack decision to the
  133. * real world.
  134. */
  135. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  136. {
  137. struct inet_connection_sock *icsk = inet_csk(sk);
  138. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  139. unsigned int len;
  140. icsk->icsk_ack.last_seg_size = 0;
  141. /* skb->len may jitter because of SACKs, even if peer
  142. * sends good full-sized frames.
  143. */
  144. len = skb_shinfo(skb)->gso_size ? : skb->len;
  145. if (len >= icsk->icsk_ack.rcv_mss) {
  146. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  147. tcp_sk(sk)->advmss);
  148. /* Account for possibly-removed options */
  149. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  150. MAX_TCP_OPTION_SPACE))
  151. tcp_gro_dev_warn(sk, skb, len);
  152. } else {
  153. /* Otherwise, we make more careful check taking into account,
  154. * that SACKs block is variable.
  155. *
  156. * "len" is invariant segment length, including TCP header.
  157. */
  158. len += skb->data - skb_transport_header(skb);
  159. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  160. /* If PSH is not set, packet should be
  161. * full sized, provided peer TCP is not badly broken.
  162. * This observation (if it is correct 8)) allows
  163. * to handle super-low mtu links fairly.
  164. */
  165. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  166. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  167. /* Subtract also invariant (if peer is RFC compliant),
  168. * tcp header plus fixed timestamp option length.
  169. * Resulting "len" is MSS free of SACK jitter.
  170. */
  171. len -= tcp_sk(sk)->tcp_header_len;
  172. icsk->icsk_ack.last_seg_size = len;
  173. if (len == lss) {
  174. icsk->icsk_ack.rcv_mss = len;
  175. return;
  176. }
  177. }
  178. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  179. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  180. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  181. }
  182. }
  183. static void tcp_incr_quickack(struct sock *sk)
  184. {
  185. struct inet_connection_sock *icsk = inet_csk(sk);
  186. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  187. if (quickacks == 0)
  188. quickacks = 2;
  189. if (quickacks > icsk->icsk_ack.quick)
  190. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  191. }
  192. static void tcp_enter_quickack_mode(struct sock *sk)
  193. {
  194. struct inet_connection_sock *icsk = inet_csk(sk);
  195. tcp_incr_quickack(sk);
  196. icsk->icsk_ack.pingpong = 0;
  197. icsk->icsk_ack.ato = TCP_ATO_MIN;
  198. }
  199. /* Send ACKs quickly, if "quick" count is not exhausted
  200. * and the session is not interactive.
  201. */
  202. static bool tcp_in_quickack_mode(struct sock *sk)
  203. {
  204. const struct inet_connection_sock *icsk = inet_csk(sk);
  205. const struct dst_entry *dst = __sk_dst_get(sk);
  206. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  207. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  208. }
  209. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  210. {
  211. if (tp->ecn_flags & TCP_ECN_OK)
  212. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  213. }
  214. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  215. {
  216. if (tcp_hdr(skb)->cwr)
  217. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  218. }
  219. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  220. {
  221. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  222. }
  223. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  224. {
  225. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  226. case INET_ECN_NOT_ECT:
  227. /* Funny extension: if ECT is not set on a segment,
  228. * and we already seen ECT on a previous segment,
  229. * it is probably a retransmit.
  230. */
  231. if (tp->ecn_flags & TCP_ECN_SEEN)
  232. tcp_enter_quickack_mode((struct sock *)tp);
  233. break;
  234. case INET_ECN_CE:
  235. if (tcp_ca_needs_ecn((struct sock *)tp))
  236. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  237. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  238. /* Better not delay acks, sender can have a very low cwnd */
  239. tcp_enter_quickack_mode((struct sock *)tp);
  240. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  241. }
  242. tp->ecn_flags |= TCP_ECN_SEEN;
  243. break;
  244. default:
  245. if (tcp_ca_needs_ecn((struct sock *)tp))
  246. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  247. tp->ecn_flags |= TCP_ECN_SEEN;
  248. break;
  249. }
  250. }
  251. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  252. {
  253. if (tp->ecn_flags & TCP_ECN_OK)
  254. __tcp_ecn_check_ce(tp, skb);
  255. }
  256. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  257. {
  258. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  259. tp->ecn_flags &= ~TCP_ECN_OK;
  260. }
  261. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  262. {
  263. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  264. tp->ecn_flags &= ~TCP_ECN_OK;
  265. }
  266. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  267. {
  268. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  269. return true;
  270. return false;
  271. }
  272. /* Buffer size and advertised window tuning.
  273. *
  274. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  275. */
  276. static void tcp_sndbuf_expand(struct sock *sk)
  277. {
  278. const struct tcp_sock *tp = tcp_sk(sk);
  279. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  280. int sndmem, per_mss;
  281. u32 nr_segs;
  282. /* Worst case is non GSO/TSO : each frame consumes one skb
  283. * and skb->head is kmalloced using power of two area of memory
  284. */
  285. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  286. MAX_TCP_HEADER +
  287. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  288. per_mss = roundup_pow_of_two(per_mss) +
  289. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  290. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  291. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  292. /* Fast Recovery (RFC 5681 3.2) :
  293. * Cubic needs 1.7 factor, rounded to 2 to include
  294. * extra cushion (application might react slowly to POLLOUT)
  295. */
  296. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  297. sndmem *= nr_segs * per_mss;
  298. if (sk->sk_sndbuf < sndmem)
  299. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  300. }
  301. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  302. *
  303. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  304. * forward and advertised in receiver window (tp->rcv_wnd) and
  305. * "application buffer", required to isolate scheduling/application
  306. * latencies from network.
  307. * window_clamp is maximal advertised window. It can be less than
  308. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  309. * is reserved for "application" buffer. The less window_clamp is
  310. * the smoother our behaviour from viewpoint of network, but the lower
  311. * throughput and the higher sensitivity of the connection to losses. 8)
  312. *
  313. * rcv_ssthresh is more strict window_clamp used at "slow start"
  314. * phase to predict further behaviour of this connection.
  315. * It is used for two goals:
  316. * - to enforce header prediction at sender, even when application
  317. * requires some significant "application buffer". It is check #1.
  318. * - to prevent pruning of receive queue because of misprediction
  319. * of receiver window. Check #2.
  320. *
  321. * The scheme does not work when sender sends good segments opening
  322. * window and then starts to feed us spaghetti. But it should work
  323. * in common situations. Otherwise, we have to rely on queue collapsing.
  324. */
  325. /* Slow part of check#2. */
  326. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  327. {
  328. struct tcp_sock *tp = tcp_sk(sk);
  329. /* Optimize this! */
  330. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  331. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  332. while (tp->rcv_ssthresh <= window) {
  333. if (truesize <= skb->len)
  334. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  335. truesize >>= 1;
  336. window >>= 1;
  337. }
  338. return 0;
  339. }
  340. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  341. {
  342. struct tcp_sock *tp = tcp_sk(sk);
  343. /* Check #1 */
  344. if (tp->rcv_ssthresh < tp->window_clamp &&
  345. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  346. !tcp_under_memory_pressure(sk)) {
  347. int incr;
  348. /* Check #2. Increase window, if skb with such overhead
  349. * will fit to rcvbuf in future.
  350. */
  351. if (tcp_win_from_space(skb->truesize) <= skb->len)
  352. incr = 2 * tp->advmss;
  353. else
  354. incr = __tcp_grow_window(sk, skb);
  355. if (incr) {
  356. incr = max_t(int, incr, 2 * skb->len);
  357. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  358. tp->window_clamp);
  359. inet_csk(sk)->icsk_ack.quick |= 1;
  360. }
  361. }
  362. }
  363. /* 3. Tuning rcvbuf, when connection enters established state. */
  364. static void tcp_fixup_rcvbuf(struct sock *sk)
  365. {
  366. u32 mss = tcp_sk(sk)->advmss;
  367. int rcvmem;
  368. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  369. tcp_default_init_rwnd(mss);
  370. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  371. * Allow enough cushion so that sender is not limited by our window
  372. */
  373. if (sysctl_tcp_moderate_rcvbuf)
  374. rcvmem <<= 2;
  375. if (sk->sk_rcvbuf < rcvmem)
  376. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  377. }
  378. /* 4. Try to fixup all. It is made immediately after connection enters
  379. * established state.
  380. */
  381. void tcp_init_buffer_space(struct sock *sk)
  382. {
  383. struct tcp_sock *tp = tcp_sk(sk);
  384. int maxwin;
  385. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  386. tcp_fixup_rcvbuf(sk);
  387. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  388. tcp_sndbuf_expand(sk);
  389. tp->rcvq_space.space = tp->rcv_wnd;
  390. tcp_mstamp_refresh(tp);
  391. tp->rcvq_space.time = tp->tcp_mstamp;
  392. tp->rcvq_space.seq = tp->copied_seq;
  393. maxwin = tcp_full_space(sk);
  394. if (tp->window_clamp >= maxwin) {
  395. tp->window_clamp = maxwin;
  396. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  397. tp->window_clamp = max(maxwin -
  398. (maxwin >> sysctl_tcp_app_win),
  399. 4 * tp->advmss);
  400. }
  401. /* Force reservation of one segment. */
  402. if (sysctl_tcp_app_win &&
  403. tp->window_clamp > 2 * tp->advmss &&
  404. tp->window_clamp + tp->advmss > maxwin)
  405. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  406. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  407. tp->snd_cwnd_stamp = tcp_jiffies32;
  408. }
  409. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  410. static void tcp_clamp_window(struct sock *sk)
  411. {
  412. struct tcp_sock *tp = tcp_sk(sk);
  413. struct inet_connection_sock *icsk = inet_csk(sk);
  414. icsk->icsk_ack.quick = 0;
  415. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  416. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  417. !tcp_under_memory_pressure(sk) &&
  418. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  419. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  420. sysctl_tcp_rmem[2]);
  421. }
  422. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  423. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  424. }
  425. /* Initialize RCV_MSS value.
  426. * RCV_MSS is an our guess about MSS used by the peer.
  427. * We haven't any direct information about the MSS.
  428. * It's better to underestimate the RCV_MSS rather than overestimate.
  429. * Overestimations make us ACKing less frequently than needed.
  430. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  431. */
  432. void tcp_initialize_rcv_mss(struct sock *sk)
  433. {
  434. const struct tcp_sock *tp = tcp_sk(sk);
  435. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  436. hint = min(hint, tp->rcv_wnd / 2);
  437. hint = min(hint, TCP_MSS_DEFAULT);
  438. hint = max(hint, TCP_MIN_MSS);
  439. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  440. }
  441. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  442. /* Receiver "autotuning" code.
  443. *
  444. * The algorithm for RTT estimation w/o timestamps is based on
  445. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  446. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  447. *
  448. * More detail on this code can be found at
  449. * <http://staff.psc.edu/jheffner/>,
  450. * though this reference is out of date. A new paper
  451. * is pending.
  452. */
  453. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  454. {
  455. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  456. long m = sample;
  457. if (m == 0)
  458. m = 1;
  459. if (new_sample != 0) {
  460. /* If we sample in larger samples in the non-timestamp
  461. * case, we could grossly overestimate the RTT especially
  462. * with chatty applications or bulk transfer apps which
  463. * are stalled on filesystem I/O.
  464. *
  465. * Also, since we are only going for a minimum in the
  466. * non-timestamp case, we do not smooth things out
  467. * else with timestamps disabled convergence takes too
  468. * long.
  469. */
  470. if (!win_dep) {
  471. m -= (new_sample >> 3);
  472. new_sample += m;
  473. } else {
  474. m <<= 3;
  475. if (m < new_sample)
  476. new_sample = m;
  477. }
  478. } else {
  479. /* No previous measure. */
  480. new_sample = m << 3;
  481. }
  482. tp->rcv_rtt_est.rtt_us = new_sample;
  483. }
  484. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  485. {
  486. u32 delta_us;
  487. if (tp->rcv_rtt_est.time == 0)
  488. goto new_measure;
  489. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  490. return;
  491. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  492. tcp_rcv_rtt_update(tp, delta_us, 1);
  493. new_measure:
  494. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  495. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  496. }
  497. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  498. const struct sk_buff *skb)
  499. {
  500. struct tcp_sock *tp = tcp_sk(sk);
  501. if (tp->rx_opt.rcv_tsecr &&
  502. (TCP_SKB_CB(skb)->end_seq -
  503. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  504. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  505. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  506. tcp_rcv_rtt_update(tp, delta_us, 0);
  507. }
  508. }
  509. /*
  510. * This function should be called every time data is copied to user space.
  511. * It calculates the appropriate TCP receive buffer space.
  512. */
  513. void tcp_rcv_space_adjust(struct sock *sk)
  514. {
  515. struct tcp_sock *tp = tcp_sk(sk);
  516. int time;
  517. int copied;
  518. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  519. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  520. return;
  521. /* Number of bytes copied to user in last RTT */
  522. copied = tp->copied_seq - tp->rcvq_space.seq;
  523. if (copied <= tp->rcvq_space.space)
  524. goto new_measure;
  525. /* A bit of theory :
  526. * copied = bytes received in previous RTT, our base window
  527. * To cope with packet losses, we need a 2x factor
  528. * To cope with slow start, and sender growing its cwin by 100 %
  529. * every RTT, we need a 4x factor, because the ACK we are sending
  530. * now is for the next RTT, not the current one :
  531. * <prev RTT . ><current RTT .. ><next RTT .... >
  532. */
  533. if (sysctl_tcp_moderate_rcvbuf &&
  534. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  535. int rcvwin, rcvmem, rcvbuf;
  536. /* minimal window to cope with packet losses, assuming
  537. * steady state. Add some cushion because of small variations.
  538. */
  539. rcvwin = (copied << 1) + 16 * tp->advmss;
  540. /* If rate increased by 25%,
  541. * assume slow start, rcvwin = 3 * copied
  542. * If rate increased by 50%,
  543. * assume sender can use 2x growth, rcvwin = 4 * copied
  544. */
  545. if (copied >=
  546. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  547. if (copied >=
  548. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  549. rcvwin <<= 1;
  550. else
  551. rcvwin += (rcvwin >> 1);
  552. }
  553. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  554. while (tcp_win_from_space(rcvmem) < tp->advmss)
  555. rcvmem += 128;
  556. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  557. if (rcvbuf > sk->sk_rcvbuf) {
  558. sk->sk_rcvbuf = rcvbuf;
  559. /* Make the window clamp follow along. */
  560. tp->window_clamp = rcvwin;
  561. }
  562. }
  563. tp->rcvq_space.space = copied;
  564. new_measure:
  565. tp->rcvq_space.seq = tp->copied_seq;
  566. tp->rcvq_space.time = tp->tcp_mstamp;
  567. }
  568. /* There is something which you must keep in mind when you analyze the
  569. * behavior of the tp->ato delayed ack timeout interval. When a
  570. * connection starts up, we want to ack as quickly as possible. The
  571. * problem is that "good" TCP's do slow start at the beginning of data
  572. * transmission. The means that until we send the first few ACK's the
  573. * sender will sit on his end and only queue most of his data, because
  574. * he can only send snd_cwnd unacked packets at any given time. For
  575. * each ACK we send, he increments snd_cwnd and transmits more of his
  576. * queue. -DaveM
  577. */
  578. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  579. {
  580. struct tcp_sock *tp = tcp_sk(sk);
  581. struct inet_connection_sock *icsk = inet_csk(sk);
  582. u32 now;
  583. inet_csk_schedule_ack(sk);
  584. tcp_measure_rcv_mss(sk, skb);
  585. tcp_rcv_rtt_measure(tp);
  586. now = tcp_jiffies32;
  587. if (!icsk->icsk_ack.ato) {
  588. /* The _first_ data packet received, initialize
  589. * delayed ACK engine.
  590. */
  591. tcp_incr_quickack(sk);
  592. icsk->icsk_ack.ato = TCP_ATO_MIN;
  593. } else {
  594. int m = now - icsk->icsk_ack.lrcvtime;
  595. if (m <= TCP_ATO_MIN / 2) {
  596. /* The fastest case is the first. */
  597. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  598. } else if (m < icsk->icsk_ack.ato) {
  599. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  600. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  601. icsk->icsk_ack.ato = icsk->icsk_rto;
  602. } else if (m > icsk->icsk_rto) {
  603. /* Too long gap. Apparently sender failed to
  604. * restart window, so that we send ACKs quickly.
  605. */
  606. tcp_incr_quickack(sk);
  607. sk_mem_reclaim(sk);
  608. }
  609. }
  610. icsk->icsk_ack.lrcvtime = now;
  611. tcp_ecn_check_ce(tp, skb);
  612. if (skb->len >= 128)
  613. tcp_grow_window(sk, skb);
  614. }
  615. /* Called to compute a smoothed rtt estimate. The data fed to this
  616. * routine either comes from timestamps, or from segments that were
  617. * known _not_ to have been retransmitted [see Karn/Partridge
  618. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  619. * piece by Van Jacobson.
  620. * NOTE: the next three routines used to be one big routine.
  621. * To save cycles in the RFC 1323 implementation it was better to break
  622. * it up into three procedures. -- erics
  623. */
  624. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  625. {
  626. struct tcp_sock *tp = tcp_sk(sk);
  627. long m = mrtt_us; /* RTT */
  628. u32 srtt = tp->srtt_us;
  629. /* The following amusing code comes from Jacobson's
  630. * article in SIGCOMM '88. Note that rtt and mdev
  631. * are scaled versions of rtt and mean deviation.
  632. * This is designed to be as fast as possible
  633. * m stands for "measurement".
  634. *
  635. * On a 1990 paper the rto value is changed to:
  636. * RTO = rtt + 4 * mdev
  637. *
  638. * Funny. This algorithm seems to be very broken.
  639. * These formulae increase RTO, when it should be decreased, increase
  640. * too slowly, when it should be increased quickly, decrease too quickly
  641. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  642. * does not matter how to _calculate_ it. Seems, it was trap
  643. * that VJ failed to avoid. 8)
  644. */
  645. if (srtt != 0) {
  646. m -= (srtt >> 3); /* m is now error in rtt est */
  647. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  648. if (m < 0) {
  649. m = -m; /* m is now abs(error) */
  650. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  651. /* This is similar to one of Eifel findings.
  652. * Eifel blocks mdev updates when rtt decreases.
  653. * This solution is a bit different: we use finer gain
  654. * for mdev in this case (alpha*beta).
  655. * Like Eifel it also prevents growth of rto,
  656. * but also it limits too fast rto decreases,
  657. * happening in pure Eifel.
  658. */
  659. if (m > 0)
  660. m >>= 3;
  661. } else {
  662. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  663. }
  664. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  665. if (tp->mdev_us > tp->mdev_max_us) {
  666. tp->mdev_max_us = tp->mdev_us;
  667. if (tp->mdev_max_us > tp->rttvar_us)
  668. tp->rttvar_us = tp->mdev_max_us;
  669. }
  670. if (after(tp->snd_una, tp->rtt_seq)) {
  671. if (tp->mdev_max_us < tp->rttvar_us)
  672. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  673. tp->rtt_seq = tp->snd_nxt;
  674. tp->mdev_max_us = tcp_rto_min_us(sk);
  675. }
  676. } else {
  677. /* no previous measure. */
  678. srtt = m << 3; /* take the measured time to be rtt */
  679. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  680. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  681. tp->mdev_max_us = tp->rttvar_us;
  682. tp->rtt_seq = tp->snd_nxt;
  683. }
  684. tp->srtt_us = max(1U, srtt);
  685. }
  686. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  687. * Note: TCP stack does not yet implement pacing.
  688. * FQ packet scheduler can be used to implement cheap but effective
  689. * TCP pacing, to smooth the burst on large writes when packets
  690. * in flight is significantly lower than cwnd (or rwin)
  691. */
  692. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  693. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  694. static void tcp_update_pacing_rate(struct sock *sk)
  695. {
  696. const struct tcp_sock *tp = tcp_sk(sk);
  697. u64 rate;
  698. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  699. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  700. /* current rate is (cwnd * mss) / srtt
  701. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  702. * In Congestion Avoidance phase, set it to 120 % the current rate.
  703. *
  704. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  705. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  706. * end of slow start and should slow down.
  707. */
  708. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  709. rate *= sysctl_tcp_pacing_ss_ratio;
  710. else
  711. rate *= sysctl_tcp_pacing_ca_ratio;
  712. rate *= max(tp->snd_cwnd, tp->packets_out);
  713. if (likely(tp->srtt_us))
  714. do_div(rate, tp->srtt_us);
  715. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  716. * without any lock. We want to make sure compiler wont store
  717. * intermediate values in this location.
  718. */
  719. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  720. sk->sk_max_pacing_rate);
  721. }
  722. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  723. * routine referred to above.
  724. */
  725. static void tcp_set_rto(struct sock *sk)
  726. {
  727. const struct tcp_sock *tp = tcp_sk(sk);
  728. /* Old crap is replaced with new one. 8)
  729. *
  730. * More seriously:
  731. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  732. * It cannot be less due to utterly erratic ACK generation made
  733. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  734. * to do with delayed acks, because at cwnd>2 true delack timeout
  735. * is invisible. Actually, Linux-2.4 also generates erratic
  736. * ACKs in some circumstances.
  737. */
  738. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  739. /* 2. Fixups made earlier cannot be right.
  740. * If we do not estimate RTO correctly without them,
  741. * all the algo is pure shit and should be replaced
  742. * with correct one. It is exactly, which we pretend to do.
  743. */
  744. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  745. * guarantees that rto is higher.
  746. */
  747. tcp_bound_rto(sk);
  748. }
  749. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  750. {
  751. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  752. if (!cwnd)
  753. cwnd = TCP_INIT_CWND;
  754. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  755. }
  756. /*
  757. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  758. * disables it when reordering is detected
  759. */
  760. void tcp_disable_fack(struct tcp_sock *tp)
  761. {
  762. /* RFC3517 uses different metric in lost marker => reset on change */
  763. if (tcp_is_fack(tp))
  764. tp->lost_skb_hint = NULL;
  765. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  766. }
  767. /* Take a notice that peer is sending D-SACKs */
  768. static void tcp_dsack_seen(struct tcp_sock *tp)
  769. {
  770. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  771. }
  772. static void tcp_update_reordering(struct sock *sk, const int metric,
  773. const int ts)
  774. {
  775. struct tcp_sock *tp = tcp_sk(sk);
  776. int mib_idx;
  777. if (WARN_ON_ONCE(metric < 0))
  778. return;
  779. if (metric > tp->reordering) {
  780. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  781. #if FASTRETRANS_DEBUG > 1
  782. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  783. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  784. tp->reordering,
  785. tp->fackets_out,
  786. tp->sacked_out,
  787. tp->undo_marker ? tp->undo_retrans : 0);
  788. #endif
  789. tcp_disable_fack(tp);
  790. }
  791. tp->rack.reord = 1;
  792. /* This exciting event is worth to be remembered. 8) */
  793. if (ts)
  794. mib_idx = LINUX_MIB_TCPTSREORDER;
  795. else if (tcp_is_reno(tp))
  796. mib_idx = LINUX_MIB_TCPRENOREORDER;
  797. else if (tcp_is_fack(tp))
  798. mib_idx = LINUX_MIB_TCPFACKREORDER;
  799. else
  800. mib_idx = LINUX_MIB_TCPSACKREORDER;
  801. NET_INC_STATS(sock_net(sk), mib_idx);
  802. }
  803. /* This must be called before lost_out is incremented */
  804. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  805. {
  806. if (!tp->retransmit_skb_hint ||
  807. before(TCP_SKB_CB(skb)->seq,
  808. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  809. tp->retransmit_skb_hint = skb;
  810. }
  811. /* Sum the number of packets on the wire we have marked as lost.
