fib_trie.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <net/fib_notifier.h>
  83. #include <trace/events/fib.h>
  84. #include "fib_lookup.h"
  85. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  86. enum fib_event_type event_type, u32 dst,
  87. int dst_len, struct fib_info *fi,
  88. u8 tos, u8 type, u32 tb_id)
  89. {
  90. struct fib_entry_notifier_info info = {
  91. .dst = dst,
  92. .dst_len = dst_len,
  93. .fi = fi,
  94. .tos = tos,
  95. .type = type,
  96. .tb_id = tb_id,
  97. };
  98. return call_fib4_notifier(nb, net, event_type, &info.info);
  99. }
  100. static int call_fib_entry_notifiers(struct net *net,
  101. enum fib_event_type event_type, u32 dst,
  102. int dst_len, struct fib_info *fi,
  103. u8 tos, u8 type, u32 tb_id)
  104. {
  105. struct fib_entry_notifier_info info = {
  106. .dst = dst,
  107. .dst_len = dst_len,
  108. .fi = fi,
  109. .tos = tos,
  110. .type = type,
  111. .tb_id = tb_id,
  112. };
  113. return call_fib4_notifiers(net, event_type, &info.info);
  114. }
  115. #define MAX_STAT_DEPTH 32
  116. #define KEYLENGTH (8*sizeof(t_key))
  117. #define KEY_MAX ((t_key)~0)
  118. typedef unsigned int t_key;
  119. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  120. #define IS_TNODE(n) ((n)->bits)
  121. #define IS_LEAF(n) (!(n)->bits)
  122. struct key_vector {
  123. t_key key;
  124. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  125. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  126. unsigned char slen;
  127. union {
  128. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  129. struct hlist_head leaf;
  130. /* This array is valid if (pos | bits) > 0 (TNODE) */
  131. struct key_vector __rcu *tnode[0];
  132. };
  133. };
  134. struct tnode {
  135. struct rcu_head rcu;
  136. t_key empty_children; /* KEYLENGTH bits needed */
  137. t_key full_children; /* KEYLENGTH bits needed */
  138. struct key_vector __rcu *parent;
  139. struct key_vector kv[1];
  140. #define tn_bits kv[0].bits
  141. };
  142. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  143. #define LEAF_SIZE TNODE_SIZE(1)
  144. #ifdef CONFIG_IP_FIB_TRIE_STATS
  145. struct trie_use_stats {
  146. unsigned int gets;
  147. unsigned int backtrack;
  148. unsigned int semantic_match_passed;
  149. unsigned int semantic_match_miss;
  150. unsigned int null_node_hit;
  151. unsigned int resize_node_skipped;
  152. };
  153. #endif
  154. struct trie_stat {
  155. unsigned int totdepth;
  156. unsigned int maxdepth;
  157. unsigned int tnodes;
  158. unsigned int leaves;
  159. unsigned int nullpointers;
  160. unsigned int prefixes;
  161. unsigned int nodesizes[MAX_STAT_DEPTH];
  162. };
  163. struct trie {
  164. struct key_vector kv[1];
  165. #ifdef CONFIG_IP_FIB_TRIE_STATS
  166. struct trie_use_stats __percpu *stats;
  167. #endif
  168. };
  169. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  170. static size_t tnode_free_size;
  171. /*
  172. * synchronize_rcu after call_rcu for that many pages; it should be especially
  173. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  174. * obtained experimentally, aiming to avoid visible slowdown.
  175. */
  176. static const int sync_pages = 128;
  177. static struct kmem_cache *fn_alias_kmem __read_mostly;
  178. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  179. static inline struct tnode *tn_info(struct key_vector *kv)
  180. {
  181. return container_of(kv, struct tnode, kv[0]);
  182. }
  183. /* caller must hold RTNL */
  184. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  185. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  186. /* caller must hold RCU read lock or RTNL */
  187. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  188. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  189. /* wrapper for rcu_assign_pointer */
  190. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  191. {
  192. if (n)
  193. rcu_assign_pointer(tn_info(n)->parent, tp);
  194. }
  195. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  196. /* This provides us with the number of children in this node, in the case of a
  197. * leaf this will return 0 meaning none of the children are accessible.
  198. */
  199. static inline unsigned long child_length(const struct key_vector *tn)
  200. {
  201. return (1ul << tn->bits) & ~(1ul);
  202. }
  203. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  204. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  205. {
  206. unsigned long index = key ^ kv->key;
  207. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  208. return 0;
  209. return index >> kv->pos;
  210. }
  211. /* To understand this stuff, an understanding of keys and all their bits is
  212. * necessary. Every node in the trie has a key associated with it, but not
  213. * all of the bits in that key are significant.
  214. *
  215. * Consider a node 'n' and its parent 'tp'.
  216. *
  217. * If n is a leaf, every bit in its key is significant. Its presence is
  218. * necessitated by path compression, since during a tree traversal (when
  219. * searching for a leaf - unless we are doing an insertion) we will completely
  220. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  221. * a potentially successful search, that we have indeed been walking the
  222. * correct key path.
  223. *
  224. * Note that we can never "miss" the correct key in the tree if present by
  225. * following the wrong path. Path compression ensures that segments of the key
  226. * that are the same for all keys with a given prefix are skipped, but the
  227. * skipped part *is* identical for each node in the subtrie below the skipped
  228. * bit! trie_insert() in this implementation takes care of that.
  229. *
  230. * if n is an internal node - a 'tnode' here, the various parts of its key
  231. * have many different meanings.
  232. *
  233. * Example:
  234. * _________________________________________________________________
  235. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  236. * -----------------------------------------------------------------
  237. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  238. *
  239. * _________________________________________________________________
  240. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  241. * -----------------------------------------------------------------
  242. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  243. *
  244. * tp->pos = 22
  245. * tp->bits = 3
  246. * n->pos = 13
  247. * n->bits = 4
  248. *
  249. * First, let's just ignore the bits that come before the parent tp, that is
  250. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  251. * point we do not use them for anything.
  252. *
  253. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  254. * index into the parent's child array. That is, they will be used to find
  255. * 'n' among tp's children.
  256. *
  257. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  258. * for the node n.
  259. *
  260. * All the bits we have seen so far are significant to the node n. The rest
  261. * of the bits are really not needed or indeed known in n->key.
  262. *
  263. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  264. * n's child array, and will of course be different for each child.
  265. *
  266. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  267. * at this point.
  268. */
  269. static const int halve_threshold = 25;
  270. static const int inflate_threshold = 50;
  271. static const int halve_threshold_root = 15;
  272. static const int inflate_threshold_root = 30;
  273. static void __alias_free_mem(struct rcu_head *head)
  274. {
  275. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  276. kmem_cache_free(fn_alias_kmem, fa);
  277. }
  278. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  279. {
  280. call_rcu(&fa->rcu, __alias_free_mem);
  281. }
  282. #define TNODE_KMALLOC_MAX \
  283. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  284. #define TNODE_VMALLOC_MAX \
  285. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  286. static void __node_free_rcu(struct rcu_head *head)
  287. {
  288. struct tnode *n = container_of(head, struct tnode, rcu);
  289. if (!n->tn_bits)
  290. kmem_cache_free(trie_leaf_kmem, n);
  291. else
  292. kvfree(n);
  293. }
  294. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  295. static struct tnode *tnode_alloc(int bits)
  296. {
  297. size_t size;
  298. /* verify bits is within bounds */
  299. if (bits > TNODE_VMALLOC_MAX)
  300. return NULL;
  301. /* determine size and verify it is non-zero and didn't overflow */
  302. size = TNODE_SIZE(1ul << bits);
  303. if (size <= PAGE_SIZE)
  304. return kzalloc(size, GFP_KERNEL);
  305. else
  306. return vzalloc(size);
  307. }
  308. static inline void empty_child_inc(struct key_vector *n)
  309. {
  310. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  311. }
  312. static inline void empty_child_dec(struct key_vector *n)
  313. {
  314. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  315. }
  316. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  317. {
  318. struct key_vector *l;
  319. struct tnode *kv;
  320. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  321. if (!kv)
  322. return NULL;
  323. /* initialize key vector */
  324. l = kv->kv;
  325. l->key = key;
  326. l->pos = 0;
  327. l->bits = 0;
  328. l->slen = fa->fa_slen;
  329. /* link leaf to fib alias */
  330. INIT_HLIST_HEAD(&l->leaf);
  331. hlist_add_head(&fa->fa_list, &l->leaf);
  332. return l;
  333. }
  334. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  335. {
  336. unsigned int shift = pos + bits;
  337. struct key_vector *tn;
  338. struct tnode *tnode;
  339. /* verify bits and pos their msb bits clear and values are valid */
  340. BUG_ON(!bits || (shift > KEYLENGTH));
  341. tnode = tnode_alloc(bits);
  342. if (!tnode)
  343. return NULL;
  344. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  345. sizeof(struct key_vector *) << bits);
  346. if (bits == KEYLENGTH)
  347. tnode->full_children = 1;
  348. else
  349. tnode->empty_children = 1ul << bits;
  350. tn = tnode->kv;
  351. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  352. tn->pos = pos;
  353. tn->bits = bits;
  354. tn->slen = pos;
  355. return tn;
  356. }
  357. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  358. * and no bits are skipped. See discussion in dyntree paper p. 6
  359. */
  360. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  361. {
  362. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  363. }
  364. /* Add a child at position i overwriting the old value.
  365. * Update the value of full_children and empty_children.
