flow_dissector.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298
  1. #include <linux/kernel.h>
  2. #include <linux/skbuff.h>
  3. #include <linux/export.h>
  4. #include <linux/ip.h>
  5. #include <linux/ipv6.h>
  6. #include <linux/if_vlan.h>
  7. #include <net/dsa.h>
  8. #include <net/ip.h>
  9. #include <net/ipv6.h>
  10. #include <net/gre.h>
  11. #include <net/pptp.h>
  12. #include <linux/igmp.h>
  13. #include <linux/icmp.h>
  14. #include <linux/sctp.h>
  15. #include <linux/dccp.h>
  16. #include <linux/if_tunnel.h>
  17. #include <linux/if_pppox.h>
  18. #include <linux/ppp_defs.h>
  19. #include <linux/stddef.h>
  20. #include <linux/if_ether.h>
  21. #include <linux/mpls.h>
  22. #include <linux/tcp.h>
  23. #include <net/flow_dissector.h>
  24. #include <scsi/fc/fc_fcoe.h>
  25. static void dissector_set_key(struct flow_dissector *flow_dissector,
  26. enum flow_dissector_key_id key_id)
  27. {
  28. flow_dissector->used_keys |= (1 << key_id);
  29. }
  30. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  31. const struct flow_dissector_key *key,
  32. unsigned int key_count)
  33. {
  34. unsigned int i;
  35. memset(flow_dissector, 0, sizeof(*flow_dissector));
  36. for (i = 0; i < key_count; i++, key++) {
  37. /* User should make sure that every key target offset is withing
  38. * boundaries of unsigned short.
  39. */
  40. BUG_ON(key->offset > USHRT_MAX);
  41. BUG_ON(dissector_uses_key(flow_dissector,
  42. key->key_id));
  43. dissector_set_key(flow_dissector, key->key_id);
  44. flow_dissector->offset[key->key_id] = key->offset;
  45. }
  46. /* Ensure that the dissector always includes control and basic key.
  47. * That way we are able to avoid handling lack of these in fast path.
  48. */
  49. BUG_ON(!dissector_uses_key(flow_dissector,
  50. FLOW_DISSECTOR_KEY_CONTROL));
  51. BUG_ON(!dissector_uses_key(flow_dissector,
  52. FLOW_DISSECTOR_KEY_BASIC));
  53. }
  54. EXPORT_SYMBOL(skb_flow_dissector_init);
  55. /**
  56. * skb_flow_get_be16 - extract be16 entity
  57. * @skb: sk_buff to extract from
  58. * @poff: offset to extract at
  59. * @data: raw buffer pointer to the packet
  60. * @hlen: packet header length
  61. *
  62. * The function will try to retrieve a be32 entity at
  63. * offset poff
  64. */
  65. static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
  66. void *data, int hlen)
  67. {
  68. __be16 *u, _u;
  69. u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
  70. if (u)
  71. return *u;
  72. return 0;
  73. }
  74. /**
  75. * __skb_flow_get_ports - extract the upper layer ports and return them
  76. * @skb: sk_buff to extract the ports from
  77. * @thoff: transport header offset
  78. * @ip_proto: protocol for which to get port offset
  79. * @data: raw buffer pointer to the packet, if NULL use skb->data
  80. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  81. *
  82. * The function will try to retrieve the ports at offset thoff + poff where poff
  83. * is the protocol port offset returned from proto_ports_offset
  84. */
  85. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  86. void *data, int hlen)
  87. {
  88. int poff = proto_ports_offset(ip_proto);
  89. if (!data) {
  90. data = skb->data;
  91. hlen = skb_headlen(skb);
  92. }
  93. if (poff >= 0) {
  94. __be32 *ports, _ports;
  95. ports = __skb_header_pointer(skb, thoff + poff,
  96. sizeof(_ports), data, hlen, &_ports);
  97. if (ports)
  98. return *ports;
  99. }
  100. return 0;
  101. }
  102. EXPORT_SYMBOL(__skb_flow_get_ports);
  103. static enum flow_dissect_ret
  104. __skb_flow_dissect_mpls(const struct sk_buff *skb,
  105. struct flow_dissector *flow_dissector,
  106. void *target_container, void *data, int nhoff, int hlen)
  107. {
  108. struct flow_dissector_key_keyid *key_keyid;
  109. struct mpls_label *hdr, _hdr[2];
  110. u32 entry, label;
  111. if (!dissector_uses_key(flow_dissector,
  112. FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
  113. !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
  114. return FLOW_DISSECT_RET_OUT_GOOD;
  115. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
  116. hlen, &_hdr);
  117. if (!hdr)
  118. return FLOW_DISSECT_RET_OUT_BAD;
  119. entry = ntohl(hdr[0].entry);
  120. label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
  121. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
  122. struct flow_dissector_key_mpls *key_mpls;
  123. key_mpls = skb_flow_dissector_target(flow_dissector,
  124. FLOW_DISSECTOR_KEY_MPLS,
  125. target_container);
  126. key_mpls->mpls_label = label;
  127. key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
  128. >> MPLS_LS_TTL_SHIFT;
  129. key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
  130. >> MPLS_LS_TC_SHIFT;
