pci.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/errno.h>
  21. #include <linux/fs.h>
  22. #include <linux/genhd.h>
  23. #include <linux/hdreg.h>
  24. #include <linux/idr.h>
  25. #include <linux/init.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/kernel.h>
  30. #include <linux/mm.h>
  31. #include <linux/module.h>
  32. #include <linux/moduleparam.h>
  33. #include <linux/mutex.h>
  34. #include <linux/pci.h>
  35. #include <linux/poison.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/sched.h>
  38. #include <linux/slab.h>
  39. #include <linux/t10-pi.h>
  40. #include <linux/timer.h>
  41. #include <linux/types.h>
  42. #include <linux/io-64-nonatomic-lo-hi.h>
  43. #include <asm/unaligned.h>
  44. #include "nvme.h"
  45. #define NVME_Q_DEPTH 1024
  46. #define NVME_AQ_DEPTH 256
  47. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  48. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  49. /*
  50. * We handle AEN commands ourselves and don't even let the
  51. * block layer know about them.
  52. */
  53. #define NVME_NR_AEN_COMMANDS 1
  54. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
  55. static int use_threaded_interrupts;
  56. module_param(use_threaded_interrupts, int, 0);
  57. static bool use_cmb_sqes = true;
  58. module_param(use_cmb_sqes, bool, 0644);
  59. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  60. static struct workqueue_struct *nvme_workq;
  61. struct nvme_dev;
  62. struct nvme_queue;
  63. static int nvme_reset(struct nvme_dev *dev);
  64. static void nvme_process_cq(struct nvme_queue *nvmeq);
  65. static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
  66. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  67. /*
  68. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  69. */
  70. struct nvme_dev {
  71. struct nvme_queue **queues;
  72. struct blk_mq_tag_set tagset;
  73. struct blk_mq_tag_set admin_tagset;
  74. u32 __iomem *dbs;
  75. struct device *dev;
  76. struct dma_pool *prp_page_pool;
  77. struct dma_pool *prp_small_pool;
  78. unsigned queue_count;
  79. unsigned online_queues;
  80. unsigned max_qid;
  81. int q_depth;
  82. u32 db_stride;
  83. struct msix_entry *entry;
  84. void __iomem *bar;
  85. struct work_struct reset_work;
  86. struct work_struct scan_work;
  87. struct work_struct remove_work;
  88. struct work_struct async_work;
  89. struct timer_list watchdog_timer;
  90. struct mutex shutdown_lock;
  91. bool subsystem;
  92. void __iomem *cmb;
  93. dma_addr_t cmb_dma_addr;
  94. u64 cmb_size;
  95. u32 cmbsz;
  96. unsigned long flags;
  97. #define NVME_CTRL_RESETTING 0
  98. struct nvme_ctrl ctrl;
  99. struct completion ioq_wait;
  100. };
  101. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  102. {
  103. return container_of(ctrl, struct nvme_dev, ctrl);
  104. }
  105. /*
  106. * An NVM Express queue. Each device has at least two (one for admin
  107. * commands and one for I/O commands).
  108. */
  109. struct nvme_queue {
  110. struct device *q_dmadev;
  111. struct nvme_dev *dev;
  112. char irqname[24]; /* nvme4294967295-65535\0 */
  113. spinlock_t q_lock;
  114. struct nvme_command *sq_cmds;
  115. struct nvme_command __iomem *sq_cmds_io;
  116. volatile struct nvme_completion *cqes;
  117. struct blk_mq_tags **tags;
  118. dma_addr_t sq_dma_addr;
  119. dma_addr_t cq_dma_addr;
  120. u32 __iomem *q_db;
  121. u16 q_depth;
  122. s16 cq_vector;
  123. u16 sq_head;
  124. u16 sq_tail;
  125. u16 cq_head;
  126. u16 qid;
  127. u8 cq_phase;
  128. u8 cqe_seen;
  129. };
  130. /*
  131. * The nvme_iod describes the data in an I/O, including the list of PRP
  132. * entries. You can't see it in this data structure because C doesn't let
  133. * me express that. Use nvme_init_iod to ensure there's enough space
  134. * allocated to store the PRP list.
  135. */
  136. struct nvme_iod {
  137. struct nvme_queue *nvmeq;
  138. int aborted;
  139. int npages; /* In the PRP list. 0 means small pool in use */
  140. int nents; /* Used in scatterlist */
  141. int length; /* Of data, in bytes */
  142. dma_addr_t first_dma;
  143. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  144. struct scatterlist *sg;
  145. struct scatterlist inline_sg[0];
  146. };
  147. /*
  148. * Check we didin't inadvertently grow the command struct
  149. */
  150. static inline void _nvme_check_size(void)
  151. {
  152. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  153. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  154. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  155. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  156. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  157. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  158. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  159. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  160. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  161. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  162. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  163. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  164. }
  165. /*
  166. * Max size of iod being embedded in the request payload
  167. */
  168. #define NVME_INT_PAGES 2
  169. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  170. /*
  171. * Will slightly overestimate the number of pages needed. This is OK
  172. * as it only leads to a small amount of wasted memory for the lifetime of
  173. * the I/O.