  366. */
  367. static void put_child(struct key_vector *tn, unsigned long i,
  368. struct key_vector *n)
  369. {
  370. struct key_vector *chi = get_child(tn, i);
  371. int isfull, wasfull;
  372. BUG_ON(i >= child_length(tn));
  373. /* update emptyChildren, overflow into fullChildren */
  374. if (!n && chi)
  375. empty_child_inc(tn);
  376. if (n && !chi)
  377. empty_child_dec(tn);
  378. /* update fullChildren */
  379. wasfull = tnode_full(tn, chi);
  380. isfull = tnode_full(tn, n);
  381. if (wasfull && !isfull)
  382. tn_info(tn)->full_children--;
  383. else if (!wasfull && isfull)
  384. tn_info(tn)->full_children++;
  385. if (n && (tn->slen < n->slen))
  386. tn->slen = n->slen;
  387. rcu_assign_pointer(tn->tnode[i], n);
  388. }
  389. static void update_children(struct key_vector *tn)
  390. {
  391. unsigned long i;
  392. /* update all of the child parent pointers */
  393. for (i = child_length(tn); i;) {
  394. struct key_vector *inode = get_child(tn, --i);
  395. if (!inode)
  396. continue;
  397. /* Either update the children of a tnode that
  398. * already belongs to us or update the child
  399. * to point to ourselves.
  400. */
  401. if (node_parent(inode) == tn)
  402. update_children(inode);
  403. else
  404. node_set_parent(inode, tn);
  405. }
  406. }
  407. static inline void put_child_root(struct key_vector *tp, t_key key,
  408. struct key_vector *n)
  409. {
  410. if (IS_TRIE(tp))
  411. rcu_assign_pointer(tp->tnode[0], n);
  412. else
  413. put_child(tp, get_index(key, tp), n);
  414. }
  415. static inline void tnode_free_init(struct key_vector *tn)
  416. {
  417. tn_info(tn)->rcu.next = NULL;
  418. }
  419. static inline void tnode_free_append(struct key_vector *tn,
  420. struct key_vector *n)
  421. {
  422. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  423. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  424. }
  425. static void tnode_free(struct key_vector *tn)
  426. {
  427. struct callback_head *head = &tn_info(tn)->rcu;
  428. while (head) {
  429. head = head->next;
  430. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  431. node_free(tn);
  432. tn = container_of(head, struct tnode, rcu)->kv;
  433. }
  434. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  435. tnode_free_size = 0;
  436. synchronize_rcu();
  437. }
  438. }
  439. static struct key_vector *replace(struct trie *t,
  440. struct key_vector *oldtnode,
  441. struct key_vector *tn)
  442. {
  443. struct key_vector *tp = node_parent(oldtnode);
  444. unsigned long i;
  445. /* setup the parent pointer out of and back into this node */
  446. NODE_INIT_PARENT(tn, tp);
  447. put_child_root(tp, tn->key, tn);
  448. /* update all of the child parent pointers */
  449. update_children(tn);
  450. /* all pointers should be clean so we are done */
  451. tnode_free(oldtnode);
  452. /* resize children now that oldtnode is freed */
  453. for (i = child_length(tn); i;) {
  454. struct key_vector *inode = get_child(tn, --i);
  455. /* resize child node */
  456. if (tnode_full(tn, inode))
  457. tn = resize(t, inode);
  458. }
  459. return tp;
  460. }
  461. static struct key_vector *inflate(struct trie *t,
  462. struct key_vector *oldtnode)
  463. {
  464. struct key_vector *tn;
  465. unsigned long i;
  466. t_key m;
  467. pr_debug("In inflate\n");
  468. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  469. if (!tn)
  470. goto notnode;
  471. /* prepare oldtnode to be freed */
  472. tnode_free_init(oldtnode);
  473. /* Assemble all of the pointers in our cluster, in this case that
  474. * represents all of the pointers out of our allocated nodes that
  475. * point to existing tnodes and the links between our allocated
  476. * nodes.
  477. */
  478. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  479. struct key_vector *inode = get_child(oldtnode, --i);
  480. struct key_vector *node0, *node1;
  481. unsigned long j, k;
  482. /* An empty child */
  483. if (!inode)
  484. continue;
  485. /* A leaf or an internal node with skipped bits */
  486. if (!tnode_full(oldtnode, inode)) {
  487. put_child(tn, get_index(inode->key, tn), inode);
  488. continue;
  489. }
  490. /* drop the node in the old tnode free list */
  491. tnode_free_append(oldtnode, inode);
  492. /* An internal node with two children */
  493. if (inode->bits == 1) {
  494. put_child(tn, 2 * i + 1, get_child(inode, 1));
  495. put_child(tn, 2 * i, get_child(inode, 0));
  496. continue;
  497. }
  498. /* We will replace this node 'inode' with two new
  499. * ones, 'node0' and 'node1', each with half of the
  500. * original children. The two new nodes will have
  501. * a position one bit further down the key and this
  502. * means that the "significant" part of their keys
  503. * (see the discussion near the top of this file)
  504. * will differ by one bit, which will be "0" in
  505. * node0's key and "1" in node1's key. Since we are
  506. * moving the key position by one step, the bit that
  507. * we are moving away from - the bit at position
  508. * (tn->pos) - is the one that will differ between
  509. * node0 and node1. So... we synthesize that bit in the
  510. * two new keys.
  511. */
  512. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  513. if (!node1)
  514. goto nomem;
  515. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  516. tnode_free_append(tn, node1);
  517. if (!node0)
  518. goto nomem;
  519. tnode_free_append(tn, node0);
  520. /* populate child pointers in new nodes */
  521. for (k = child_length(inode), j = k / 2; j;) {
  522. put_child(node1, --j, get_child(inode, --k));
  523. put_child(node0, j, get_child(inode, j));
  524. put_child(node1, --j, get_child(inode, --k));
  525. put_child(node0, j, get_child(inode, j));
  526. }
  527. /* link new nodes to parent */
  528. NODE_INIT_PARENT(node1, tn);
  529. NODE_INIT_PARENT(node0, tn);
  530. /* link parent to nodes */
  531. put_child(tn, 2 * i + 1, node1);
  532. put_child(tn, 2 * i, node0);
  533. }
  534. /* setup the parent pointers into and out of this node */
  535. return replace(t, oldtnode, tn);
  536. nomem:
  537. /* all pointers should be clean so we are done */
  538. tnode_free(tn);
  539. notnode:
  540. return NULL;
  541. }
  542. static struct key_vector *halve(struct trie *t,
  543. struct key_vector *oldtnode)
  544. {
  545. struct key_vector *tn;
  546. unsigned long i;
  547. pr_debug("In halve\n");
  548. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  549. if (!tn)
  550. goto notnode;
  551. /* prepare oldtnode to be freed */
  552. tnode_free_init(oldtnode);
  553. /* Assemble all of the pointers in our cluster, in this case that
  554. * represents all of the pointers out of our allocated nodes that
  555. * point to existing tnodes and the links between our allocated
  556. * nodes.
  557. */
  558. for (i = child_length(oldtnode); i;) {
  559. struct key_vector *node1 = get_child(oldtnode, --i);
  560. struct key_vector *node0 = get_child(oldtnode, --i);
  561. struct key_vector *inode;
  562. /* At least one of the children is empty */
  563. if (!node1 || !node0) {
  564. put_child(tn, i / 2, node1 ? : node0);
  565. continue;
  566. }
  567. /* Two nonempty children */
  568. inode = tnode_new(node0->key, oldtnode->pos, 1);
  569. if (!inode)
  570. goto nomem;
  571. tnode_free_append(tn, inode);
  572. /* initialize pointers out of node */
  573. put_child(inode, 1, node1);
  574. put_child(inode, 0, node0);
  575. NODE_INIT_PARENT(inode, tn);
  576. /* link parent to node */
  577. put_child(tn, i / 2, inode);
  578. }
  579. /* setup the parent pointers into and out of this node */
  580. return replace(t, oldtnode, tn);
  581. nomem:
  582. /* all pointers should be clean so we are done */
  583. tnode_free(tn);
  584. notnode:
  585. return NULL;
  586. }
  587. static struct key_vector *collapse(struct trie *t,
  588. struct key_vector *oldtnode)
  589. {
  590. struct key_vector *n, *tp;
  591. unsigned long i;
  592. /* scan the tnode looking for that one child that might still exist */
  593. for (n = NULL, i = child_length(oldtnode); !n && i;)
  594. n = get_child(oldtnode, --i);
  595. /* compress one level */
  596. tp = node_parent(oldtnode);
  597. put_child_root(tp, oldtnode->key, n);
  598. node_set_parent(n, tp);
  599. /* drop dead node */
  600. node_free(oldtnode);
  601. return tp;
  602. }
  603. static unsigned char update_suffix(struct key_vector *tn)
  604. {
  605. unsigned char slen = tn->pos;
  606. unsigned long stride, i;
  607. unsigned char slen_max;
  608. /* only vector 0 can have a suffix length greater than or equal to
  609. * tn->pos + tn->bits, the second highest node will have a suffix
  610. * length at most of tn->pos + tn->bits - 1
  611. */
  612. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  613. /* search though the list of children looking for nodes that might
  614. * have a suffix greater than the one we currently have. This is
  615. * why we start with a stride of 2 since a stride of 1 would
  616. * represent the nodes with suffix length equal to tn->pos
  617. */
  618. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  619. struct key_vector *n = get_child(tn, i);
  620. if (!n || (n->slen <= slen))
  621. continue;
  622. /* update stride and slen based on new value */
  623. stride <<= (n->slen - slen);
  624. slen = n->slen;
  625. i &= ~(stride - 1);
  626. /* stop searching if we have hit the maximum possible value */
  627. if (slen >= slen_max)
  628. break;
  629. }
  630. tn->slen = slen;
  631. return slen;
  632. }
  633. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  634. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  635. * Telecommunications, page 6:
  636. * "A node is doubled if the ratio of non-empty children to all
  637. * children in the *doubled* node is at least 'high'."