  131. key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
  132. >> MPLS_LS_S_SHIFT;
  133. }
  134. if (label == MPLS_LABEL_ENTROPY) {
  135. key_keyid = skb_flow_dissector_target(flow_dissector,
  136. FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
  137. target_container);
  138. key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
  139. }
  140. return FLOW_DISSECT_RET_OUT_GOOD;
  141. }
  142. static enum flow_dissect_ret
  143. __skb_flow_dissect_arp(const struct sk_buff *skb,
  144. struct flow_dissector *flow_dissector,
  145. void *target_container, void *data, int nhoff, int hlen)
  146. {
  147. struct flow_dissector_key_arp *key_arp;
  148. struct {
  149. unsigned char ar_sha[ETH_ALEN];
  150. unsigned char ar_sip[4];
  151. unsigned char ar_tha[ETH_ALEN];
  152. unsigned char ar_tip[4];
  153. } *arp_eth, _arp_eth;
  154. const struct arphdr *arp;
  155. struct arphdr _arp;
  156. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
  157. return FLOW_DISSECT_RET_OUT_GOOD;
  158. arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
  159. hlen, &_arp);
  160. if (!arp)
  161. return FLOW_DISSECT_RET_OUT_BAD;
  162. if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
  163. arp->ar_pro != htons(ETH_P_IP) ||
  164. arp->ar_hln != ETH_ALEN ||
  165. arp->ar_pln != 4 ||
  166. (arp->ar_op != htons(ARPOP_REPLY) &&
  167. arp->ar_op != htons(ARPOP_REQUEST)))
  168. return FLOW_DISSECT_RET_OUT_BAD;
  169. arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
  170. sizeof(_arp_eth), data,
  171. hlen, &_arp_eth);
  172. if (!arp_eth)
  173. return FLOW_DISSECT_RET_OUT_BAD;
  174. key_arp = skb_flow_dissector_target(flow_dissector,
  175. FLOW_DISSECTOR_KEY_ARP,
  176. target_container);
  177. memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
  178. memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
  179. /* Only store the lower byte of the opcode;
  180. * this covers ARPOP_REPLY and ARPOP_REQUEST.
  181. */
  182. key_arp->op = ntohs(arp->ar_op) & 0xff;
  183. ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
  184. ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
  185. return FLOW_DISSECT_RET_OUT_GOOD;
  186. }
  187. static enum flow_dissect_ret
  188. __skb_flow_dissect_gre(const struct sk_buff *skb,
  189. struct flow_dissector_key_control *key_control,
  190. struct flow_dissector *flow_dissector,
  191. void *target_container, void *data,
  192. __be16 *p_proto, int *p_nhoff, int *p_hlen,
  193. unsigned int flags)
  194. {
  195. struct flow_dissector_key_keyid *key_keyid;
  196. struct gre_base_hdr *hdr, _hdr;
  197. int offset = 0;
  198. u16 gre_ver;
  199. hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
  200. data, *p_hlen, &_hdr);
  201. if (!hdr)
  202. return FLOW_DISSECT_RET_OUT_BAD;
  203. /* Only look inside GRE without routing */
  204. if (hdr->flags & GRE_ROUTING)
  205. return FLOW_DISSECT_RET_OUT_GOOD;
  206. /* Only look inside GRE for version 0 and 1 */
  207. gre_ver = ntohs(hdr->flags & GRE_VERSION);
  208. if (gre_ver > 1)
  209. return FLOW_DISSECT_RET_OUT_GOOD;
  210. *p_proto = hdr->protocol;
  211. if (gre_ver) {
  212. /* Version1 must be PPTP, and check the flags */
  213. if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
  214. return FLOW_DISSECT_RET_OUT_GOOD;
  215. }
  216. offset += sizeof(struct gre_base_hdr);
  217. if (hdr->flags & GRE_CSUM)
  218. offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
  219. sizeof(((struct gre_full_hdr *) 0)->reserved1);
  220. if (hdr->flags & GRE_KEY) {
  221. const __be32 *keyid;
  222. __be32 _keyid;
  223. keyid = __skb_header_pointer(skb, *p_nhoff + offset,
  224. sizeof(_keyid),
  225. data, *p_hlen, &_keyid);
  226. if (!keyid)
  227. return FLOW_DISSECT_RET_OUT_BAD;
  228. if (dissector_uses_key(flow_dissector,
  229. FLOW_DISSECTOR_KEY_GRE_KEYID)) {
  230. key_keyid = skb_flow_dissector_target(flow_dissector,
  231. FLOW_DISSECTOR_KEY_GRE_KEYID,
  232. target_container);
  233. if (gre_ver == 0)
  234. key_keyid->keyid = *keyid;
  235. else
  236. key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
  237. }
  238. offset += sizeof(((struct gre_full_hdr *) 0)->key);
  239. }
  240. if (hdr->flags & GRE_SEQ)
  241. offset += sizeof(((struct pptp_gre_header *) 0)->seq);
  242. if (gre_ver == 0) {
  243. if (*p_proto == htons(ETH_P_TEB)) {
  244. const struct ethhdr *eth;
  245. struct ethhdr _eth;
  246. eth = __skb_header_pointer(skb, *p_nhoff + offset,
  247. sizeof(_eth),
  248. data, *p_hlen, &_eth);
  249. if (!eth)
  250. return FLOW_DISSECT_RET_OUT_BAD;
  251. *p_proto = eth->h_proto;
  252. offset += sizeof(*eth);
  253. /* Cap headers that we access via pointers at the
  254. * end of the Ethernet header as our maximum alignment
  255. * at that point is only 2 bytes.