  174. */
  175. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  176. {
  177. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  178. dev->ctrl.page_size);
  179. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  180. }
  181. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  182. unsigned int size, unsigned int nseg)
  183. {
  184. return sizeof(__le64 *) * nvme_npages(size, dev) +
  185. sizeof(struct scatterlist) * nseg;
  186. }
  187. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  188. {
  189. return sizeof(struct nvme_iod) +
  190. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  191. }
  192. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  193. unsigned int hctx_idx)
  194. {
  195. struct nvme_dev *dev = data;
  196. struct nvme_queue *nvmeq = dev->queues[0];
  197. WARN_ON(hctx_idx != 0);
  198. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  199. WARN_ON(nvmeq->tags);
  200. hctx->driver_data = nvmeq;
  201. nvmeq->tags = &dev->admin_tagset.tags[0];
  202. return 0;
  203. }
  204. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  205. {
  206. struct nvme_queue *nvmeq = hctx->driver_data;
  207. nvmeq->tags = NULL;
  208. }
  209. static int nvme_admin_init_request(void *data, struct request *req,
  210. unsigned int hctx_idx, unsigned int rq_idx,
  211. unsigned int numa_node)
  212. {
  213. struct nvme_dev *dev = data;
  214. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  215. struct nvme_queue *nvmeq = dev->queues[0];
  216. BUG_ON(!nvmeq);
  217. iod->nvmeq = nvmeq;
  218. return 0;
  219. }
  220. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  221. unsigned int hctx_idx)
  222. {
  223. struct nvme_dev *dev = data;
  224. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  225. if (!nvmeq->tags)
  226. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  227. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  228. hctx->driver_data = nvmeq;
  229. return 0;
  230. }
  231. static int nvme_init_request(void *data, struct request *req,
  232. unsigned int hctx_idx, unsigned int rq_idx,
  233. unsigned int numa_node)
  234. {
  235. struct nvme_dev *dev = data;
  236. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  237. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  238. BUG_ON(!nvmeq);
  239. iod->nvmeq = nvmeq;
  240. return 0;
  241. }
  242. static void nvme_complete_async_event(struct nvme_dev *dev,
  243. struct nvme_completion *cqe)
  244. {
  245. u16 status = le16_to_cpu(cqe->status) >> 1;
  246. u32 result = le32_to_cpu(cqe->result);
  247. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
  248. ++dev->ctrl.event_limit;
  249. queue_work(nvme_workq, &dev->async_work);
  250. }
  251. if (status != NVME_SC_SUCCESS)
  252. return;
  253. switch (result & 0xff07) {
  254. case NVME_AER_NOTICE_NS_CHANGED:
  255. dev_info(dev->ctrl.device, "rescanning\n");
  256. queue_work(nvme_workq, &dev->scan_work);
  257. default:
  258. dev_warn(dev->ctrl.device, "async event result %08x\n", result);
  259. }
  260. }
  261. /**
  262. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  263. * @nvmeq: The queue to use
  264. * @cmd: The command to send
  265. *
  266. * Safe to use from interrupt context
  267. */
  268. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  269. struct nvme_command *cmd)
  270. {
  271. u16 tail = nvmeq->sq_tail;
  272. if (nvmeq->sq_cmds_io)
  273. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  274. else
  275. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  276. if (++tail == nvmeq->q_depth)
  277. tail = 0;
  278. writel(tail, nvmeq->q_db);
  279. nvmeq->sq_tail = tail;
  280. }
  281. static __le64 **iod_list(struct request *req)
  282. {
  283. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  284. return (__le64 **)(iod->sg + req->nr_phys_segments);
  285. }
  286. static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  287. {
  288. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  289. int nseg = rq->nr_phys_segments;
  290. unsigned size;
  291. if (rq->cmd_flags & REQ_DISCARD)
  292. size = sizeof(struct nvme_dsm_range);
  293. else
  294. size = blk_rq_bytes(rq);
  295. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  296. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  297. if (!iod->sg)
  298. return BLK_MQ_RQ_QUEUE_BUSY;
  299. } else {
  300. iod->sg = iod->inline_sg;
  301. }
  302. iod->aborted = 0;
  303. iod->npages = -1;
  304. iod->nents = 0;
  305. iod->length = size;
  306. return 0;
  307. }
  308. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  309. {
  310. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  311. const int last_prp = dev->ctrl.page_size / 8 - 1;
  312. int i;
  313. __le64 **list = iod_list(req);
  314. dma_addr_t prp_dma = iod->first_dma;
  315. if (iod->npages == 0)
  316. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  317. for (i = 0; i < iod->npages; i++) {
  318. __le64 *prp_list = list[i];
  319. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  320. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  321. prp_dma = next_prp_dma;
  322. }
  323. if (iod->sg != iod->inline_sg)
  324. kfree(iod->sg);
  325. }
  326. #ifdef CONFIG_BLK_DEV_INTEGRITY
  327. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  328. {
  329. if (be32_to_cpu(pi->ref_tag) == v)
  330. pi->ref_tag = cpu_to_be32(p);
  331. }
  332. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  333. {
  334. if (be32_to_cpu(pi->ref_tag) == p)
  335. pi->ref_tag = cpu_to_be32(v);
  336. }
  337. /**
  338. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  339. *
  340. * The virtual start sector is the one that was originally submitted by the
  341. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  342. * start sector may be different. Remap protection information to match the
  343. * physical LBA on writes, and back to the original seed on reads.
  344. *
  345. * Type 0 and 3 do not have a ref tag, so no remapping required.
  346. */
  347. static void nvme_dif_remap(struct request *req,
  348. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  349. {
  350. struct nvme_ns *ns = req->rq_disk->private_data;
  351. struct bio_integrity_payload *bip;
  352. struct t10_pi_tuple *pi;
  353. void *p, *pmap;
  354. u32 i, nlb, ts, phys, virt;
  355. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  356. return;
  357. bip = bio_integrity(req->bio);
  358. if (!bip)
  359. return;
  360. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  361. p = pmap;
  362. virt = bip_get_seed(bip);
  363. phys = nvme_block_nr(ns, blk_rq_pos(req));
  364. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  365. ts = ns->disk->queue->integrity.tuple_size;
  366. for (i = 0; i < nlb; i++, virt++, phys++) {
  367. pi = (struct t10_pi_tuple *)p;
  368. dif_swap(phys, virt, pi);
  369. p += ts;
  370. }
  371. kunmap_atomic(pmap);
  372. }
  373. #else /* CONFIG_BLK_DEV_INTEGRITY */
  374. static void nvme_dif_remap(struct request *req,
  375. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  376. {
  377. }
  378. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  379. {
  380. }
  381. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  382. {
  383. }
  384. #endif
  385. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
  386. int total_len)
  387. {
  388. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  389. struct dma_pool *pool;
  390. int length = total_len;
  391. struct scatterlist *sg = iod->sg;
  392. int dma_len = sg_dma_len(sg);
  393. u64 dma_addr = sg_dma_address(sg);
  394. u32 page_size = dev->ctrl.page_size;
  395. int offset = dma_addr & (page_size - 1);
  396. __le64 *prp_list;
  397. __le64 **list = iod_list(req);
  398. dma_addr_t prp_dma;
  399. int nprps, i;
  400. length -= (page_size - offset);
  401. if (length <= 0)
  402. return true;
  403. dma_len -= (page_size - offset);
  404. if (dma_len) {
  405. dma_addr += (page_size - offset);
  406. } else {
  407. sg = sg_next(sg);
  408. dma_addr = sg_dma_address(sg);