  638. *
  639. * 'high' in this instance is the variable 'inflate_threshold'. It
  640. * is expressed as a percentage, so we multiply it with
  641. * child_length() and instead of multiplying by 2 (since the
  642. * child array will be doubled by inflate()) and multiplying
  643. * the left-hand side by 100 (to handle the percentage thing) we
  644. * multiply the left-hand side by 50.
  645. *
  646. * The left-hand side may look a bit weird: child_length(tn)
  647. * - tn->empty_children is of course the number of non-null children
  648. * in the current node. tn->full_children is the number of "full"
  649. * children, that is non-null tnodes with a skip value of 0.
  650. * All of those will be doubled in the resulting inflated tnode, so
  651. * we just count them one extra time here.
  652. *
  653. * A clearer way to write this would be:
  654. *
  655. * to_be_doubled = tn->full_children;
  656. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  657. * tn->full_children;
  658. *
  659. * new_child_length = child_length(tn) * 2;
  660. *
  661. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  662. * new_child_length;
  663. * if (new_fill_factor >= inflate_threshold)
  664. *
  665. * ...and so on, tho it would mess up the while () loop.
  666. *
  667. * anyway,
  668. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  669. * inflate_threshold
  670. *
  671. * avoid a division:
  672. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  673. * inflate_threshold * new_child_length
  674. *
  675. * expand not_to_be_doubled and to_be_doubled, and shorten:
  676. * 100 * (child_length(tn) - tn->empty_children +
  677. * tn->full_children) >= inflate_threshold * new_child_length
  678. *
  679. * expand new_child_length:
  680. * 100 * (child_length(tn) - tn->empty_children +
  681. * tn->full_children) >=
  682. * inflate_threshold * child_length(tn) * 2
  683. *
  684. * shorten again:
  685. * 50 * (tn->full_children + child_length(tn) -
  686. * tn->empty_children) >= inflate_threshold *
  687. * child_length(tn)
  688. *
  689. */
  690. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  691. {
  692. unsigned long used = child_length(tn);
  693. unsigned long threshold = used;
  694. /* Keep root node larger */
  695. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  696. used -= tn_info(tn)->empty_children;
  697. used += tn_info(tn)->full_children;
  698. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  699. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  700. }
  701. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  702. {
  703. unsigned long used = child_length(tn);
  704. unsigned long threshold = used;
  705. /* Keep root node larger */
  706. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  707. used -= tn_info(tn)->empty_children;
  708. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  709. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  710. }
  711. static inline bool should_collapse(struct key_vector *tn)
  712. {
  713. unsigned long used = child_length(tn);
  714. used -= tn_info(tn)->empty_children;
  715. /* account for bits == KEYLENGTH case */
  716. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  717. used -= KEY_MAX;
  718. /* One child or none, time to drop us from the trie */
  719. return used < 2;
  720. }
  721. #define MAX_WORK 10
  722. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  723. {
  724. #ifdef CONFIG_IP_FIB_TRIE_STATS
  725. struct trie_use_stats __percpu *stats = t->stats;
  726. #endif
  727. struct key_vector *tp = node_parent(tn);
  728. unsigned long cindex = get_index(tn->key, tp);
  729. int max_work = MAX_WORK;
  730. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  731. tn, inflate_threshold, halve_threshold);
  732. /* track the tnode via the pointer from the parent instead of
  733. * doing it ourselves. This way we can let RCU fully do its
  734. * thing without us interfering
  735. */
  736. BUG_ON(tn != get_child(tp, cindex));
  737. /* Double as long as the resulting node has a number of
  738. * nonempty nodes that are above the threshold.
  739. */
  740. while (should_inflate(tp, tn) && max_work) {
  741. tp = inflate(t, tn);
  742. if (!tp) {
  743. #ifdef CONFIG_IP_FIB_TRIE_STATS
  744. this_cpu_inc(stats->resize_node_skipped);
  745. #endif
  746. break;
  747. }
  748. max_work--;
  749. tn = get_child(tp, cindex);
  750. }
  751. /* update parent in case inflate failed */
  752. tp = node_parent(tn);
  753. /* Return if at least one inflate is run */
  754. if (max_work != MAX_WORK)
  755. return tp;
  756. /* Halve as long as the number of empty children in this
  757. * node is above threshold.
  758. */
  759. while (should_halve(tp, tn) && max_work) {
  760. tp = halve(t, tn);
  761. if (!tp) {
  762. #ifdef CONFIG_IP_FIB_TRIE_STATS
  763. this_cpu_inc(stats->resize_node_skipped);
  764. #endif
  765. break;
  766. }
  767. max_work--;
  768. tn = get_child(tp, cindex);
  769. }
  770. /* Only one child remains */
  771. if (should_collapse(tn))
  772. return collapse(t, tn);
  773. /* update parent in case halve failed */
  774. return node_parent(tn);
  775. }
  776. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  777. {
  778. unsigned char node_slen = tn->slen;
  779. while ((node_slen > tn->pos) && (node_slen > slen)) {
  780. slen = update_suffix(tn);
  781. if (node_slen == slen)
  782. break;
  783. tn = node_parent(tn);
  784. node_slen = tn->slen;
  785. }
  786. }
  787. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  788. {
  789. while (tn->slen < slen) {
  790. tn->slen = slen;
  791. tn = node_parent(tn);
  792. }
  793. }
  794. /* rcu_read_lock needs to be hold by caller from readside */
  795. static struct key_vector *fib_find_node(struct trie *t,
  796. struct key_vector **tp, u32 key)
  797. {
  798. struct key_vector *pn, *n = t->kv;
  799. unsigned long index = 0;
  800. do {
  801. pn = n;
  802. n = get_child_rcu(n, index);
  803. if (!n)
  804. break;
  805. index = get_cindex(key, n);
  806. /* This bit of code is a bit tricky but it combines multiple
  807. * checks into a single check. The prefix consists of the
  808. * prefix plus zeros for the bits in the cindex. The index
  809. * is the difference between the key and this value. From
  810. * this we can actually derive several pieces of data.
  811. * if (index >= (1ul << bits))
  812. * we have a mismatch in skip bits and failed
  813. * else
  814. * we know the value is cindex
  815. *
  816. * This check is safe even if bits == KEYLENGTH due to the
  817. * fact that we can only allocate a node with 32 bits if a
  818. * long is greater than 32 bits.
  819. */
  820. if (index >= (1ul << n->bits)) {
  821. n = NULL;
  822. break;
  823. }
  824. /* keep searching until we find a perfect match leaf or NULL */
  825. } while (IS_TNODE(n));
  826. *tp = pn;
  827. return n;
  828. }
  829. /* Return the first fib alias matching TOS with
  830. * priority less than or equal to PRIO.
  831. */
  832. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  833. u8 tos, u32 prio, u32 tb_id)
  834. {
  835. struct fib_alias *fa;
  836. if (!fah)
  837. return NULL;
  838. hlist_for_each_entry(fa, fah, fa_list) {
  839. if (fa->fa_slen < slen)
  840. continue;
  841. if (fa->fa_slen != slen)
  842. break;
  843. if (fa->tb_id > tb_id)
  844. continue;
  845. if (fa->tb_id != tb_id)
  846. break;
  847. if (fa->fa_tos > tos)
  848. continue;
  849. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  850. return fa;
  851. }
  852. return NULL;
  853. }
  854. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  855. {
  856. while (!IS_TRIE(tn))
  857. tn = resize(t, tn);
  858. }
  859. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  860. struct fib_alias *new, t_key key)
  861. {
  862. struct key_vector *n, *l;
  863. l = leaf_new(key, new);
  864. if (!l)
  865. goto noleaf;
  866. /* retrieve child from parent node */
  867. n = get_child(tp, get_index(key, tp));
  868. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  869. *
  870. * Add a new tnode here
  871. * first tnode need some special handling
  872. * leaves us in position for handling as case 3
  873. */
  874. if (n) {
  875. struct key_vector *tn;
  876. tn = tnode_new(key, __fls(key ^ n->key), 1);
  877. if (!tn)
  878. goto notnode;
  879. /* initialize routes out of node */
  880. NODE_INIT_PARENT(tn, tp);
  881. put_child(tn, get_index(key, tn) ^ 1, n);
  882. /* start adding routes into the node */
  883. put_child_root(tp, key, tn);
  884. node_set_parent(n, tn);
  885. /* parent now has a NULL spot where the leaf can go */
  886. tp = tn;
  887. }
  888. /* Case 3: n is NULL, and will just insert a new leaf */
  889. node_push_suffix(tp, new->fa_slen);
  890. NODE_INIT_PARENT(l, tp);
  891. put_child_root(tp, key, l);
  892. trie_rebalance(t, tp);
  893. return 0;
  894. notnode:
  895. node_free(l);
  896. noleaf:
  897. return -ENOMEM;
  898. }
  899. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  900. struct key_vector *l, struct fib_alias *new,
  901. struct fib_alias *fa, t_key key)
  902. {
  903. if (!l)
  904. return fib_insert_node(t, tp, new, key);
  905. if (fa) {
  906. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  907. } else {
  908. struct fib_alias *last;
  909. hlist_for_each_entry(last, &l->leaf, fa_list) {
  910. if (new->fa_slen < last->fa_slen)
  911. break;
  912. if ((new->fa_slen == last->fa_slen) &&
  913. (new->tb_id > last->tb_id))
  914. break;
  915. fa = last;
  916. }
  917. if (fa)
  918. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  919. else
  920. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  921. }
  922. /* if we added to the tail node then we need to update slen */
  923. if (l->slen < new->fa_slen) {
  924. l->slen = new->fa_slen;
  925. node_push_suffix(tp, new->fa_slen);
  926. }
  927. return 0;
  928. }
  929. static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
  930. {
  931. if (plen > KEYLENGTH) {
  932. NL_SET_ERR_MSG(extack, "Invalid prefix length");
  933. return false;
  934. }
  935. if ((plen < KEYLENGTH) && (key << plen)) {
  936. NL_SET_ERR_MSG(extack,
  937. "Invalid prefix for given prefix length");
  938. return false;
  939. }
  940. return true;
  941. }
  942. /* Caller must hold RTNL. */
  943. int fib_table_insert(struct net *net, struct fib_table *tb,
  944. struct fib_config *cfg, struct netlink_ext_ack *extack)
  945. {
  946. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  947. struct trie *t = (struct trie *)tb->tb_data;
  948. struct fib_alias *fa, *new_fa;
  949. struct key_vector *l, *tp;
  950. u16 nlflags = NLM_F_EXCL;
  951. struct fib_info *fi;
  952. u8 plen = cfg->fc_dst_len;
  953. u8 slen = KEYLENGTH - plen;
  954. u8 tos = cfg->fc_tos;
  955. u32 key;
  956. int err;
  957. key = ntohl(cfg->fc_dst);
  958. if (!fib_valid_key_len(key, plen, extack))
  959. return -EINVAL;
  960. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  961. fi = fib_create_info(cfg, extack);
  962. if (IS_ERR(fi)) {
  963. err = PTR_ERR(fi);
  964. goto err;
  965. }
  966. l = fib_find_node(t, &tp, key);
  967. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  968. tb->tb_id) : NULL;
  969. /* Now fa, if non-NULL, points to the first fib alias
  970. * with the same keys [prefix,tos,priority], if such key already
  971. * exists or to the node before which we will insert new one.