  256. */
  257. if (NET_IP_ALIGN)
  258. *p_hlen = *p_nhoff + offset;
  259. }
  260. } else { /* version 1, must be PPTP */
  261. u8 _ppp_hdr[PPP_HDRLEN];
  262. u8 *ppp_hdr;
  263. if (hdr->flags & GRE_ACK)
  264. offset += sizeof(((struct pptp_gre_header *) 0)->ack);
  265. ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
  266. sizeof(_ppp_hdr),
  267. data, *p_hlen, _ppp_hdr);
  268. if (!ppp_hdr)
  269. return FLOW_DISSECT_RET_OUT_BAD;
  270. switch (PPP_PROTOCOL(ppp_hdr)) {
  271. case PPP_IP:
  272. *p_proto = htons(ETH_P_IP);
  273. break;
  274. case PPP_IPV6:
  275. *p_proto = htons(ETH_P_IPV6);
  276. break;
  277. default:
  278. /* Could probably catch some more like MPLS */
  279. break;
  280. }
  281. offset += PPP_HDRLEN;
  282. }
  283. *p_nhoff += offset;
  284. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  285. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  286. return FLOW_DISSECT_RET_OUT_GOOD;
  287. return FLOW_DISSECT_RET_PROTO_AGAIN;
  288. }
  289. static void
  290. __skb_flow_dissect_tcp(const struct sk_buff *skb,
  291. struct flow_dissector *flow_dissector,
  292. void *target_container, void *data, int thoff, int hlen)
  293. {
  294. struct flow_dissector_key_tcp *key_tcp;
  295. struct tcphdr *th, _th;
  296. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
  297. return;
  298. th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
  299. if (!th)
  300. return;
  301. if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
  302. return;
  303. key_tcp = skb_flow_dissector_target(flow_dissector,
  304. FLOW_DISSECTOR_KEY_TCP,
  305. target_container);
  306. key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
  307. }
  308. static void
  309. __skb_flow_dissect_ipv4(const struct sk_buff *skb,
  310. struct flow_dissector *flow_dissector,
  311. void *target_container, void *data, const struct iphdr *iph)
  312. {
  313. struct flow_dissector_key_ip *key_ip;
  314. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  315. return;
  316. key_ip = skb_flow_dissector_target(flow_dissector,
  317. FLOW_DISSECTOR_KEY_IP,
  318. target_container);
  319. key_ip->tos = iph->tos;
  320. key_ip->ttl = iph->ttl;
  321. }
  322. static void
  323. __skb_flow_dissect_ipv6(const struct sk_buff *skb,
  324. struct flow_dissector *flow_dissector,
  325. void *target_container, void *data, const struct ipv6hdr *iph)
  326. {
  327. struct flow_dissector_key_ip *key_ip;
  328. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  329. return;
  330. key_ip = skb_flow_dissector_target(flow_dissector,
  331. FLOW_DISSECTOR_KEY_IP,
  332. target_container);
  333. key_ip->tos = ipv6_get_dsfield(iph);
  334. key_ip->ttl = iph->hop_limit;
  335. }
  336. /* Maximum number of protocol headers that can be parsed in
  337. * __skb_flow_dissect
  338. */
  339. #define MAX_FLOW_DISSECT_HDRS 15
  340. static bool skb_flow_dissect_allowed(int *num_hdrs)
  341. {
  342. ++*num_hdrs;
  343. return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
  344. }
  345. /**
  346. * __skb_flow_dissect - extract the flow_keys struct and return it
  347. * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
  348. * @flow_dissector: list of keys to dissect
  349. * @target_container: target structure to put dissected values into
  350. * @data: raw buffer pointer to the packet, if NULL use skb->data
  351. * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
  352. * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
  353. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  354. *
  355. * The function will try to retrieve individual keys into target specified
  356. * by flow_dissector from either the skbuff or a raw buffer specified by the
  357. * rest parameters.
  358. *
  359. * Caller must take care of zeroing target container memory.