  409. dma_len = sg_dma_len(sg);
  410. }
  411. if (length <= page_size) {
  412. iod->first_dma = dma_addr;
  413. return true;
  414. }
  415. nprps = DIV_ROUND_UP(length, page_size);
  416. if (nprps <= (256 / 8)) {
  417. pool = dev->prp_small_pool;
  418. iod->npages = 0;
  419. } else {
  420. pool = dev->prp_page_pool;
  421. iod->npages = 1;
  422. }
  423. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  424. if (!prp_list) {
  425. iod->first_dma = dma_addr;
  426. iod->npages = -1;
  427. return false;
  428. }
  429. list[0] = prp_list;
  430. iod->first_dma = prp_dma;
  431. i = 0;
  432. for (;;) {
  433. if (i == page_size >> 3) {
  434. __le64 *old_prp_list = prp_list;
  435. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  436. if (!prp_list)
  437. return false;
  438. list[iod->npages++] = prp_list;
  439. prp_list[0] = old_prp_list[i - 1];
  440. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  441. i = 1;
  442. }
  443. prp_list[i++] = cpu_to_le64(dma_addr);
  444. dma_len -= page_size;
  445. dma_addr += page_size;
  446. length -= page_size;
  447. if (length <= 0)
  448. break;
  449. if (dma_len > 0)
  450. continue;
  451. BUG_ON(dma_len < 0);
  452. sg = sg_next(sg);
  453. dma_addr = sg_dma_address(sg);
  454. dma_len = sg_dma_len(sg);
  455. }
  456. return true;
  457. }
  458. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  459. struct nvme_command *cmnd)
  460. {
  461. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  462. struct request_queue *q = req->q;
  463. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  464. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  465. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  466. sg_init_table(iod->sg, req->nr_phys_segments);
  467. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  468. if (!iod->nents)
  469. goto out;
  470. ret = BLK_MQ_RQ_QUEUE_BUSY;
  471. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  472. goto out;
  473. if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
  474. goto out_unmap;
  475. ret = BLK_MQ_RQ_QUEUE_ERROR;
  476. if (blk_integrity_rq(req)) {
  477. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  478. goto out_unmap;
  479. sg_init_table(&iod->meta_sg, 1);
  480. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  481. goto out_unmap;
  482. if (rq_data_dir(req))
  483. nvme_dif_remap(req, nvme_dif_prep);
  484. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  485. goto out_unmap;
  486. }
  487. cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  488. cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
  489. if (blk_integrity_rq(req))
  490. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  491. return BLK_MQ_RQ_QUEUE_OK;
  492. out_unmap:
  493. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  494. out:
  495. return ret;
  496. }
  497. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  498. {
  499. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  500. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  501. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  502. if (iod->nents) {
  503. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  504. if (blk_integrity_rq(req)) {
  505. if (!rq_data_dir(req))
  506. nvme_dif_remap(req, nvme_dif_complete);
  507. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  508. }
  509. }
  510. nvme_free_iod(dev, req);
  511. }
  512. /*
  513. * We reuse the small pool to allocate the 16-byte range here as it is not
  514. * worth having a special pool for these or additional cases to handle freeing
  515. * the iod.
  516. */
  517. static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  518. struct request *req, struct nvme_command *cmnd)
  519. {
  520. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  521. struct nvme_dsm_range *range;
  522. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  523. &iod->first_dma);
  524. if (!range)
  525. return BLK_MQ_RQ_QUEUE_BUSY;
  526. iod_list(req)[0] = (__le64 *)range;
  527. iod->npages = 0;
  528. range->cattr = cpu_to_le32(0);
  529. range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
  530. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  531. memset(cmnd, 0, sizeof(*cmnd));
  532. cmnd->dsm.opcode = nvme_cmd_dsm;
  533. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  534. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  535. cmnd->dsm.nr = 0;
  536. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  537. return BLK_MQ_RQ_QUEUE_OK;
  538. }
  539. /*
  540. * NOTE: ns is NULL when called on the admin queue.
  541. */
  542. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  543. const struct blk_mq_queue_data *bd)
  544. {
  545. struct nvme_ns *ns = hctx->queue->queuedata;
  546. struct nvme_queue *nvmeq = hctx->driver_data;
  547. struct nvme_dev *dev = nvmeq->dev;
  548. struct request *req = bd->rq;
  549. struct nvme_command cmnd;
  550. int ret = BLK_MQ_RQ_QUEUE_OK;
  551. /*
  552. * If formated with metadata, require the block layer provide a buffer
  553. * unless this namespace is formated such that the metadata can be
  554. * stripped/generated by the controller with PRACT=1.
  555. */
  556. if (ns && ns->ms && !blk_integrity_rq(req)) {
  557. if (!(ns->pi_type && ns->ms == 8) &&
  558. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  559. blk_mq_end_request(req, -EFAULT);
  560. return BLK_MQ_RQ_QUEUE_OK;
  561. }
  562. }
  563. ret = nvme_init_iod(req, dev);
  564. if (ret)
  565. return ret;
  566. if (req->cmd_flags & REQ_DISCARD) {
  567. ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
  568. } else {
  569. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  570. memcpy(&cmnd, req->cmd, sizeof(cmnd));
  571. else if (req->cmd_flags & REQ_FLUSH)
  572. nvme_setup_flush(ns, &cmnd);
  573. else
  574. nvme_setup_rw(ns, req, &cmnd);
  575. if (req->nr_phys_segments)
  576. ret = nvme_map_data(dev, req, &cmnd);
  577. }
  578. if (ret)
  579. goto out;
  580. cmnd.common.command_id = req->tag;
  581. blk_mq_start_request(req);
  582. spin_lock_irq(&nvmeq->q_lock);
  583. __nvme_submit_cmd(nvmeq, &cmnd);
  584. nvme_process_cq(nvmeq);
  585. spin_unlock_irq(&nvmeq->q_lock);
  586. return BLK_MQ_RQ_QUEUE_OK;
  587. out:
  588. nvme_free_iod(dev, req);
  589. return ret;
  590. }
  591. static void nvme_complete_rq(struct request *req)
  592. {
  593. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  594. struct nvme_dev *dev = iod->nvmeq->dev;
  595. int error = 0;
  596. nvme_unmap_data(dev, req);
  597. if (unlikely(req->errors)) {
  598. if (nvme_req_needs_retry(req, req->errors)) {
  599. nvme_requeue_req(req);
  600. return;
  601. }
  602. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  603. error = req->errors;
  604. else
  605. error = nvme_error_status(req->errors);
  606. }
  607. if (unlikely(iod->aborted)) {
  608. dev_warn(dev->ctrl.device,
  609. "completing aborted command with status: %04x\n",
  610. req->errors);
  611. }
  612. blk_mq_end_request(req, error);
  613. }
  614. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  615. {
  616. u16 head, phase;
  617. head = nvmeq->cq_head;
  618. phase = nvmeq->cq_phase;
  619. for (;;) {
  620. struct nvme_completion cqe = nvmeq->cqes[head];
  621. u16 status = le16_to_cpu(cqe.status);
  622. struct request *req;
  623. if ((status & 1) != phase)
  624. break;
  625. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  626. if (++head == nvmeq->q_depth) {
  627. head = 0;
  628. phase = !phase;
  629. }
  630. if (tag && *tag == cqe.command_id)
  631. *tag = -1;
  632. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  633. dev_warn(nvmeq->dev->ctrl.device,
  634. "invalid id %d completed on queue %d\n",
  635. cqe.command_id, le16_to_cpu(cqe.sq_id));
  636. continue;
  637. }
  638. /*
  639. * AEN requests are special as they don't time out and can
  640. * survive any kind of queue freeze and often don't respond to
  641. * aborts. We don't even bother to allocate a struct request
  642. * for them but rather special case them here.