  972. *
  973. * If fa is NULL, we will need to allocate a new one and
  974. * insert to the tail of the section matching the suffix length
  975. * of the new alias.
  976. */
  977. if (fa && fa->fa_tos == tos &&
  978. fa->fa_info->fib_priority == fi->fib_priority) {
  979. struct fib_alias *fa_first, *fa_match;
  980. err = -EEXIST;
  981. if (cfg->fc_nlflags & NLM_F_EXCL)
  982. goto out;
  983. nlflags &= ~NLM_F_EXCL;
  984. /* We have 2 goals:
  985. * 1. Find exact match for type, scope, fib_info to avoid
  986. * duplicate routes
  987. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  988. */
  989. fa_match = NULL;
  990. fa_first = fa;
  991. hlist_for_each_entry_from(fa, fa_list) {
  992. if ((fa->fa_slen != slen) ||
  993. (fa->tb_id != tb->tb_id) ||
  994. (fa->fa_tos != tos))
  995. break;
  996. if (fa->fa_info->fib_priority != fi->fib_priority)
  997. break;
  998. if (fa->fa_type == cfg->fc_type &&
  999. fa->fa_info == fi) {
  1000. fa_match = fa;
  1001. break;
  1002. }
  1003. }
  1004. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1005. struct fib_info *fi_drop;
  1006. u8 state;
  1007. nlflags |= NLM_F_REPLACE;
  1008. fa = fa_first;
  1009. if (fa_match) {
  1010. if (fa == fa_match)
  1011. err = 0;
  1012. goto out;
  1013. }
  1014. err = -ENOBUFS;
  1015. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1016. if (!new_fa)
  1017. goto out;
  1018. fi_drop = fa->fa_info;
  1019. new_fa->fa_tos = fa->fa_tos;
  1020. new_fa->fa_info = fi;
  1021. new_fa->fa_type = cfg->fc_type;
  1022. state = fa->fa_state;
  1023. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1024. new_fa->fa_slen = fa->fa_slen;
  1025. new_fa->tb_id = tb->tb_id;
  1026. new_fa->fa_default = -1;
  1027. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
  1028. key, plen, fi,
  1029. new_fa->fa_tos, cfg->fc_type,
  1030. tb->tb_id);
  1031. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1032. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1033. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1034. alias_free_mem_rcu(fa);
  1035. fib_release_info(fi_drop);
  1036. if (state & FA_S_ACCESSED)
  1037. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1038. goto succeeded;
  1039. }
  1040. /* Error if we find a perfect match which
  1041. * uses the same scope, type, and nexthop
  1042. * information.
  1043. */
  1044. if (fa_match)
  1045. goto out;
  1046. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1047. event = FIB_EVENT_ENTRY_APPEND;
  1048. nlflags |= NLM_F_APPEND;
  1049. } else {
  1050. fa = fa_first;
  1051. }
  1052. }
  1053. err = -ENOENT;
  1054. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1055. goto out;
  1056. nlflags |= NLM_F_CREATE;
  1057. err = -ENOBUFS;
  1058. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1059. if (!new_fa)
  1060. goto out;
  1061. new_fa->fa_info = fi;
  1062. new_fa->fa_tos = tos;
  1063. new_fa->fa_type = cfg->fc_type;
  1064. new_fa->fa_state = 0;
  1065. new_fa->fa_slen = slen;
  1066. new_fa->tb_id = tb->tb_id;
  1067. new_fa->fa_default = -1;
  1068. /* Insert new entry to the list. */
  1069. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1070. if (err)
  1071. goto out_free_new_fa;
  1072. if (!plen)
  1073. tb->tb_num_default++;
  1074. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1075. call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
  1076. tb->tb_id);
  1077. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1078. &cfg->fc_nlinfo, nlflags);
  1079. succeeded:
  1080. return 0;
  1081. out_free_new_fa:
  1082. kmem_cache_free(fn_alias_kmem, new_fa);
  1083. out:
  1084. fib_release_info(fi);
  1085. err:
  1086. return err;
  1087. }
  1088. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1089. {
  1090. t_key prefix = n->key;
  1091. return (key ^ prefix) & (prefix | -prefix);
  1092. }
  1093. /* should be called with rcu_read_lock */
  1094. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1095. struct fib_result *res, int fib_flags)
  1096. {
  1097. struct trie *t = (struct trie *) tb->tb_data;
  1098. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1099. struct trie_use_stats __percpu *stats = t->stats;
  1100. #endif
  1101. const t_key key = ntohl(flp->daddr);
  1102. struct key_vector *n, *pn;
  1103. struct fib_alias *fa;
  1104. unsigned long index;
  1105. t_key cindex;
  1106. trace_fib_table_lookup(tb->tb_id, flp);
  1107. pn = t->kv;
  1108. cindex = 0;
  1109. n = get_child_rcu(pn, cindex);
  1110. if (!n)
  1111. return -EAGAIN;
  1112. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1113. this_cpu_inc(stats->gets);
  1114. #endif
  1115. /* Step 1: Travel to the longest prefix match in the trie */
  1116. for (;;) {
  1117. index = get_cindex(key, n);
  1118. /* This bit of code is a bit tricky but it combines multiple
  1119. * checks into a single check. The prefix consists of the
  1120. * prefix plus zeros for the "bits" in the prefix. The index
  1121. * is the difference between the key and this value. From
  1122. * this we can actually derive several pieces of data.
  1123. * if (index >= (1ul << bits))
  1124. * we have a mismatch in skip bits and failed
  1125. * else
  1126. * we know the value is cindex
  1127. *
  1128. * This check is safe even if bits == KEYLENGTH due to the
  1129. * fact that we can only allocate a node with 32 bits if a
  1130. * long is greater than 32 bits.
  1131. */
  1132. if (index >= (1ul << n->bits))
  1133. break;
  1134. /* we have found a leaf. Prefixes have already been compared */
  1135. if (IS_LEAF(n))
  1136. goto found;
  1137. /* only record pn and cindex if we are going to be chopping
  1138. * bits later. Otherwise we are just wasting cycles.
  1139. */
  1140. if (n->slen > n->pos) {
  1141. pn = n;
  1142. cindex = index;
  1143. }
  1144. n = get_child_rcu(n, index);
  1145. if (unlikely(!n))
  1146. goto backtrace;
  1147. }
  1148. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1149. for (;;) {
  1150. /* record the pointer where our next node pointer is stored */
  1151. struct key_vector __rcu **cptr = n->tnode;
  1152. /* This test verifies that none of the bits that differ
  1153. * between the key and the prefix exist in the region of
  1154. * the lsb and higher in the prefix.
  1155. */
  1156. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1157. goto backtrace;
  1158. /* exit out and process leaf */
  1159. if (unlikely(IS_LEAF(n)))
  1160. break;
  1161. /* Don't bother recording parent info. Since we are in
  1162. * prefix match mode we will have to come back to wherever
  1163. * we started this traversal anyway
  1164. */
  1165. while ((n = rcu_dereference(*cptr)) == NULL) {
  1166. backtrace:
  1167. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1168. if (!n)
  1169. this_cpu_inc(stats->null_node_hit);
  1170. #endif
  1171. /* If we are at cindex 0 there are no more bits for
  1172. * us to strip at this level so we must ascend back
  1173. * up one level to see if there are any more bits to
  1174. * be stripped there.