  812. * There are two cases we care about here:
  813. * a) Packet hasn't been marked lost (nor retransmitted),
  814. * and this is the first loss.
  815. * b) Packet has been marked both lost and retransmitted,
  816. * and this means we think it was lost again.
  817. */
  818. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  819. {
  820. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  821. if (!(sacked & TCPCB_LOST) ||
  822. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  823. tp->lost += tcp_skb_pcount(skb);
  824. }
  825. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  826. {
  827. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  828. tcp_verify_retransmit_hint(tp, skb);
  829. tp->lost_out += tcp_skb_pcount(skb);
  830. tcp_sum_lost(tp, skb);
  831. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  832. }
  833. }
  834. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  835. {
  836. tcp_verify_retransmit_hint(tp, skb);
  837. tcp_sum_lost(tp, skb);
  838. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  839. tp->lost_out += tcp_skb_pcount(skb);
  840. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  841. }
  842. }
  843. /* This procedure tags the retransmission queue when SACKs arrive.
  844. *
  845. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  846. * Packets in queue with these bits set are counted in variables
  847. * sacked_out, retrans_out and lost_out, correspondingly.
  848. *
  849. * Valid combinations are:
  850. * Tag InFlight Description
  851. * 0 1 - orig segment is in flight.
  852. * S 0 - nothing flies, orig reached receiver.
  853. * L 0 - nothing flies, orig lost by net.
  854. * R 2 - both orig and retransmit are in flight.
  855. * L|R 1 - orig is lost, retransmit is in flight.
  856. * S|R 1 - orig reached receiver, retrans is still in flight.
  857. * (L|S|R is logically valid, it could occur when L|R is sacked,
  858. * but it is equivalent to plain S and code short-curcuits it to S.
  859. * L|S is logically invalid, it would mean -1 packet in flight 8))
  860. *
  861. * These 6 states form finite state machine, controlled by the following events:
  862. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  863. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  864. * 3. Loss detection event of two flavors:
  865. * A. Scoreboard estimator decided the packet is lost.
  866. * A'. Reno "three dupacks" marks head of queue lost.
  867. * A''. Its FACK modification, head until snd.fack is lost.
  868. * B. SACK arrives sacking SND.NXT at the moment, when the
  869. * segment was retransmitted.
  870. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  871. *
  872. * It is pleasant to note, that state diagram turns out to be commutative,
  873. * so that we are allowed not to be bothered by order of our actions,
  874. * when multiple events arrive simultaneously. (see the function below).
  875. *
  876. * Reordering detection.
  877. * --------------------
  878. * Reordering metric is maximal distance, which a packet can be displaced
  879. * in packet stream. With SACKs we can estimate it:
  880. *
  881. * 1. SACK fills old hole and the corresponding segment was not
  882. * ever retransmitted -> reordering. Alas, we cannot use it
  883. * when segment was retransmitted.
  884. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  885. * for retransmitted and already SACKed segment -> reordering..
  886. * Both of these heuristics are not used in Loss state, when we cannot
  887. * account for retransmits accurately.
  888. *
  889. * SACK block validation.
  890. * ----------------------
  891. *
  892. * SACK block range validation checks that the received SACK block fits to
  893. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  894. * Note that SND.UNA is not included to the range though being valid because
  895. * it means that the receiver is rather inconsistent with itself reporting
  896. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  897. * perfectly valid, however, in light of RFC2018 which explicitly states
  898. * that "SACK block MUST reflect the newest segment. Even if the newest
  899. * segment is going to be discarded ...", not that it looks very clever
  900. * in case of head skb. Due to potentional receiver driven attacks, we
  901. * choose to avoid immediate execution of a walk in write queue due to
  902. * reneging and defer head skb's loss recovery to standard loss recovery
  903. * procedure that will eventually trigger (nothing forbids us doing this).
  904. *
  905. * Implements also blockage to start_seq wrap-around. Problem lies in the
  906. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  907. * there's no guarantee that it will be before snd_nxt (n). The problem
  908. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  909. * wrap (s_w):
  910. *
  911. * <- outs wnd -> <- wrapzone ->
  912. * u e n u_w e_w s n_w
  913. * | | | | | | |
  914. * |<------------+------+----- TCP seqno space --------------+---------->|
  915. * ...-- <2^31 ->| |<--------...
  916. * ...---- >2^31 ------>| |<--------...
  917. *
  918. * Current code wouldn't be vulnerable but it's better still to discard such
  919. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  920. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  921. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  922. * equal to the ideal case (infinite seqno space without wrap caused issues).
  923. *
  924. * With D-SACK the lower bound is extended to cover sequence space below
  925. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  926. * again, D-SACK block must not to go across snd_una (for the same reason as
  927. * for the normal SACK blocks, explained above). But there all simplicity
  928. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  929. * fully below undo_marker they do not affect behavior in anyway and can
  930. * therefore be safely ignored. In rare cases (which are more or less
  931. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  932. * fragmentation and packet reordering past skb's retransmission. To consider
  933. * them correctly, the acceptable range must be extended even more though
  934. * the exact amount is rather hard to quantify. However, tp->max_window can
  935. * be used as an exaggerated estimate.
  936. */
  937. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  938. u32 start_seq, u32 end_seq)
  939. {
  940. /* Too far in future, or reversed (interpretation is ambiguous) */
  941. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  942. return false;
  943. /* Nasty start_seq wrap-around check (see comments above) */
  944. if (!before(start_seq, tp->snd_nxt))
  945. return false;
  946. /* In outstanding window? ...This is valid exit for D-SACKs too.
  947. * start_seq == snd_una is non-sensical (see comments above)
  948. */
  949. if (after(start_seq, tp->snd_una))
  950. return true;
  951. if (!is_dsack || !tp->undo_marker)
  952. return false;
  953. /* ...Then it's D-SACK, and must reside below snd_una completely */
  954. if (after(end_seq, tp->snd_una))
  955. return false;
  956. if (!before(start_seq, tp->undo_marker))
  957. return true;
  958. /* Too old */
  959. if (!after(end_seq, tp->undo_marker))
  960. return false;
  961. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  962. * start_seq < undo_marker and end_seq >= undo_marker.
  963. */
  964. return !before(start_seq, end_seq - tp->max_window);
  965. }
  966. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  967. struct tcp_sack_block_wire *sp, int num_sacks,
  968. u32 prior_snd_una)
  969. {
  970. struct tcp_sock *tp = tcp_sk(sk);
  971. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  972. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  973. bool dup_sack = false;
  974. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  975. dup_sack = true;
  976. tcp_dsack_seen(tp);
  977. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  978. } else if (num_sacks > 1) {
  979. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  980. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  981. if (!after(end_seq_0, end_seq_1) &&
  982. !before(start_seq_0, start_seq_1)) {
  983. dup_sack = true;
  984. tcp_dsack_seen(tp);
  985. NET_INC_STATS(sock_net(sk),
  986. LINUX_MIB_TCPDSACKOFORECV);
  987. }
  988. }
  989. /* D-SACK for already forgotten data... Do dumb counting. */
  990. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  991. !after(end_seq_0, prior_snd_una) &&
  992. after(end_seq_0, tp->undo_marker))
  993. tp->undo_retrans--;
  994. return dup_sack;
  995. }
  996. struct tcp_sacktag_state {
  997. int reord;
  998. int fack_count;
  999. /* Timestamps for earliest and latest never-retransmitted segment
  1000. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1001. * but congestion control should still get an accurate delay signal.
  1002. */
  1003. u64 first_sackt;
  1004. u64 last_sackt;
  1005. struct rate_sample *rate;
  1006. int flag;
  1007. };
  1008. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1009. * the incoming SACK may not exactly match but we can find smaller MSS
  1010. * aligned portion of it that matches. Therefore we might need to fragment
  1011. * which may fail and creates some hassle (caller must handle error case
  1012. * returns).
  1013. *
  1014. * FIXME: this could be merged to shift decision code
  1015. */
  1016. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1017. u32 start_seq, u32 end_seq)
  1018. {
  1019. int err;
  1020. bool in_sack;
  1021. unsigned int pkt_len;
  1022. unsigned int mss;
  1023. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1024. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1025. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1026. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1027. mss = tcp_skb_mss(skb);
  1028. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1029. if (!in_sack) {
  1030. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1031. if (pkt_len < mss)
  1032. pkt_len = mss;
  1033. } else {
  1034. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1035. if (pkt_len < mss)
  1036. return -EINVAL;
  1037. }
  1038. /* Round if necessary so that SACKs cover only full MSSes
  1039. * and/or the remaining small portion (if present)
  1040. */
  1041. if (pkt_len > mss) {
  1042. unsigned int new_len = (pkt_len / mss) * mss;
  1043. if (!in_sack && new_len < pkt_len)
  1044. new_len += mss;
  1045. pkt_len = new_len;
  1046. }
  1047. if (pkt_len >= skb->len && !in_sack)
  1048. return 0;
  1049. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1050. if (err < 0)
  1051. return err;
  1052. }
  1053. return in_sack;
  1054. }
  1055. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1056. static u8 tcp_sacktag_one(struct sock *sk,
  1057. struct tcp_sacktag_state *state, u8 sacked,
  1058. u32 start_seq, u32 end_seq,
  1059. int dup_sack, int pcount,
  1060. u64 xmit_time)
  1061. {
  1062. struct tcp_sock *tp = tcp_sk(sk);
  1063. int fack_count = state->fack_count;
  1064. /* Account D-SACK for retransmitted packet. */
  1065. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1066. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1067. after(end_seq, tp->undo_marker))
  1068. tp->undo_retrans--;
  1069. if (sacked & TCPCB_SACKED_ACKED)
  1070. state->reord = min(fack_count, state->reord);
  1071. }
  1072. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1073. if (!after(end_seq, tp->snd_una))
  1074. return sacked;
  1075. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1076. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1077. if (sacked & TCPCB_SACKED_RETRANS) {
  1078. /* If the segment is not tagged as lost,
  1079. * we do not clear RETRANS, believing
  1080. * that retransmission is still in flight.
  1081. */
  1082. if (sacked & TCPCB_LOST) {
  1083. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1084. tp->lost_out -= pcount;
  1085. tp->retrans_out -= pcount;
  1086. }
  1087. } else {
  1088. if (!(sacked & TCPCB_RETRANS)) {
  1089. /* New sack for not retransmitted frame,
  1090. * which was in hole. It is reordering.
  1091. */
  1092. if (before(start_seq,
  1093. tcp_highest_sack_seq(tp)))
  1094. state->reord = min(fack_count,
  1095. state->reord);
  1096. if (!after(end_seq, tp->high_seq))
  1097. state->flag |= FLAG_ORIG_SACK_ACKED;
  1098. if (state->first_sackt == 0)
  1099. state->first_sackt = xmit_time;
  1100. state->last_sackt = xmit_time;
  1101. }
  1102. if (sacked & TCPCB_LOST) {
  1103. sacked &= ~TCPCB_LOST;
  1104. tp->lost_out -= pcount;
  1105. }
  1106. }
  1107. sacked |= TCPCB_SACKED_ACKED;
  1108. state->flag |= FLAG_DATA_SACKED;
  1109. tp->sacked_out += pcount;
  1110. tp->delivered += pcount; /* Out-of-order packets delivered */
  1111. fack_count += pcount;
  1112. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1113. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1114. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1115. tp->lost_cnt_hint += pcount;
  1116. if (fack_count > tp->fackets_out)
  1117. tp->fackets_out = fack_count;
  1118. }
  1119. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1120. * frames and clear it. undo_retrans is decreased above, L|R frames
  1121. * are accounted above as well.
  1122. */
  1123. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1124. sacked &= ~TCPCB_SACKED_RETRANS;
  1125. tp->retrans_out -= pcount;
  1126. }
  1127. return sacked;
  1128. }
  1129. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1130. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1131. */
  1132. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1133. struct tcp_sacktag_state *state,
  1134. unsigned int pcount, int shifted, int mss,
  1135. bool dup_sack)
  1136. {
  1137. struct tcp_sock *tp = tcp_sk(sk);
  1138. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1139. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1140. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1141. BUG_ON(!pcount);
  1142. /* Adjust counters and hints for the newly sacked sequence
  1143. * range but discard the return value since prev is already
  1144. * marked. We must tag the range first because the seq
  1145. * advancement below implicitly advances
  1146. * tcp_highest_sack_seq() when skb is highest_sack.
  1147. */
  1148. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1149. start_seq, end_seq, dup_sack, pcount,
  1150. skb->skb_mstamp);
  1151. tcp_rate_skb_delivered(sk, skb, state->rate);
  1152. if (skb == tp->lost_skb_hint)
  1153. tp->lost_cnt_hint += pcount;
  1154. TCP_SKB_CB(prev)->end_seq += shifted;
  1155. TCP_SKB_CB(skb)->seq += shifted;
  1156. tcp_skb_pcount_add(prev, pcount);
  1157. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1158. tcp_skb_pcount_add(skb, -pcount);
  1159. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1160. * in theory this shouldn't be necessary but as long as DSACK
  1161. * code can come after this skb later on it's better to keep
  1162. * setting gso_size to something.
  1163. */
  1164. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1165. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1166. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1167. if (tcp_skb_pcount(skb) <= 1)
  1168. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1169. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1170. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1171. if (skb->len > 0) {
  1172. BUG_ON(!tcp_skb_pcount(skb));
  1173. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1174. return false;
  1175. }
  1176. /* Whole SKB was eaten :-) */
  1177. if (skb == tp->retransmit_skb_hint)
  1178. tp->retransmit_skb_hint = prev;
  1179. if (skb == tp->lost_skb_hint) {
  1180. tp->lost_skb_hint = prev;
  1181. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1182. }
  1183. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1184. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1185. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1186. TCP_SKB_CB(prev)->end_seq++;
  1187. if (skb == tcp_highest_sack(sk))
  1188. tcp_advance_highest_sack(sk, skb);
  1189. tcp_skb_collapse_tstamp(prev, skb);
  1190. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1191. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1192. tcp_unlink_write_queue(skb, sk);
  1193. sk_wmem_free_skb(sk, skb);
  1194. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1195. return true;
  1196. }
  1197. /* I wish gso_size would have a bit more sane initialization than
  1198. * something-or-zero which complicates things
  1199. */
  1200. static int tcp_skb_seglen(const struct sk_buff *skb)
  1201. {
  1202. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1203. }
  1204. /* Shifting pages past head area doesn't work */
  1205. static int skb_can_shift(const struct sk_buff *skb)
  1206. {
  1207. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1208. }
  1209. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1210. * skb.
  1211. */
  1212. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1213. struct tcp_sacktag_state *state,
  1214. u32 start_seq, u32 end_seq,
  1215. bool dup_sack)
  1216. {
  1217. struct tcp_sock *tp = tcp_sk(sk);
  1218. struct sk_buff *prev;
  1219. int mss;
  1220. int pcount = 0;
  1221. int len;
  1222. int in_sack;
  1223. if (!sk_can_gso(sk))
  1224. goto fallback;
  1225. /* Normally R but no L won't result in plain S */
  1226. if (!dup_sack &&
  1227. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1228. goto fallback;
  1229. if (!skb_can_shift(skb))
  1230. goto fallback;
  1231. /* This frame is about to be dropped (was ACKed). */
  1232. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1233. goto fallback;
  1234. /* Can only happen with delayed DSACK + discard craziness */
  1235. if (unlikely(skb == tcp_write_queue_head(sk)))
  1236. goto fallback;
  1237. prev = tcp_write_queue_prev(sk, skb);
  1238. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1239. goto fallback;
  1240. if (!tcp_skb_can_collapse_to(prev))
  1241. goto fallback;
  1242. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1243. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1244. if (in_sack) {
  1245. len = skb->len;
  1246. pcount = tcp_skb_pcount(skb);
  1247. mss = tcp_skb_seglen(skb);
  1248. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1249. * drop this restriction as unnecessary
  1250. */
  1251. if (mss != tcp_skb_seglen(prev))
  1252. goto fallback;
  1253. } else {
  1254. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1255. goto noop;
  1256. /* CHECKME: This is non-MSS split case only?, this will
  1257. * cause skipped skbs due to advancing loop btw, original
  1258. * has that feature too
  1259. */
  1260. if (tcp_skb_pcount(skb) <= 1)
  1261. goto noop;
  1262. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1263. if (!in_sack) {
  1264. /* TODO: head merge to next could be attempted here
  1265. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1266. * though it might not be worth of the additional hassle
  1267. *
  1268. * ...we can probably just fallback to what was done
  1269. * previously. We could try merging non-SACKed ones
  1270. * as well but it probably isn't going to buy off
  1271. * because later SACKs might again split them, and
  1272. * it would make skb timestamp tracking considerably
  1273. * harder problem.
  1274. */
  1275. goto fallback;
  1276. }
  1277. len = end_seq - TCP_SKB_CB(skb)->seq;
  1278. BUG_ON(len < 0);
  1279. BUG_ON(len > skb->len);
  1280. /* MSS boundaries should be honoured or else pcount will
  1281. * severely break even though it makes things bit trickier.
  1282. * Optimize common case to avoid most of the divides
  1283. */
  1284. mss = tcp_skb_mss(skb);
  1285. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1286. * drop this restriction as unnecessary
  1287. */
  1288. if (mss != tcp_skb_seglen(prev))
  1289. goto fallback;
  1290. if (len == mss) {
  1291. pcount = 1;
  1292. } else if (len < mss) {
  1293. goto noop;
  1294. } else {
  1295. pcount = len / mss;
  1296. len = pcount * mss;
  1297. }
  1298. }
  1299. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1300. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1301. goto fallback;
  1302. if (!skb_shift(prev, skb, len))
  1303. goto fallback;
  1304. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1305. goto out;
  1306. /* Hole filled allows collapsing with the next as well, this is very
  1307. * useful when hole on every nth skb pattern happens
  1308. */
  1309. if (prev == tcp_write_queue_tail(sk))
  1310. goto out;
  1311. skb = tcp_write_queue_next(sk, prev);
  1312. if (!skb_can_shift(skb) ||
  1313. (skb == tcp_send_head(sk)) ||
  1314. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1315. (mss != tcp_skb_seglen(skb)))
  1316. goto out;
  1317. len = skb->len;
  1318. if (skb_shift(prev, skb, len)) {
  1319. pcount += tcp_skb_pcount(skb);
  1320. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1321. }
  1322. out:
  1323. state->fack_count += pcount;
  1324. return prev;
  1325. noop:
  1326. return skb;
  1327. fallback:
  1328. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1329. return NULL;
  1330. }
  1331. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1332. struct tcp_sack_block *next_dup,
  1333. struct tcp_sacktag_state *state,
  1334. u32 start_seq, u32 end_seq,
  1335. bool dup_sack_in)
  1336. {
  1337. struct tcp_sock *tp = tcp_sk(sk);
  1338. struct sk_buff *tmp;
  1339. tcp_for_write_queue_from(skb, sk) {
  1340. int in_sack = 0;
  1341. bool dup_sack = dup_sack_in;
  1342. if (skb == tcp_send_head(sk))
  1343. break;
  1344. /* queue is in-order => we can short-circuit the walk early */
  1345. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1346. break;
  1347. if (next_dup &&
  1348. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1349. in_sack = tcp_match_skb_to_sack(sk, skb,
  1350. next_dup->start_seq,
  1351. next_dup->end_seq);
  1352. if (in_sack > 0)
  1353. dup_sack = true;
  1354. }
  1355. /* skb reference here is a bit tricky to get right, since
  1356. * shifting can eat and free both this skb and the next,
  1357. * so not even _safe variant of the loop is enough.
  1358. */
  1359. if (in_sack <= 0) {
  1360. tmp = tcp_shift_skb_data(sk, skb, state,
  1361. start_seq, end_seq, dup_sack);
  1362. if (tmp) {
  1363. if (tmp != skb) {
  1364. skb = tmp;
  1365. continue;
  1366. }
  1367. in_sack = 0;
  1368. } else {
  1369. in_sack = tcp_match_skb_to_sack(sk, skb,
  1370. start_seq,
  1371. end_seq);
  1372. }
  1373. }
  1374. if (unlikely(in_sack < 0))
  1375. break;
  1376. if (in_sack) {
  1377. TCP_SKB_CB(skb)->sacked =
  1378. tcp_sacktag_one(sk,
  1379. state,
  1380. TCP_SKB_CB(skb)->sacked,
  1381. TCP_SKB_CB(skb)->seq,
  1382. TCP_SKB_CB(skb)->end_seq,
  1383. dup_sack,
  1384. tcp_skb_pcount(skb),
  1385. skb->skb_mstamp);
  1386. tcp_rate_skb_delivered(sk, skb, state->rate);
  1387. if (!before(TCP_SKB_CB(skb)->seq,
  1388. tcp_highest_sack_seq(tp)))
  1389. tcp_advance_highest_sack(sk, skb);
  1390. }
  1391. state->fack_count += tcp_skb_pcount(skb);
  1392. }
  1393. return skb;
  1394. }
  1395. /* Avoid all extra work that is being done by sacktag while walking in
  1396. * a normal way
  1397. */
  1398. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1399. struct tcp_sacktag_state *state,
  1400. u32 skip_to_seq)
  1401. {
  1402. tcp_for_write_queue_from(skb, sk) {
  1403. if (skb == tcp_send_head(sk))
  1404. break;
  1405. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1406. break;
  1407. state->fack_count += tcp_skb_pcount(skb);
  1408. }
  1409. return skb;
  1410. }
  1411. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1412. struct sock *sk,
  1413. struct tcp_sack_block *next_dup,
  1414. struct tcp_sacktag_state *state,
  1415. u32 skip_to_seq)
  1416. {
  1417. if (!next_dup)
  1418. return skb;
  1419. if (before(next_dup->start_seq, skip_to_seq)) {
  1420. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1421. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1422. next_dup->start_seq, next_dup->end_seq,
  1423. 1);
  1424. }
  1425. return skb;
  1426. }
  1427. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1428. {
  1429. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1430. }
  1431. static int
  1432. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1433. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1434. {
  1435. struct tcp_sock *tp = tcp_sk(sk);
  1436. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1437. TCP_SKB_CB(ack_skb)->sacked);
  1438. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1439. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1440. struct tcp_sack_block *cache;
  1441. struct sk_buff *skb;
  1442. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1443. int used_sacks;
  1444. bool found_dup_sack = false;
  1445. int i, j;
  1446. int first_sack_index;
  1447. state->flag = 0;
  1448. state->reord = tp->packets_out;
  1449. if (!tp->sacked_out) {
  1450. if (WARN_ON(tp->fackets_out))
  1451. tp->fackets_out = 0;
  1452. tcp_highest_sack_reset(sk);
  1453. }
  1454. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1455. num_sacks, prior_snd_una);
  1456. if (found_dup_sack) {
  1457. state->flag |= FLAG_DSACKING_ACK;
  1458. tp->delivered++; /* A spurious retransmission is delivered */
  1459. }
  1460. /* Eliminate too old ACKs, but take into
  1461. * account more or less fresh ones, they can
  1462. * contain valid SACK info.