  643. */
  644. if (unlikely(nvmeq->qid == 0 &&
  645. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  646. nvme_complete_async_event(nvmeq->dev, &cqe);
  647. continue;
  648. }
  649. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  650. if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
  651. memcpy(req->special, &cqe, sizeof(cqe));
  652. blk_mq_complete_request(req, status >> 1);
  653. }
  654. /* If the controller ignores the cq head doorbell and continuously
  655. * writes to the queue, it is theoretically possible to wrap around
  656. * the queue twice and mistakenly return IRQ_NONE. Linux only
  657. * requires that 0.1% of your interrupts are handled, so this isn't
  658. * a big problem.
  659. */
  660. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  661. return;
  662. if (likely(nvmeq->cq_vector >= 0))
  663. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  664. nvmeq->cq_head = head;
  665. nvmeq->cq_phase = phase;
  666. nvmeq->cqe_seen = 1;
  667. }
  668. static void nvme_process_cq(struct nvme_queue *nvmeq)
  669. {
  670. __nvme_process_cq(nvmeq, NULL);
  671. }
  672. static irqreturn_t nvme_irq(int irq, void *data)
  673. {
  674. irqreturn_t result;
  675. struct nvme_queue *nvmeq = data;
  676. spin_lock(&nvmeq->q_lock);
  677. nvme_process_cq(nvmeq);
  678. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  679. nvmeq->cqe_seen = 0;
  680. spin_unlock(&nvmeq->q_lock);
  681. return result;
  682. }
  683. static irqreturn_t nvme_irq_check(int irq, void *data)
  684. {
  685. struct nvme_queue *nvmeq = data;
  686. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  687. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  688. return IRQ_NONE;
  689. return IRQ_WAKE_THREAD;
  690. }
  691. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  692. {
  693. struct nvme_queue *nvmeq = hctx->driver_data;
  694. if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
  695. nvmeq->cq_phase) {
  696. spin_lock_irq(&nvmeq->q_lock);
  697. __nvme_process_cq(nvmeq, &tag);
  698. spin_unlock_irq(&nvmeq->q_lock);
  699. if (tag == -1)
  700. return 1;
  701. }
  702. return 0;
  703. }
  704. static void nvme_async_event_work(struct work_struct *work)
  705. {
  706. struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
  707. struct nvme_queue *nvmeq = dev->queues[0];
  708. struct nvme_command c;
  709. memset(&c, 0, sizeof(c));
  710. c.common.opcode = nvme_admin_async_event;
  711. spin_lock_irq(&nvmeq->q_lock);
  712. while (dev->ctrl.event_limit > 0) {
  713. c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
  714. --dev->ctrl.event_limit;
  715. __nvme_submit_cmd(nvmeq, &c);
  716. }
  717. spin_unlock_irq(&nvmeq->q_lock);
  718. }
  719. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  720. {
  721. struct nvme_command c;
  722. memset(&c, 0, sizeof(c));
  723. c.delete_queue.opcode = opcode;
  724. c.delete_queue.qid = cpu_to_le16(id);
  725. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  726. }
  727. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  728. struct nvme_queue *nvmeq)
  729. {
  730. struct nvme_command c;
  731. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  732. /*
  733. * Note: we (ab)use the fact the the prp fields survive if no data
  734. * is attached to the request.
  735. */
  736. memset(&c, 0, sizeof(c));
  737. c.create_cq.opcode = nvme_admin_create_cq;
  738. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  739. c.create_cq.cqid = cpu_to_le16(qid);
  740. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  741. c.create_cq.cq_flags = cpu_to_le16(flags);
  742. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  743. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  744. }
  745. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  746. struct nvme_queue *nvmeq)
  747. {
  748. struct nvme_command c;
  749. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  750. /*
  751. * Note: we (ab)use the fact the the prp fields survive if no data
  752. * is attached to the request.
  753. */
  754. memset(&c, 0, sizeof(c));
  755. c.create_sq.opcode = nvme_admin_create_sq;
  756. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  757. c.create_sq.sqid = cpu_to_le16(qid);
  758. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  759. c.create_sq.sq_flags = cpu_to_le16(flags);
  760. c.create_sq.cqid = cpu_to_le16(qid);
  761. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  762. }
  763. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  764. {
  765. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  766. }
  767. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  768. {
  769. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  770. }
  771. static void abort_endio(struct request *req, int error)
  772. {
  773. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  774. struct nvme_queue *nvmeq = iod->nvmeq;
  775. u16 status = req->errors;
  776. dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
  777. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  778. blk_mq_free_request(req);
  779. }
  780. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  781. {
  782. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  783. struct nvme_queue *nvmeq = iod->nvmeq;
  784. struct nvme_dev *dev = nvmeq->dev;
  785. struct request *abort_req;
  786. struct nvme_command cmd;
  787. /*
  788. * Shutdown immediately if controller times out while starting. The
  789. * reset work will see the pci device disabled when it gets the forced
  790. * cancellation error. All outstanding requests are completed on
  791. * shutdown, so we return BLK_EH_HANDLED.
  792. */
  793. if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
  794. dev_warn(dev->ctrl.device,
  795. "I/O %d QID %d timeout, disable controller\n",
  796. req->tag, nvmeq->qid);
  797. nvme_dev_disable(dev, false);
  798. req->errors = NVME_SC_CANCELLED;
  799. return BLK_EH_HANDLED;
  800. }
  801. /*
  802. * Shutdown the controller immediately and schedule a reset if the
  803. * command was already aborted once before and still hasn't been
  804. * returned to the driver, or if this is the admin queue.