  1175. */
  1176. while (!cindex) {
  1177. t_key pkey = pn->key;
  1178. /* If we don't have a parent then there is
  1179. * nothing for us to do as we do not have any
  1180. * further nodes to parse.
  1181. */
  1182. if (IS_TRIE(pn))
  1183. return -EAGAIN;
  1184. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1185. this_cpu_inc(stats->backtrack);
  1186. #endif
  1187. /* Get Child's index */
  1188. pn = node_parent_rcu(pn);
  1189. cindex = get_index(pkey, pn);
  1190. }
  1191. /* strip the least significant bit from the cindex */
  1192. cindex &= cindex - 1;
  1193. /* grab pointer for next child node */
  1194. cptr = &pn->tnode[cindex];
  1195. }
  1196. }
  1197. found:
  1198. /* this line carries forward the xor from earlier in the function */
  1199. index = key ^ n->key;
  1200. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1201. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1202. struct fib_info *fi = fa->fa_info;
  1203. int nhsel, err;
  1204. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1205. if (index >= (1ul << fa->fa_slen))
  1206. continue;
  1207. }
  1208. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1209. continue;
  1210. if (fi->fib_dead)
  1211. continue;
  1212. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1213. continue;
  1214. fib_alias_accessed(fa);
  1215. err = fib_props[fa->fa_type].error;
  1216. if (unlikely(err < 0)) {
  1217. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1218. this_cpu_inc(stats->semantic_match_passed);
  1219. #endif
  1220. return err;
  1221. }
  1222. if (fi->fib_flags & RTNH_F_DEAD)
  1223. continue;
  1224. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1225. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1226. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1227. if (nh->nh_flags & RTNH_F_DEAD)
  1228. continue;
  1229. if (in_dev &&
  1230. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1231. nh->nh_flags & RTNH_F_LINKDOWN &&
  1232. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1233. continue;
  1234. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1235. if (flp->flowi4_oif &&
  1236. flp->flowi4_oif != nh->nh_oif)
  1237. continue;
  1238. }
  1239. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1240. refcount_inc(&fi->fib_clntref);
  1241. res->prefix = htonl(n->key);
  1242. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1243. res->nh_sel = nhsel;
  1244. res->type = fa->fa_type;
  1245. res->scope = fi->fib_scope;
  1246. res->fi = fi;
  1247. res->table = tb;
  1248. res->fa_head = &n->leaf;
  1249. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1250. this_cpu_inc(stats->semantic_match_passed);
  1251. #endif
  1252. trace_fib_table_lookup_nh(nh);
  1253. return err;
  1254. }
  1255. }
  1256. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1257. this_cpu_inc(stats->semantic_match_miss);
  1258. #endif
  1259. goto backtrace;
  1260. }
  1261. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1262. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1263. struct key_vector *l, struct fib_alias *old)
  1264. {
  1265. /* record the location of the previous list_info entry */
  1266. struct hlist_node **pprev = old->fa_list.pprev;
  1267. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1268. /* remove the fib_alias from the list */
  1269. hlist_del_rcu(&old->fa_list);
  1270. /* if we emptied the list this leaf will be freed and we can sort
  1271. * out parent suffix lengths as a part of trie_rebalance
  1272. */
  1273. if (hlist_empty(&l->leaf)) {
  1274. if (tp->slen == l->slen)
  1275. node_pull_suffix(tp, tp->pos);
  1276. put_child_root(tp, l->key, NULL);
  1277. node_free(l);
  1278. trie_rebalance(t, tp);
  1279. return;
  1280. }
  1281. /* only access fa if it is pointing at the last valid hlist_node */
  1282. if (*pprev)
  1283. return;
  1284. /* update the trie with the latest suffix length */
  1285. l->slen = fa->fa_slen;
  1286. node_pull_suffix(tp, fa->fa_slen);
  1287. }
  1288. /* Caller must hold RTNL. */
  1289. int fib_table_delete(struct net *net, struct fib_table *tb,
  1290. struct fib_config *cfg, struct netlink_ext_ack *extack)
  1291. {
  1292. struct trie *t = (struct trie *) tb->tb_data;
  1293. struct fib_alias *fa, *fa_to_delete;
  1294. struct key_vector *l, *tp;
  1295. u8 plen = cfg->fc_dst_len;
  1296. u8 slen = KEYLENGTH - plen;
  1297. u8 tos = cfg->fc_tos;
  1298. u32 key;
  1299. key = ntohl(cfg->fc_dst);
  1300. if (!fib_valid_key_len(key, plen, extack))
  1301. return -EINVAL;
  1302. l = fib_find_node(t, &tp, key);
  1303. if (!l)
  1304. return -ESRCH;
  1305. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1306. if (!fa)
  1307. return -ESRCH;
  1308. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1309. fa_to_delete = NULL;
  1310. hlist_for_each_entry_from(fa, fa_list) {
  1311. struct fib_info *fi = fa->fa_info;
  1312. if ((fa->fa_slen != slen) ||
  1313. (fa->tb_id != tb->tb_id) ||
  1314. (fa->fa_tos != tos))
  1315. break;
  1316. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1317. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1318. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1319. (!cfg->fc_prefsrc ||
  1320. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1321. (!cfg->fc_protocol ||
  1322. fi->fib_protocol == cfg->fc_protocol) &&
  1323. fib_nh_match(cfg, fi, extack) == 0 &&
  1324. fib_metrics_match(cfg, fi)) {
  1325. fa_to_delete = fa;
  1326. break;
  1327. }
  1328. }
  1329. if (!fa_to_delete)
  1330. return -ESRCH;
  1331. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1332. fa_to_delete->fa_info, tos,
  1333. fa_to_delete->fa_type, tb->tb_id);
  1334. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1335. &cfg->fc_nlinfo, 0);
  1336. if (!plen)
  1337. tb->tb_num_default--;
  1338. fib_remove_alias(t, tp, l, fa_to_delete);
  1339. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1340. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1341. fib_release_info(fa_to_delete->fa_info);
  1342. alias_free_mem_rcu(fa_to_delete);
  1343. return 0;
  1344. }
  1345. /* Scan for the next leaf starting at the provided key value */
  1346. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1347. {
  1348. struct key_vector *pn, *n = *tn;
  1349. unsigned long cindex;
  1350. /* this loop is meant to try and find the key in the trie */
  1351. do {
  1352. /* record parent and next child index */
  1353. pn = n;
  1354. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1355. if (cindex >> pn->bits)
  1356. break;
  1357. /* descend into the next child */
  1358. n = get_child_rcu(pn, cindex++);
  1359. if (!n)
  1360. break;
  1361. /* guarantee forward progress on the keys */
  1362. if (IS_LEAF(n) && (n->key >= key))
  1363. goto found;
  1364. } while (IS_TNODE(n));
  1365. /* this loop will search for the next leaf with a greater key */
  1366. while (!IS_TRIE(pn)) {
  1367. /* if we exhausted the parent node we will need to climb */
  1368. if (cindex >= (1ul << pn->bits)) {
  1369. t_key pkey = pn->key;
  1370. pn = node_parent_rcu(pn);
  1371. cindex = get_index(pkey, pn) + 1;
  1372. continue;
  1373. }
  1374. /* grab the next available node */
  1375. n = get_child_rcu(pn, cindex++);
  1376. if (!n)
  1377. continue;
  1378. /* no need to compare keys since we bumped the index */
  1379. if (IS_LEAF(n))
  1380. goto found;
  1381. /* Rescan start scanning in new node */
  1382. pn = n;
  1383. cindex = 0;
  1384. }
  1385. *tn = pn;
  1386. return NULL; /* Root of trie */
  1387. found:
  1388. /* if we are at the limit for keys just return NULL for the tnode */
  1389. *tn = pn;
  1390. return n;
  1391. }
  1392. static void fib_trie_free(struct fib_table *tb)
  1393. {
  1394. struct trie *t = (struct trie *)tb->tb_data;
  1395. struct key_vector *pn = t->kv;
  1396. unsigned long cindex = 1;
  1397. struct hlist_node *tmp;
  1398. struct fib_alias *fa;
  1399. /* walk trie in reverse order and free everything */
  1400. for (;;) {
  1401. struct key_vector *n;
  1402. if (!(cindex--)) {
  1403. t_key pkey = pn->key;
  1404. if (IS_TRIE(pn))
  1405. break;
  1406. n = pn;
  1407. pn = node_parent(pn);
  1408. /* drop emptied tnode */
  1409. put_child_root(pn, n->key, NULL);
  1410. node_free(n);
  1411. cindex = get_index(pkey, pn);
  1412. continue;
  1413. }
  1414. /* grab the next available node */
  1415. n = get_child(pn, cindex);
  1416. if (!n)
  1417. continue;
  1418. if (IS_TNODE(n)) {
  1419. /* record pn and cindex for leaf walking */
  1420. pn = n;
  1421. cindex = 1ul << n->bits;