  360. */
  361. bool __skb_flow_dissect(const struct sk_buff *skb,
  362. struct flow_dissector *flow_dissector,
  363. void *target_container,
  364. void *data, __be16 proto, int nhoff, int hlen,
  365. unsigned int flags)
  366. {
  367. struct flow_dissector_key_control *key_control;
  368. struct flow_dissector_key_basic *key_basic;
  369. struct flow_dissector_key_addrs *key_addrs;
  370. struct flow_dissector_key_ports *key_ports;
  371. struct flow_dissector_key_icmp *key_icmp;
  372. struct flow_dissector_key_tags *key_tags;
  373. struct flow_dissector_key_vlan *key_vlan;
  374. enum flow_dissect_ret fdret;
  375. bool skip_vlan = false;
  376. int num_hdrs = 0;
  377. u8 ip_proto = 0;
  378. bool ret;
  379. if (!data) {
  380. data = skb->data;
  381. proto = skb_vlan_tag_present(skb) ?
  382. skb->vlan_proto : skb->protocol;
  383. nhoff = skb_network_offset(skb);
  384. hlen = skb_headlen(skb);
  385. #if IS_ENABLED(CONFIG_NET_DSA)
  386. if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
  387. const struct dsa_device_ops *ops;
  388. int offset;
  389. ops = skb->dev->dsa_ptr->tag_ops;
  390. if (ops->flow_dissect &&
  391. !ops->flow_dissect(skb, &proto, &offset)) {
  392. hlen -= offset;
  393. nhoff += offset;
  394. }
  395. }
  396. #endif
  397. }
  398. /* It is ensured by skb_flow_dissector_init() that control key will
  399. * be always present.
  400. */
  401. key_control = skb_flow_dissector_target(flow_dissector,
  402. FLOW_DISSECTOR_KEY_CONTROL,
  403. target_container);
  404. /* It is ensured by skb_flow_dissector_init() that basic key will
  405. * be always present.
  406. */
  407. key_basic = skb_flow_dissector_target(flow_dissector,
  408. FLOW_DISSECTOR_KEY_BASIC,
  409. target_container);
  410. if (dissector_uses_key(flow_dissector,
  411. FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
  412. struct ethhdr *eth = eth_hdr(skb);
  413. struct flow_dissector_key_eth_addrs *key_eth_addrs;
  414. key_eth_addrs = skb_flow_dissector_target(flow_dissector,
  415. FLOW_DISSECTOR_KEY_ETH_ADDRS,
  416. target_container);
  417. memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
  418. }
  419. proto_again:
  420. fdret = FLOW_DISSECT_RET_CONTINUE;
  421. switch (proto) {
  422. case htons(ETH_P_IP): {
  423. const struct iphdr *iph;
  424. struct iphdr _iph;
  425. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  426. if (!iph || iph->ihl < 5) {
  427. fdret = FLOW_DISSECT_RET_OUT_BAD;
  428. break;
  429. }
  430. nhoff += iph->ihl * 4;
  431. ip_proto = iph->protocol;
  432. if (dissector_uses_key(flow_dissector,
  433. FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
  434. key_addrs = skb_flow_dissector_target(flow_dissector,
  435. FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  436. target_container);
  437. memcpy(&key_addrs->v4addrs, &iph->saddr,
  438. sizeof(key_addrs->v4addrs));
  439. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  440. }
  441. if (ip_is_fragment(iph)) {
  442. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  443. if (iph->frag_off & htons(IP_OFFSET)) {
  444. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  445. break;
  446. } else {
  447. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  448. if (!(flags &
  449. FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
  450. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  451. break;
  452. }
  453. }
  454. }
  455. __skb_flow_dissect_ipv4(skb, flow_dissector,
  456. target_container, data, iph);
  457. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
  458. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  459. break;
  460. }
  461. break;
  462. }
  463. case htons(ETH_P_IPV6): {
  464. const struct ipv6hdr *iph;
  465. struct ipv6hdr _iph;
  466. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  467. if (!iph) {
  468. fdret = FLOW_DISSECT_RET_OUT_BAD;
  469. break;
  470. }
  471. ip_proto = iph->nexthdr;
  472. nhoff += sizeof(struct ipv6hdr);
  473. if (dissector_uses_key(flow_dissector,
  474. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  475. key_addrs = skb_flow_dissector_target(flow_dissector,
  476. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  477. target_container);
  478. memcpy(&key_addrs->v6addrs, &iph->saddr,
  479. sizeof(key_addrs->v6addrs));
  480. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  481. }
  482. if ((dissector_uses_key(flow_dissector,
  483. FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
  484. (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
  485. ip6_flowlabel(iph)) {
  486. __be32 flow_label = ip6_flowlabel(iph);
  487. if (dissector_uses_key(flow_dissector,
  488. FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
  489. key_tags = skb_flow_dissector_target(flow_dissector,
  490. FLOW_DISSECTOR_KEY_FLOW_LABEL,
  491. target_container);
  492. key_tags->flow_label = ntohl(flow_label);
  493. }
  494. if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
  495. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  496. break;
  497. }
  498. }
  499. __skb_flow_dissect_ipv6(skb, flow_dissector,