  805. */
  806. if (!nvmeq->qid || iod->aborted) {
  807. dev_warn(dev->ctrl.device,
  808. "I/O %d QID %d timeout, reset controller\n",
  809. req->tag, nvmeq->qid);
  810. nvme_dev_disable(dev, false);
  811. queue_work(nvme_workq, &dev->reset_work);
  812. /*
  813. * Mark the request as handled, since the inline shutdown
  814. * forces all outstanding requests to complete.
  815. */
  816. req->errors = NVME_SC_CANCELLED;
  817. return BLK_EH_HANDLED;
  818. }
  819. iod->aborted = 1;
  820. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  821. atomic_inc(&dev->ctrl.abort_limit);
  822. return BLK_EH_RESET_TIMER;
  823. }
  824. memset(&cmd, 0, sizeof(cmd));
  825. cmd.abort.opcode = nvme_admin_abort_cmd;
  826. cmd.abort.cid = req->tag;
  827. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  828. dev_warn(nvmeq->dev->ctrl.device,
  829. "I/O %d QID %d timeout, aborting\n",
  830. req->tag, nvmeq->qid);
  831. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  832. BLK_MQ_REQ_NOWAIT);
  833. if (IS_ERR(abort_req)) {
  834. atomic_inc(&dev->ctrl.abort_limit);
  835. return BLK_EH_RESET_TIMER;
  836. }
  837. abort_req->timeout = ADMIN_TIMEOUT;
  838. abort_req->end_io_data = NULL;
  839. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  840. /*
  841. * The aborted req will be completed on receiving the abort req.
  842. * We enable the timer again. If hit twice, it'll cause a device reset,
  843. * as the device then is in a faulty state.
  844. */
  845. return BLK_EH_RESET_TIMER;
  846. }
  847. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  848. {
  849. struct nvme_queue *nvmeq = data;
  850. int status;
  851. if (!blk_mq_request_started(req))
  852. return;
  853. dev_warn(nvmeq->dev->ctrl.device,
  854. "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
  855. status = NVME_SC_ABORT_REQ;
  856. if (blk_queue_dying(req->q))
  857. status |= NVME_SC_DNR;
  858. blk_mq_complete_request(req, status);
  859. }
  860. static void nvme_free_queue(struct nvme_queue *nvmeq)
  861. {
  862. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  863. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  864. if (nvmeq->sq_cmds)
  865. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  866. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  867. kfree(nvmeq);
  868. }
  869. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  870. {
  871. int i;
  872. for (i = dev->queue_count - 1; i >= lowest; i--) {
  873. struct nvme_queue *nvmeq = dev->queues[i];
  874. dev->queue_count--;
  875. dev->queues[i] = NULL;
  876. nvme_free_queue(nvmeq);
  877. }
  878. }
  879. /**
  880. * nvme_suspend_queue - put queue into suspended state
  881. * @nvmeq - queue to suspend
  882. */
  883. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  884. {
  885. int vector;
  886. spin_lock_irq(&nvmeq->q_lock);
  887. if (nvmeq->cq_vector == -1) {
  888. spin_unlock_irq(&nvmeq->q_lock);
  889. return 1;
  890. }
  891. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  892. nvmeq->dev->online_queues--;
  893. nvmeq->cq_vector = -1;
  894. spin_unlock_irq(&nvmeq->q_lock);
  895. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  896. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  897. irq_set_affinity_hint(vector, NULL);
  898. free_irq(vector, nvmeq);
  899. return 0;
  900. }
  901. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  902. {
  903. spin_lock_irq(&nvmeq->q_lock);
  904. if (nvmeq->tags && *nvmeq->tags)
  905. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  906. spin_unlock_irq(&nvmeq->q_lock);
  907. }
  908. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  909. {
  910. struct nvme_queue *nvmeq = dev->queues[0];
  911. if (!nvmeq)
  912. return;
  913. if (nvme_suspend_queue(nvmeq))
  914. return;
  915. if (shutdown)
  916. nvme_shutdown_ctrl(&dev->ctrl);
  917. else
  918. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  919. dev->bar + NVME_REG_CAP));
  920. spin_lock_irq(&nvmeq->q_lock);
  921. nvme_process_cq(nvmeq);
  922. spin_unlock_irq(&nvmeq->q_lock);
  923. }
  924. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  925. int entry_size)
  926. {
  927. int q_depth = dev->q_depth;
  928. unsigned q_size_aligned = roundup(q_depth * entry_size,
  929. dev->ctrl.page_size);
  930. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  931. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  932. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  933. q_depth = div_u64(mem_per_q, entry_size);
  934. /*
  935. * Ensure the reduced q_depth is above some threshold where it
  936. * would be better to map queues in system memory with the
  937. * original depth
  938. */
  939. if (q_depth < 64)
  940. return -ENOMEM;
  941. }
  942. return q_depth;
  943. }
  944. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  945. int qid, int depth)
  946. {
  947. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  948. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  949. dev->ctrl.page_size);
  950. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  951. nvmeq->sq_cmds_io = dev->cmb + offset;
  952. } else {
  953. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  954. &nvmeq->sq_dma_addr, GFP_KERNEL);
  955. if (!nvmeq->sq_cmds)
  956. return -ENOMEM;
  957. }
  958. return 0;
  959. }
  960. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  961. int depth)
  962. {
  963. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  964. if (!nvmeq)
  965. return NULL;
  966. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  967. &nvmeq->cq_dma_addr, GFP_KERNEL);
  968. if (!nvmeq->cqes)
  969. goto free_nvmeq;
  970. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  971. goto free_cqdma;
  972. nvmeq->q_dmadev = dev->dev;
  973. nvmeq->dev = dev;
  974. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  975. dev->ctrl.instance, qid);
  976. spin_lock_init(&nvmeq->q_lock);
  977. nvmeq->cq_head = 0;
  978. nvmeq->cq_phase = 1;
  979. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  980. nvmeq->q_depth = depth;
  981. nvmeq->qid = qid;
  982. nvmeq->cq_vector = -1;
  983. dev->queues[qid] = nvmeq;
  984. dev->queue_count++;
  985. return nvmeq;
  986. free_cqdma:
  987. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  988. nvmeq->cq_dma_addr);
  989. free_nvmeq:
  990. kfree(nvmeq);
  991. return NULL;
  992. }
  993. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  994. const char *name)
  995. {
  996. if (use_threaded_interrupts)
  997. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  998. nvme_irq_check, nvme_irq, IRQF_SHARED,
  999. name, nvmeq);
  1000. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  1001. IRQF_SHARED, name, nvmeq);
  1002. }
  1003. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1004. {
  1005. struct nvme_dev *dev = nvmeq->dev;
  1006. spin_lock_irq(&nvmeq->q_lock);
  1007. nvmeq->sq_tail = 0;
  1008. nvmeq->cq_head = 0;
  1009. nvmeq->cq_phase = 1;
  1010. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1011. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1012. dev->online_queues++;
  1013. spin_unlock_irq(&nvmeq->q_lock);
  1014. }
  1015. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1016. {
  1017. struct nvme_dev *dev = nvmeq->dev;
  1018. int result;
  1019. nvmeq->cq_vector = qid - 1;
  1020. result = adapter_alloc_cq(dev, qid, nvmeq);
  1021. if (result < 0)
  1022. return result;
  1023. result = adapter_alloc_sq(dev, qid, nvmeq);