  1422. continue;
  1423. }
  1424. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1425. hlist_del_rcu(&fa->fa_list);
  1426. alias_free_mem_rcu(fa);
  1427. }
  1428. put_child_root(pn, n->key, NULL);
  1429. node_free(n);
  1430. }
  1431. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1432. free_percpu(t->stats);
  1433. #endif
  1434. kfree(tb);
  1435. }
  1436. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1437. {
  1438. struct trie *ot = (struct trie *)oldtb->tb_data;
  1439. struct key_vector *l, *tp = ot->kv;
  1440. struct fib_table *local_tb;
  1441. struct fib_alias *fa;
  1442. struct trie *lt;
  1443. t_key key = 0;
  1444. if (oldtb->tb_data == oldtb->__data)
  1445. return oldtb;
  1446. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1447. if (!local_tb)
  1448. return NULL;
  1449. lt = (struct trie *)local_tb->tb_data;
  1450. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1451. struct key_vector *local_l = NULL, *local_tp;
  1452. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1453. struct fib_alias *new_fa;
  1454. if (local_tb->tb_id != fa->tb_id)
  1455. continue;
  1456. /* clone fa for new local table */
  1457. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1458. if (!new_fa)
  1459. goto out;
  1460. memcpy(new_fa, fa, sizeof(*fa));
  1461. /* insert clone into table */
  1462. if (!local_l)
  1463. local_l = fib_find_node(lt, &local_tp, l->key);
  1464. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1465. NULL, l->key)) {
  1466. kmem_cache_free(fn_alias_kmem, new_fa);
  1467. goto out;
  1468. }
  1469. }
  1470. /* stop loop if key wrapped back to 0 */
  1471. key = l->key + 1;
  1472. if (key < l->key)
  1473. break;
  1474. }
  1475. return local_tb;
  1476. out:
  1477. fib_trie_free(local_tb);
  1478. return NULL;
  1479. }
  1480. /* Caller must hold RTNL */
  1481. void fib_table_flush_external(struct fib_table *tb)
  1482. {
  1483. struct trie *t = (struct trie *)tb->tb_data;
  1484. struct key_vector *pn = t->kv;
  1485. unsigned long cindex = 1;
  1486. struct hlist_node *tmp;
  1487. struct fib_alias *fa;
  1488. /* walk trie in reverse order */
  1489. for (;;) {
  1490. unsigned char slen = 0;
  1491. struct key_vector *n;
  1492. if (!(cindex--)) {
  1493. t_key pkey = pn->key;
  1494. /* cannot resize the trie vector */
  1495. if (IS_TRIE(pn))
  1496. break;
  1497. /* update the suffix to address pulled leaves */
  1498. if (pn->slen > pn->pos)
  1499. update_suffix(pn);
  1500. /* resize completed node */
  1501. pn = resize(t, pn);
  1502. cindex = get_index(pkey, pn);
  1503. continue;
  1504. }
  1505. /* grab the next available node */
  1506. n = get_child(pn, cindex);
  1507. if (!n)
  1508. continue;
  1509. if (IS_TNODE(n)) {
  1510. /* record pn and cindex for leaf walking */
  1511. pn = n;
  1512. cindex = 1ul << n->bits;
  1513. continue;
  1514. }
  1515. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1516. /* if alias was cloned to local then we just
  1517. * need to remove the local copy from main
  1518. */
  1519. if (tb->tb_id != fa->tb_id) {
  1520. hlist_del_rcu(&fa->fa_list);
  1521. alias_free_mem_rcu(fa);
  1522. continue;
  1523. }
  1524. /* record local slen */
  1525. slen = fa->fa_slen;
  1526. }
  1527. /* update leaf slen */
  1528. n->slen = slen;
  1529. if (hlist_empty(&n->leaf)) {
  1530. put_child_root(pn, n->key, NULL);
  1531. node_free(n);
  1532. }
  1533. }
  1534. }
  1535. /* Caller must hold RTNL. */
  1536. int fib_table_flush(struct net *net, struct fib_table *tb)
  1537. {
  1538. struct trie *t = (struct trie *)tb->tb_data;
  1539. struct key_vector *pn = t->kv;
  1540. unsigned long cindex = 1;
  1541. struct hlist_node *tmp;
  1542. struct fib_alias *fa;
  1543. int found = 0;
  1544. /* walk trie in reverse order */
  1545. for (;;) {
  1546. unsigned char slen = 0;
  1547. struct key_vector *n;
  1548. if (!(cindex--)) {
  1549. t_key pkey = pn->key;
  1550. /* cannot resize the trie vector */
  1551. if (IS_TRIE(pn))
  1552. break;
  1553. /* update the suffix to address pulled leaves */
  1554. if (pn->slen > pn->pos)
  1555. update_suffix(pn);
  1556. /* resize completed node */
  1557. pn = resize(t, pn);
  1558. cindex = get_index(pkey, pn);
  1559. continue;
  1560. }
  1561. /* grab the next available node */
  1562. n = get_child(pn, cindex);
  1563. if (!n)
  1564. continue;
  1565. if (IS_TNODE(n)) {
  1566. /* record pn and cindex for leaf walking */
  1567. pn = n;
  1568. cindex = 1ul << n->bits;
  1569. continue;
  1570. }
  1571. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1572. struct fib_info *fi = fa->fa_info;
  1573. if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
  1574. tb->tb_id != fa->tb_id) {
  1575. slen = fa->fa_slen;
  1576. continue;
  1577. }
  1578. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1579. n->key,
  1580. KEYLENGTH - fa->fa_slen,
  1581. fi, fa->fa_tos, fa->fa_type,
  1582. tb->tb_id);
  1583. hlist_del_rcu(&fa->fa_list);
  1584. fib_release_info(fa->fa_info);
  1585. alias_free_mem_rcu(fa);
  1586. found++;
  1587. }
  1588. /* update leaf slen */
  1589. n->slen = slen;
  1590. if (hlist_empty(&n->leaf)) {
  1591. put_child_root(pn, n->key, NULL);
  1592. node_free(n);
  1593. }
  1594. }
  1595. pr_debug("trie_flush found=%d\n", found);
  1596. return found;
  1597. }
  1598. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1599. struct fib_table *tb, struct notifier_block *nb)
  1600. {
  1601. struct fib_alias *fa;
  1602. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1603. struct fib_info *fi = fa->fa_info;
  1604. if (!fi)
  1605. continue;
  1606. /* local and main table can share the same trie,
  1607. * so don't notify twice for the same entry.
  1608. */
  1609. if (tb->tb_id != fa->tb_id)
  1610. continue;
  1611. call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
  1612. KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
  1613. fa->fa_type, fa->tb_id);
  1614. }
  1615. }
  1616. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1617. struct notifier_block *nb)
  1618. {
  1619. struct trie *t = (struct trie *)tb->tb_data;
  1620. struct key_vector *l, *tp = t->kv;
  1621. t_key key = 0;
  1622. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1623. fib_leaf_notify(net, l, tb, nb);
  1624. key = l->key + 1;
  1625. /* stop in case of wrap around */
  1626. if (key < l->key)
  1627. break;
  1628. }
  1629. }
  1630. void fib_notify(struct net *net, struct notifier_block *nb)
  1631. {
  1632. unsigned int h;
  1633. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1634. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1635. struct fib_table *tb;
  1636. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1637. fib_table_notify(net, tb, nb);
  1638. }
  1639. }
  1640. static void __trie_free_rcu(struct rcu_head *head)
  1641. {
  1642. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1643. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1644. struct trie *t = (struct trie *)tb->tb_data;
  1645. if (tb->tb_data == tb->__data)
  1646. free_percpu(t->stats);
  1647. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1648. kfree(tb);
  1649. }
  1650. void fib_free_table(struct fib_table *tb)
  1651. {
  1652. call_rcu(&tb->rcu, __trie_free_rcu);
  1653. }
  1654. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1655. struct sk_buff *skb, struct netlink_callback *cb)
  1656. {
  1657. __be32 xkey = htonl(l->key);
  1658. struct fib_alias *fa;
  1659. int i, s_i;
  1660. s_i = cb->args[4];
  1661. i = 0;
  1662. /* rcu_read_lock is hold by caller */
  1663. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1664. int err;
  1665. if (i < s_i) {
  1666. i++;
  1667. continue;
  1668. }
  1669. if (tb->tb_id != fa->tb_id) {
  1670. i++;
  1671. continue;
  1672. }
  1673. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1674. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1675. tb->tb_id, fa->fa_type,
  1676. xkey, KEYLENGTH - fa->fa_slen,
  1677. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1678. if (err < 0) {
  1679. cb->args[4] = i;
  1680. return err;
  1681. }
  1682. i++;
  1683. }
  1684. cb->args[4] = i;
  1685. return skb->len;
  1686. }
  1687. /* rcu_read_lock needs to be hold by caller from readside */
  1688. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1689. struct netlink_callback *cb)
  1690. {
  1691. struct trie *t = (struct trie *)tb->tb_data;
  1692. struct key_vector *l, *tp = t->kv;
  1693. /* Dump starting at last key.
  1694. * Note: 0.0.0.0/0 (ie default) is first key.