  500. target_container, data, iph);
  501. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  502. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  503. break;
  504. }
  505. case htons(ETH_P_8021AD):
  506. case htons(ETH_P_8021Q): {
  507. const struct vlan_hdr *vlan;
  508. struct vlan_hdr _vlan;
  509. bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
  510. if (vlan_tag_present)
  511. proto = skb->protocol;
  512. if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
  513. vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
  514. data, hlen, &_vlan);
  515. if (!vlan) {
  516. fdret = FLOW_DISSECT_RET_OUT_BAD;
  517. break;
  518. }
  519. proto = vlan->h_vlan_encapsulated_proto;
  520. nhoff += sizeof(*vlan);
  521. if (skip_vlan) {
  522. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  523. break;
  524. }
  525. }
  526. skip_vlan = true;
  527. if (dissector_uses_key(flow_dissector,
  528. FLOW_DISSECTOR_KEY_VLAN)) {
  529. key_vlan = skb_flow_dissector_target(flow_dissector,
  530. FLOW_DISSECTOR_KEY_VLAN,
  531. target_container);
  532. if (vlan_tag_present) {
  533. key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
  534. key_vlan->vlan_priority =
  535. (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
  536. } else {
  537. key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
  538. VLAN_VID_MASK;
  539. key_vlan->vlan_priority =
  540. (ntohs(vlan->h_vlan_TCI) &
  541. VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  542. }
  543. }
  544. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  545. break;
  546. }
  547. case htons(ETH_P_PPP_SES): {
  548. struct {
  549. struct pppoe_hdr hdr;
  550. __be16 proto;
  551. } *hdr, _hdr;
  552. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  553. if (!hdr) {
  554. fdret = FLOW_DISSECT_RET_OUT_BAD;
  555. break;
  556. }
  557. proto = hdr->proto;
  558. nhoff += PPPOE_SES_HLEN;
  559. switch (proto) {
  560. case htons(PPP_IP):
  561. proto = htons(ETH_P_IP);
  562. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  563. break;
  564. case htons(PPP_IPV6):
  565. proto = htons(ETH_P_IPV6);
  566. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  567. break;
  568. default:
  569. fdret = FLOW_DISSECT_RET_OUT_BAD;
  570. break;
  571. }
  572. break;
  573. }
  574. case htons(ETH_P_TIPC): {
  575. struct {
  576. __be32 pre[3];
  577. __be32 srcnode;
  578. } *hdr, _hdr;
  579. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  580. if (!hdr) {
  581. fdret = FLOW_DISSECT_RET_OUT_BAD;
  582. break;
  583. }
  584. if (dissector_uses_key(flow_dissector,
  585. FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
  586. key_addrs = skb_flow_dissector_target(flow_dissector,
  587. FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  588. target_container);
  589. key_addrs->tipcaddrs.srcnode = hdr->srcnode;
  590. key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
  591. }
  592. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  593. break;
  594. }
  595. case htons(ETH_P_MPLS_UC):
  596. case htons(ETH_P_MPLS_MC):
  597. fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
  598. target_container, data,
  599. nhoff, hlen);
  600. break;
  601. case htons(ETH_P_FCOE):
  602. if ((hlen - nhoff) < FCOE_HEADER_LEN) {
  603. fdret = FLOW_DISSECT_RET_OUT_BAD;
  604. break;
  605. }
  606. nhoff += FCOE_HEADER_LEN;
  607. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  608. break;
  609. case htons(ETH_P_ARP):
  610. case htons(ETH_P_RARP):
  611. fdret = __skb_flow_dissect_arp(skb, flow_dissector,
  612. target_container, data,
  613. nhoff, hlen);
  614. break;
  615. default:
  616. fdret = FLOW_DISSECT_RET_OUT_BAD;
  617. break;
  618. }
  619. /* Process result of proto processing */
  620. switch (fdret) {
  621. case FLOW_DISSECT_RET_OUT_GOOD:
  622. goto out_good;
  623. case FLOW_DISSECT_RET_PROTO_AGAIN:
  624. if (skb_flow_dissect_allowed(&num_hdrs))
  625. goto proto_again;
  626. goto out_good;
  627. case FLOW_DISSECT_RET_CONTINUE:
  628. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  629. break;
  630. case FLOW_DISSECT_RET_OUT_BAD:
  631. default:
  632. goto out_bad;
  633. }
  634. ip_proto_again:
  635. fdret = FLOW_DISSECT_RET_CONTINUE;
  636. switch (ip_proto) {
  637. case IPPROTO_GRE:
  638. fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
  639. target_container, data,
  640. &proto, &nhoff, &hlen, flags);
  641. break;
  642. case NEXTHDR_HOP:
  643. case NEXTHDR_ROUTING:
  644. case NEXTHDR_DEST: {
  645. u8 _opthdr[2], *opthdr;
  646. if (proto != htons(ETH_P_IPV6))
  647. break;
  648. opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
  649. data, hlen, &_opthdr);
  650. if (!opthdr) {
  651. fdret = FLOW_DISSECT_RET_OUT_BAD;
  652. break;
  653. }
  654. ip_proto = opthdr[0];
  655. nhoff += (opthdr[1] + 1) << 3;
  656. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  657. break;
  658. }
  659. case NEXTHDR_FRAGMENT: {
  660. struct frag_hdr _fh, *fh;
  661. if (proto != htons(ETH_P_IPV6))
  662. break;
  663. fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
  664. data, hlen, &_fh);