  1024. if (result < 0)
  1025. goto release_cq;
  1026. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1027. if (result < 0)
  1028. goto release_sq;
  1029. nvme_init_queue(nvmeq, qid);
  1030. return result;
  1031. release_sq:
  1032. adapter_delete_sq(dev, qid);
  1033. release_cq:
  1034. adapter_delete_cq(dev, qid);
  1035. return result;
  1036. }
  1037. static struct blk_mq_ops nvme_mq_admin_ops = {
  1038. .queue_rq = nvme_queue_rq,
  1039. .complete = nvme_complete_rq,
  1040. .map_queue = blk_mq_map_queue,
  1041. .init_hctx = nvme_admin_init_hctx,
  1042. .exit_hctx = nvme_admin_exit_hctx,
  1043. .init_request = nvme_admin_init_request,
  1044. .timeout = nvme_timeout,
  1045. };
  1046. static struct blk_mq_ops nvme_mq_ops = {
  1047. .queue_rq = nvme_queue_rq,
  1048. .complete = nvme_complete_rq,
  1049. .map_queue = blk_mq_map_queue,
  1050. .init_hctx = nvme_init_hctx,
  1051. .init_request = nvme_init_request,
  1052. .timeout = nvme_timeout,
  1053. .poll = nvme_poll,
  1054. };
  1055. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1056. {
  1057. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1058. blk_cleanup_queue(dev->ctrl.admin_q);
  1059. blk_mq_free_tag_set(&dev->admin_tagset);
  1060. }
  1061. }
  1062. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1063. {
  1064. if (!dev->ctrl.admin_q) {
  1065. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1066. dev->admin_tagset.nr_hw_queues = 1;
  1067. /*
  1068. * Subtract one to leave an empty queue entry for 'Full Queue'
  1069. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1070. */
  1071. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1072. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1073. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1074. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1075. dev->admin_tagset.driver_data = dev;
  1076. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1077. return -ENOMEM;
  1078. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1079. if (IS_ERR(dev->ctrl.admin_q)) {
  1080. blk_mq_free_tag_set(&dev->admin_tagset);
  1081. return -ENOMEM;
  1082. }
  1083. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1084. nvme_dev_remove_admin(dev);
  1085. dev->ctrl.admin_q = NULL;
  1086. return -ENODEV;
  1087. }
  1088. } else
  1089. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1090. return 0;
  1091. }
  1092. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1093. {
  1094. int result;
  1095. u32 aqa;
  1096. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1097. struct nvme_queue *nvmeq;
  1098. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1099. NVME_CAP_NSSRC(cap) : 0;
  1100. if (dev->subsystem &&
  1101. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1102. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1103. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1104. if (result < 0)
  1105. return result;
  1106. nvmeq = dev->queues[0];
  1107. if (!nvmeq) {
  1108. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1109. if (!nvmeq)
  1110. return -ENOMEM;
  1111. }
  1112. aqa = nvmeq->q_depth - 1;
  1113. aqa |= aqa << 16;
  1114. writel(aqa, dev->bar + NVME_REG_AQA);
  1115. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1116. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1117. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1118. if (result)
  1119. goto free_nvmeq;
  1120. nvmeq->cq_vector = 0;
  1121. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1122. if (result) {
  1123. nvmeq->cq_vector = -1;
  1124. goto free_nvmeq;
  1125. }
  1126. return result;
  1127. free_nvmeq:
  1128. nvme_free_queues(dev, 0);
  1129. return result;
  1130. }
  1131. static void nvme_watchdog_timer(unsigned long data)
  1132. {
  1133. struct nvme_dev *dev = (struct nvme_dev *)data;
  1134. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1135. /*
  1136. * Skip controllers currently under reset.
  1137. */
  1138. if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
  1139. ((csts & NVME_CSTS_CFS) ||
  1140. (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
  1141. if (queue_work(nvme_workq, &dev->reset_work)) {
  1142. dev_warn(dev->dev,
  1143. "Failed status: 0x%x, reset controller.\n",
  1144. csts);
  1145. }
  1146. return;
  1147. }
  1148. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1149. }
  1150. static int nvme_create_io_queues(struct nvme_dev *dev)
  1151. {
  1152. unsigned i, max;
  1153. int ret = 0;
  1154. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1155. if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
  1156. ret = -ENOMEM;
  1157. break;
  1158. }
  1159. }
  1160. max = min(dev->max_qid, dev->queue_count - 1);
  1161. for (i = dev->online_queues; i <= max; i++) {
  1162. ret = nvme_create_queue(dev->queues[i], i);
  1163. if (ret) {
  1164. nvme_free_queues(dev, i);
  1165. break;
  1166. }
  1167. }
  1168. /*
  1169. * Ignore failing Create SQ/CQ commands, we can continue with less
  1170. * than the desired aount of queues, and even a controller without
  1171. * I/O queues an still be used to issue admin commands. This might
  1172. * be useful to upgrade a buggy firmware for example.
  1173. */
  1174. return ret >= 0 ? 0 : ret;
  1175. }
  1176. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1177. {
  1178. u64 szu, size, offset;
  1179. u32 cmbloc;
  1180. resource_size_t bar_size;
  1181. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1182. void __iomem *cmb;
  1183. dma_addr_t dma_addr;
  1184. if (!use_cmb_sqes)
  1185. return NULL;
  1186. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1187. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1188. return NULL;
  1189. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1190. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1191. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1192. offset = szu * NVME_CMB_OFST(cmbloc);
  1193. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1194. if (offset > bar_size)
  1195. return NULL;
  1196. /*
  1197. * Controllers may support a CMB size larger than their BAR,
  1198. * for example, due to being behind a bridge. Reduce the CMB to
  1199. * the reported size of the BAR
  1200. */
  1201. if (size > bar_size - offset)
  1202. size = bar_size - offset;
  1203. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1204. cmb = ioremap_wc(dma_addr, size);
  1205. if (!cmb)
  1206. return NULL;
  1207. dev->cmb_dma_addr = dma_addr;
  1208. dev->cmb_size = size;
  1209. return cmb;
  1210. }
  1211. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1212. {
  1213. if (dev->cmb) {
  1214. iounmap(dev->cmb);
  1215. dev->cmb = NULL;
  1216. }
  1217. }
  1218. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1219. {
  1220. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1221. }
  1222. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1223. {
  1224. struct nvme_queue *adminq = dev->queues[0];
  1225. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1226. int result, i, vecs, nr_io_queues, size;
  1227. nr_io_queues = num_possible_cpus();
  1228. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1229. if (result < 0)
  1230. return result;
  1231. /*
  1232. * Degraded controllers might return an error when setting the queue
  1233. * count. We still want to be able to bring them online and offer
  1234. * access to the admin queue, as that might be only way to fix them up.