  1463. */
  1464. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1465. return 0;
  1466. if (!tp->packets_out)
  1467. goto out;
  1468. used_sacks = 0;
  1469. first_sack_index = 0;
  1470. for (i = 0; i < num_sacks; i++) {
  1471. bool dup_sack = !i && found_dup_sack;
  1472. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1473. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1474. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1475. sp[used_sacks].start_seq,
  1476. sp[used_sacks].end_seq)) {
  1477. int mib_idx;
  1478. if (dup_sack) {
  1479. if (!tp->undo_marker)
  1480. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1481. else
  1482. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1483. } else {
  1484. /* Don't count olds caused by ACK reordering */
  1485. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1486. !after(sp[used_sacks].end_seq, tp->snd_una))
  1487. continue;
  1488. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1489. }
  1490. NET_INC_STATS(sock_net(sk), mib_idx);
  1491. if (i == 0)
  1492. first_sack_index = -1;
  1493. continue;
  1494. }
  1495. /* Ignore very old stuff early */
  1496. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1497. continue;
  1498. used_sacks++;
  1499. }
  1500. /* order SACK blocks to allow in order walk of the retrans queue */
  1501. for (i = used_sacks - 1; i > 0; i--) {
  1502. for (j = 0; j < i; j++) {
  1503. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1504. swap(sp[j], sp[j + 1]);
  1505. /* Track where the first SACK block goes to */
  1506. if (j == first_sack_index)
  1507. first_sack_index = j + 1;
  1508. }
  1509. }
  1510. }
  1511. skb = tcp_write_queue_head(sk);
  1512. state->fack_count = 0;
  1513. i = 0;
  1514. if (!tp->sacked_out) {
  1515. /* It's already past, so skip checking against it */
  1516. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1517. } else {
  1518. cache = tp->recv_sack_cache;
  1519. /* Skip empty blocks in at head of the cache */
  1520. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1521. !cache->end_seq)
  1522. cache++;
  1523. }
  1524. while (i < used_sacks) {
  1525. u32 start_seq = sp[i].start_seq;
  1526. u32 end_seq = sp[i].end_seq;
  1527. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1528. struct tcp_sack_block *next_dup = NULL;
  1529. if (found_dup_sack && ((i + 1) == first_sack_index))
  1530. next_dup = &sp[i + 1];
  1531. /* Skip too early cached blocks */
  1532. while (tcp_sack_cache_ok(tp, cache) &&
  1533. !before(start_seq, cache->end_seq))
  1534. cache++;
  1535. /* Can skip some work by looking recv_sack_cache? */
  1536. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1537. after(end_seq, cache->start_seq)) {
  1538. /* Head todo? */
  1539. if (before(start_seq, cache->start_seq)) {
  1540. skb = tcp_sacktag_skip(skb, sk, state,
  1541. start_seq);
  1542. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1543. state,
  1544. start_seq,
  1545. cache->start_seq,
  1546. dup_sack);
  1547. }
  1548. /* Rest of the block already fully processed? */
  1549. if (!after(end_seq, cache->end_seq))
  1550. goto advance_sp;
  1551. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1552. state,
  1553. cache->end_seq);
  1554. /* ...tail remains todo... */
  1555. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1556. /* ...but better entrypoint exists! */
  1557. skb = tcp_highest_sack(sk);
  1558. if (!skb)
  1559. break;
  1560. state->fack_count = tp->fackets_out;
  1561. cache++;
  1562. goto walk;
  1563. }
  1564. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1565. /* Check overlap against next cached too (past this one already) */
  1566. cache++;
  1567. continue;
  1568. }
  1569. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1570. skb = tcp_highest_sack(sk);
  1571. if (!skb)
  1572. break;
  1573. state->fack_count = tp->fackets_out;
  1574. }
  1575. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1576. walk:
  1577. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1578. start_seq, end_seq, dup_sack);
  1579. advance_sp:
  1580. i++;
  1581. }
  1582. /* Clear the head of the cache sack blocks so we can skip it next time */
  1583. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1584. tp->recv_sack_cache[i].start_seq = 0;
  1585. tp->recv_sack_cache[i].end_seq = 0;
  1586. }
  1587. for (j = 0; j < used_sacks; j++)
  1588. tp->recv_sack_cache[i++] = sp[j];
  1589. if ((state->reord < tp->fackets_out) &&
  1590. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1591. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1592. tcp_verify_left_out(tp);
  1593. out:
  1594. #if FASTRETRANS_DEBUG > 0
  1595. WARN_ON((int)tp->sacked_out < 0);
  1596. WARN_ON((int)tp->lost_out < 0);
  1597. WARN_ON((int)tp->retrans_out < 0);
  1598. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1599. #endif
  1600. return state->flag;
  1601. }
  1602. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1603. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1604. */
  1605. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1606. {
  1607. u32 holes;
  1608. holes = max(tp->lost_out, 1U);
  1609. holes = min(holes, tp->packets_out);
  1610. if ((tp->sacked_out + holes) > tp->packets_out) {
  1611. tp->sacked_out = tp->packets_out - holes;
  1612. return true;
  1613. }
  1614. return false;
  1615. }
  1616. /* If we receive more dupacks than we expected counting segments
  1617. * in assumption of absent reordering, interpret this as reordering.
  1618. * The only another reason could be bug in receiver TCP.
  1619. */
  1620. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1621. {
  1622. struct tcp_sock *tp = tcp_sk(sk);
  1623. if (tcp_limit_reno_sacked(tp))
  1624. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1625. }
  1626. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1627. static void tcp_add_reno_sack(struct sock *sk)
  1628. {
  1629. struct tcp_sock *tp = tcp_sk(sk);
  1630. u32 prior_sacked = tp->sacked_out;
  1631. tp->sacked_out++;
  1632. tcp_check_reno_reordering(sk, 0);
  1633. if (tp->sacked_out > prior_sacked)
  1634. tp->delivered++; /* Some out-of-order packet is delivered */
  1635. tcp_verify_left_out(tp);
  1636. }
  1637. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1638. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1639. {
  1640. struct tcp_sock *tp = tcp_sk(sk);
  1641. if (acked > 0) {
  1642. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1643. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1644. if (acked - 1 >= tp->sacked_out)
  1645. tp->sacked_out = 0;
  1646. else
  1647. tp->sacked_out -= acked - 1;
  1648. }
  1649. tcp_check_reno_reordering(sk, acked);
  1650. tcp_verify_left_out(tp);
  1651. }
  1652. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1653. {
  1654. tp->sacked_out = 0;
  1655. }
  1656. void tcp_clear_retrans(struct tcp_sock *tp)
  1657. {
  1658. tp->retrans_out = 0;
  1659. tp->lost_out = 0;
  1660. tp->undo_marker = 0;
  1661. tp->undo_retrans = -1;
  1662. tp->fackets_out = 0;
  1663. tp->sacked_out = 0;
  1664. }
  1665. static inline void tcp_init_undo(struct tcp_sock *tp)
  1666. {
  1667. tp->undo_marker = tp->snd_una;
  1668. /* Retransmission still in flight may cause DSACKs later. */
  1669. tp->undo_retrans = tp->retrans_out ? : -1;
  1670. }
  1671. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1672. * and reset tags completely, otherwise preserve SACKs. If receiver
  1673. * dropped its ofo queue, we will know this due to reneging detection.
  1674. */
  1675. void tcp_enter_loss(struct sock *sk)
  1676. {
  1677. const struct inet_connection_sock *icsk = inet_csk(sk);
  1678. struct tcp_sock *tp = tcp_sk(sk);
  1679. struct net *net = sock_net(sk);
  1680. struct sk_buff *skb;
  1681. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1682. bool is_reneg; /* is receiver reneging on SACKs? */
  1683. bool mark_lost;
  1684. /* Reduce ssthresh if it has not yet been made inside this window. */
  1685. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1686. !after(tp->high_seq, tp->snd_una) ||
  1687. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1688. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1689. tp->prior_cwnd = tp->snd_cwnd;
  1690. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1691. tcp_ca_event(sk, CA_EVENT_LOSS);
  1692. tcp_init_undo(tp);
  1693. }
  1694. tp->snd_cwnd = 1;
  1695. tp->snd_cwnd_cnt = 0;
  1696. tp->snd_cwnd_stamp = tcp_jiffies32;
  1697. tp->retrans_out = 0;
  1698. tp->lost_out = 0;
  1699. if (tcp_is_reno(tp))
  1700. tcp_reset_reno_sack(tp);
  1701. skb = tcp_write_queue_head(sk);
  1702. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1703. if (is_reneg) {
  1704. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1705. tp->sacked_out = 0;
  1706. tp->fackets_out = 0;
  1707. }
  1708. tcp_clear_all_retrans_hints(tp);
  1709. tcp_for_write_queue(skb, sk) {
  1710. if (skb == tcp_send_head(sk))
  1711. break;
  1712. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1713. is_reneg);
  1714. if (mark_lost)
  1715. tcp_sum_lost(tp, skb);
  1716. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1717. if (mark_lost) {
  1718. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1719. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1720. tp->lost_out += tcp_skb_pcount(skb);
  1721. }
  1722. }
  1723. tcp_verify_left_out(tp);
  1724. /* Timeout in disordered state after receiving substantial DUPACKs
  1725. * suggests that the degree of reordering is over-estimated.
  1726. */
  1727. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1728. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1729. tp->reordering = min_t(unsigned int, tp->reordering,
  1730. net->ipv4.sysctl_tcp_reordering);
  1731. tcp_set_ca_state(sk, TCP_CA_Loss);
  1732. tp->high_seq = tp->snd_nxt;
  1733. tcp_ecn_queue_cwr(tp);
  1734. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1735. * loss recovery is underway except recurring timeout(s) on
  1736. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1737. *
  1738. * In theory F-RTO can be used repeatedly during loss recovery.
  1739. * In practice this interacts badly with broken middle-boxes that
  1740. * falsely raise the receive window, which results in repeated
  1741. * timeouts and stop-and-go behavior.
  1742. */
  1743. tp->frto = sysctl_tcp_frto &&
  1744. (new_recovery || icsk->icsk_retransmits) &&
  1745. !inet_csk(sk)->icsk_mtup.probe_size;
  1746. }
  1747. /* If ACK arrived pointing to a remembered SACK, it means that our
  1748. * remembered SACKs do not reflect real state of receiver i.e.
  1749. * receiver _host_ is heavily congested (or buggy).
  1750. *
  1751. * To avoid big spurious retransmission bursts due to transient SACK
  1752. * scoreboard oddities that look like reneging, we give the receiver a
  1753. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1754. * restore sanity to the SACK scoreboard. If the apparent reneging
  1755. * persists until this RTO then we'll clear the SACK scoreboard.
  1756. */
  1757. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1758. {
  1759. if (flag & FLAG_SACK_RENEGING) {
  1760. struct tcp_sock *tp = tcp_sk(sk);
  1761. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1762. msecs_to_jiffies(10));
  1763. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1764. delay, TCP_RTO_MAX);
  1765. return true;
  1766. }
  1767. return false;
  1768. }
  1769. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1770. {
  1771. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1772. }
  1773. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1774. * counter when SACK is enabled (without SACK, sacked_out is used for
  1775. * that purpose).
  1776. *
  1777. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1778. * segments up to the highest received SACK block so far and holes in
  1779. * between them.
  1780. *
  1781. * With reordering, holes may still be in flight, so RFC3517 recovery
  1782. * uses pure sacked_out (total number of SACKed segments) even though
  1783. * it violates the RFC that uses duplicate ACKs, often these are equal
  1784. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1785. * they differ. Since neither occurs due to loss, TCP should really
  1786. * ignore them.
  1787. */
  1788. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1789. {
  1790. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1791. }
  1792. /* Linux NewReno/SACK/FACK/ECN state machine.
  1793. * --------------------------------------
  1794. *
  1795. * "Open" Normal state, no dubious events, fast path.
  1796. * "Disorder" In all the respects it is "Open",
  1797. * but requires a bit more attention. It is entered when
  1798. * we see some SACKs or dupacks. It is split of "Open"
  1799. * mainly to move some processing from fast path to slow one.
  1800. * "CWR" CWND was reduced due to some Congestion Notification event.
  1801. * It can be ECN, ICMP source quench, local device congestion.
  1802. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1803. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1804. *
  1805. * tcp_fastretrans_alert() is entered:
  1806. * - each incoming ACK, if state is not "Open"
  1807. * - when arrived ACK is unusual, namely:
  1808. * * SACK
  1809. * * Duplicate ACK.
  1810. * * ECN ECE.
  1811. *
  1812. * Counting packets in flight is pretty simple.
  1813. *
  1814. * in_flight = packets_out - left_out + retrans_out
  1815. *
  1816. * packets_out is SND.NXT-SND.UNA counted in packets.
  1817. *
  1818. * retrans_out is number of retransmitted segments.
  1819. *
  1820. * left_out is number of segments left network, but not ACKed yet.
  1821. *
  1822. * left_out = sacked_out + lost_out
  1823. *
  1824. * sacked_out: Packets, which arrived to receiver out of order
  1825. * and hence not ACKed. With SACKs this number is simply
  1826. * amount of SACKed data. Even without SACKs
  1827. * it is easy to give pretty reliable estimate of this number,
  1828. * counting duplicate ACKs.
  1829. *
  1830. * lost_out: Packets lost by network. TCP has no explicit
  1831. * "loss notification" feedback from network (for now).
  1832. * It means that this number can be only _guessed_.
  1833. * Actually, it is the heuristics to predict lossage that
  1834. * distinguishes different algorithms.
  1835. *
  1836. * F.e. after RTO, when all the queue is considered as lost,
  1837. * lost_out = packets_out and in_flight = retrans_out.
  1838. *
  1839. * Essentially, we have now a few algorithms detecting
  1840. * lost packets.
  1841. *
  1842. * If the receiver supports SACK:
  1843. *
  1844. * RFC6675/3517: It is the conventional algorithm. A packet is
  1845. * considered lost if the number of higher sequence packets
  1846. * SACKed is greater than or equal the DUPACK thoreshold
  1847. * (reordering). This is implemented in tcp_mark_head_lost and
  1848. * tcp_update_scoreboard.
  1849. *
  1850. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1851. * (2017-) that checks timing instead of counting DUPACKs.
  1852. * Essentially a packet is considered lost if it's not S/ACKed
  1853. * after RTT + reordering_window, where both metrics are
  1854. * dynamically measured and adjusted. This is implemented in
  1855. * tcp_rack_mark_lost.
  1856. *
  1857. * FACK (Disabled by default. Subsumbed by RACK):
  1858. * It is the simplest heuristics. As soon as we decided
  1859. * that something is lost, we decide that _all_ not SACKed
  1860. * packets until the most forward SACK are lost. I.e.
  1861. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1862. * It is absolutely correct estimate, if network does not reorder
  1863. * packets. And it loses any connection to reality when reordering
  1864. * takes place. We use FACK by default until reordering
  1865. * is suspected on the path to this destination.
  1866. *
  1867. * If the receiver does not support SACK:
  1868. *
  1869. * NewReno (RFC6582): in Recovery we assume that one segment
  1870. * is lost (classic Reno). While we are in Recovery and
  1871. * a partial ACK arrives, we assume that one more packet
  1872. * is lost (NewReno). This heuristics are the same in NewReno
  1873. * and SACK.
  1874. *
  1875. * Really tricky (and requiring careful tuning) part of algorithm
  1876. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1877. * The first determines the moment _when_ we should reduce CWND and,
  1878. * hence, slow down forward transmission. In fact, it determines the moment
  1879. * when we decide that hole is caused by loss, rather than by a reorder.
  1880. *
  1881. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1882. * holes, caused by lost packets.
  1883. *
  1884. * And the most logically complicated part of algorithm is undo
  1885. * heuristics. We detect false retransmits due to both too early
  1886. * fast retransmit (reordering) and underestimated RTO, analyzing
  1887. * timestamps and D-SACKs. When we detect that some segments were
  1888. * retransmitted by mistake and CWND reduction was wrong, we undo
  1889. * window reduction and abort recovery phase. This logic is hidden
  1890. * inside several functions named tcp_try_undo_<something>.
  1891. */
  1892. /* This function decides, when we should leave Disordered state
  1893. * and enter Recovery phase, reducing congestion window.
  1894. *
  1895. * Main question: may we further continue forward transmission
  1896. * with the same cwnd?
  1897. */
  1898. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1899. {
  1900. struct tcp_sock *tp = tcp_sk(sk);
  1901. /* Trick#1: The loss is proven. */
  1902. if (tp->lost_out)
  1903. return true;
  1904. /* Not-A-Trick#2 : Classic rule... */
  1905. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1906. return true;
  1907. return false;
  1908. }
  1909. /* Detect loss in event "A" above by marking head of queue up as lost.
  1910. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1911. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1912. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1913. * the maximum SACKed segments to pass before reaching this limit.
  1914. */
  1915. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1916. {
  1917. struct tcp_sock *tp = tcp_sk(sk);
  1918. struct sk_buff *skb;
  1919. int cnt, oldcnt, lost;
  1920. unsigned int mss;
  1921. /* Use SACK to deduce losses of new sequences sent during recovery */
  1922. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1923. WARN_ON(packets > tp->packets_out);
  1924. if (tp->lost_skb_hint) {
  1925. skb = tp->lost_skb_hint;
  1926. cnt = tp->lost_cnt_hint;
  1927. /* Head already handled? */
  1928. if (mark_head && skb != tcp_write_queue_head(sk))
  1929. return;
  1930. } else {
  1931. skb = tcp_write_queue_head(sk);
  1932. cnt = 0;
  1933. }
  1934. tcp_for_write_queue_from(skb, sk) {
  1935. if (skb == tcp_send_head(sk))
  1936. break;
  1937. /* TODO: do this better */
  1938. /* this is not the most efficient way to do this... */
  1939. tp->lost_skb_hint = skb;
  1940. tp->lost_cnt_hint = cnt;
  1941. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1942. break;
  1943. oldcnt = cnt;
  1944. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1945. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1946. cnt += tcp_skb_pcount(skb);
  1947. if (cnt > packets) {
  1948. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1949. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1950. (oldcnt >= packets))
  1951. break;
  1952. mss = tcp_skb_mss(skb);
  1953. /* If needed, chop off the prefix to mark as lost. */
  1954. lost = (packets - oldcnt) * mss;
  1955. if (lost < skb->len &&
  1956. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1957. break;
  1958. cnt = packets;
  1959. }
  1960. tcp_skb_mark_lost(tp, skb);
  1961. if (mark_head)
  1962. break;
  1963. }
  1964. tcp_verify_left_out(tp);
  1965. }
  1966. /* Account newly detected lost packet(s) */
  1967. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1968. {
  1969. struct tcp_sock *tp = tcp_sk(sk);
  1970. if (tcp_is_reno(tp)) {
  1971. tcp_mark_head_lost(sk, 1, 1);
  1972. } else if (tcp_is_fack(tp)) {
  1973. int lost = tp->fackets_out - tp->reordering;
  1974. if (lost <= 0)
  1975. lost = 1;
  1976. tcp_mark_head_lost(sk, lost, 0);
  1977. } else {
  1978. int sacked_upto = tp->sacked_out - tp->reordering;
  1979. if (sacked_upto >= 0)
  1980. tcp_mark_head_lost(sk, sacked_upto, 0);
  1981. else if (fast_rexmit)
  1982. tcp_mark_head_lost(sk, 1, 1);
  1983. }
  1984. }
  1985. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1986. {
  1987. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1988. before(tp->rx_opt.rcv_tsecr, when);
  1989. }
  1990. /* skb is spurious retransmitted if the returned timestamp echo
  1991. * reply is prior to the skb transmission time
  1992. */
  1993. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1994. const struct sk_buff *skb)
  1995. {
  1996. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1997. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1998. }
  1999. /* Nothing was retransmitted or returned timestamp is less
  2000. * than timestamp of the first retransmission.
  2001. */
  2002. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2003. {
  2004. return !tp->retrans_stamp ||
  2005. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2006. }
  2007. /* Undo procedures. */
  2008. /* We can clear retrans_stamp when there are no retransmissions in the
  2009. * window. It would seem that it is trivially available for us in
  2010. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2011. * what will happen if errors occur when sending retransmission for the
  2012. * second time. ...It could the that such segment has only
  2013. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2014. * the head skb is enough except for some reneging corner cases that
  2015. * are not worth the effort.
  2016. *
  2017. * Main reason for all this complexity is the fact that connection dying
  2018. * time now depends on the validity of the retrans_stamp, in particular,
  2019. * that successive retransmissions of a segment must not advance
  2020. * retrans_stamp under any conditions.
  2021. */
  2022. static bool tcp_any_retrans_done(const struct sock *sk)
  2023. {
  2024. const struct tcp_sock *tp = tcp_sk(sk);
  2025. struct sk_buff *skb;
  2026. if (tp->retrans_out)
  2027. return true;
  2028. skb = tcp_write_queue_head(sk);
  2029. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2030. return true;
  2031. return false;
  2032. }
  2033. #if FASTRETRANS_DEBUG > 1
  2034. static void DBGUNDO(struct sock *sk, const char *msg)
  2035. {
  2036. struct tcp_sock *tp = tcp_sk(sk);
  2037. struct inet_sock *inet = inet_sk(sk);
  2038. if (sk->sk_family == AF_INET) {
  2039. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2040. msg,
  2041. &inet->inet_daddr, ntohs(inet->inet_dport),
  2042. tp->snd_cwnd, tcp_left_out(tp),
  2043. tp->snd_ssthresh, tp->prior_ssthresh,
  2044. tp->packets_out);
  2045. }
  2046. #if IS_ENABLED(CONFIG_IPV6)
  2047. else if (sk->sk_family == AF_INET6) {
  2048. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2049. msg,
  2050. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2051. tp->snd_cwnd, tcp_left_out(tp),
  2052. tp->snd_ssthresh, tp->prior_ssthresh,
  2053. tp->packets_out);
  2054. }
  2055. #endif
  2056. }
  2057. #else
  2058. #define DBGUNDO(x...) do { } while (0)
  2059. #endif
  2060. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2061. {
  2062. struct tcp_sock *tp = tcp_sk(sk);
  2063. if (unmark_loss) {
  2064. struct sk_buff *skb;
  2065. tcp_for_write_queue(skb, sk) {
  2066. if (skb == tcp_send_head(sk))
  2067. break;
  2068. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2069. }
  2070. tp->lost_out = 0;
  2071. tcp_clear_all_retrans_hints(tp);
  2072. }
  2073. if (tp->prior_ssthresh) {
  2074. const struct inet_connection_sock *icsk = inet_csk(sk);
  2075. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2076. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2077. tp->snd_ssthresh = tp->prior_ssthresh;
  2078. tcp_ecn_withdraw_cwr(tp);
  2079. }
  2080. }
  2081. tp->snd_cwnd_stamp = tcp_jiffies32;
  2082. tp->undo_marker = 0;
  2083. }
  2084. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2085. {
  2086. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2087. }
  2088. /* People celebrate: "We love our President!" */
  2089. static bool tcp_try_undo_recovery(struct sock *sk)
  2090. {
  2091. struct tcp_sock *tp = tcp_sk(sk);
  2092. if (tcp_may_undo(tp)) {
  2093. int mib_idx;
  2094. /* Happy end! We did not retransmit anything
  2095. * or our original transmission succeeded.
  2096. */
  2097. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2098. tcp_undo_cwnd_reduction(sk, false);
  2099. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2100. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2101. else
  2102. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2103. NET_INC_STATS(sock_net(sk), mib_idx);
  2104. }
  2105. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2106. /* Hold old state until something *above* high_seq
  2107. * is ACKed. For Reno it is MUST to prevent false
  2108. * fast retransmits (RFC2582). SACK TCP is safe. */
  2109. if (!tcp_any_retrans_done(sk))
  2110. tp->retrans_stamp = 0;
  2111. return true;
  2112. }
  2113. tcp_set_ca_state(sk, TCP_CA_Open);
  2114. return false;
  2115. }
  2116. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2117. static bool tcp_try_undo_dsack(struct sock *sk)
  2118. {
  2119. struct tcp_sock *tp = tcp_sk(sk);
  2120. if (tp->undo_marker && !tp->undo_retrans) {
  2121. DBGUNDO(sk, "D-SACK");
  2122. tcp_undo_cwnd_reduction(sk, false);
  2123. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2124. return true;
  2125. }
  2126. return false;
  2127. }
  2128. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2129. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2130. {
  2131. struct tcp_sock *tp = tcp_sk(sk);
  2132. if (frto_undo || tcp_may_undo(tp)) {
  2133. tcp_undo_cwnd_reduction(sk, true);
  2134. DBGUNDO(sk, "partial loss");
  2135. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2136. if (frto_undo)
  2137. NET_INC_STATS(sock_net(sk),
  2138. LINUX_MIB_TCPSPURIOUSRTOS);
  2139. inet_csk(sk)->icsk_retransmits = 0;
  2140. if (frto_undo || tcp_is_sack(tp))
  2141. tcp_set_ca_state(sk, TCP_CA_Open);
  2142. return true;
  2143. }
  2144. return false;
  2145. }
  2146. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2147. * It computes the number of packets to send (sndcnt) based on packets newly
  2148. * delivered:
  2149. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2150. * cwnd reductions across a full RTT.