  665. if (!fh) {
  666. fdret = FLOW_DISSECT_RET_OUT_BAD;
  667. break;
  668. }
  669. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  670. nhoff += sizeof(_fh);
  671. ip_proto = fh->nexthdr;
  672. if (!(fh->frag_off & htons(IP6_OFFSET))) {
  673. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  674. if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
  675. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  676. break;
  677. }
  678. }
  679. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  680. break;
  681. }
  682. case IPPROTO_IPIP:
  683. proto = htons(ETH_P_IP);
  684. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  685. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  686. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  687. break;
  688. }
  689. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  690. break;
  691. case IPPROTO_IPV6:
  692. proto = htons(ETH_P_IPV6);
  693. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  694. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  695. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  696. break;
  697. }
  698. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  699. break;
  700. case IPPROTO_MPLS:
  701. proto = htons(ETH_P_MPLS_UC);
  702. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  703. break;
  704. case IPPROTO_TCP:
  705. __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
  706. data, nhoff, hlen);
  707. break;
  708. default:
  709. break;
  710. }
  711. if (dissector_uses_key(flow_dissector,
  712. FLOW_DISSECTOR_KEY_PORTS)) {
  713. key_ports = skb_flow_dissector_target(flow_dissector,
  714. FLOW_DISSECTOR_KEY_PORTS,
  715. target_container);
  716. key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
  717. data, hlen);
  718. }
  719. if (dissector_uses_key(flow_dissector,
  720. FLOW_DISSECTOR_KEY_ICMP)) {
  721. key_icmp = skb_flow_dissector_target(flow_dissector,
  722. FLOW_DISSECTOR_KEY_ICMP,
  723. target_container);
  724. key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
  725. }
  726. /* Process result of IP proto processing */
  727. switch (fdret) {
  728. case FLOW_DISSECT_RET_PROTO_AGAIN:
  729. if (skb_flow_dissect_allowed(&num_hdrs))
  730. goto proto_again;
  731. break;
  732. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  733. if (skb_flow_dissect_allowed(&num_hdrs))
  734. goto ip_proto_again;
  735. break;
  736. case FLOW_DISSECT_RET_OUT_GOOD:
  737. case FLOW_DISSECT_RET_CONTINUE:
  738. break;
  739. case FLOW_DISSECT_RET_OUT_BAD:
  740. default:
  741. goto out_bad;
  742. }
  743. out_good:
  744. ret = true;
  745. key_control->thoff = (u16)nhoff;
  746. out:
  747. key_basic->n_proto = proto;
  748. key_basic->ip_proto = ip_proto;
  749. return ret;
  750. out_bad:
  751. ret = false;
  752. key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
  753. goto out;
  754. }
  755. EXPORT_SYMBOL(__skb_flow_dissect);
  756. static u32 hashrnd __read_mostly;
  757. static __always_inline void __flow_hash_secret_init(void)
  758. {
  759. net_get_random_once(&hashrnd, sizeof(hashrnd));
  760. }
  761. static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
  762. u32 keyval)
  763. {
  764. return jhash2(words, length, keyval);
  765. }
  766. static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
  767. {
  768. const void *p = flow;
  769. BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
  770. return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
  771. }
  772. static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
  773. {
  774. size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
  775. BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
  776. BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
  777. sizeof(*flow) - sizeof(flow->addrs));
  778. switch (flow->control.addr_type) {
  779. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  780. diff -= sizeof(flow->addrs.v4addrs);
  781. break;
  782. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  783. diff -= sizeof(flow->addrs.v6addrs);
  784. break;
  785. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  786. diff -= sizeof(flow->addrs.tipcaddrs);
  787. break;
  788. }
  789. return (sizeof(*flow) - diff) / sizeof(u32);
  790. }
  791. __be32 flow_get_u32_src(const struct flow_keys *flow)
  792. {
  793. switch (flow->control.addr_type) {
  794. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  795. return flow->addrs.v4addrs.src;
  796. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  797. return (__force __be32)ipv6_addr_hash(
  798. &flow->addrs.v6addrs.src);
  799. case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
  800. return flow->addrs.tipcaddrs.srcnode;
  801. default:
  802. return 0;
  803. }
  804. }
  805. EXPORT_SYMBOL(flow_get_u32_src);
  806. __be32 flow_get_u32_dst(const struct flow_keys *flow)
  807. {
  808. switch (flow->control.addr_type) {
  809. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  810. return flow->addrs.v4addrs.dst;
  811. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  812. return (__force __be32)ipv6_addr_hash(