  1235. */
  1236. if (result > 0) {
  1237. dev_err(dev->ctrl.device,
  1238. "Could not set queue count (%d)\n", result);
  1239. nr_io_queues = 0;
  1240. result = 0;
  1241. }
  1242. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1243. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1244. sizeof(struct nvme_command));
  1245. if (result > 0)
  1246. dev->q_depth = result;
  1247. else
  1248. nvme_release_cmb(dev);
  1249. }
  1250. size = db_bar_size(dev, nr_io_queues);
  1251. if (size > 8192) {
  1252. iounmap(dev->bar);
  1253. do {
  1254. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1255. if (dev->bar)
  1256. break;
  1257. if (!--nr_io_queues)
  1258. return -ENOMEM;
  1259. size = db_bar_size(dev, nr_io_queues);
  1260. } while (1);
  1261. dev->dbs = dev->bar + 4096;
  1262. adminq->q_db = dev->dbs;
  1263. }
  1264. /* Deregister the admin queue's interrupt */
  1265. free_irq(dev->entry[0].vector, adminq);
  1266. /*
  1267. * If we enable msix early due to not intx, disable it again before
  1268. * setting up the full range we need.
  1269. */
  1270. if (!pdev->irq)
  1271. pci_disable_msix(pdev);
  1272. for (i = 0; i < nr_io_queues; i++)
  1273. dev->entry[i].entry = i;
  1274. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1275. if (vecs < 0) {
  1276. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1277. if (vecs < 0) {
  1278. vecs = 1;
  1279. } else {
  1280. for (i = 0; i < vecs; i++)
  1281. dev->entry[i].vector = i + pdev->irq;
  1282. }
  1283. }
  1284. /*
  1285. * Should investigate if there's a performance win from allocating
  1286. * more queues than interrupt vectors; it might allow the submission
  1287. * path to scale better, even if the receive path is limited by the
  1288. * number of interrupts.
  1289. */
  1290. nr_io_queues = vecs;
  1291. dev->max_qid = nr_io_queues;
  1292. result = queue_request_irq(dev, adminq, adminq->irqname);
  1293. if (result) {
  1294. adminq->cq_vector = -1;
  1295. goto free_queues;
  1296. }
  1297. return nvme_create_io_queues(dev);
  1298. free_queues:
  1299. nvme_free_queues(dev, 1);
  1300. return result;
  1301. }
  1302. static void nvme_set_irq_hints(struct nvme_dev *dev)
  1303. {
  1304. struct nvme_queue *nvmeq;
  1305. int i;
  1306. for (i = 0; i < dev->online_queues; i++) {
  1307. nvmeq = dev->queues[i];
  1308. if (!nvmeq->tags || !(*nvmeq->tags))
  1309. continue;
  1310. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1311. blk_mq_tags_cpumask(*nvmeq->tags));
  1312. }
  1313. }
  1314. static void nvme_dev_scan(struct work_struct *work)
  1315. {
  1316. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  1317. if (!dev->tagset.tags)
  1318. return;
  1319. nvme_scan_namespaces(&dev->ctrl);
  1320. nvme_set_irq_hints(dev);
  1321. }
  1322. static void nvme_del_queue_end(struct request *req, int error)
  1323. {
  1324. struct nvme_queue *nvmeq = req->end_io_data;
  1325. blk_mq_free_request(req);
  1326. complete(&nvmeq->dev->ioq_wait);
  1327. }
  1328. static void nvme_del_cq_end(struct request *req, int error)
  1329. {
  1330. struct nvme_queue *nvmeq = req->end_io_data;
  1331. if (!error) {
  1332. unsigned long flags;
  1333. spin_lock_irqsave(&nvmeq->q_lock, flags);
  1334. nvme_process_cq(nvmeq);
  1335. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1336. }
  1337. nvme_del_queue_end(req, error);
  1338. }
  1339. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1340. {
  1341. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1342. struct request *req;
  1343. struct nvme_command cmd;
  1344. memset(&cmd, 0, sizeof(cmd));
  1345. cmd.delete_queue.opcode = opcode;
  1346. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1347. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
  1348. if (IS_ERR(req))
  1349. return PTR_ERR(req);
  1350. req->timeout = ADMIN_TIMEOUT;
  1351. req->end_io_data = nvmeq;
  1352. blk_execute_rq_nowait(q, NULL, req, false,
  1353. opcode == nvme_admin_delete_cq ?
  1354. nvme_del_cq_end : nvme_del_queue_end);
  1355. return 0;
  1356. }
  1357. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1358. {
  1359. int pass;
  1360. unsigned long timeout;
  1361. u8 opcode = nvme_admin_delete_sq;
  1362. for (pass = 0; pass < 2; pass++) {
  1363. int sent = 0, i = dev->queue_count - 1;
  1364. reinit_completion(&dev->ioq_wait);
  1365. retry:
  1366. timeout = ADMIN_TIMEOUT;
  1367. for (; i > 0; i--) {
  1368. struct nvme_queue *nvmeq = dev->queues[i];
  1369. if (!pass)
  1370. nvme_suspend_queue(nvmeq);
  1371. if (nvme_delete_queue(nvmeq, opcode))
  1372. break;
  1373. ++sent;
  1374. }
  1375. while (sent--) {
  1376. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1377. if (timeout == 0)
  1378. return;
  1379. if (i)
  1380. goto retry;
  1381. }
  1382. opcode = nvme_admin_delete_cq;
  1383. }
  1384. }
  1385. /*
  1386. * Return: error value if an error occurred setting up the queues or calling
  1387. * Identify Device. 0 if these succeeded, even if adding some of the
  1388. * namespaces failed. At the moment, these failures are silent. TBD which
  1389. * failures should be reported.