  2151. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2152. * But when the retransmits are acked without further losses, PRR
  2153. * slow starts cwnd up to ssthresh to speed up the recovery.
  2154. */
  2155. static void tcp_init_cwnd_reduction(struct sock *sk)
  2156. {
  2157. struct tcp_sock *tp = tcp_sk(sk);
  2158. tp->high_seq = tp->snd_nxt;
  2159. tp->tlp_high_seq = 0;
  2160. tp->snd_cwnd_cnt = 0;
  2161. tp->prior_cwnd = tp->snd_cwnd;
  2162. tp->prr_delivered = 0;
  2163. tp->prr_out = 0;
  2164. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2165. tcp_ecn_queue_cwr(tp);
  2166. }
  2167. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. int sndcnt = 0;
  2171. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2172. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2173. return;
  2174. tp->prr_delivered += newly_acked_sacked;
  2175. if (delta < 0) {
  2176. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2177. tp->prior_cwnd - 1;
  2178. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2179. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2180. !(flag & FLAG_LOST_RETRANS)) {
  2181. sndcnt = min_t(int, delta,
  2182. max_t(int, tp->prr_delivered - tp->prr_out,
  2183. newly_acked_sacked) + 1);
  2184. } else {
  2185. sndcnt = min(delta, newly_acked_sacked);
  2186. }
  2187. /* Force a fast retransmit upon entering fast recovery */
  2188. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2189. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2190. }
  2191. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2192. {
  2193. struct tcp_sock *tp = tcp_sk(sk);
  2194. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2195. return;
  2196. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2197. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2198. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2199. tp->snd_cwnd = tp->snd_ssthresh;
  2200. tp->snd_cwnd_stamp = tcp_jiffies32;
  2201. }
  2202. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2203. }
  2204. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2205. void tcp_enter_cwr(struct sock *sk)
  2206. {
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. tp->prior_ssthresh = 0;
  2209. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2210. tp->undo_marker = 0;
  2211. tcp_init_cwnd_reduction(sk);
  2212. tcp_set_ca_state(sk, TCP_CA_CWR);
  2213. }
  2214. }
  2215. EXPORT_SYMBOL(tcp_enter_cwr);
  2216. static void tcp_try_keep_open(struct sock *sk)
  2217. {
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. int state = TCP_CA_Open;
  2220. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2221. state = TCP_CA_Disorder;
  2222. if (inet_csk(sk)->icsk_ca_state != state) {
  2223. tcp_set_ca_state(sk, state);
  2224. tp->high_seq = tp->snd_nxt;
  2225. }
  2226. }
  2227. static void tcp_try_to_open(struct sock *sk, int flag)
  2228. {
  2229. struct tcp_sock *tp = tcp_sk(sk);
  2230. tcp_verify_left_out(tp);
  2231. if (!tcp_any_retrans_done(sk))
  2232. tp->retrans_stamp = 0;
  2233. if (flag & FLAG_ECE)
  2234. tcp_enter_cwr(sk);
  2235. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2236. tcp_try_keep_open(sk);
  2237. }
  2238. }
  2239. static void tcp_mtup_probe_failed(struct sock *sk)
  2240. {
  2241. struct inet_connection_sock *icsk = inet_csk(sk);
  2242. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2243. icsk->icsk_mtup.probe_size = 0;
  2244. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2245. }
  2246. static void tcp_mtup_probe_success(struct sock *sk)
  2247. {
  2248. struct tcp_sock *tp = tcp_sk(sk);
  2249. struct inet_connection_sock *icsk = inet_csk(sk);
  2250. /* FIXME: breaks with very large cwnd */
  2251. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2252. tp->snd_cwnd = tp->snd_cwnd *
  2253. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2254. icsk->icsk_mtup.probe_size;
  2255. tp->snd_cwnd_cnt = 0;
  2256. tp->snd_cwnd_stamp = tcp_jiffies32;
  2257. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2258. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2259. icsk->icsk_mtup.probe_size = 0;
  2260. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2261. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2262. }
  2263. /* Do a simple retransmit without using the backoff mechanisms in
  2264. * tcp_timer. This is used for path mtu discovery.
  2265. * The socket is already locked here.
  2266. */
  2267. void tcp_simple_retransmit(struct sock *sk)
  2268. {
  2269. const struct inet_connection_sock *icsk = inet_csk(sk);
  2270. struct tcp_sock *tp = tcp_sk(sk);
  2271. struct sk_buff *skb;
  2272. unsigned int mss = tcp_current_mss(sk);
  2273. u32 prior_lost = tp->lost_out;
  2274. tcp_for_write_queue(skb, sk) {
  2275. if (skb == tcp_send_head(sk))
  2276. break;
  2277. if (tcp_skb_seglen(skb) > mss &&
  2278. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2279. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2280. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2281. tp->retrans_out -= tcp_skb_pcount(skb);
  2282. }
  2283. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2284. }
  2285. }
  2286. tcp_clear_retrans_hints_partial(tp);
  2287. if (prior_lost == tp->lost_out)
  2288. return;
  2289. if (tcp_is_reno(tp))
  2290. tcp_limit_reno_sacked(tp);
  2291. tcp_verify_left_out(tp);
  2292. /* Don't muck with the congestion window here.
  2293. * Reason is that we do not increase amount of _data_
  2294. * in network, but units changed and effective
  2295. * cwnd/ssthresh really reduced now.
  2296. */
  2297. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2298. tp->high_seq = tp->snd_nxt;
  2299. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2300. tp->prior_ssthresh = 0;
  2301. tp->undo_marker = 0;
  2302. tcp_set_ca_state(sk, TCP_CA_Loss);
  2303. }
  2304. tcp_xmit_retransmit_queue(sk);
  2305. }
  2306. EXPORT_SYMBOL(tcp_simple_retransmit);
  2307. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2308. {
  2309. struct tcp_sock *tp = tcp_sk(sk);
  2310. int mib_idx;
  2311. if (tcp_is_reno(tp))
  2312. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2313. else
  2314. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2315. NET_INC_STATS(sock_net(sk), mib_idx);
  2316. tp->prior_ssthresh = 0;
  2317. tcp_init_undo(tp);
  2318. if (!tcp_in_cwnd_reduction(sk)) {
  2319. if (!ece_ack)
  2320. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2321. tcp_init_cwnd_reduction(sk);
  2322. }
  2323. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2324. }
  2325. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2326. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2327. */
  2328. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2329. int *rexmit)
  2330. {
  2331. struct tcp_sock *tp = tcp_sk(sk);
  2332. bool recovered = !before(tp->snd_una, tp->high_seq);
  2333. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2334. tcp_try_undo_loss(sk, false))
  2335. return;
  2336. /* The ACK (s)acks some never-retransmitted data meaning not all
  2337. * the data packets before the timeout were lost. Therefore we
  2338. * undo the congestion window and state. This is essentially
  2339. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2340. * a retransmitted skb is permantly marked, we can apply such an
  2341. * operation even if F-RTO was not used.
  2342. */
  2343. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2344. tcp_try_undo_loss(sk, tp->undo_marker))
  2345. return;
  2346. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2347. if (after(tp->snd_nxt, tp->high_seq)) {
  2348. if (flag & FLAG_DATA_SACKED || is_dupack)
  2349. tp->frto = 0; /* Step 3.a. loss was real */
  2350. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2351. tp->high_seq = tp->snd_nxt;
  2352. /* Step 2.b. Try send new data (but deferred until cwnd
  2353. * is updated in tcp_ack()). Otherwise fall back to
  2354. * the conventional recovery.
  2355. */
  2356. if (tcp_send_head(sk) &&
  2357. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2358. *rexmit = REXMIT_NEW;
  2359. return;
  2360. }
  2361. tp->frto = 0;
  2362. }
  2363. }
  2364. if (recovered) {
  2365. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2366. tcp_try_undo_recovery(sk);
  2367. return;
  2368. }
  2369. if (tcp_is_reno(tp)) {
  2370. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2371. * delivered. Lower inflight to clock out (re)tranmissions.
  2372. */
  2373. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2374. tcp_add_reno_sack(sk);
  2375. else if (flag & FLAG_SND_UNA_ADVANCED)
  2376. tcp_reset_reno_sack(tp);
  2377. }
  2378. *rexmit = REXMIT_LOST;
  2379. }
  2380. /* Undo during fast recovery after partial ACK. */
  2381. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2382. {
  2383. struct tcp_sock *tp = tcp_sk(sk);
  2384. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2385. /* Plain luck! Hole if filled with delayed
  2386. * packet, rather than with a retransmit.
  2387. */
  2388. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2389. /* We are getting evidence that the reordering degree is higher
  2390. * than we realized. If there are no retransmits out then we
  2391. * can undo. Otherwise we clock out new packets but do not
  2392. * mark more packets lost or retransmit more.
  2393. */
  2394. if (tp->retrans_out)
  2395. return true;
  2396. if (!tcp_any_retrans_done(sk))
  2397. tp->retrans_stamp = 0;
  2398. DBGUNDO(sk, "partial recovery");
  2399. tcp_undo_cwnd_reduction(sk, true);
  2400. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2401. tcp_try_keep_open(sk);
  2402. return true;
  2403. }
  2404. return false;
  2405. }
  2406. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2407. {
  2408. struct tcp_sock *tp = tcp_sk(sk);
  2409. /* Use RACK to detect loss */
  2410. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2411. u32 prior_retrans = tp->retrans_out;
  2412. tcp_rack_mark_lost(sk);
  2413. if (prior_retrans > tp->retrans_out)
  2414. *ack_flag |= FLAG_LOST_RETRANS;
  2415. }
  2416. }
  2417. /* Process an event, which can update packets-in-flight not trivially.
  2418. * Main goal of this function is to calculate new estimate for left_out,
  2419. * taking into account both packets sitting in receiver's buffer and
  2420. * packets lost by network.
  2421. *
  2422. * Besides that it updates the congestion state when packet loss or ECN
  2423. * is detected. But it does not reduce the cwnd, it is done by the
  2424. * congestion control later.
  2425. *
  2426. * It does _not_ decide what to send, it is made in function
  2427. * tcp_xmit_retransmit_queue().
  2428. */
  2429. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2430. bool is_dupack, int *ack_flag, int *rexmit)
  2431. {
  2432. struct inet_connection_sock *icsk = inet_csk(sk);
  2433. struct tcp_sock *tp = tcp_sk(sk);
  2434. int fast_rexmit = 0, flag = *ack_flag;
  2435. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2436. (tcp_fackets_out(tp) > tp->reordering));
  2437. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2438. tp->sacked_out = 0;
  2439. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2440. tp->fackets_out = 0;
  2441. /* Now state machine starts.
  2442. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2443. if (flag & FLAG_ECE)
  2444. tp->prior_ssthresh = 0;
  2445. /* B. In all the states check for reneging SACKs. */
  2446. if (tcp_check_sack_reneging(sk, flag))
  2447. return;
  2448. /* C. Check consistency of the current state. */
  2449. tcp_verify_left_out(tp);
  2450. /* D. Check state exit conditions. State can be terminated
  2451. * when high_seq is ACKed. */
  2452. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2453. WARN_ON(tp->retrans_out != 0);
  2454. tp->retrans_stamp = 0;
  2455. } else if (!before(tp->snd_una, tp->high_seq)) {
  2456. switch (icsk->icsk_ca_state) {
  2457. case TCP_CA_CWR:
  2458. /* CWR is to be held something *above* high_seq
  2459. * is ACKed for CWR bit to reach receiver. */
  2460. if (tp->snd_una != tp->high_seq) {
  2461. tcp_end_cwnd_reduction(sk);
  2462. tcp_set_ca_state(sk, TCP_CA_Open);
  2463. }
  2464. break;
  2465. case TCP_CA_Recovery:
  2466. if (tcp_is_reno(tp))
  2467. tcp_reset_reno_sack(tp);
  2468. if (tcp_try_undo_recovery(sk))
  2469. return;
  2470. tcp_end_cwnd_reduction(sk);
  2471. break;
  2472. }
  2473. }
  2474. /* E. Process state. */
  2475. switch (icsk->icsk_ca_state) {
  2476. case TCP_CA_Recovery:
  2477. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2478. if (tcp_is_reno(tp) && is_dupack)
  2479. tcp_add_reno_sack(sk);
  2480. } else {
  2481. if (tcp_try_undo_partial(sk, acked))
  2482. return;
  2483. /* Partial ACK arrived. Force fast retransmit. */
  2484. do_lost = tcp_is_reno(tp) ||
  2485. tcp_fackets_out(tp) > tp->reordering;
  2486. }
  2487. if (tcp_try_undo_dsack(sk)) {
  2488. tcp_try_keep_open(sk);
  2489. return;
  2490. }
  2491. tcp_rack_identify_loss(sk, ack_flag);
  2492. break;
  2493. case TCP_CA_Loss:
  2494. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2495. tcp_rack_identify_loss(sk, ack_flag);
  2496. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2497. (*ack_flag & FLAG_LOST_RETRANS)))
  2498. return;
  2499. /* Change state if cwnd is undone or retransmits are lost */
  2500. default:
  2501. if (tcp_is_reno(tp)) {
  2502. if (flag & FLAG_SND_UNA_ADVANCED)
  2503. tcp_reset_reno_sack(tp);
  2504. if (is_dupack)
  2505. tcp_add_reno_sack(sk);
  2506. }
  2507. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2508. tcp_try_undo_dsack(sk);
  2509. tcp_rack_identify_loss(sk, ack_flag);
  2510. if (!tcp_time_to_recover(sk, flag)) {
  2511. tcp_try_to_open(sk, flag);
  2512. return;
  2513. }
  2514. /* MTU probe failure: don't reduce cwnd */
  2515. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2516. icsk->icsk_mtup.probe_size &&
  2517. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2518. tcp_mtup_probe_failed(sk);
  2519. /* Restores the reduction we did in tcp_mtup_probe() */
  2520. tp->snd_cwnd++;
  2521. tcp_simple_retransmit(sk);
  2522. return;
  2523. }
  2524. /* Otherwise enter Recovery state */
  2525. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2526. fast_rexmit = 1;
  2527. }
  2528. if (do_lost)
  2529. tcp_update_scoreboard(sk, fast_rexmit);
  2530. *rexmit = REXMIT_LOST;
  2531. }
  2532. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2533. {
  2534. struct tcp_sock *tp = tcp_sk(sk);
  2535. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2536. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2537. rtt_us ? : jiffies_to_usecs(1));
  2538. }
  2539. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2540. long seq_rtt_us, long sack_rtt_us,
  2541. long ca_rtt_us, struct rate_sample *rs)
  2542. {
  2543. const struct tcp_sock *tp = tcp_sk(sk);
  2544. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2545. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2546. * Karn's algorithm forbids taking RTT if some retransmitted data
  2547. * is acked (RFC6298).
  2548. */
  2549. if (seq_rtt_us < 0)
  2550. seq_rtt_us = sack_rtt_us;
  2551. /* RTTM Rule: A TSecr value received in a segment is used to
  2552. * update the averaged RTT measurement only if the segment
  2553. * acknowledges some new data, i.e., only if it advances the
  2554. * left edge of the send window.
  2555. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2556. */
  2557. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2558. flag & FLAG_ACKED) {
  2559. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2560. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2561. seq_rtt_us = ca_rtt_us = delta_us;
  2562. }
  2563. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2564. if (seq_rtt_us < 0)
  2565. return false;
  2566. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2567. * always taken together with ACK, SACK, or TS-opts. Any negative
  2568. * values will be skipped with the seq_rtt_us < 0 check above.
  2569. */
  2570. tcp_update_rtt_min(sk, ca_rtt_us);
  2571. tcp_rtt_estimator(sk, seq_rtt_us);
  2572. tcp_set_rto(sk);
  2573. /* RFC6298: only reset backoff on valid RTT measurement. */
  2574. inet_csk(sk)->icsk_backoff = 0;
  2575. return true;
  2576. }
  2577. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2578. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2579. {
  2580. struct rate_sample rs;
  2581. long rtt_us = -1L;
  2582. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2583. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2584. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2585. }
  2586. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2587. {
  2588. const struct inet_connection_sock *icsk = inet_csk(sk);
  2589. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2590. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2591. }
  2592. /* Restart timer after forward progress on connection.
  2593. * RFC2988 recommends to restart timer to now+rto.
  2594. */
  2595. void tcp_rearm_rto(struct sock *sk)
  2596. {
  2597. const struct inet_connection_sock *icsk = inet_csk(sk);
  2598. struct tcp_sock *tp = tcp_sk(sk);
  2599. /* If the retrans timer is currently being used by Fast Open
  2600. * for SYN-ACK retrans purpose, stay put.
  2601. */
  2602. if (tp->fastopen_rsk)
  2603. return;
  2604. if (!tp->packets_out) {
  2605. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2606. } else {
  2607. u32 rto = inet_csk(sk)->icsk_rto;
  2608. /* Offset the time elapsed after installing regular RTO */
  2609. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2610. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2611. s64 delta_us = tcp_rto_delta_us(sk);
  2612. /* delta_us may not be positive if the socket is locked
  2613. * when the retrans timer fires and is rescheduled.
  2614. */
  2615. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2616. }
  2617. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2618. TCP_RTO_MAX);
  2619. }
  2620. }
  2621. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2622. static void tcp_set_xmit_timer(struct sock *sk)
  2623. {
  2624. if (!tcp_schedule_loss_probe(sk))
  2625. tcp_rearm_rto(sk);
  2626. }
  2627. /* If we get here, the whole TSO packet has not been acked. */
  2628. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2629. {
  2630. struct tcp_sock *tp = tcp_sk(sk);
  2631. u32 packets_acked;
  2632. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2633. packets_acked = tcp_skb_pcount(skb);
  2634. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2635. return 0;
  2636. packets_acked -= tcp_skb_pcount(skb);
  2637. if (packets_acked) {
  2638. BUG_ON(tcp_skb_pcount(skb) == 0);
  2639. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2640. }
  2641. return packets_acked;
  2642. }
  2643. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2644. u32 prior_snd_una)
  2645. {
  2646. const struct skb_shared_info *shinfo;
  2647. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2648. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2649. return;
  2650. shinfo = skb_shinfo(skb);
  2651. if (!before(shinfo->tskey, prior_snd_una) &&
  2652. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2653. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2654. }
  2655. /* Remove acknowledged frames from the retransmission queue. If our packet
  2656. * is before the ack sequence we can discard it as it's confirmed to have
  2657. * arrived at the other end.
  2658. */
  2659. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2660. u32 prior_snd_una, int *acked,
  2661. struct tcp_sacktag_state *sack)
  2662. {
  2663. const struct inet_connection_sock *icsk = inet_csk(sk);
  2664. u64 first_ackt, last_ackt;
  2665. struct tcp_sock *tp = tcp_sk(sk);
  2666. u32 prior_sacked = tp->sacked_out;
  2667. u32 reord = tp->packets_out;
  2668. bool fully_acked = true;
  2669. long sack_rtt_us = -1L;
  2670. long seq_rtt_us = -1L;
  2671. long ca_rtt_us = -1L;
  2672. struct sk_buff *skb;
  2673. u32 pkts_acked = 0;
  2674. u32 last_in_flight = 0;
  2675. bool rtt_update;
  2676. int flag = 0;
  2677. first_ackt = 0;
  2678. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2679. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2680. u8 sacked = scb->sacked;
  2681. u32 acked_pcount;
  2682. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2683. /* Determine how many packets and what bytes were acked, tso and else */
  2684. if (after(scb->end_seq, tp->snd_una)) {
  2685. if (tcp_skb_pcount(skb) == 1 ||
  2686. !after(tp->snd_una, scb->seq))
  2687. break;
  2688. acked_pcount = tcp_tso_acked(sk, skb);
  2689. if (!acked_pcount)
  2690. break;
  2691. fully_acked = false;
  2692. } else {
  2693. /* Speedup tcp_unlink_write_queue() and next loop */
  2694. prefetchw(skb->next);
  2695. acked_pcount = tcp_skb_pcount(skb);
  2696. }
  2697. if (unlikely(sacked & TCPCB_RETRANS)) {
  2698. if (sacked & TCPCB_SACKED_RETRANS)
  2699. tp->retrans_out -= acked_pcount;
  2700. flag |= FLAG_RETRANS_DATA_ACKED;
  2701. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2702. last_ackt = skb->skb_mstamp;
  2703. WARN_ON_ONCE(last_ackt == 0);
  2704. if (!first_ackt)
  2705. first_ackt = last_ackt;
  2706. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2707. reord = min(pkts_acked, reord);
  2708. if (!after(scb->end_seq, tp->high_seq))
  2709. flag |= FLAG_ORIG_SACK_ACKED;
  2710. }
  2711. if (sacked & TCPCB_SACKED_ACKED) {
  2712. tp->sacked_out -= acked_pcount;
  2713. } else if (tcp_is_sack(tp)) {
  2714. tp->delivered += acked_pcount;
  2715. if (!tcp_skb_spurious_retrans(tp, skb))
  2716. tcp_rack_advance(tp, sacked, scb->end_seq,
  2717. skb->skb_mstamp);
  2718. }
  2719. if (sacked & TCPCB_LOST)
  2720. tp->lost_out -= acked_pcount;
  2721. tp->packets_out -= acked_pcount;
  2722. pkts_acked += acked_pcount;
  2723. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2724. /* Initial outgoing SYN's get put onto the write_queue
  2725. * just like anything else we transmit. It is not
  2726. * true data, and if we misinform our callers that
  2727. * this ACK acks real data, we will erroneously exit
  2728. * connection startup slow start one packet too
  2729. * quickly. This is severely frowned upon behavior.
  2730. */
  2731. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2732. flag |= FLAG_DATA_ACKED;
  2733. } else {
  2734. flag |= FLAG_SYN_ACKED;
  2735. tp->retrans_stamp = 0;
  2736. }
  2737. if (!fully_acked)
  2738. break;
  2739. tcp_unlink_write_queue(skb, sk);
  2740. sk_wmem_free_skb(sk, skb);
  2741. if (unlikely(skb == tp->retransmit_skb_hint))
  2742. tp->retransmit_skb_hint = NULL;
  2743. if (unlikely(skb == tp->lost_skb_hint))
  2744. tp->lost_skb_hint = NULL;
  2745. }
  2746. if (!skb)
  2747. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2748. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2749. tp->snd_up = tp->snd_una;
  2750. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2751. flag |= FLAG_SACK_RENEGING;
  2752. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2753. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2754. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2755. }
  2756. if (sack->first_sackt) {
  2757. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2758. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2759. }
  2760. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2761. ca_rtt_us, sack->rate);
  2762. if (flag & FLAG_ACKED) {
  2763. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2764. if (unlikely(icsk->icsk_mtup.probe_size &&
  2765. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2766. tcp_mtup_probe_success(sk);
  2767. }
  2768. if (tcp_is_reno(tp)) {
  2769. tcp_remove_reno_sacks(sk, pkts_acked);
  2770. } else {
  2771. int delta;
  2772. /* Non-retransmitted hole got filled? That's reordering */
  2773. if (reord < prior_fackets && reord <= tp->fackets_out)
  2774. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2775. delta = tcp_is_fack(tp) ? pkts_acked :
  2776. prior_sacked - tp->sacked_out;
  2777. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2778. }
  2779. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2780. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2781. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2782. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2783. * after when the head was last (re)transmitted. Otherwise the
  2784. * timeout may continue to extend in loss recovery.