  1695. */
  1696. int count = cb->args[2];
  1697. t_key key = cb->args[3];
  1698. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1699. int err;
  1700. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1701. if (err < 0) {
  1702. cb->args[3] = key;
  1703. cb->args[2] = count;
  1704. return err;
  1705. }
  1706. ++count;
  1707. key = l->key + 1;
  1708. memset(&cb->args[4], 0,
  1709. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1710. /* stop loop if key wrapped back to 0 */
  1711. if (key < l->key)
  1712. break;
  1713. }
  1714. cb->args[3] = key;
  1715. cb->args[2] = count;
  1716. return skb->len;
  1717. }
  1718. void __init fib_trie_init(void)
  1719. {
  1720. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1721. sizeof(struct fib_alias),
  1722. 0, SLAB_PANIC, NULL);
  1723. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1724. LEAF_SIZE,
  1725. 0, SLAB_PANIC, NULL);
  1726. }
  1727. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1728. {
  1729. struct fib_table *tb;
  1730. struct trie *t;
  1731. size_t sz = sizeof(*tb);
  1732. if (!alias)
  1733. sz += sizeof(struct trie);
  1734. tb = kzalloc(sz, GFP_KERNEL);
  1735. if (!tb)
  1736. return NULL;
  1737. tb->tb_id = id;
  1738. tb->tb_num_default = 0;
  1739. tb->tb_data = (alias ? alias->__data : tb->__data);
  1740. if (alias)
  1741. return tb;
  1742. t = (struct trie *) tb->tb_data;
  1743. t->kv[0].pos = KEYLENGTH;
  1744. t->kv[0].slen = KEYLENGTH;
  1745. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1746. t->stats = alloc_percpu(struct trie_use_stats);
  1747. if (!t->stats) {
  1748. kfree(tb);
  1749. tb = NULL;
  1750. }
  1751. #endif
  1752. return tb;
  1753. }
  1754. #ifdef CONFIG_PROC_FS
  1755. /* Depth first Trie walk iterator */
  1756. struct fib_trie_iter {
  1757. struct seq_net_private p;
  1758. struct fib_table *tb;
  1759. struct key_vector *tnode;
  1760. unsigned int index;
  1761. unsigned int depth;
  1762. };
  1763. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1764. {
  1765. unsigned long cindex = iter->index;
  1766. struct key_vector *pn = iter->tnode;
  1767. t_key pkey;
  1768. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1769. iter->tnode, iter->index, iter->depth);
  1770. while (!IS_TRIE(pn)) {
  1771. while (cindex < child_length(pn)) {
  1772. struct key_vector *n = get_child_rcu(pn, cindex++);
  1773. if (!n)
  1774. continue;
  1775. if (IS_LEAF(n)) {
  1776. iter->tnode = pn;
  1777. iter->index = cindex;
  1778. } else {
  1779. /* push down one level */
  1780. iter->tnode = n;
  1781. iter->index = 0;
  1782. ++iter->depth;
  1783. }
  1784. return n;
  1785. }
  1786. /* Current node exhausted, pop back up */
  1787. pkey = pn->key;
  1788. pn = node_parent_rcu(pn);
  1789. cindex = get_index(pkey, pn) + 1;
  1790. --iter->depth;
  1791. }
  1792. /* record root node so further searches know we are done */
  1793. iter->tnode = pn;
  1794. iter->index = 0;
  1795. return NULL;
  1796. }
  1797. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1798. struct trie *t)
  1799. {
  1800. struct key_vector *n, *pn;
  1801. if (!t)
  1802. return NULL;
  1803. pn = t->kv;
  1804. n = rcu_dereference(pn->tnode[0]);
  1805. if (!n)
  1806. return NULL;
  1807. if (IS_TNODE(n)) {
  1808. iter->tnode = n;
  1809. iter->index = 0;
  1810. iter->depth = 1;
  1811. } else {
  1812. iter->tnode = pn;
  1813. iter->index = 0;
  1814. iter->depth = 0;
  1815. }
  1816. return n;
  1817. }
  1818. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1819. {
  1820. struct key_vector *n;
  1821. struct fib_trie_iter iter;
  1822. memset(s, 0, sizeof(*s));
  1823. rcu_read_lock();
  1824. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1825. if (IS_LEAF(n)) {
  1826. struct fib_alias *fa;
  1827. s->leaves++;
  1828. s->totdepth += iter.depth;
  1829. if (iter.depth > s->maxdepth)
  1830. s->maxdepth = iter.depth;
  1831. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1832. ++s->prefixes;
  1833. } else {
  1834. s->tnodes++;
  1835. if (n->bits < MAX_STAT_DEPTH)
  1836. s->nodesizes[n->bits]++;
  1837. s->nullpointers += tn_info(n)->empty_children;
  1838. }
  1839. }
  1840. rcu_read_unlock();
  1841. }
  1842. /*
  1843. * This outputs /proc/net/fib_triestats
  1844. */
  1845. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1846. {
  1847. unsigned int i, max, pointers, bytes, avdepth;
  1848. if (stat->leaves)
  1849. avdepth = stat->totdepth*100 / stat->leaves;
  1850. else
  1851. avdepth = 0;
  1852. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1853. avdepth / 100, avdepth % 100);
  1854. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1855. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1856. bytes = LEAF_SIZE * stat->leaves;
  1857. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1858. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1859. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1860. bytes += TNODE_SIZE(0) * stat->tnodes;
  1861. max = MAX_STAT_DEPTH;
  1862. while (max > 0 && stat->nodesizes[max-1] == 0)
  1863. max--;
  1864. pointers = 0;
  1865. for (i = 1; i < max; i++)
  1866. if (stat->nodesizes[i] != 0) {
  1867. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1868. pointers += (1<<i) * stat->nodesizes[i];
  1869. }
  1870. seq_putc(seq, '\n');
  1871. seq_printf(seq, "\tPointers: %u\n", pointers);
  1872. bytes += sizeof(struct key_vector *) * pointers;
  1873. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1874. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1875. }
  1876. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1877. static void trie_show_usage(struct seq_file *seq,
  1878. const struct trie_use_stats __percpu *stats)
  1879. {
  1880. struct trie_use_stats s = { 0 };
  1881. int cpu;
  1882. /* loop through all of the CPUs and gather up the stats */
  1883. for_each_possible_cpu(cpu) {
  1884. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1885. s.gets += pcpu->gets;
  1886. s.backtrack += pcpu->backtrack;
  1887. s.semantic_match_passed += pcpu->semantic_match_passed;
  1888. s.semantic_match_miss += pcpu->semantic_match_miss;
  1889. s.null_node_hit += pcpu->null_node_hit;
  1890. s.resize_node_skipped += pcpu->resize_node_skipped;
  1891. }
  1892. seq_printf(seq, "\nCounters:\n---------\n");
  1893. seq_printf(seq, "gets = %u\n", s.gets);
  1894. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1895. seq_printf(seq, "semantic match passed = %u\n",
  1896. s.semantic_match_passed);
  1897. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1898. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1899. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1900. }
  1901. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1902. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1903. {
  1904. if (tb->tb_id == RT_TABLE_LOCAL)
  1905. seq_puts(seq, "Local:\n");
  1906. else if (tb->tb_id == RT_TABLE_MAIN)
  1907. seq_puts(seq, "Main:\n");
  1908. else
  1909. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1910. }
  1911. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1912. {
  1913. struct net *net = (struct net *)seq->private;
  1914. unsigned int h;
  1915. seq_printf(seq,
  1916. "Basic info: size of leaf:"
  1917. " %zd bytes, size of tnode: %zd bytes.\n",
  1918. LEAF_SIZE, TNODE_SIZE(0));
  1919. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1920. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1921. struct fib_table *tb;
  1922. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1923. struct trie *t = (struct trie *) tb->tb_data;
  1924. struct trie_stat stat;
  1925. if (!t)
  1926. continue;
  1927. fib_table_print(seq, tb);
  1928. trie_collect_stats(t, &stat);
  1929. trie_show_stats(seq, &stat);
  1930. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1931. trie_show_usage(seq, t->stats);
  1932. #endif
  1933. }
  1934. }
  1935. return 0;
  1936. }
  1937. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1938. {
  1939. return single_open_net(inode, file, fib_triestat_seq_show);
  1940. }
  1941. static const struct file_operations fib_triestat_fops = {
  1942. .owner = THIS_MODULE,
  1943. .open = fib_triestat_seq_open,
  1944. .read = seq_read,
  1945. .llseek = seq_lseek,
  1946. .release = single_release_net,
  1947. };
  1948. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1949. {
  1950. struct fib_trie_iter *iter = seq->private;
  1951. struct net *net = seq_file_net(seq);
  1952. loff_t idx = 0;
  1953. unsigned int h;
  1954. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1955. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1956. struct fib_table *tb;
  1957. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1958. struct key_vector *n;
  1959. for (n = fib_trie_get_first(iter,
  1960. (struct trie *) tb->tb_data);
  1961. n; n = fib_trie_get_next(iter))
  1962. if (pos == idx++) {
  1963. iter->tb = tb;
  1964. return n;
  1965. }
  1966. }
  1967. }
  1968. return NULL;
  1969. }
  1970. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1971. __acquires(RCU)
  1972. {
  1973. rcu_read_lock();
  1974. return fib_trie_get_idx(seq, *pos);
  1975. }
  1976. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1977. {
  1978. struct fib_trie_iter *iter = seq->private;
  1979. struct net *net = seq_file_net(seq);
  1980. struct fib_table *tb = iter->tb;
  1981. struct hlist_node *tb_node;
  1982. unsigned int h;
  1983. struct key_vector *n;
  1984. ++*pos;
  1985. /* next node in same table */
  1986. n = fib_trie_get_next(iter);
  1987. if (n)
  1988. return n;