  813. &flow->addrs.v6addrs.dst);
  814. default:
  815. return 0;
  816. }
  817. }
  818. EXPORT_SYMBOL(flow_get_u32_dst);
  819. static inline void __flow_hash_consistentify(struct flow_keys *keys)
  820. {
  821. int addr_diff, i;
  822. switch (keys->control.addr_type) {
  823. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  824. addr_diff = (__force u32)keys->addrs.v4addrs.dst -
  825. (__force u32)keys->addrs.v4addrs.src;
  826. if ((addr_diff < 0) ||
  827. (addr_diff == 0 &&
  828. ((__force u16)keys->ports.dst <
  829. (__force u16)keys->ports.src))) {
  830. swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
  831. swap(keys->ports.src, keys->ports.dst);
  832. }
  833. break;
  834. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  835. addr_diff = memcmp(&keys->addrs.v6addrs.dst,
  836. &keys->addrs.v6addrs.src,
  837. sizeof(keys->addrs.v6addrs.dst));
  838. if ((addr_diff < 0) ||
  839. (addr_diff == 0 &&
  840. ((__force u16)keys->ports.dst <
  841. (__force u16)keys->ports.src))) {
  842. for (i = 0; i < 4; i++)
  843. swap(keys->addrs.v6addrs.src.s6_addr32[i],
  844. keys->addrs.v6addrs.dst.s6_addr32[i]);
  845. swap(keys->ports.src, keys->ports.dst);
  846. }
  847. break;
  848. }
  849. }
  850. static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
  851. {
  852. u32 hash;
  853. __flow_hash_consistentify(keys);
  854. hash = __flow_hash_words(flow_keys_hash_start(keys),
  855. flow_keys_hash_length(keys), keyval);
  856. if (!hash)
  857. hash = 1;
  858. return hash;
  859. }
  860. u32 flow_hash_from_keys(struct flow_keys *keys)
  861. {
  862. __flow_hash_secret_init();
  863. return __flow_hash_from_keys(keys, hashrnd);
  864. }
  865. EXPORT_SYMBOL(flow_hash_from_keys);
  866. static inline u32 ___skb_get_hash(const struct sk_buff *skb,
  867. struct flow_keys *keys, u32 keyval)
  868. {
  869. skb_flow_dissect_flow_keys(skb, keys,
  870. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  871. return __flow_hash_from_keys(keys, keyval);
  872. }
  873. struct _flow_keys_digest_data {
  874. __be16 n_proto;
  875. u8 ip_proto;
  876. u8 padding;
  877. __be32 ports;
  878. __be32 src;
  879. __be32 dst;
  880. };
  881. void make_flow_keys_digest(struct flow_keys_digest *digest,
  882. const struct flow_keys *flow)
  883. {
  884. struct _flow_keys_digest_data *data =
  885. (struct _flow_keys_digest_data *)digest;
  886. BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
  887. memset(digest, 0, sizeof(*digest));
  888. data->n_proto = flow->basic.n_proto;
  889. data->ip_proto = flow->basic.ip_proto;
  890. data->ports = flow->ports.ports;
  891. data->src = flow->addrs.v4addrs.src;
  892. data->dst = flow->addrs.v4addrs.dst;
  893. }
  894. EXPORT_SYMBOL(make_flow_keys_digest);
  895. static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
  896. u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
  897. {
  898. struct flow_keys keys;
  899. __flow_hash_secret_init();
  900. memset(&keys, 0, sizeof(keys));
  901. __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
  902. NULL, 0, 0, 0,
  903. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  904. return __flow_hash_from_keys(&keys, hashrnd);
  905. }
  906. EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
  907. /**
  908. * __skb_get_hash: calculate a flow hash
  909. * @skb: sk_buff to calculate flow hash from
  910. *
  911. * This function calculates a flow hash based on src/dst addresses
  912. * and src/dst port numbers. Sets hash in skb to non-zero hash value
  913. * on success, zero indicates no valid hash. Also, sets l4_hash in skb
  914. * if hash is a canonical 4-tuple hash over transport ports.
  915. */
  916. void __skb_get_hash(struct sk_buff *skb)
  917. {
  918. struct flow_keys keys;
  919. u32 hash;
  920. __flow_hash_secret_init();
  921. hash = ___skb_get_hash(skb, &keys, hashrnd);
  922. __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
  923. }
  924. EXPORT_SYMBOL(__skb_get_hash);
  925. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
  926. {
  927. struct flow_keys keys;
  928. return ___skb_get_hash(skb, &keys, perturb);
  929. }
  930. EXPORT_SYMBOL(skb_get_hash_perturb);
  931. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  932. const struct flow_keys *keys, int hlen)
  933. {
  934. u32 poff = keys->control.thoff;
  935. /* skip L4 headers for fragments after the first */
  936. if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
  937. !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
  938. return poff;
  939. switch (keys->basic.ip_proto) {
  940. case IPPROTO_TCP: {
  941. /* access doff as u8 to avoid unaligned access */
  942. const u8 *doff;
  943. u8 _doff;
  944. doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
  945. data, hlen, &_doff);
  946. if (!doff)
  947. return poff;
  948. poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
  949. break;
  950. }
  951. case IPPROTO_UDP:
  952. case IPPROTO_UDPLITE:
  953. poff += sizeof(struct udphdr);
  954. break;
  955. /* For the rest, we do not really care about header
  956. * extensions at this point for now.