  2785. */
  2786. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2787. }
  2788. if (icsk->icsk_ca_ops->pkts_acked) {
  2789. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2790. .rtt_us = sack->rate->rtt_us,
  2791. .in_flight = last_in_flight };
  2792. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2793. }
  2794. #if FASTRETRANS_DEBUG > 0
  2795. WARN_ON((int)tp->sacked_out < 0);
  2796. WARN_ON((int)tp->lost_out < 0);
  2797. WARN_ON((int)tp->retrans_out < 0);
  2798. if (!tp->packets_out && tcp_is_sack(tp)) {
  2799. icsk = inet_csk(sk);
  2800. if (tp->lost_out) {
  2801. pr_debug("Leak l=%u %d\n",
  2802. tp->lost_out, icsk->icsk_ca_state);
  2803. tp->lost_out = 0;
  2804. }
  2805. if (tp->sacked_out) {
  2806. pr_debug("Leak s=%u %d\n",
  2807. tp->sacked_out, icsk->icsk_ca_state);
  2808. tp->sacked_out = 0;
  2809. }
  2810. if (tp->retrans_out) {
  2811. pr_debug("Leak r=%u %d\n",
  2812. tp->retrans_out, icsk->icsk_ca_state);
  2813. tp->retrans_out = 0;
  2814. }
  2815. }
  2816. #endif
  2817. *acked = pkts_acked;
  2818. return flag;
  2819. }
  2820. static void tcp_ack_probe(struct sock *sk)
  2821. {
  2822. const struct tcp_sock *tp = tcp_sk(sk);
  2823. struct inet_connection_sock *icsk = inet_csk(sk);
  2824. /* Was it a usable window open? */
  2825. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2826. icsk->icsk_backoff = 0;
  2827. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2828. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2829. * This function is not for random using!
  2830. */
  2831. } else {
  2832. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2833. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2834. when, TCP_RTO_MAX);
  2835. }
  2836. }
  2837. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2838. {
  2839. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2840. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2841. }
  2842. /* Decide wheather to run the increase function of congestion control. */
  2843. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2844. {
  2845. /* If reordering is high then always grow cwnd whenever data is
  2846. * delivered regardless of its ordering. Otherwise stay conservative
  2847. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2848. * new SACK or ECE mark may first advance cwnd here and later reduce
  2849. * cwnd in tcp_fastretrans_alert() based on more states.
  2850. */
  2851. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2852. return flag & FLAG_FORWARD_PROGRESS;
  2853. return flag & FLAG_DATA_ACKED;
  2854. }
  2855. /* The "ultimate" congestion control function that aims to replace the rigid
  2856. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2857. * It's called toward the end of processing an ACK with precise rate
  2858. * information. All transmission or retransmission are delayed afterwards.
  2859. */
  2860. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2861. int flag, const struct rate_sample *rs)
  2862. {
  2863. const struct inet_connection_sock *icsk = inet_csk(sk);
  2864. if (icsk->icsk_ca_ops->cong_control) {
  2865. icsk->icsk_ca_ops->cong_control(sk, rs);
  2866. return;
  2867. }
  2868. if (tcp_in_cwnd_reduction(sk)) {
  2869. /* Reduce cwnd if state mandates */
  2870. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2871. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2872. /* Advance cwnd if state allows */
  2873. tcp_cong_avoid(sk, ack, acked_sacked);
  2874. }
  2875. tcp_update_pacing_rate(sk);
  2876. }
  2877. /* Check that window update is acceptable.
  2878. * The function assumes that snd_una<=ack<=snd_next.
  2879. */
  2880. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2881. const u32 ack, const u32 ack_seq,
  2882. const u32 nwin)
  2883. {
  2884. return after(ack, tp->snd_una) ||
  2885. after(ack_seq, tp->snd_wl1) ||
  2886. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2887. }
  2888. /* If we update tp->snd_una, also update tp->bytes_acked */
  2889. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2890. {
  2891. u32 delta = ack - tp->snd_una;
  2892. sock_owned_by_me((struct sock *)tp);
  2893. tp->bytes_acked += delta;
  2894. tp->snd_una = ack;
  2895. }
  2896. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2897. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2898. {
  2899. u32 delta = seq - tp->rcv_nxt;
  2900. sock_owned_by_me((struct sock *)tp);
  2901. tp->bytes_received += delta;
  2902. tp->rcv_nxt = seq;
  2903. }
  2904. /* Update our send window.
  2905. *
  2906. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2907. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2908. */
  2909. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2910. u32 ack_seq)
  2911. {
  2912. struct tcp_sock *tp = tcp_sk(sk);
  2913. int flag = 0;
  2914. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2915. if (likely(!tcp_hdr(skb)->syn))
  2916. nwin <<= tp->rx_opt.snd_wscale;
  2917. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2918. flag |= FLAG_WIN_UPDATE;
  2919. tcp_update_wl(tp, ack_seq);
  2920. if (tp->snd_wnd != nwin) {
  2921. tp->snd_wnd = nwin;
  2922. /* Note, it is the only place, where
  2923. * fast path is recovered for sending TCP.
  2924. */
  2925. tp->pred_flags = 0;
  2926. tcp_fast_path_check(sk);
  2927. if (tcp_send_head(sk))
  2928. tcp_slow_start_after_idle_check(sk);
  2929. if (nwin > tp->max_window) {
  2930. tp->max_window = nwin;
  2931. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2932. }
  2933. }
  2934. }
  2935. tcp_snd_una_update(tp, ack);
  2936. return flag;
  2937. }
  2938. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2939. u32 *last_oow_ack_time)
  2940. {
  2941. if (*last_oow_ack_time) {
  2942. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2943. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2944. NET_INC_STATS(net, mib_idx);
  2945. return true; /* rate-limited: don't send yet! */
  2946. }
  2947. }
  2948. *last_oow_ack_time = tcp_jiffies32;
  2949. return false; /* not rate-limited: go ahead, send dupack now! */
  2950. }
  2951. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2952. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2953. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2954. * attacks that send repeated SYNs or ACKs for the same connection. To
  2955. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2956. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2957. */
  2958. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2959. int mib_idx, u32 *last_oow_ack_time)
  2960. {
  2961. /* Data packets without SYNs are not likely part of an ACK loop. */
  2962. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2963. !tcp_hdr(skb)->syn)
  2964. return false;
  2965. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2966. }
  2967. /* RFC 5961 7 [ACK Throttling] */
  2968. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2969. {
  2970. /* unprotected vars, we dont care of overwrites */
  2971. static u32 challenge_timestamp;
  2972. static unsigned int challenge_count;
  2973. struct tcp_sock *tp = tcp_sk(sk);
  2974. u32 count, now;
  2975. /* First check our per-socket dupack rate limit. */
  2976. if (__tcp_oow_rate_limited(sock_net(sk),
  2977. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2978. &tp->last_oow_ack_time))
  2979. return;
  2980. /* Then check host-wide RFC 5961 rate limit. */
  2981. now = jiffies / HZ;
  2982. if (now != challenge_timestamp) {
  2983. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2984. challenge_timestamp = now;
  2985. WRITE_ONCE(challenge_count, half +
  2986. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2987. }
  2988. count = READ_ONCE(challenge_count);
  2989. if (count > 0) {
  2990. WRITE_ONCE(challenge_count, count - 1);
  2991. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2992. tcp_send_ack(sk);
  2993. }
  2994. }
  2995. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2996. {
  2997. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2998. tp->rx_opt.ts_recent_stamp = get_seconds();
  2999. }
  3000. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3001. {
  3002. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3003. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3004. * extra check below makes sure this can only happen
  3005. * for pure ACK frames. -DaveM
  3006. *
  3007. * Not only, also it occurs for expired timestamps.
  3008. */
  3009. if (tcp_paws_check(&tp->rx_opt, 0))
  3010. tcp_store_ts_recent(tp);
  3011. }
  3012. }
  3013. /* This routine deals with acks during a TLP episode.
  3014. * We mark the end of a TLP episode on receiving TLP dupack or when
  3015. * ack is after tlp_high_seq.
  3016. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3017. */
  3018. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3019. {
  3020. struct tcp_sock *tp = tcp_sk(sk);
  3021. if (before(ack, tp->tlp_high_seq))
  3022. return;
  3023. if (flag & FLAG_DSACKING_ACK) {
  3024. /* This DSACK means original and TLP probe arrived; no loss */
  3025. tp->tlp_high_seq = 0;
  3026. } else if (after(ack, tp->tlp_high_seq)) {
  3027. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3028. * tlp_high_seq in tcp_init_cwnd_reduction()
  3029. */
  3030. tcp_init_cwnd_reduction(sk);
  3031. tcp_set_ca_state(sk, TCP_CA_CWR);
  3032. tcp_end_cwnd_reduction(sk);
  3033. tcp_try_keep_open(sk);
  3034. NET_INC_STATS(sock_net(sk),
  3035. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3036. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3037. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3038. /* Pure dupack: original and TLP probe arrived; no loss */
  3039. tp->tlp_high_seq = 0;
  3040. }
  3041. }
  3042. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3043. {
  3044. const struct inet_connection_sock *icsk = inet_csk(sk);
  3045. if (icsk->icsk_ca_ops->in_ack_event)
  3046. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3047. }
  3048. /* Congestion control has updated the cwnd already. So if we're in
  3049. * loss recovery then now we do any new sends (for FRTO) or
  3050. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3051. */
  3052. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3053. {
  3054. struct tcp_sock *tp = tcp_sk(sk);
  3055. if (rexmit == REXMIT_NONE)
  3056. return;
  3057. if (unlikely(rexmit == 2)) {
  3058. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3059. TCP_NAGLE_OFF);
  3060. if (after(tp->snd_nxt, tp->high_seq))
  3061. return;
  3062. tp->frto = 0;
  3063. }
  3064. tcp_xmit_retransmit_queue(sk);
  3065. }
  3066. /* This routine deals with incoming acks, but not outgoing ones. */
  3067. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3068. {
  3069. struct inet_connection_sock *icsk = inet_csk(sk);
  3070. struct tcp_sock *tp = tcp_sk(sk);
  3071. struct tcp_sacktag_state sack_state;
  3072. struct rate_sample rs = { .prior_delivered = 0 };
  3073. u32 prior_snd_una = tp->snd_una;
  3074. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3075. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3076. bool is_dupack = false;
  3077. u32 prior_fackets;
  3078. int prior_packets = tp->packets_out;
  3079. u32 delivered = tp->delivered;
  3080. u32 lost = tp->lost;
  3081. int acked = 0; /* Number of packets newly acked */
  3082. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3083. sack_state.first_sackt = 0;
  3084. sack_state.rate = &rs;
  3085. /* We very likely will need to access write queue head. */
  3086. prefetchw(sk->sk_write_queue.next);
  3087. /* If the ack is older than previous acks
  3088. * then we can probably ignore it.
  3089. */
  3090. if (before(ack, prior_snd_una)) {
  3091. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3092. if (before(ack, prior_snd_una - tp->max_window)) {
  3093. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3094. tcp_send_challenge_ack(sk, skb);
  3095. return -1;
  3096. }
  3097. goto old_ack;
  3098. }
  3099. /* If the ack includes data we haven't sent yet, discard
  3100. * this segment (RFC793 Section 3.9).
  3101. */
  3102. if (after(ack, tp->snd_nxt))
  3103. goto invalid_ack;
  3104. if (after(ack, prior_snd_una)) {
  3105. flag |= FLAG_SND_UNA_ADVANCED;
  3106. icsk->icsk_retransmits = 0;
  3107. }
  3108. prior_fackets = tp->fackets_out;
  3109. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3110. /* ts_recent update must be made after we are sure that the packet
  3111. * is in window.
  3112. */
  3113. if (flag & FLAG_UPDATE_TS_RECENT)
  3114. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3115. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3116. /* Window is constant, pure forward advance.
  3117. * No more checks are required.
  3118. * Note, we use the fact that SND.UNA>=SND.WL2.
  3119. */
  3120. tcp_update_wl(tp, ack_seq);
  3121. tcp_snd_una_update(tp, ack);
  3122. flag |= FLAG_WIN_UPDATE;
  3123. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3124. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3125. } else {
  3126. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3127. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3128. flag |= FLAG_DATA;
  3129. else
  3130. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3131. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3132. if (TCP_SKB_CB(skb)->sacked)
  3133. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3134. &sack_state);
  3135. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3136. flag |= FLAG_ECE;
  3137. ack_ev_flags |= CA_ACK_ECE;
  3138. }
  3139. if (flag & FLAG_WIN_UPDATE)
  3140. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3141. tcp_in_ack_event(sk, ack_ev_flags);
  3142. }
  3143. /* We passed data and got it acked, remove any soft error
  3144. * log. Something worked...
  3145. */
  3146. sk->sk_err_soft = 0;
  3147. icsk->icsk_probes_out = 0;
  3148. tp->rcv_tstamp = tcp_jiffies32;
  3149. if (!prior_packets)
  3150. goto no_queue;
  3151. /* See if we can take anything off of the retransmit queue. */
  3152. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3153. &sack_state);
  3154. if (tp->tlp_high_seq)
  3155. tcp_process_tlp_ack(sk, ack, flag);
  3156. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3157. if (flag & FLAG_SET_XMIT_TIMER)
  3158. tcp_set_xmit_timer(sk);
  3159. if (tcp_ack_is_dubious(sk, flag)) {
  3160. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3161. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3162. }
  3163. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3164. sk_dst_confirm(sk);
  3165. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3166. lost = tp->lost - lost; /* freshly marked lost */
  3167. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3168. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3169. tcp_xmit_recovery(sk, rexmit);
  3170. return 1;
  3171. no_queue:
  3172. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3173. if (flag & FLAG_DSACKING_ACK)
  3174. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3175. /* If this ack opens up a zero window, clear backoff. It was
  3176. * being used to time the probes, and is probably far higher than
  3177. * it needs to be for normal retransmission.
  3178. */
  3179. if (tcp_send_head(sk))
  3180. tcp_ack_probe(sk);
  3181. if (tp->tlp_high_seq)
  3182. tcp_process_tlp_ack(sk, ack, flag);
  3183. return 1;
  3184. invalid_ack:
  3185. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3186. return -1;
  3187. old_ack:
  3188. /* If data was SACKed, tag it and see if we should send more data.
  3189. * If data was DSACKed, see if we can undo a cwnd reduction.
  3190. */
  3191. if (TCP_SKB_CB(skb)->sacked) {
  3192. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3193. &sack_state);
  3194. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3195. tcp_xmit_recovery(sk, rexmit);
  3196. }
  3197. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3198. return 0;
  3199. }
  3200. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3201. bool syn, struct tcp_fastopen_cookie *foc,
  3202. bool exp_opt)
  3203. {
  3204. /* Valid only in SYN or SYN-ACK with an even length. */
  3205. if (!foc || !syn || len < 0 || (len & 1))
  3206. return;
  3207. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3208. len <= TCP_FASTOPEN_COOKIE_MAX)
  3209. memcpy(foc->val, cookie, len);
  3210. else if (len != 0)
  3211. len = -1;
  3212. foc->len = len;
  3213. foc->exp = exp_opt;
  3214. }
  3215. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3216. * But, this can also be called on packets in the established flow when
  3217. * the fast version below fails.
  3218. */
  3219. void tcp_parse_options(const struct net *net,
  3220. const struct sk_buff *skb,
  3221. struct tcp_options_received *opt_rx, int estab,
  3222. struct tcp_fastopen_cookie *foc)
  3223. {
  3224. const unsigned char *ptr;
  3225. const struct tcphdr *th = tcp_hdr(skb);
  3226. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3227. ptr = (const unsigned char *)(th + 1);
  3228. opt_rx->saw_tstamp = 0;
  3229. while (length > 0) {
  3230. int opcode = *ptr++;
  3231. int opsize;
  3232. switch (opcode) {
  3233. case TCPOPT_EOL:
  3234. return;
  3235. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3236. length--;
  3237. continue;
  3238. default:
  3239. opsize = *ptr++;
  3240. if (opsize < 2) /* "silly options" */
  3241. return;
  3242. if (opsize > length)
  3243. return; /* don't parse partial options */
  3244. switch (opcode) {
  3245. case TCPOPT_MSS:
  3246. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3247. u16 in_mss = get_unaligned_be16(ptr);
  3248. if (in_mss) {
  3249. if (opt_rx->user_mss &&
  3250. opt_rx->user_mss < in_mss)
  3251. in_mss = opt_rx->user_mss;
  3252. opt_rx->mss_clamp = in_mss;
  3253. }
  3254. }
  3255. break;
  3256. case TCPOPT_WINDOW:
  3257. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3258. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3259. __u8 snd_wscale = *(__u8 *)ptr;
  3260. opt_rx->wscale_ok = 1;
  3261. if (snd_wscale > TCP_MAX_WSCALE) {
  3262. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3263. __func__,
  3264. snd_wscale,
  3265. TCP_MAX_WSCALE);
  3266. snd_wscale = TCP_MAX_WSCALE;
  3267. }
  3268. opt_rx->snd_wscale = snd_wscale;
  3269. }
  3270. break;
  3271. case TCPOPT_TIMESTAMP:
  3272. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3273. ((estab && opt_rx->tstamp_ok) ||
  3274. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3275. opt_rx->saw_tstamp = 1;
  3276. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3277. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3278. }
  3279. break;
  3280. case TCPOPT_SACK_PERM:
  3281. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3282. !estab && net->ipv4.sysctl_tcp_sack) {
  3283. opt_rx->sack_ok = TCP_SACK_SEEN;
  3284. tcp_sack_reset(opt_rx);
  3285. }
  3286. break;
  3287. case TCPOPT_SACK:
  3288. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3289. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3290. opt_rx->sack_ok) {
  3291. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3292. }
  3293. break;
  3294. #ifdef CONFIG_TCP_MD5SIG
  3295. case TCPOPT_MD5SIG:
  3296. /*
  3297. * The MD5 Hash has already been
  3298. * checked (see tcp_v{4,6}_do_rcv()).
  3299. */
  3300. break;
  3301. #endif
  3302. case TCPOPT_FASTOPEN:
  3303. tcp_parse_fastopen_option(
  3304. opsize - TCPOLEN_FASTOPEN_BASE,
  3305. ptr, th->syn, foc, false);
  3306. break;
  3307. case TCPOPT_EXP:
  3308. /* Fast Open option shares code 254 using a
  3309. * 16 bits magic number.
  3310. */
  3311. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3312. get_unaligned_be16(ptr) ==
  3313. TCPOPT_FASTOPEN_MAGIC)
  3314. tcp_parse_fastopen_option(opsize -
  3315. TCPOLEN_EXP_FASTOPEN_BASE,
  3316. ptr + 2, th->syn, foc, true);
  3317. break;
  3318. }
  3319. ptr += opsize-2;
  3320. length -= opsize;
  3321. }
  3322. }
  3323. }
  3324. EXPORT_SYMBOL(tcp_parse_options);
  3325. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3326. {
  3327. const __be32 *ptr = (const __be32 *)(th + 1);
  3328. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3329. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3330. tp->rx_opt.saw_tstamp = 1;
  3331. ++ptr;
  3332. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3333. ++ptr;
  3334. if (*ptr)
  3335. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3336. else
  3337. tp->rx_opt.rcv_tsecr = 0;
  3338. return true;
  3339. }
  3340. return false;
  3341. }
  3342. /* Fast parse options. This hopes to only see timestamps.
  3343. * If it is wrong it falls back on tcp_parse_options().
  3344. */
  3345. static bool tcp_fast_parse_options(const struct net *net,
  3346. const struct sk_buff *skb,
  3347. const struct tcphdr *th, struct tcp_sock *tp)
  3348. {
  3349. /* In the spirit of fast parsing, compare doff directly to constant
  3350. * values. Because equality is used, short doff can be ignored here.
  3351. */
  3352. if (th->doff == (sizeof(*th) / 4)) {
  3353. tp->rx_opt.saw_tstamp = 0;
  3354. return false;
  3355. } else if (tp->rx_opt.tstamp_ok &&
  3356. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3357. if (tcp_parse_aligned_timestamp(tp, th))
  3358. return true;
  3359. }
  3360. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3361. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3362. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3363. return true;
  3364. }
  3365. #ifdef CONFIG_TCP_MD5SIG
  3366. /*
  3367. * Parse MD5 Signature option
  3368. */
  3369. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3370. {
  3371. int length = (th->doff << 2) - sizeof(*th);
  3372. const u8 *ptr = (const u8 *)(th + 1);
  3373. /* If the TCP option is too short, we can short cut */
  3374. if (length < TCPOLEN_MD5SIG)
  3375. return NULL;
  3376. while (length > 0) {
  3377. int opcode = *ptr++;
  3378. int opsize;
  3379. switch (opcode) {
  3380. case TCPOPT_EOL:
  3381. return NULL;
  3382. case TCPOPT_NOP:
  3383. length--;
  3384. continue;
  3385. default:
  3386. opsize = *ptr++;
  3387. if (opsize < 2 || opsize > length)
  3388. return NULL;
  3389. if (opcode == TCPOPT_MD5SIG)
  3390. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3391. }
  3392. ptr += opsize - 2;
  3393. length -= opsize;
  3394. }
  3395. return NULL;
  3396. }
  3397. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3398. #endif
  3399. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3400. *
  3401. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3402. * it can pass through stack. So, the following predicate verifies that
  3403. * this segment is not used for anything but congestion avoidance or
  3404. * fast retransmit. Moreover, we even are able to eliminate most of such
  3405. * second order effects, if we apply some small "replay" window (~RTO)
  3406. * to timestamp space.
  3407. *
  3408. * All these measures still do not guarantee that we reject wrapped ACKs
  3409. * on networks with high bandwidth, when sequence space is recycled fastly,
  3410. * but it guarantees that such events will be very rare and do not affect
  3411. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3412. * buggy extension.
  3413. *
  3414. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3415. * states that events when retransmit arrives after original data are rare.
  3416. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3417. * the biggest problem on large power networks even with minor reordering.
  3418. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3419. * up to bandwidth of 18Gigabit/sec. 8) ]
  3420. */
  3421. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3422. {
  3423. const struct tcp_sock *tp = tcp_sk(sk);
  3424. const struct tcphdr *th = tcp_hdr(skb);
  3425. u32 seq = TCP_SKB_CB(skb)->seq;
  3426. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3427. return (/* 1. Pure ACK with correct sequence number. */
  3428. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3429. /* 2. ... and duplicate ACK. */
  3430. ack == tp->snd_una &&
  3431. /* 3. ... and does not update window. */
  3432. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3433. /* 4. ... and sits in replay window. */
  3434. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3435. }
  3436. static inline bool tcp_paws_discard(const struct sock *sk,
  3437. const struct sk_buff *skb)
  3438. {
  3439. const struct tcp_sock *tp = tcp_sk(sk);
  3440. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3441. !tcp_disordered_ack(sk, skb);
  3442. }
  3443. /* Check segment sequence number for validity.
  3444. *
  3445. * Segment controls are considered valid, if the segment
  3446. * fits to the window after truncation to the window. Acceptability
  3447. * of data (and SYN, FIN, of course) is checked separately.
  3448. * See tcp_data_queue(), for example.