  1989. /* walk rest of this hash chain */
  1990. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1991. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1992. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1993. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1994. if (n)
  1995. goto found;
  1996. }
  1997. /* new hash chain */
  1998. while (++h < FIB_TABLE_HASHSZ) {
  1999. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  2000. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  2001. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2002. if (n)
  2003. goto found;
  2004. }
  2005. }
  2006. return NULL;
  2007. found:
  2008. iter->tb = tb;
  2009. return n;
  2010. }
  2011. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2012. __releases(RCU)
  2013. {
  2014. rcu_read_unlock();
  2015. }
  2016. static void seq_indent(struct seq_file *seq, int n)
  2017. {
  2018. while (n-- > 0)
  2019. seq_puts(seq, " ");
  2020. }
  2021. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2022. {
  2023. switch (s) {
  2024. case RT_SCOPE_UNIVERSE: return "universe";
  2025. case RT_SCOPE_SITE: return "site";
  2026. case RT_SCOPE_LINK: return "link";
  2027. case RT_SCOPE_HOST: return "host";
  2028. case RT_SCOPE_NOWHERE: return "nowhere";
  2029. default:
  2030. snprintf(buf, len, "scope=%d", s);
  2031. return buf;
  2032. }
  2033. }
  2034. static const char *const rtn_type_names[__RTN_MAX] = {
  2035. [RTN_UNSPEC] = "UNSPEC",
  2036. [RTN_UNICAST] = "UNICAST",
  2037. [RTN_LOCAL] = "LOCAL",
  2038. [RTN_BROADCAST] = "BROADCAST",
  2039. [RTN_ANYCAST] = "ANYCAST",
  2040. [RTN_MULTICAST] = "MULTICAST",
  2041. [RTN_BLACKHOLE] = "BLACKHOLE",
  2042. [RTN_UNREACHABLE] = "UNREACHABLE",
  2043. [RTN_PROHIBIT] = "PROHIBIT",
  2044. [RTN_THROW] = "THROW",
  2045. [RTN_NAT] = "NAT",
  2046. [RTN_XRESOLVE] = "XRESOLVE",
  2047. };
  2048. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2049. {
  2050. if (t < __RTN_MAX && rtn_type_names[t])
  2051. return rtn_type_names[t];
  2052. snprintf(buf, len, "type %u", t);
  2053. return buf;
  2054. }
  2055. /* Pretty print the trie */
  2056. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2057. {
  2058. const struct fib_trie_iter *iter = seq->private;
  2059. struct key_vector *n = v;
  2060. if (IS_TRIE(node_parent_rcu(n)))
  2061. fib_table_print(seq, iter->tb);
  2062. if (IS_TNODE(n)) {
  2063. __be32 prf = htonl(n->key);
  2064. seq_indent(seq, iter->depth-1);
  2065. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2066. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2067. tn_info(n)->full_children,
  2068. tn_info(n)->empty_children);
  2069. } else {
  2070. __be32 val = htonl(n->key);
  2071. struct fib_alias *fa;
  2072. seq_indent(seq, iter->depth);
  2073. seq_printf(seq, " |-- %pI4\n", &val);
  2074. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2075. char buf1[32], buf2[32];
  2076. seq_indent(seq, iter->depth + 1);
  2077. seq_printf(seq, " /%zu %s %s",
  2078. KEYLENGTH - fa->fa_slen,
  2079. rtn_scope(buf1, sizeof(buf1),
  2080. fa->fa_info->fib_scope),
  2081. rtn_type(buf2, sizeof(buf2),
  2082. fa->fa_type));
  2083. if (fa->fa_tos)
  2084. seq_printf(seq, " tos=%d", fa->fa_tos);
  2085. seq_putc(seq, '\n');
  2086. }
  2087. }
  2088. return 0;
  2089. }
  2090. static const struct seq_operations fib_trie_seq_ops = {
  2091. .start = fib_trie_seq_start,
  2092. .next = fib_trie_seq_next,
  2093. .stop = fib_trie_seq_stop,
  2094. .show = fib_trie_seq_show,
  2095. };
  2096. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2097. {
  2098. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2099. sizeof(struct fib_trie_iter));
  2100. }
  2101. static const struct file_operations fib_trie_fops = {
  2102. .owner = THIS_MODULE,
  2103. .open = fib_trie_seq_open,
  2104. .read = seq_read,
  2105. .llseek = seq_lseek,
  2106. .release = seq_release_net,
  2107. };
  2108. struct fib_route_iter {
  2109. struct seq_net_private p;
  2110. struct fib_table *main_tb;
  2111. struct key_vector *tnode;
  2112. loff_t pos;
  2113. t_key key;
  2114. };
  2115. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2116. loff_t pos)
  2117. {
  2118. struct key_vector *l, **tp = &iter->tnode;
  2119. t_key key;
  2120. /* use cached location of previously found key */
  2121. if (iter->pos > 0 && pos >= iter->pos) {
  2122. key = iter->key;
  2123. } else {
  2124. iter->pos = 1;
  2125. key = 0;
  2126. }
  2127. pos -= iter->pos;
  2128. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2129. key = l->key + 1;
  2130. iter->pos++;
  2131. l = NULL;
  2132. /* handle unlikely case of a key wrap */
  2133. if (!key)
  2134. break;
  2135. }
  2136. if (l)
  2137. iter->key = l->key; /* remember it */
  2138. else
  2139. iter->pos = 0; /* forget it */
  2140. return l;
  2141. }
  2142. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2143. __acquires(RCU)
  2144. {
  2145. struct fib_route_iter *iter = seq->private;
  2146. struct fib_table *tb;
  2147. struct trie *t;
  2148. rcu_read_lock();
  2149. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2150. if (!tb)
  2151. return NULL;
  2152. iter->main_tb = tb;
  2153. t = (struct trie *)tb->tb_data;
  2154. iter->tnode = t->kv;
  2155. if (*pos != 0)
  2156. return fib_route_get_idx(iter, *pos);
  2157. iter->pos = 0;
  2158. iter->key = KEY_MAX;
  2159. return SEQ_START_TOKEN;
  2160. }
  2161. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2162. {
  2163. struct fib_route_iter *iter = seq->private;
  2164. struct key_vector *l = NULL;
  2165. t_key key = iter->key + 1;
  2166. ++*pos;
  2167. /* only allow key of 0 for start of sequence */
  2168. if ((v == SEQ_START_TOKEN) || key)
  2169. l = leaf_walk_rcu(&iter->tnode, key);
  2170. if (l) {
  2171. iter->key = l->key;
  2172. iter->pos++;
  2173. } else {
  2174. iter->pos = 0;
  2175. }
  2176. return l;
  2177. }
  2178. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2179. __releases(RCU)
  2180. {
  2181. rcu_read_unlock();
  2182. }
  2183. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2184. {
  2185. unsigned int flags = 0;
  2186. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2187. flags = RTF_REJECT;
  2188. if (fi && fi->fib_nh->nh_gw)
  2189. flags |= RTF_GATEWAY;
  2190. if (mask == htonl(0xFFFFFFFF))
  2191. flags |= RTF_HOST;
  2192. flags |= RTF_UP;
  2193. return flags;
  2194. }
  2195. /*
  2196. * This outputs /proc/net/route.
  2197. * The format of the file is not supposed to be changed
  2198. * and needs to be same as fib_hash output to avoid breaking
  2199. * legacy utilities
  2200. */
  2201. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2202. {
  2203. struct fib_route_iter *iter = seq->private;
  2204. struct fib_table *tb = iter->main_tb;
  2205. struct fib_alias *fa;
  2206. struct key_vector *l = v;
  2207. __be32 prefix;
  2208. if (v == SEQ_START_TOKEN) {
  2209. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2210. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2211. "\tWindow\tIRTT");
  2212. return 0;
  2213. }
  2214. prefix = htonl(l->key);
  2215. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2216. const struct fib_info *fi = fa->fa_info;
  2217. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2218. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2219. if ((fa->fa_type == RTN_BROADCAST) ||
  2220. (fa->fa_type == RTN_MULTICAST))
  2221. continue;
  2222. if (fa->tb_id != tb->tb_id)
  2223. continue;
  2224. seq_setwidth(seq, 127);
  2225. if (fi)
  2226. seq_printf(seq,
  2227. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2228. "%d\t%08X\t%d\t%u\t%u",
  2229. fi->fib_dev ? fi->fib_dev->name : "*",
  2230. prefix,
  2231. fi->fib_nh->nh_gw, flags, 0, 0,
  2232. fi->fib_priority,
  2233. mask,
  2234. (fi->fib_advmss ?
  2235. fi->fib_advmss + 40 : 0),
  2236. fi->fib_window,
  2237. fi->fib_rtt >> 3);
  2238. else
  2239. seq_printf(seq,
  2240. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2241. "%d\t%08X\t%d\t%u\t%u",
  2242. prefix, 0, flags, 0, 0, 0,
  2243. mask, 0, 0, 0);
  2244. seq_pad(seq, '\n');
  2245. }
  2246. return 0;
  2247. }
  2248. static const struct seq_operations fib_route_seq_ops = {
  2249. .start = fib_route_seq_start,
  2250. .next = fib_route_seq_next,
  2251. .stop = fib_route_seq_stop,
  2252. .show = fib_route_seq_show,
  2253. };
  2254. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2255. {
  2256. return seq_open_net(inode, file, &fib_route_seq_ops,
  2257. sizeof(struct fib_route_iter));
  2258. }
  2259. static const struct file_operations fib_route_fops = {
  2260. .owner = THIS_MODULE,
  2261. .open = fib_route_seq_open,
  2262. .read = seq_read,
  2263. .llseek = seq_lseek,
  2264. .release = seq_release_net,
  2265. };
  2266. int __net_init fib_proc_init(struct net *net)
  2267. {
  2268. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2269. goto out1;
  2270. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2271. &fib_triestat_fops))
  2272. goto out2;
  2273. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2274. goto out3;
  2275. return 0;
  2276. out3:
  2277. remove_proc_entry("fib_triestat", net->proc_net);
  2278. out2:
  2279. remove_proc_entry("fib_trie", net->proc_net);
  2280. out1:
  2281. return -ENOMEM;
  2282. }
  2283. void __net_exit fib_proc_exit(struct net *net)
  2284. {
  2285. remove_proc_entry("fib_trie", net->proc_net);
  2286. remove_proc_entry("fib_triestat", net->proc_net);
  2287. remove_proc_entry("route", net->proc_net);
  2288. }
  2289. #endif /* CONFIG_PROC_FS */