  957. */
  958. case IPPROTO_ICMP:
  959. poff += sizeof(struct icmphdr);
  960. break;
  961. case IPPROTO_ICMPV6:
  962. poff += sizeof(struct icmp6hdr);
  963. break;
  964. case IPPROTO_IGMP:
  965. poff += sizeof(struct igmphdr);
  966. break;
  967. case IPPROTO_DCCP:
  968. poff += sizeof(struct dccp_hdr);
  969. break;
  970. case IPPROTO_SCTP:
  971. poff += sizeof(struct sctphdr);
  972. break;
  973. }
  974. return poff;
  975. }
  976. /**
  977. * skb_get_poff - get the offset to the payload
  978. * @skb: sk_buff to get the payload offset from
  979. *
  980. * The function will get the offset to the payload as far as it could
  981. * be dissected. The main user is currently BPF, so that we can dynamically
  982. * truncate packets without needing to push actual payload to the user
  983. * space and can analyze headers only, instead.
  984. */
  985. u32 skb_get_poff(const struct sk_buff *skb)
  986. {
  987. struct flow_keys keys;
  988. if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
  989. return 0;
  990. return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
  991. }
  992. __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
  993. {
  994. memset(keys, 0, sizeof(*keys));
  995. memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
  996. sizeof(keys->addrs.v6addrs.src));
  997. memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
  998. sizeof(keys->addrs.v6addrs.dst));
  999. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  1000. keys->ports.src = fl6->fl6_sport;
  1001. keys->ports.dst = fl6->fl6_dport;
  1002. keys->keyid.keyid = fl6->fl6_gre_key;
  1003. keys->tags.flow_label = (__force u32)fl6->flowlabel;
  1004. keys->basic.ip_proto = fl6->flowi6_proto;
  1005. return flow_hash_from_keys(keys);
  1006. }
  1007. EXPORT_SYMBOL(__get_hash_from_flowi6);
  1008. __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
  1009. {
  1010. memset(keys, 0, sizeof(*keys));
  1011. keys->addrs.v4addrs.src = fl4->saddr;
  1012. keys->addrs.v4addrs.dst = fl4->daddr;
  1013. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  1014. keys->ports.src = fl4->fl4_sport;
  1015. keys->ports.dst = fl4->fl4_dport;
  1016. keys->keyid.keyid = fl4->fl4_gre_key;
  1017. keys->basic.ip_proto = fl4->flowi4_proto;
  1018. return flow_hash_from_keys(keys);
  1019. }
  1020. EXPORT_SYMBOL(__get_hash_from_flowi4);
  1021. static const struct flow_dissector_key flow_keys_dissector_keys[] = {
  1022. {
  1023. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1024. .offset = offsetof(struct flow_keys, control),
  1025. },
  1026. {
  1027. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1028. .offset = offsetof(struct flow_keys, basic),
  1029. },
  1030. {
  1031. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1032. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1033. },
  1034. {
  1035. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1036. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1037. },
  1038. {
  1039. .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
  1040. .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
  1041. },
  1042. {
  1043. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1044. .offset = offsetof(struct flow_keys, ports),
  1045. },
  1046. {
  1047. .key_id = FLOW_DISSECTOR_KEY_VLAN,
  1048. .offset = offsetof(struct flow_keys, vlan),
  1049. },
  1050. {
  1051. .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
  1052. .offset = offsetof(struct flow_keys, tags),
  1053. },
  1054. {
  1055. .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
  1056. .offset = offsetof(struct flow_keys, keyid),
  1057. },
  1058. };
  1059. static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
  1060. {
  1061. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1062. .offset = offsetof(struct flow_keys, control),
  1063. },
  1064. {
  1065. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1066. .offset = offsetof(struct flow_keys, basic),
  1067. },
  1068. {
  1069. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1070. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1071. },
  1072. {
  1073. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1074. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1075. },
  1076. {
  1077. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1078. .offset = offsetof(struct flow_keys, ports),
  1079. },
  1080. };
  1081. static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
  1082. {
  1083. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1084. .offset = offsetof(struct flow_keys, control),
  1085. },
  1086. {
  1087. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1088. .offset = offsetof(struct flow_keys, basic),
  1089. },
  1090. };
  1091. struct flow_dissector flow_keys_dissector __read_mostly;
  1092. EXPORT_SYMBOL(flow_keys_dissector);
  1093. struct flow_dissector flow_keys_buf_dissector __read_mostly;
  1094. static int __init init_default_flow_dissectors(void)
  1095. {
  1096. skb_flow_dissector_init(&flow_keys_dissector,
  1097. flow_keys_dissector_keys,
  1098. ARRAY_SIZE(flow_keys_dissector_keys));
  1099. skb_flow_dissector_init(&flow_keys_dissector_symmetric,
  1100. flow_keys_dissector_symmetric_keys,
  1101. ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
  1102. skb_flow_dissector_init(&flow_keys_buf_dissector,
  1103. flow_keys_buf_dissector_keys,
  1104. ARRAY_SIZE(flow_keys_buf_dissector_keys));
  1105. return 0;
  1106. }
  1107. core_initcall(init_default_flow_dissectors);