  3449. *
  3450. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3451. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3452. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3453. * (borrowed from freebsd)
  3454. */
  3455. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3456. {
  3457. return !before(end_seq, tp->rcv_wup) &&
  3458. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3459. }
  3460. /* When we get a reset we do this. */
  3461. void tcp_reset(struct sock *sk)
  3462. {
  3463. /* We want the right error as BSD sees it (and indeed as we do). */
  3464. switch (sk->sk_state) {
  3465. case TCP_SYN_SENT:
  3466. sk->sk_err = ECONNREFUSED;
  3467. break;
  3468. case TCP_CLOSE_WAIT:
  3469. sk->sk_err = EPIPE;
  3470. break;
  3471. case TCP_CLOSE:
  3472. return;
  3473. default:
  3474. sk->sk_err = ECONNRESET;
  3475. }
  3476. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3477. smp_wmb();
  3478. tcp_done(sk);
  3479. if (!sock_flag(sk, SOCK_DEAD))
  3480. sk->sk_error_report(sk);
  3481. }
  3482. /*
  3483. * Process the FIN bit. This now behaves as it is supposed to work
  3484. * and the FIN takes effect when it is validly part of sequence
  3485. * space. Not before when we get holes.
  3486. *
  3487. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3488. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3489. * TIME-WAIT)
  3490. *
  3491. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3492. * close and we go into CLOSING (and later onto TIME-WAIT)
  3493. *
  3494. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3495. */
  3496. void tcp_fin(struct sock *sk)
  3497. {
  3498. struct tcp_sock *tp = tcp_sk(sk);
  3499. inet_csk_schedule_ack(sk);
  3500. sk->sk_shutdown |= RCV_SHUTDOWN;
  3501. sock_set_flag(sk, SOCK_DONE);
  3502. switch (sk->sk_state) {
  3503. case TCP_SYN_RECV:
  3504. case TCP_ESTABLISHED:
  3505. /* Move to CLOSE_WAIT */
  3506. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3507. inet_csk(sk)->icsk_ack.pingpong = 1;
  3508. break;
  3509. case TCP_CLOSE_WAIT:
  3510. case TCP_CLOSING:
  3511. /* Received a retransmission of the FIN, do
  3512. * nothing.
  3513. */
  3514. break;
  3515. case TCP_LAST_ACK:
  3516. /* RFC793: Remain in the LAST-ACK state. */
  3517. break;
  3518. case TCP_FIN_WAIT1:
  3519. /* This case occurs when a simultaneous close
  3520. * happens, we must ack the received FIN and
  3521. * enter the CLOSING state.
  3522. */
  3523. tcp_send_ack(sk);
  3524. tcp_set_state(sk, TCP_CLOSING);
  3525. break;
  3526. case TCP_FIN_WAIT2:
  3527. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3528. tcp_send_ack(sk);
  3529. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3530. break;
  3531. default:
  3532. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3533. * cases we should never reach this piece of code.
  3534. */
  3535. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3536. __func__, sk->sk_state);
  3537. break;
  3538. }
  3539. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3540. * Probably, we should reset in this case. For now drop them.
  3541. */
  3542. skb_rbtree_purge(&tp->out_of_order_queue);
  3543. if (tcp_is_sack(tp))
  3544. tcp_sack_reset(&tp->rx_opt);
  3545. sk_mem_reclaim(sk);
  3546. if (!sock_flag(sk, SOCK_DEAD)) {
  3547. sk->sk_state_change(sk);
  3548. /* Do not send POLL_HUP for half duplex close. */
  3549. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3550. sk->sk_state == TCP_CLOSE)
  3551. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3552. else
  3553. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3554. }
  3555. }
  3556. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3557. u32 end_seq)
  3558. {
  3559. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3560. if (before(seq, sp->start_seq))
  3561. sp->start_seq = seq;
  3562. if (after(end_seq, sp->end_seq))
  3563. sp->end_seq = end_seq;
  3564. return true;
  3565. }
  3566. return false;
  3567. }
  3568. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3569. {
  3570. struct tcp_sock *tp = tcp_sk(sk);
  3571. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3572. int mib_idx;
  3573. if (before(seq, tp->rcv_nxt))
  3574. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3575. else
  3576. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3577. NET_INC_STATS(sock_net(sk), mib_idx);
  3578. tp->rx_opt.dsack = 1;
  3579. tp->duplicate_sack[0].start_seq = seq;
  3580. tp->duplicate_sack[0].end_seq = end_seq;
  3581. }
  3582. }
  3583. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3584. {
  3585. struct tcp_sock *tp = tcp_sk(sk);
  3586. if (!tp->rx_opt.dsack)
  3587. tcp_dsack_set(sk, seq, end_seq);
  3588. else
  3589. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3590. }
  3591. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3592. {
  3593. struct tcp_sock *tp = tcp_sk(sk);
  3594. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3595. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3596. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3597. tcp_enter_quickack_mode(sk);
  3598. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3599. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3600. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3601. end_seq = tp->rcv_nxt;
  3602. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3603. }
  3604. }
  3605. tcp_send_ack(sk);
  3606. }
  3607. /* These routines update the SACK block as out-of-order packets arrive or
  3608. * in-order packets close up the sequence space.
  3609. */
  3610. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3611. {
  3612. int this_sack;
  3613. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3614. struct tcp_sack_block *swalk = sp + 1;
  3615. /* See if the recent change to the first SACK eats into
  3616. * or hits the sequence space of other SACK blocks, if so coalesce.
  3617. */
  3618. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3619. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3620. int i;
  3621. /* Zap SWALK, by moving every further SACK up by one slot.
  3622. * Decrease num_sacks.
  3623. */
  3624. tp->rx_opt.num_sacks--;
  3625. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3626. sp[i] = sp[i + 1];
  3627. continue;
  3628. }
  3629. this_sack++, swalk++;
  3630. }
  3631. }
  3632. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3633. {
  3634. struct tcp_sock *tp = tcp_sk(sk);
  3635. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3636. int cur_sacks = tp->rx_opt.num_sacks;
  3637. int this_sack;
  3638. if (!cur_sacks)
  3639. goto new_sack;
  3640. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3641. if (tcp_sack_extend(sp, seq, end_seq)) {
  3642. /* Rotate this_sack to the first one. */
  3643. for (; this_sack > 0; this_sack--, sp--)
  3644. swap(*sp, *(sp - 1));
  3645. if (cur_sacks > 1)
  3646. tcp_sack_maybe_coalesce(tp);
  3647. return;
  3648. }
  3649. }
  3650. /* Could not find an adjacent existing SACK, build a new one,
  3651. * put it at the front, and shift everyone else down. We
  3652. * always know there is at least one SACK present already here.
  3653. *
  3654. * If the sack array is full, forget about the last one.
  3655. */
  3656. if (this_sack >= TCP_NUM_SACKS) {
  3657. this_sack--;
  3658. tp->rx_opt.num_sacks--;
  3659. sp--;
  3660. }
  3661. for (; this_sack > 0; this_sack--, sp--)
  3662. *sp = *(sp - 1);
  3663. new_sack:
  3664. /* Build the new head SACK, and we're done. */
  3665. sp->start_seq = seq;
  3666. sp->end_seq = end_seq;
  3667. tp->rx_opt.num_sacks++;
  3668. }
  3669. /* RCV.NXT advances, some SACKs should be eaten. */
  3670. static void tcp_sack_remove(struct tcp_sock *tp)
  3671. {
  3672. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3673. int num_sacks = tp->rx_opt.num_sacks;
  3674. int this_sack;
  3675. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3676. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3677. tp->rx_opt.num_sacks = 0;
  3678. return;
  3679. }
  3680. for (this_sack = 0; this_sack < num_sacks;) {
  3681. /* Check if the start of the sack is covered by RCV.NXT. */
  3682. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3683. int i;
  3684. /* RCV.NXT must cover all the block! */
  3685. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3686. /* Zap this SACK, by moving forward any other SACKS. */
  3687. for (i = this_sack+1; i < num_sacks; i++)
  3688. tp->selective_acks[i-1] = tp->selective_acks[i];
  3689. num_sacks--;
  3690. continue;
  3691. }
  3692. this_sack++;
  3693. sp++;
  3694. }
  3695. tp->rx_opt.num_sacks = num_sacks;
  3696. }
  3697. enum tcp_queue {
  3698. OOO_QUEUE,
  3699. RCV_QUEUE,
  3700. };
  3701. /**
  3702. * tcp_try_coalesce - try to merge skb to prior one
  3703. * @sk: socket
  3704. * @dest: destination queue
  3705. * @to: prior buffer
  3706. * @from: buffer to add in queue
  3707. * @fragstolen: pointer to boolean
  3708. *
  3709. * Before queueing skb @from after @to, try to merge them
  3710. * to reduce overall memory use and queue lengths, if cost is small.
  3711. * Packets in ofo or receive queues can stay a long time.
  3712. * Better try to coalesce them right now to avoid future collapses.
  3713. * Returns true if caller should free @from instead of queueing it
  3714. */
  3715. static bool tcp_try_coalesce(struct sock *sk,
  3716. enum tcp_queue dest,
  3717. struct sk_buff *to,
  3718. struct sk_buff *from,
  3719. bool *fragstolen)
  3720. {
  3721. int delta;
  3722. *fragstolen = false;
  3723. /* Its possible this segment overlaps with prior segment in queue */
  3724. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3725. return false;
  3726. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3727. return false;
  3728. atomic_add(delta, &sk->sk_rmem_alloc);
  3729. sk_mem_charge(sk, delta);
  3730. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3731. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3732. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3733. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3734. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3735. TCP_SKB_CB(to)->has_rxtstamp = true;
  3736. if (dest == OOO_QUEUE)
  3737. TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
  3738. else
  3739. to->tstamp = from->tstamp;
  3740. }
  3741. return true;
  3742. }
  3743. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3744. {
  3745. sk_drops_add(sk, skb);
  3746. __kfree_skb(skb);
  3747. }
  3748. /* This one checks to see if we can put data from the
  3749. * out_of_order queue into the receive_queue.
  3750. */
  3751. static void tcp_ofo_queue(struct sock *sk)
  3752. {
  3753. struct tcp_sock *tp = tcp_sk(sk);
  3754. __u32 dsack_high = tp->rcv_nxt;
  3755. bool fin, fragstolen, eaten;
  3756. struct sk_buff *skb, *tail;
  3757. struct rb_node *p;
  3758. p = rb_first(&tp->out_of_order_queue);
  3759. while (p) {
  3760. skb = rb_entry(p, struct sk_buff, rbnode);
  3761. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3762. break;
  3763. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3764. __u32 dsack = dsack_high;
  3765. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3766. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3767. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3768. }
  3769. p = rb_next(p);
  3770. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3771. /* Replace tstamp which was stomped by rbnode */
  3772. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3773. skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
  3774. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3775. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3776. tcp_drop(sk, skb);
  3777. continue;
  3778. }
  3779. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3780. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3781. TCP_SKB_CB(skb)->end_seq);
  3782. tail = skb_peek_tail(&sk->sk_receive_queue);
  3783. eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
  3784. tail, skb, &fragstolen);
  3785. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3786. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3787. if (!eaten)
  3788. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3789. else
  3790. kfree_skb_partial(skb, fragstolen);
  3791. if (unlikely(fin)) {
  3792. tcp_fin(sk);
  3793. /* tcp_fin() purges tp->out_of_order_queue,
  3794. * so we must end this loop right now.
  3795. */
  3796. break;
  3797. }
  3798. }
  3799. }
  3800. static bool tcp_prune_ofo_queue(struct sock *sk);
  3801. static int tcp_prune_queue(struct sock *sk);
  3802. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3803. unsigned int size)
  3804. {
  3805. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3806. !sk_rmem_schedule(sk, skb, size)) {
  3807. if (tcp_prune_queue(sk) < 0)
  3808. return -1;
  3809. while (!sk_rmem_schedule(sk, skb, size)) {
  3810. if (!tcp_prune_ofo_queue(sk))
  3811. return -1;
  3812. }
  3813. }
  3814. return 0;
  3815. }
  3816. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3817. {
  3818. struct tcp_sock *tp = tcp_sk(sk);
  3819. struct rb_node **p, *q, *parent;
  3820. struct sk_buff *skb1;
  3821. u32 seq, end_seq;
  3822. bool fragstolen;
  3823. tcp_ecn_check_ce(tp, skb);
  3824. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3825. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3826. tcp_drop(sk, skb);
  3827. return;
  3828. }
  3829. /* Stash tstamp to avoid being stomped on by rbnode */
  3830. if (TCP_SKB_CB(skb)->has_rxtstamp)
  3831. TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
  3832. /* Disable header prediction. */
  3833. tp->pred_flags = 0;
  3834. inet_csk_schedule_ack(sk);
  3835. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3836. seq = TCP_SKB_CB(skb)->seq;
  3837. end_seq = TCP_SKB_CB(skb)->end_seq;
  3838. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3839. tp->rcv_nxt, seq, end_seq);
  3840. p = &tp->out_of_order_queue.rb_node;
  3841. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3842. /* Initial out of order segment, build 1 SACK. */
  3843. if (tcp_is_sack(tp)) {
  3844. tp->rx_opt.num_sacks = 1;
  3845. tp->selective_acks[0].start_seq = seq;
  3846. tp->selective_acks[0].end_seq = end_seq;
  3847. }
  3848. rb_link_node(&skb->rbnode, NULL, p);
  3849. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3850. tp->ooo_last_skb = skb;
  3851. goto end;
  3852. }
  3853. /* In the typical case, we are adding an skb to the end of the list.
  3854. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3855. */
  3856. if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
  3857. skb, &fragstolen)) {
  3858. coalesce_done:
  3859. tcp_grow_window(sk, skb);
  3860. kfree_skb_partial(skb, fragstolen);
  3861. skb = NULL;
  3862. goto add_sack;
  3863. }
  3864. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3865. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3866. parent = &tp->ooo_last_skb->rbnode;
  3867. p = &parent->rb_right;
  3868. goto insert;
  3869. }
  3870. /* Find place to insert this segment. Handle overlaps on the way. */
  3871. parent = NULL;
  3872. while (*p) {
  3873. parent = *p;
  3874. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3875. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3876. p = &parent->rb_left;
  3877. continue;
  3878. }
  3879. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3880. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3881. /* All the bits are present. Drop. */
  3882. NET_INC_STATS(sock_net(sk),
  3883. LINUX_MIB_TCPOFOMERGE);
  3884. __kfree_skb(skb);
  3885. skb = NULL;
  3886. tcp_dsack_set(sk, seq, end_seq);
  3887. goto add_sack;
  3888. }
  3889. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3890. /* Partial overlap. */
  3891. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3892. } else {
  3893. /* skb's seq == skb1's seq and skb covers skb1.
  3894. * Replace skb1 with skb.
  3895. */
  3896. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3897. &tp->out_of_order_queue);
  3898. tcp_dsack_extend(sk,
  3899. TCP_SKB_CB(skb1)->seq,
  3900. TCP_SKB_CB(skb1)->end_seq);
  3901. NET_INC_STATS(sock_net(sk),
  3902. LINUX_MIB_TCPOFOMERGE);
  3903. __kfree_skb(skb1);
  3904. goto merge_right;
  3905. }
  3906. } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
  3907. skb, &fragstolen)) {
  3908. goto coalesce_done;
  3909. }
  3910. p = &parent->rb_right;
  3911. }
  3912. insert:
  3913. /* Insert segment into RB tree. */
  3914. rb_link_node(&skb->rbnode, parent, p);
  3915. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3916. merge_right:
  3917. /* Remove other segments covered by skb. */
  3918. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3919. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3920. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3921. break;
  3922. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3923. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3924. end_seq);
  3925. break;
  3926. }
  3927. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3928. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3929. TCP_SKB_CB(skb1)->end_seq);
  3930. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3931. tcp_drop(sk, skb1);
  3932. }
  3933. /* If there is no skb after us, we are the last_skb ! */
  3934. if (!q)
  3935. tp->ooo_last_skb = skb;
  3936. add_sack:
  3937. if (tcp_is_sack(tp))
  3938. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3939. end:
  3940. if (skb) {
  3941. tcp_grow_window(sk, skb);
  3942. skb_condense(skb);
  3943. skb_set_owner_r(skb, sk);
  3944. }
  3945. }
  3946. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3947. bool *fragstolen)
  3948. {
  3949. int eaten;
  3950. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3951. __skb_pull(skb, hdrlen);
  3952. eaten = (tail &&
  3953. tcp_try_coalesce(sk, RCV_QUEUE, tail,
  3954. skb, fragstolen)) ? 1 : 0;
  3955. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3956. if (!eaten) {
  3957. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3958. skb_set_owner_r(skb, sk);
  3959. }
  3960. return eaten;
  3961. }
  3962. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3963. {
  3964. struct sk_buff *skb;
  3965. int err = -ENOMEM;
  3966. int data_len = 0;
  3967. bool fragstolen;
  3968. if (size == 0)
  3969. return 0;
  3970. if (size > PAGE_SIZE) {
  3971. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3972. data_len = npages << PAGE_SHIFT;
  3973. size = data_len + (size & ~PAGE_MASK);
  3974. }
  3975. skb = alloc_skb_with_frags(size - data_len, data_len,
  3976. PAGE_ALLOC_COSTLY_ORDER,
  3977. &err, sk->sk_allocation);
  3978. if (!skb)
  3979. goto err;
  3980. skb_put(skb, size - data_len);
  3981. skb->data_len = data_len;
  3982. skb->len = size;
  3983. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3984. goto err_free;
  3985. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3986. if (err)
  3987. goto err_free;
  3988. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3989. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3990. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3991. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3992. WARN_ON_ONCE(fragstolen); /* should not happen */
  3993. __kfree_skb(skb);
  3994. }
  3995. return size;
  3996. err_free:
  3997. kfree_skb(skb);
  3998. err:
  3999. return err;
  4000. }
  4001. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4002. {
  4003. struct tcp_sock *tp = tcp_sk(sk);
  4004. bool fragstolen;
  4005. int eaten;
  4006. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  4007. __kfree_skb(skb);
  4008. return;
  4009. }
  4010. skb_dst_drop(skb);
  4011. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  4012. tcp_ecn_accept_cwr(tp, skb);
  4013. tp->rx_opt.dsack = 0;
  4014. /* Queue data for delivery to the user.
  4015. * Packets in sequence go to the receive queue.
  4016. * Out of sequence packets to the out_of_order_queue.
  4017. */
  4018. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4019. if (tcp_receive_window(tp) == 0)
  4020. goto out_of_window;
  4021. /* Ok. In sequence. In window. */
  4022. queue_and_out:
  4023. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4024. sk_forced_mem_schedule(sk, skb->truesize);
  4025. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4026. goto drop;
  4027. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4028. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4029. if (skb->len)
  4030. tcp_event_data_recv(sk, skb);
  4031. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4032. tcp_fin(sk);
  4033. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4034. tcp_ofo_queue(sk);
  4035. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4036. * gap in queue is filled.
  4037. */
  4038. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4039. inet_csk(sk)->icsk_ack.pingpong = 0;
  4040. }
  4041. if (tp->rx_opt.num_sacks)
  4042. tcp_sack_remove(tp);
  4043. tcp_fast_path_check(sk);
  4044. if (eaten > 0)
  4045. kfree_skb_partial(skb, fragstolen);
  4046. if (!sock_flag(sk, SOCK_DEAD))
  4047. sk->sk_data_ready(sk);
  4048. return;
  4049. }
  4050. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4051. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4052. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4053. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4054. out_of_window:
  4055. tcp_enter_quickack_mode(sk);
  4056. inet_csk_schedule_ack(sk);
  4057. drop:
  4058. tcp_drop(sk, skb);
  4059. return;
  4060. }
  4061. /* Out of window. F.e. zero window probe. */
  4062. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4063. goto out_of_window;
  4064. tcp_enter_quickack_mode(sk);
  4065. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4066. /* Partial packet, seq < rcv_next < end_seq */
  4067. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4068. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4069. TCP_SKB_CB(skb)->end_seq);
  4070. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4071. /* If window is closed, drop tail of packet. But after
  4072. * remembering D-SACK for its head made in previous line.
  4073. */
  4074. if (!tcp_receive_window(tp))
  4075. goto out_of_window;
  4076. goto queue_and_out;
  4077. }
  4078. tcp_data_queue_ofo(sk, skb);
  4079. }
  4080. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4081. {
  4082. if (list)
  4083. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4084. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4085. }
  4086. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4087. struct sk_buff_head *list,
  4088. struct rb_root *root)
  4089. {
  4090. struct sk_buff *next = tcp_skb_next(skb, list);
  4091. if (list)
  4092. __skb_unlink(skb, list);
  4093. else
  4094. rb_erase(&skb->rbnode, root);
  4095. __kfree_skb(skb);
  4096. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4097. return next;
  4098. }
  4099. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4100. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4101. {
  4102. struct rb_node **p = &root->rb_node;
  4103. struct rb_node *parent = NULL;
  4104. struct sk_buff *skb1;
  4105. while (*p) {
  4106. parent = *p;
  4107. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4108. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4109. p = &parent->rb_left;
  4110. else
  4111. p = &parent->rb_right;
  4112. }
  4113. rb_link_node(&skb->rbnode, parent, p);
  4114. rb_insert_color(&skb->rbnode, root);
  4115. }
  4116. /* Collapse contiguous sequence of skbs head..tail with
  4117. * sequence numbers start..end.
  4118. *
  4119. * If tail is NULL, this means until the end of the queue.
  4120. *
  4121. * Segments with FIN/SYN are not collapsed (only because this
  4122. * simplifies code)
  4123. */
  4124. static void
  4125. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4126. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4127. {
  4128. struct sk_buff *skb = head, *n;
  4129. struct sk_buff_head tmp;
  4130. bool end_of_skbs;
  4131. /* First, check that queue is collapsible and find
  4132. * the point where collapsing can be useful.
  4133. */
  4134. restart:
  4135. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4136. n = tcp_skb_next(skb, list);
  4137. /* No new bits? It is possible on ofo queue. */
  4138. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4139. skb = tcp_collapse_one(sk, skb, list, root);
  4140. if (!skb)
  4141. break;
  4142. goto restart;
  4143. }
  4144. /* The first skb to collapse is:
  4145. * - not SYN/FIN and
  4146. * - bloated or contains data before "start" or
  4147. * overlaps to the next one.
  4148. */
  4149. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4150. (tcp_win_from_space(skb->truesize) > skb->len ||
  4151. before(TCP_SKB_CB(skb)->seq, start))) {
  4152. end_of_skbs = false;
  4153. break;
  4154. }
  4155. if (n && n != tail &&
  4156. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4157. end_of_skbs = false;
  4158. break;
  4159. }
  4160. /* Decided to skip this, advance start seq. */
  4161. start = TCP_SKB_CB(skb)->end_seq;
  4162. }
  4163. if (end_of_skbs ||
  4164. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4165. return;
  4166. __skb_queue_head_init(&tmp);
  4167. while (before(start, end)) {
  4168. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4169. struct sk_buff *nskb;
  4170. nskb = alloc_skb(copy, GFP_ATOMIC);
  4171. if (!nskb)
  4172. break;
  4173. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4174. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4175. if (list)
  4176. __skb_queue_before(list, skb, nskb);
  4177. else
  4178. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4179. skb_set_owner_r(nskb, sk);
  4180. /* Copy data, releasing collapsed skbs. */
  4181. while (copy > 0) {
  4182. int offset = start - TCP_SKB_CB(skb)->seq;
  4183. int size = TCP_SKB_CB(skb)->end_seq - start;
  4184. BUG_ON(offset < 0);
  4185. if (size > 0) {
  4186. size = min(copy, size);
  4187. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4188. BUG();
  4189. TCP_SKB_CB(nskb)->end_seq += size;
  4190. copy -= size;
  4191. start += size;
  4192. }
  4193. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4194. skb = tcp_collapse_one(sk, skb, list, root);
  4195. if (!skb ||
  4196. skb == tail ||
  4197. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4198. goto end;
  4199. }
  4200. }
  4201. }
  4202. end:
  4203. skb_queue_walk_safe(&tmp, skb, n)
  4204. tcp_rbtree_insert(root, skb);
  4205. }
  4206. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4207. * and tcp_collapse() them until all the queue is collapsed.
  4208. */
  4209. static void tcp_collapse_ofo_queue(struct sock *sk)
  4210. {
  4211. struct tcp_sock *tp = tcp_sk(sk);
  4212. struct sk_buff *skb, *head;
  4213. struct rb_node *p;
  4214. u32 start, end;
  4215. p = rb_first(&tp->out_of_order_queue);
  4216. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4217. new_range:
  4218. if (!skb) {
  4219. p = rb_last(&tp->out_of_order_queue);
  4220. /* Note: This is possible p is NULL here. We do not
  4221. * use rb_entry_safe(), as ooo_last_skb is valid only
  4222. * if rbtree is not empty.
  4223. */
  4224. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4225. return;
  4226. }
  4227. start = TCP_SKB_CB(skb)->seq;
  4228. end = TCP_SKB_CB(skb)->end_seq;
  4229. for (head = skb;;) {
  4230. skb = tcp_skb_next(skb, NULL);
  4231. /* Range is terminated when we see a gap or when
  4232. * we are at the queue end.
  4233. */
  4234. if (!skb ||
  4235. after(TCP_SKB_CB(skb)->seq, end) ||
  4236. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4237. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4238. head, skb, start, end);
  4239. goto new_range;
  4240. }
  4241. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4242. start = TCP_SKB_CB(skb)->seq;
  4243. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4244. end = TCP_SKB_CB(skb)->end_seq;
  4245. }
  4246. }
  4247. /*
  4248. * Clean the out-of-order queue to make room.
  4249. * We drop high sequences packets to :
  4250. * 1) Let a chance for holes to be filled.
  4251. * 2) not add too big latencies if thousands of packets sit there.
  4252. * (But if application shrinks SO_RCVBUF, we could still end up
  4253. * freeing whole queue here)
  4254. *
  4255. * Return true if queue has shrunk.
  4256. */
  4257. static bool tcp_prune_ofo_queue(struct sock *sk)
  4258. {
  4259. struct tcp_sock *tp = tcp_sk(sk);
  4260. struct rb_node *node, *prev;
  4261. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4262. return false;
  4263. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4264. node = &tp->ooo_last_skb->rbnode;
  4265. do {
  4266. prev = rb_prev(node);
  4267. rb_erase(node, &tp->out_of_order_queue);
  4268. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4269. sk_mem_reclaim(sk);
  4270. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4271. !tcp_under_memory_pressure(sk))
  4272. break;
  4273. node = prev;
  4274. } while (node);
  4275. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4276. /* Reset SACK state. A conforming SACK implementation will
  4277. * do the same at a timeout based retransmit. When a connection
  4278. * is in a sad state like this, we care only about integrity
  4279. * of the connection not performance.
  4280. */
  4281. if (tp->rx_opt.sack_ok)
  4282. tcp_sack_reset(&tp->rx_opt);
  4283. return true;
  4284. }
  4285. /* Reduce allocated memory if we can, trying to get
  4286. * the socket within its memory limits again.
  4287. *
  4288. * Return less than zero if we should start dropping frames
  4289. * until the socket owning process reads some of the data
  4290. * to stabilize the situation.
  4291. */
  4292. static int tcp_prune_queue(struct sock *sk)
  4293. {
  4294. struct tcp_sock *tp = tcp_sk(sk);
  4295. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4296. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4297. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4298. tcp_clamp_window(sk);
  4299. else if (tcp_under_memory_pressure(sk))
  4300. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4301. tcp_collapse_ofo_queue(sk);
  4302. if (!skb_queue_empty(&sk->sk_receive_queue))
  4303. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4304. skb_peek(&sk->sk_receive_queue),
  4305. NULL,
  4306. tp->copied_seq, tp->rcv_nxt);
  4307. sk_mem_reclaim(sk);
  4308. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4309. return 0;
  4310. /* Collapsing did not help, destructive actions follow.
  4311. * This must not ever occur. */
  4312. tcp_prune_ofo_queue(sk);
  4313. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4314. return 0;
  4315. /* If we are really being abused, tell the caller to silently
  4316. * drop receive data on the floor. It will get retransmitted
  4317. * and hopefully then we'll have sufficient space.
  4318. */
  4319. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4320. /* Massive buffer overcommit. */
  4321. tp->pred_flags = 0;
  4322. return -1;
  4323. }
  4324. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4325. {
  4326. const struct tcp_sock *tp = tcp_sk(sk);
  4327. /* If the user specified a specific send buffer setting, do
  4328. * not modify it.
  4329. */
  4330. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4331. return false;
  4332. /* If we are under global TCP memory pressure, do not expand. */
  4333. if (tcp_under_memory_pressure(sk))
  4334. return false;
  4335. /* If we are under soft global TCP memory pressure, do not expand. */
  4336. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4337. return false;
  4338. /* If we filled the congestion window, do not expand. */
  4339. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4340. return false;
  4341. return true;
  4342. }
  4343. /* When incoming ACK allowed to free some skb from write_queue,
  4344. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4345. * on the exit from tcp input handler.
  4346. *
  4347. * PROBLEM: sndbuf expansion does not work well with largesend.
  4348. */
  4349. static void tcp_new_space(struct sock *sk)
  4350. {
  4351. struct tcp_sock *tp = tcp_sk(sk);
  4352. if (tcp_should_expand_sndbuf(sk)) {
  4353. tcp_sndbuf_expand(sk);
  4354. tp->snd_cwnd_stamp = tcp_jiffies32;
  4355. }
  4356. sk->sk_write_space(sk);
  4357. }
  4358. static void tcp_check_space(struct sock *sk)
  4359. {
  4360. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4361. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4362. /* pairs with tcp_poll() */
  4363. smp_mb();
  4364. if (sk->sk_socket &&
  4365. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4366. tcp_new_space(sk);
  4367. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4368. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4369. }
  4370. }
  4371. }
  4372. static inline void tcp_data_snd_check(struct sock *sk)
  4373. {
  4374. tcp_push_pending_frames(sk);
  4375. tcp_check_space(sk);
  4376. }
  4377. /*
  4378. * Check if sending an ack is needed.
  4379. */
  4380. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4381. {
  4382. struct tcp_sock *tp = tcp_sk(sk);
  4383. /* More than one full frame received... */
  4384. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4385. /* ... and right edge of window advances far enough.
  4386. * (tcp_recvmsg() will send ACK otherwise). Or...
  4387. */
  4388. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4389. /* We ACK each frame or... */
  4390. tcp_in_quickack_mode(sk) ||
  4391. /* We have out of order data. */
  4392. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4393. /* Then ack it now */
  4394. tcp_send_ack(sk);
  4395. } else {
  4396. /* Else, send delayed ack. */
  4397. tcp_send_delayed_ack(sk);
  4398. }
  4399. }
  4400. static inline void tcp_ack_snd_check(struct sock *sk)
  4401. {
  4402. if (!inet_csk_ack_scheduled(sk)) {
  4403. /* We sent a data segment already. */
  4404. return;
  4405. }
  4406. __tcp_ack_snd_check(sk, 1);
  4407. }
  4408. /*
  4409. * This routine is only called when we have urgent data
  4410. * signaled. Its the 'slow' part of tcp_urg. It could be
  4411. * moved inline now as tcp_urg is only called from one
  4412. * place. We handle URGent data wrong. We have to - as
  4413. * BSD still doesn't use the correction from RFC961.
  4414. * For 1003.1g we should support a new option TCP_STDURG to permit
  4415. * either form (or just set the sysctl tcp_stdurg).
  4416. */
  4417. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4418. {
  4419. struct tcp_sock *tp = tcp_sk(sk);
  4420. u32 ptr = ntohs(th->urg_ptr);
  4421. if (ptr && !sysctl_tcp_stdurg)
  4422. ptr--;
  4423. ptr += ntohl(th->seq);
  4424. /* Ignore urgent data that we've already seen and read. */
  4425. if (after(tp->copied_seq, ptr))
  4426. return;
  4427. /* Do not replay urg ptr.
  4428. *
  4429. * NOTE: interesting situation not covered by specs.
  4430. * Misbehaving sender may send urg ptr, pointing to segment,
  4431. * which we already have in ofo queue. We are not able to fetch
  4432. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4433. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4434. * situations. But it is worth to think about possibility of some
  4435. * DoSes using some hypothetical application level deadlock.
  4436. */
  4437. if (before(ptr, tp->rcv_nxt))
  4438. return;
  4439. /* Do we already have a newer (or duplicate) urgent pointer? */
  4440. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4441. return;
  4442. /* Tell the world about our new urgent pointer. */
  4443. sk_send_sigurg(sk);
  4444. /* We may be adding urgent data when the last byte read was
  4445. * urgent. To do this requires some care. We cannot just ignore
  4446. * tp->copied_seq since we would read the last urgent byte again
  4447. * as data, nor can we alter copied_seq until this data arrives
  4448. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4449. *
  4450. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4451. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4452. * and expect that both A and B disappear from stream. This is _wrong_.
  4453. * Though this happens in BSD with high probability, this is occasional.
  4454. * Any application relying on this is buggy. Note also, that fix "works"
  4455. * only in this artificial test. Insert some normal data between A and B and we will
  4456. * decline of BSD again. Verdict: it is better to remove to trap
  4457. * buggy users.
  4458. */
  4459. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4460. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4461. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4462. tp->copied_seq++;
  4463. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4464. __skb_unlink(skb, &sk->sk_receive_queue);
  4465. __kfree_skb(skb);
  4466. }
  4467. }
  4468. tp->urg_data = TCP_URG_NOTYET;
  4469. tp->urg_seq = ptr;
  4470. /* Disable header prediction. */
  4471. tp->pred_flags = 0;
  4472. }
  4473. /* This is the 'fast' part of urgent handling. */
  4474. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4475. {
  4476. struct tcp_sock *tp = tcp_sk(sk);
  4477. /* Check if we get a new urgent pointer - normally not. */
  4478. if (th->urg)
  4479. tcp_check_urg(sk, th);
  4480. /* Do we wait for any urgent data? - normally not... */
  4481. if (tp->urg_data == TCP_URG_NOTYET) {
  4482. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4483. th->syn;
  4484. /* Is the urgent pointer pointing into this packet? */
  4485. if (ptr < skb->len) {
  4486. u8 tmp;
  4487. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4488. BUG();
  4489. tp->urg_data = TCP_URG_VALID | tmp;
  4490. if (!sock_flag(sk, SOCK_DEAD))
  4491. sk->sk_data_ready(sk);
  4492. }
  4493. }
  4494. }
  4495. /* Accept RST for rcv_nxt - 1 after a FIN.
  4496. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4497. * FIN is sent followed by a RST packet. The RST is sent with the same
  4498. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4499. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4500. * ACKs on the closed socket. In addition middleboxes can drop either the
  4501. * challenge ACK or a subsequent RST.
  4502. */
  4503. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4504. {
  4505. struct tcp_sock *tp = tcp_sk(sk);
  4506. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4507. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4508. TCPF_CLOSING));
  4509. }
  4510. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4511. * play significant role here.
  4512. */
  4513. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4514. const struct tcphdr *th, int syn_inerr)
  4515. {
  4516. struct tcp_sock *tp = tcp_sk(sk);
  4517. bool rst_seq_match = false;
  4518. /* RFC1323: H1. Apply PAWS check first. */
  4519. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4520. tp->rx_opt.saw_tstamp &&
  4521. tcp_paws_discard(sk, skb)) {
  4522. if (!th->rst) {
  4523. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4524. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4525. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4526. &tp->last_oow_ack_time))
  4527. tcp_send_dupack(sk, skb);
  4528. goto discard;
  4529. }
  4530. /* Reset is accepted even if it did not pass PAWS. */
  4531. }
  4532. /* Step 1: check sequence number */
  4533. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4534. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4535. * (RST) segments are validated by checking their SEQ-fields."
  4536. * And page 69: "If an incoming segment is not acceptable,
  4537. * an acknowledgment should be sent in reply (unless the RST
  4538. * bit is set, if so drop the segment and return)".
  4539. */
  4540. if (!th->rst) {
  4541. if (th->syn)
  4542. goto syn_challenge;
  4543. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4544. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4545. &tp->last_oow_ack_time))
  4546. tcp_send_dupack(sk, skb);
  4547. } else if (tcp_reset_check(sk, skb)) {
  4548. tcp_reset(sk);
  4549. }
  4550. goto discard;
  4551. }
  4552. /* Step 2: check RST bit */
  4553. if (th->rst) {
  4554. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4555. * FIN and SACK too if available):
  4556. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4557. * the right-most SACK block,
  4558. * then
  4559. * RESET the connection
  4560. * else
  4561. * Send a challenge ACK
  4562. */
  4563. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4564. tcp_reset_check(sk, skb)) {
  4565. rst_seq_match = true;
  4566. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4567. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4568. int max_sack = sp[0].end_seq;
  4569. int this_sack;
  4570. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4571. ++this_sack) {
  4572. max_sack = after(sp[this_sack].end_seq,
  4573. max_sack) ?
  4574. sp[this_sack].end_seq : max_sack;
  4575. }
  4576. if (TCP_SKB_CB(skb)->seq == max_sack)
  4577. rst_seq_match = true;
  4578. }
  4579. if (rst_seq_match)
  4580. tcp_reset(sk);
  4581. else {
  4582. /* Disable TFO if RST is out-of-order
  4583. * and no data has been received
  4584. * for current active TFO socket
  4585. */
  4586. if (tp->syn_fastopen && !tp->data_segs_in &&
  4587. sk->sk_state == TCP_ESTABLISHED)
  4588. tcp_fastopen_active_disable(sk);
  4589. tcp_send_challenge_ack(sk, skb);
  4590. }
  4591. goto discard;
  4592. }
  4593. /* step 3: check security and precedence [ignored] */
  4594. /* step 4: Check for a SYN
  4595. * RFC 5961 4.2 : Send a challenge ack
  4596. */
  4597. if (th->syn) {
  4598. syn_challenge:
  4599. if (syn_inerr)
  4600. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4601. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4602. tcp_send_challenge_ack(sk, skb);
  4603. goto discard;
  4604. }
  4605. return true;
  4606. discard:
  4607. tcp_drop(sk, skb);
  4608. return false;
  4609. }
  4610. /*
  4611. * TCP receive function for the ESTABLISHED state.
  4612. *
  4613. * It is split into a fast path and a slow path. The fast path is
  4614. * disabled when:
  4615. * - A zero window was announced from us - zero window probing
  4616. * is only handled properly in the slow path.
  4617. * - Out of order segments arrived.
  4618. * - Urgent data is expected.
  4619. * - There is no buffer space left
  4620. * - Unexpected TCP flags/window values/header lengths are received
  4621. * (detected by checking the TCP header against pred_flags)
  4622. * - Data is sent in both directions. Fast path only supports pure senders
  4623. * or pure receivers (this means either the sequence number or the ack
  4624. * value must stay constant)
  4625. * - Unexpected TCP option.
  4626. *
  4627. * When these conditions are not satisfied it drops into a standard
  4628. * receive procedure patterned after RFC793 to handle all cases.
  4629. * The first three cases are guaranteed by proper pred_flags setting,
  4630. * the rest is checked inline. Fast processing is turned on in
  4631. * tcp_data_queue when everything is OK.
  4632. */
  4633. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4634. const struct tcphdr *th)
  4635. {
  4636. unsigned int len = skb->len;
  4637. struct tcp_sock *tp = tcp_sk(sk);
  4638. tcp_mstamp_refresh(tp);
  4639. if (unlikely(!sk->sk_rx_dst))
  4640. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4641. /*
  4642. * Header prediction.
  4643. * The code loosely follows the one in the famous
  4644. * "30 instruction TCP receive" Van Jacobson mail.
  4645. *
  4646. * Van's trick is to deposit buffers into socket queue
  4647. * on a device interrupt, to call tcp_recv function
  4648. * on the receive process context and checksum and copy
  4649. * the buffer to user space. smart...
  4650. *
  4651. * Our current scheme is not silly either but we take the
  4652. * extra cost of the net_bh soft interrupt processing...
  4653. * We do checksum and copy also but from device to kernel.
  4654. */
  4655. tp->rx_opt.saw_tstamp = 0;
  4656. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4657. * if header_prediction is to be made
  4658. * 'S' will always be tp->tcp_header_len >> 2
  4659. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4660. * turn it off (when there are holes in the receive
  4661. * space for instance)
  4662. * PSH flag is ignored.
  4663. */
  4664. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4665. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4666. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4667. int tcp_header_len = tp->tcp_header_len;
  4668. /* Timestamp header prediction: tcp_header_len
  4669. * is automatically equal to th->doff*4 due to pred_flags
  4670. * match.
  4671. */
  4672. /* Check timestamp */
  4673. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4674. /* No? Slow path! */
  4675. if (!tcp_parse_aligned_timestamp(tp, th))
  4676. goto slow_path;
  4677. /* If PAWS failed, check it more carefully in slow path */
  4678. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4679. goto slow_path;
  4680. /* DO NOT update ts_recent here, if checksum fails
  4681. * and timestamp was corrupted part, it will result
  4682. * in a hung connection since we will drop all
  4683. * future packets due to the PAWS test.
  4684. */
  4685. }
  4686. if (len <= tcp_header_len) {
  4687. /* Bulk data transfer: sender */
  4688. if (len == tcp_header_len) {
  4689. /* Predicted packet is in window by definition.
  4690. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4691. * Hence, check seq<=rcv_wup reduces to:
  4692. */
  4693. if (tcp_header_len ==
  4694. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4695. tp->rcv_nxt == tp->rcv_wup)
  4696. tcp_store_ts_recent(tp);
  4697. /* We know that such packets are checksummed
  4698. * on entry.
  4699. */
  4700. tcp_ack(sk, skb, 0);
  4701. __kfree_skb(skb);
  4702. tcp_data_snd_check(sk);
  4703. return;
  4704. } else { /* Header too small */
  4705. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4706. goto discard;
  4707. }
  4708. } else {
  4709. int eaten = 0;
  4710. bool fragstolen = false;
  4711. if (tcp_checksum_complete(skb))
  4712. goto csum_error;
  4713. if ((int)skb->truesize > sk->sk_forward_alloc)
  4714. goto step5;
  4715. /* Predicted packet is in window by definition.
  4716. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4717. * Hence, check seq<=rcv_wup reduces to:
  4718. */
  4719. if (tcp_header_len ==
  4720. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4721. tp->rcv_nxt == tp->rcv_wup)
  4722. tcp_store_ts_recent(tp);
  4723. tcp_rcv_rtt_measure_ts(sk, skb);
  4724. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4725. /* Bulk data transfer: receiver */
  4726. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4727. &fragstolen);
  4728. tcp_event_data_recv(sk, skb);
  4729. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4730. /* Well, only one small jumplet in fast path... */
  4731. tcp_ack(sk, skb, FLAG_DATA);
  4732. tcp_data_snd_check(sk);
  4733. if (!inet_csk_ack_scheduled(sk))
  4734. goto no_ack;
  4735. }
  4736. __tcp_ack_snd_check(sk, 0);
  4737. no_ack:
  4738. if (eaten)
  4739. kfree_skb_partial(skb, fragstolen);
  4740. sk->sk_data_ready(sk);
  4741. return;
  4742. }
  4743. }
  4744. slow_path:
  4745. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4746. goto csum_error;
  4747. if (!th->ack && !th->rst && !th->syn)
  4748. goto discard;
  4749. /*
  4750. * Standard slow path.
  4751. */
  4752. if (!tcp_validate_incoming(sk, skb, th, 1))
  4753. return;
  4754. step5:
  4755. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4756. goto discard;
  4757. tcp_rcv_rtt_measure_ts(sk, skb);
  4758. /* Process urgent data. */
  4759. tcp_urg(sk, skb, th);
  4760. /* step 7: process the segment text */
  4761. tcp_data_queue(sk, skb);
  4762. tcp_data_snd_check(sk);
  4763. tcp_ack_snd_check(sk);
  4764. return;
  4765. csum_error:
  4766. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4767. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4768. discard:
  4769. tcp_drop(sk, skb);
  4770. }
  4771. EXPORT_SYMBOL(tcp_rcv_established);
  4772. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4773. {
  4774. struct tcp_sock *tp = tcp_sk(sk);
  4775. struct inet_connection_sock *icsk = inet_csk(sk);
  4776. tcp_set_state(sk, TCP_ESTABLISHED);
  4777. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4778. if (skb) {
  4779. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4780. security_inet_conn_established(sk, skb);
  4781. }
  4782. /* Make sure socket is routed, for correct metrics. */
  4783. icsk->icsk_af_ops->rebuild_header(sk);
  4784. tcp_init_metrics(sk);
  4785. tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4786. tcp_init_congestion_control(sk);
  4787. /* Prevent spurious tcp_cwnd_restart() on first data
  4788. * packet.
  4789. */
  4790. tp->lsndtime = tcp_jiffies32;
  4791. tcp_init_buffer_space(sk);
  4792. if (sock_flag(sk, SOCK_KEEPOPEN))
  4793. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4794. if (!tp->rx_opt.snd_wscale)
  4795. __tcp_fast_path_on(tp, tp->snd_wnd);
  4796. else
  4797. tp->pred_flags = 0;
  4798. }
  4799. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4800. struct tcp_fastopen_cookie *cookie)
  4801. {
  4802. struct tcp_sock *tp = tcp_sk(sk);
  4803. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4804. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4805. bool syn_drop = false;
  4806. if (mss == tp->rx_opt.user_mss) {
  4807. struct tcp_options_received opt;
  4808. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4809. tcp_clear_options(&opt);
  4810. opt.user_mss = opt.mss_clamp = 0;
  4811. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4812. mss = opt.mss_clamp;
  4813. }
  4814. if (!tp->syn_fastopen) {
  4815. /* Ignore an unsolicited cookie */
  4816. cookie->len = -1;
  4817. } else if (tp->total_retrans) {
  4818. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4819. * acknowledges data. Presumably the remote received only
  4820. * the retransmitted (regular) SYNs: either the original
  4821. * SYN-data or the corresponding SYN-ACK was dropped.
  4822. */
  4823. syn_drop = (cookie->len < 0 && data);
  4824. } else if (cookie->len < 0 && !tp->syn_data) {
  4825. /* We requested a cookie but didn't get it. If we did not use
  4826. * the (old) exp opt format then try so next time (try_exp=1).
  4827. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4828. */
  4829. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4830. }
  4831. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4832. if (data) { /* Retransmit unacked data in SYN */
  4833. tcp_for_write_queue_from(data, sk) {
  4834. if (data == tcp_send_head(sk) ||
  4835. __tcp_retransmit_skb(sk, data, 1))
  4836. break;
  4837. }
  4838. tcp_rearm_rto(sk);
  4839. NET_INC_STATS(sock_net(sk),
  4840. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4841. return true;
  4842. }
  4843. tp->syn_data_acked = tp->syn_data;
  4844. if (tp->syn_data_acked)
  4845. NET_INC_STATS(sock_net(sk),
  4846. LINUX_MIB_TCPFASTOPENACTIVE);
  4847. tcp_fastopen_add_skb(sk, synack);
  4848. return false;
  4849. }
  4850. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4851. const struct tcphdr *th)
  4852. {
  4853. struct inet_connection_sock *icsk = inet_csk(sk);
  4854. struct tcp_sock *tp = tcp_sk(sk);
  4855. struct tcp_fastopen_cookie foc = { .len = -1 };
  4856. int saved_clamp = tp->rx_opt.mss_clamp;
  4857. bool fastopen_fail;
  4858. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4859. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4860. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4861. if (th->ack) {
  4862. /* rfc793:
  4863. * "If the state is SYN-SENT then
  4864. * first check the ACK bit
  4865. * If the ACK bit is set
  4866. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4867. * a reset (unless the RST bit is set, if so drop
  4868. * the segment and return)"
  4869. */
  4870. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4871. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4872. goto reset_and_undo;
  4873. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4874. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4875. tcp_time_stamp(tp))) {
  4876. NET_INC_STATS(sock_net(sk),
  4877. LINUX_MIB_PAWSACTIVEREJECTED);
  4878. goto reset_and_undo;
  4879. }
  4880. /* Now ACK is acceptable.
  4881. *
  4882. * "If the RST bit is set
  4883. * If the ACK was acceptable then signal the user "error:
  4884. * connection reset", drop the segment, enter CLOSED state,
  4885. * delete TCB, and return."
  4886. */
  4887. if (th->rst) {
  4888. tcp_reset(sk);
  4889. goto discard;
  4890. }
  4891. /* rfc793:
  4892. * "fifth, if neither of the SYN or RST bits is set then
  4893. * drop the segment and return."
  4894. *
  4895. * See note below!
  4896. * --ANK(990513)
  4897. */
  4898. if (!th->syn)
  4899. goto discard_and_undo;
  4900. /* rfc793:
  4901. * "If the SYN bit is on ...
  4902. * are acceptable then ...
  4903. * (our SYN has been ACKed), change the connection
  4904. * state to ESTABLISHED..."
  4905. */
  4906. tcp_ecn_rcv_synack(tp, th);
  4907. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4908. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4909. /* Ok.. it's good. Set up sequence numbers and
  4910. * move to established.
  4911. */
  4912. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4913. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4914. /* RFC1323: The window in SYN & SYN/ACK segments is
  4915. * never scaled.
  4916. */
  4917. tp->snd_wnd = ntohs(th->window);
  4918. if (!tp->rx_opt.wscale_ok) {
  4919. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4920. tp->window_clamp = min(tp->window_clamp, 65535U);
  4921. }
  4922. if (tp->rx_opt.saw_tstamp) {
  4923. tp->rx_opt.tstamp_ok = 1;
  4924. tp->tcp_header_len =
  4925. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4926. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4927. tcp_store_ts_recent(tp);
  4928. } else {
  4929. tp->tcp_header_len = sizeof(struct tcphdr);
  4930. }
  4931. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4932. tcp_enable_fack(tp);
  4933. tcp_mtup_init(sk);
  4934. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4935. tcp_initialize_rcv_mss(sk);
  4936. /* Remember, tcp_poll() does not lock socket!
  4937. * Change state from SYN-SENT only after copied_seq
  4938. * is initialized. */
  4939. tp->copied_seq = tp->rcv_nxt;
  4940. smp_mb();
  4941. tcp_finish_connect(sk, skb);
  4942. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4943. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4944. if (!sock_flag(sk, SOCK_DEAD)) {
  4945. sk->sk_state_change(sk);
  4946. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4947. }
  4948. if (fastopen_fail)
  4949. return -1;
  4950. if (sk->sk_write_pending ||
  4951. icsk->icsk_accept_queue.rskq_defer_accept ||
  4952. icsk->icsk_ack.pingpong) {
  4953. /* Save one ACK. Data will be ready after
  4954. * several ticks, if write_pending is set.
  4955. *
  4956. * It may be deleted, but with this feature tcpdumps
  4957. * look so _wonderfully_ clever, that I was not able
  4958. * to stand against the temptation 8) --ANK
  4959. */
  4960. inet_csk_schedule_ack(sk);
  4961. tcp_enter_quickack_mode(sk);
  4962. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4963. TCP_DELACK_MAX, TCP_RTO_MAX);
  4964. discard:
  4965. tcp_drop(sk, skb);
  4966. return 0;
  4967. } else {
  4968. tcp_send_ack(sk);
  4969. }
  4970. return -1;
  4971. }
  4972. /* No ACK in the segment */
  4973. if (th->rst) {
  4974. /* rfc793:
  4975. * "If the RST bit is set
  4976. *
  4977. * Otherwise (no ACK) drop the segment and return."
  4978. */
  4979. goto discard_and_undo;
  4980. }
  4981. /* PAWS check. */
  4982. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4983. tcp_paws_reject(&tp->rx_opt, 0))
  4984. goto discard_and_undo;
  4985. if (th->syn) {
  4986. /* We see SYN without ACK. It is attempt of
  4987. * simultaneous connect with crossed SYNs.
  4988. * Particularly, it can be connect to self.
  4989. */
  4990. tcp_set_state(sk, TCP_SYN_RECV);
  4991. if (tp->rx_opt.saw_tstamp) {
  4992. tp->rx_opt.tstamp_ok = 1;
  4993. tcp_store_ts_recent(tp);
  4994. tp->tcp_header_len =
  4995. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4996. } else {
  4997. tp->tcp_header_len = sizeof(struct tcphdr);
  4998. }
  4999. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5000. tp->copied_seq = tp->rcv_nxt;
  5001. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5002. /* RFC1323: The window in SYN & SYN/ACK segments is
  5003. * never scaled.
  5004. */
  5005. tp->snd_wnd = ntohs(th->window);
  5006. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5007. tp->max_window = tp->snd_wnd;
  5008. tcp_ecn_rcv_syn(tp, th);
  5009. tcp_mtup_init(sk);
  5010. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5011. tcp_initialize_rcv_mss(sk);
  5012. tcp_send_synack(sk);
  5013. #if 0
  5014. /* Note, we could accept data and URG from this segment.
  5015. * There are no obstacles to make this (except that we must
  5016. * either change tcp_recvmsg() to prevent it from returning data
  5017. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5018. *
  5019. * However, if we ignore data in ACKless segments sometimes,
  5020. * we have no reasons to accept it sometimes.
  5021. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5022. * is not flawless. So, discard packet for sanity.
  5023. * Uncomment this return to process the data.
  5024. */
  5025. return -1;
  5026. #else
  5027. goto discard;
  5028. #endif
  5029. }
  5030. /* "fifth, if neither of the SYN or RST bits is set then
  5031. * drop the segment and return."
  5032. */
  5033. discard_and_undo:
  5034. tcp_clear_options(&tp->rx_opt);
  5035. tp->rx_opt.mss_clamp = saved_clamp;
  5036. goto discard;
  5037. reset_and_undo:
  5038. tcp_clear_options(&tp->rx_opt);
  5039. tp->rx_opt.mss_clamp = saved_clamp;
  5040. return 1;
  5041. }
  5042. /*
  5043. * This function implements the receiving procedure of RFC 793 for
  5044. * all states except ESTABLISHED and TIME_WAIT.
  5045. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5046. * address independent.
  5047. */
  5048. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5049. {
  5050. struct tcp_sock *tp = tcp_sk(sk);
  5051. struct inet_connection_sock *icsk = inet_csk(sk);
  5052. const struct tcphdr *th = tcp_hdr(skb);
  5053. struct request_sock *req;
  5054. int queued = 0;
  5055. bool acceptable;
  5056. switch (sk->sk_state) {
  5057. case TCP_CLOSE:
  5058. goto discard;
  5059. case TCP_LISTEN:
  5060. if (th->ack)
  5061. return 1;
  5062. if (th->rst)
  5063. goto discard;
  5064. if (th->syn) {
  5065. if (th->fin)
  5066. goto discard;
  5067. /* It is possible that we process SYN packets from backlog,
  5068. * so we need to make sure to disable BH right there.
  5069. */
  5070. local_bh_disable();
  5071. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5072. local_bh_enable();
  5073. if (!acceptable)
  5074. return 1;
  5075. consume_skb(skb);
  5076. return 0;
  5077. }
  5078. goto discard;
  5079. case TCP_SYN_SENT:
  5080. tp->rx_opt.saw_tstamp = 0;
  5081. tcp_mstamp_refresh(tp);
  5082. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5083. if (queued >= 0)
  5084. return queued;
  5085. /* Do step6 onward by hand. */
  5086. tcp_urg(sk, skb, th);
  5087. __kfree_skb(skb);
  5088. tcp_data_snd_check(sk);
  5089. return 0;
  5090. }
  5091. tcp_mstamp_refresh(tp);
  5092. tp->rx_opt.saw_tstamp = 0;
  5093. req = tp->fastopen_rsk;
  5094. if (req) {
  5095. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5096. sk->sk_state != TCP_FIN_WAIT1);
  5097. if (!tcp_check_req(sk, skb, req, true))
  5098. goto discard;
  5099. }
  5100. if (!th->ack && !th->rst && !th->syn)
  5101. goto discard;
  5102. if (!tcp_validate_incoming(sk, skb, th, 0))
  5103. return 0;
  5104. /* step 5: check the ACK field */
  5105. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5106. FLAG_UPDATE_TS_RECENT |
  5107. FLAG_NO_CHALLENGE_ACK) > 0;
  5108. if (!acceptable) {
  5109. if (sk->sk_state == TCP_SYN_RECV)
  5110. return 1; /* send one RST */
  5111. tcp_send_challenge_ack(sk, skb);
  5112. goto discard;
  5113. }
  5114. switch (sk->sk_state) {
  5115. case TCP_SYN_RECV:
  5116. if (!tp->srtt_us)
  5117. tcp_synack_rtt_meas(sk, req);
  5118. /* Once we leave TCP_SYN_RECV, we no longer need req
  5119. * so release it.
  5120. */
  5121. if (req) {
  5122. inet_csk(sk)->icsk_retransmits = 0;
  5123. reqsk_fastopen_remove(sk, req, false);
  5124. } else {
  5125. /* Make sure socket is routed, for correct metrics. */
  5126. icsk->icsk_af_ops->rebuild_header(sk);
  5127. tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5128. tcp_init_congestion_control(sk);
  5129. tcp_mtup_init(sk);
  5130. tp->copied_seq = tp->rcv_nxt;
  5131. tcp_init_buffer_space(sk);
  5132. }
  5133. smp_mb();
  5134. tcp_set_state(sk, TCP_ESTABLISHED);
  5135. sk->sk_state_change(sk);
  5136. /* Note, that this wakeup is only for marginal crossed SYN case.
  5137. * Passively open sockets are not waked up, because
  5138. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5139. */
  5140. if (sk->sk_socket)
  5141. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5142. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5143. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5144. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5145. if (tp->rx_opt.tstamp_ok)
  5146. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5147. if (req) {
  5148. /* Re-arm the timer because data may have been sent out.
  5149. * This is similar to the regular data transmission case
  5150. * when new data has just been ack'ed.
  5151. *
  5152. * (TFO) - we could try to be more aggressive and
  5153. * retransmitting any data sooner based on when they
  5154. * are sent out.
  5155. */
  5156. tcp_rearm_rto(sk);
  5157. } else
  5158. tcp_init_metrics(sk);
  5159. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5160. tcp_update_pacing_rate(sk);
  5161. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5162. tp->lsndtime = tcp_jiffies32;
  5163. tcp_initialize_rcv_mss(sk);
  5164. tcp_fast_path_on(tp);
  5165. break;
  5166. case TCP_FIN_WAIT1: {
  5167. int tmo;
  5168. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5169. * Fast Open socket and this is the first acceptable
  5170. * ACK we have received, this would have acknowledged
  5171. * our SYNACK so stop the SYNACK timer.
  5172. */
  5173. if (req) {
  5174. /* We no longer need the request sock. */
  5175. reqsk_fastopen_remove(sk, req, false);
  5176. tcp_rearm_rto(sk);
  5177. }
  5178. if (tp->snd_una != tp->write_seq)
  5179. break;
  5180. tcp_set_state(sk, TCP_FIN_WAIT2);
  5181. sk->sk_shutdown |= SEND_SHUTDOWN;
  5182. sk_dst_confirm(sk);
  5183. if (!sock_flag(sk, SOCK_DEAD)) {
  5184. /* Wake up lingering close() */
  5185. sk->sk_state_change(sk);
  5186. break;
  5187. }
  5188. if (tp->linger2 < 0) {
  5189. tcp_done(sk);
  5190. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5191. return 1;
  5192. }
  5193. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5194. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5195. /* Receive out of order FIN after close() */
  5196. if (tp->syn_fastopen && th->fin)
  5197. tcp_fastopen_active_disable(sk);
  5198. tcp_done(sk);
  5199. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5200. return 1;
  5201. }
  5202. tmo = tcp_fin_time(sk);
  5203. if (tmo > TCP_TIMEWAIT_LEN) {
  5204. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5205. } else if (th->fin || sock_owned_by_user(sk)) {
  5206. /* Bad case. We could lose such FIN otherwise.
  5207. * It is not a big problem, but it looks confusing
  5208. * and not so rare event. We still can lose it now,
  5209. * if it spins in bh_lock_sock(), but it is really
  5210. * marginal case.
  5211. */
  5212. inet_csk_reset_keepalive_timer(sk, tmo);
  5213. } else {
  5214. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5215. goto discard;
  5216. }
  5217. break;
  5218. }
  5219. case TCP_CLOSING:
  5220. if (tp->snd_una == tp->write_seq) {
  5221. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5222. goto discard;
  5223. }
  5224. break;
  5225. case TCP_LAST_ACK:
  5226. if (tp->snd_una == tp->write_seq) {
  5227. tcp_update_metrics(sk);
  5228. tcp_done(sk);
  5229. goto discard;
  5230. }
  5231. break;
  5232. }
  5233. /* step 6: check the URG bit */
  5234. tcp_urg(sk, skb, th);
  5235. /* step 7: process the segment text */
  5236. switch (sk->sk_state) {
  5237. case TCP_CLOSE_WAIT:
  5238. case TCP_CLOSING:
  5239. case TCP_LAST_ACK:
  5240. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5241. break;
  5242. case TCP_FIN_WAIT1:
  5243. case TCP_FIN_WAIT2:
  5244. /* RFC 793 says to queue data in these states,
  5245. * RFC 1122 says we MUST send a reset.
  5246. * BSD 4.4 also does reset.
  5247. */
  5248. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5249. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5250. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5251. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5252. tcp_reset(sk);
  5253. return 1;
  5254. }
  5255. }
  5256. /* Fall through */
  5257. case TCP_ESTABLISHED:
  5258. tcp_data_queue(sk, skb);
  5259. queued = 1;
  5260. break;
  5261. }
  5262. /* tcp_data could move socket to TIME-WAIT */
  5263. if (sk->sk_state != TCP_CLOSE) {
  5264. tcp_data_snd_check(sk);
  5265. tcp_ack_snd_check(sk);
  5266. }
  5267. if (!queued) {
  5268. discard:
  5269. tcp_drop(sk, skb);
  5270. }
  5271. return 0;
  5272. }
  5273. EXPORT_SYMBOL(tcp_rcv_state_process);
  5274. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5275. {
  5276. struct inet_request_sock *ireq = inet_rsk(req);
  5277. if (family == AF_INET)
  5278. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5279. &ireq->ir_rmt_addr, port);
  5280. #if IS_ENABLED(CONFIG_IPV6)
  5281. else if (family == AF_INET6)
  5282. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5283. &ireq->ir_v6_rmt_addr, port);
  5284. #endif
  5285. }
  5286. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5287. *
  5288. * If we receive a SYN packet with these bits set, it means a
  5289. * network is playing bad games with TOS bits. In order to
  5290. * avoid possible false congestion notifications, we disable
  5291. * TCP ECN negotiation.
  5292. *
  5293. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5294. * congestion control: Linux DCTCP asserts ECT on all packets,
  5295. * including SYN, which is most optimal solution; however,
  5296. * others, such as FreeBSD do not.
  5297. */
  5298. static void tcp_ecn_create_request(struct request_sock *req,
  5299. const struct sk_buff *skb,
  5300. const struct sock *listen_sk,
  5301. const struct dst_entry *dst)
  5302. {
  5303. const struct tcphdr *th = tcp_hdr(skb);
  5304. const struct net *net = sock_net(listen_sk);
  5305. bool th_ecn = th->ece && th->cwr;
  5306. bool ect, ecn_ok;
  5307. u32 ecn_ok_dst;
  5308. if (!th_ecn)
  5309. return;
  5310. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5311. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5312. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5313. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5314. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5315. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5316. inet_rsk(req)->ecn_ok = 1;
  5317. }
  5318. static void tcp_openreq_init(struct request_sock *req,
  5319. const struct tcp_options_received *rx_opt,
  5320. struct sk_buff *skb, const struct sock *sk)
  5321. {
  5322. struct inet_request_sock *ireq = inet_rsk(req);
  5323. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5324. req->cookie_ts = 0;
  5325. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5326. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5327. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5328. tcp_rsk(req)->last_oow_ack_time = 0;
  5329. req->mss = rx_opt->mss_clamp;
  5330. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5331. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5332. ireq->sack_ok = rx_opt->sack_ok;
  5333. ireq->snd_wscale = rx_opt->snd_wscale;
  5334. ireq->wscale_ok = rx_opt->wscale_ok;
  5335. ireq->acked = 0;
  5336. ireq->ecn_ok = 0;
  5337. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5338. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5339. ireq->ir_mark = inet_request_mark(sk, skb);
  5340. }
  5341. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5342. struct sock *sk_listener,
  5343. bool attach_listener)
  5344. {
  5345. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5346. attach_listener);
  5347. if (req) {
  5348. struct inet_request_sock *ireq = inet_rsk(req);
  5349. kmemcheck_annotate_bitfield(ireq, flags);
  5350. ireq->ireq_opt = NULL;
  5351. #if IS_ENABLED(CONFIG_IPV6)
  5352. ireq->pktopts = NULL;
  5353. #endif
  5354. atomic64_set(&ireq->ir_cookie, 0);
  5355. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5356. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5357. ireq->ireq_family = sk_listener->sk_family;
  5358. }
  5359. return req;
  5360. }
  5361. EXPORT_SYMBOL(inet_reqsk_alloc);
  5362. /*
  5363. * Return true if a syncookie should be sent
  5364. */
  5365. static bool tcp_syn_flood_action(const struct sock *sk,
  5366. const struct sk_buff *skb,
  5367. const char *proto)
  5368. {
  5369. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5370. const char *msg = "Dropping request";
  5371. bool want_cookie = false;
  5372. struct net *net = sock_net(sk);
  5373. #ifdef CONFIG_SYN_COOKIES
  5374. if (net->ipv4.sysctl_tcp_syncookies) {
  5375. msg = "Sending cookies";
  5376. want_cookie = true;
  5377. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5378. } else
  5379. #endif
  5380. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5381. if (!queue->synflood_warned &&
  5382. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5383. xchg(&queue->synflood_warned, 1) == 0)
  5384. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5385. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5386. return want_cookie;
  5387. }
  5388. static void tcp_reqsk_record_syn(const struct sock *sk,
  5389. struct request_sock *req,
  5390. const struct sk_buff *skb)
  5391. {
  5392. if (tcp_sk(sk)->save_syn) {
  5393. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5394. u32 *copy;
  5395. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5396. if (copy) {
  5397. copy[0] = len;
  5398. memcpy(&copy[1], skb_network_header(skb), len);
  5399. req->saved_syn = copy;
  5400. }
  5401. }
  5402. }
  5403. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5404. const struct tcp_request_sock_ops *af_ops,
  5405. struct sock *sk, struct sk_buff *skb)
  5406. {
  5407. struct tcp_fastopen_cookie foc = { .len = -1 };
  5408. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5409. struct tcp_options_received tmp_opt;
  5410. struct tcp_sock *tp = tcp_sk(sk);
  5411. struct net *net = sock_net(sk);
  5412. struct sock *fastopen_sk = NULL;
  5413. struct request_sock *req;
  5414. bool want_cookie = false;
  5415. struct dst_entry *dst;
  5416. struct flowi fl;
  5417. /* TW buckets are converted to open requests without
  5418. * limitations, they conserve resources and peer is
  5419. * evidently real one.
  5420. */
  5421. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5422. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5423. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5424. if (!want_cookie)
  5425. goto drop;
  5426. }
  5427. if (sk_acceptq_is_full(sk)) {
  5428. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5429. goto drop;
  5430. }
  5431. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5432. if (!req)
  5433. goto drop;
  5434. tcp_rsk(req)->af_specific = af_ops;
  5435. tcp_rsk(req)->ts_off = 0;
  5436. tcp_clear_options(&tmp_opt);
  5437. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5438. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5439. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5440. want_cookie ? NULL : &foc);
  5441. if (want_cookie && !tmp_opt.saw_tstamp)
  5442. tcp_clear_options(&tmp_opt);
  5443. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5444. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5445. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5446. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5447. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5448. af_ops->init_req(req, sk, skb);
  5449. if (security_inet_conn_request(sk, skb, req))
  5450. goto drop_and_free;
  5451. if (tmp_opt.tstamp_ok)
  5452. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5453. dst = af_ops->route_req(sk, &fl, req);
  5454. if (!dst)
  5455. goto drop_and_free;
  5456. if (!want_cookie && !isn) {
  5457. /* Kill the following clause, if you dislike this way. */
  5458. if (!net->ipv4.sysctl_tcp_syncookies &&
  5459. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5460. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5461. !tcp_peer_is_proven(req, dst)) {
  5462. /* Without syncookies last quarter of
  5463. * backlog is filled with destinations,
  5464. * proven to be alive.
  5465. * It means that we continue to communicate
  5466. * to destinations, already remembered
  5467. * to the moment of synflood.
  5468. */
  5469. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5470. rsk_ops->family);
  5471. goto drop_and_release;
  5472. }
  5473. isn = af_ops->init_seq(skb);
  5474. }
  5475. tcp_ecn_create_request(req, skb, sk, dst);
  5476. if (want_cookie) {
  5477. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5478. req->cookie_ts = tmp_opt.tstamp_ok;
  5479. if (!tmp_opt.tstamp_ok)
  5480. inet_rsk(req)->ecn_ok = 0;
  5481. }
  5482. tcp_rsk(req)->snt_isn = isn;
  5483. tcp_rsk(req)->txhash = net_tx_rndhash();
  5484. tcp_openreq_init_rwin(req, sk, dst);
  5485. if (!want_cookie) {
  5486. tcp_reqsk_record_syn(sk, req, skb);
  5487. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
  5488. }
  5489. if (fastopen_sk) {
  5490. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5491. &foc, TCP_SYNACK_FASTOPEN);
  5492. /* Add the child socket directly into the accept queue */
  5493. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5494. sk->sk_data_ready(sk);
  5495. bh_unlock_sock(fastopen_sk);
  5496. sock_put(fastopen_sk);
  5497. } else {
  5498. tcp_rsk(req)->tfo_listener = false;
  5499. if (!want_cookie)
  5500. inet_csk_reqsk_queue_hash_add(sk, req,
  5501. tcp_timeout_init((struct sock *)req));
  5502. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5503. !want_cookie ? TCP_SYNACK_NORMAL :
  5504. TCP_SYNACK_COOKIE);
  5505. if (want_cookie) {
  5506. reqsk_free(req);
  5507. return 0;
  5508. }
  5509. }
  5510. reqsk_put(req);
  5511. return 0;
  5512. drop_and_release:
  5513. dst_release(dst);
  5514. drop_and_free:
  5515. reqsk_free(req);
  5516. drop:
  5517. tcp_listendrop(sk);
  5518. return 0;
  5519. }
  5520. EXPORT_SYMBOL(tcp_conn_request);