  1390. */
  1391. static int nvme_dev_add(struct nvme_dev *dev)
  1392. {
  1393. if (!dev->ctrl.tagset) {
  1394. dev->tagset.ops = &nvme_mq_ops;
  1395. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1396. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1397. dev->tagset.numa_node = dev_to_node(dev->dev);
  1398. dev->tagset.queue_depth =
  1399. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1400. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1401. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1402. dev->tagset.driver_data = dev;
  1403. if (blk_mq_alloc_tag_set(&dev->tagset))
  1404. return 0;
  1405. dev->ctrl.tagset = &dev->tagset;
  1406. } else {
  1407. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1408. /* Free previously allocated queues that are no longer usable */
  1409. nvme_free_queues(dev, dev->online_queues);
  1410. }
  1411. queue_work(nvme_workq, &dev->scan_work);
  1412. return 0;
  1413. }
  1414. static int nvme_dev_map(struct nvme_dev *dev)
  1415. {
  1416. u64 cap;
  1417. int bars, result = -ENOMEM;
  1418. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1419. if (pci_enable_device_mem(pdev))
  1420. return result;
  1421. dev->entry[0].vector = pdev->irq;
  1422. pci_set_master(pdev);
  1423. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1424. if (!bars)
  1425. goto disable_pci;
  1426. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1427. goto disable_pci;
  1428. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1429. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1430. goto disable;
  1431. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1432. if (!dev->bar)
  1433. goto disable;
  1434. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1435. result = -ENODEV;
  1436. goto unmap;
  1437. }
  1438. /*
  1439. * Some devices don't advertse INTx interrupts, pre-enable a single
  1440. * MSIX vec for setup. We'll adjust this later.
  1441. */
  1442. if (!pdev->irq) {
  1443. result = pci_enable_msix(pdev, dev->entry, 1);
  1444. if (result < 0)
  1445. goto unmap;
  1446. }
  1447. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1448. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1449. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1450. dev->dbs = dev->bar + 4096;
  1451. /*
  1452. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1453. * some MacBook7,1 to avoid controller resets and data loss.
  1454. */
  1455. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1456. dev->q_depth = 2;
  1457. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1458. "queue depth=%u to work around controller resets\n",
  1459. dev->q_depth);
  1460. }
  1461. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1462. dev->cmb = nvme_map_cmb(dev);
  1463. pci_enable_pcie_error_reporting(pdev);
  1464. pci_save_state(pdev);
  1465. return 0;
  1466. unmap:
  1467. iounmap(dev->bar);
  1468. dev->bar = NULL;
  1469. disable:
  1470. pci_release_regions(pdev);
  1471. disable_pci:
  1472. pci_disable_device(pdev);
  1473. return result;
  1474. }
  1475. static void nvme_dev_unmap(struct nvme_dev *dev)
  1476. {
  1477. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1478. if (pdev->msi_enabled)
  1479. pci_disable_msi(pdev);
  1480. else if (pdev->msix_enabled)
  1481. pci_disable_msix(pdev);
  1482. if (dev->bar) {
  1483. iounmap(dev->bar);
  1484. dev->bar = NULL;
  1485. pci_release_regions(pdev);
  1486. }
  1487. if (pci_is_enabled(pdev)) {
  1488. pci_disable_pcie_error_reporting(pdev);
  1489. pci_disable_device(pdev);
  1490. }
  1491. }
  1492. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1493. {
  1494. int i;
  1495. u32 csts = -1;
  1496. del_timer_sync(&dev->watchdog_timer);
  1497. mutex_lock(&dev->shutdown_lock);
  1498. if (dev->bar) {
  1499. nvme_stop_queues(&dev->ctrl);
  1500. csts = readl(dev->bar + NVME_REG_CSTS);
  1501. }
  1502. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1503. for (i = dev->queue_count - 1; i >= 0; i--) {
  1504. struct nvme_queue *nvmeq = dev->queues[i];
  1505. nvme_suspend_queue(nvmeq);
  1506. }
  1507. } else {
  1508. nvme_disable_io_queues(dev);
  1509. nvme_disable_admin_queue(dev, shutdown);
  1510. }
  1511. nvme_dev_unmap(dev);
  1512. for (i = dev->queue_count - 1; i >= 0; i--)
  1513. nvme_clear_queue(dev->queues[i]);
  1514. mutex_unlock(&dev->shutdown_lock);
  1515. }
  1516. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1517. {
  1518. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1519. PAGE_SIZE, PAGE_SIZE, 0);
  1520. if (!dev->prp_page_pool)
  1521. return -ENOMEM;
  1522. /* Optimisation for I/Os between 4k and 128k */
  1523. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1524. 256, 256, 0);
  1525. if (!dev->prp_small_pool) {
  1526. dma_pool_destroy(dev->prp_page_pool);
  1527. return -ENOMEM;
  1528. }
  1529. return 0;
  1530. }
  1531. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1532. {
  1533. dma_pool_destroy(dev->prp_page_pool);
  1534. dma_pool_destroy(dev->prp_small_pool);
  1535. }
  1536. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1537. {
  1538. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1539. put_device(dev->dev);
  1540. if (dev->tagset.tags)
  1541. blk_mq_free_tag_set(&dev->tagset);
  1542. if (dev->ctrl.admin_q)
  1543. blk_put_queue(dev->ctrl.admin_q);
  1544. kfree(dev->queues);
  1545. kfree(dev->entry);
  1546. kfree(dev);
  1547. }
  1548. static void nvme_reset_work(struct work_struct *work)
  1549. {
  1550. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1551. int result;
  1552. if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
  1553. goto out;
  1554. /*
  1555. * If we're called to reset a live controller first shut it down before
  1556. * moving on.
  1557. */
  1558. if (dev->bar)
  1559. nvme_dev_disable(dev, false);
  1560. set_bit(NVME_CTRL_RESETTING, &dev->flags);
  1561. result = nvme_dev_map(dev);
  1562. if (result)
  1563. goto out;
  1564. result = nvme_configure_admin_queue(dev);
  1565. if (result)
  1566. goto unmap;
  1567. nvme_init_queue(dev->queues[0], 0);
  1568. result = nvme_alloc_admin_tags(dev);
  1569. if (result)
  1570. goto disable;
  1571. result = nvme_init_identify(&dev->ctrl);
  1572. if (result)
  1573. goto free_tags;
  1574. result = nvme_setup_io_queues(dev);
  1575. if (result)
  1576. goto free_tags;
  1577. dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
  1578. queue_work(nvme_workq, &dev->async_work);
  1579. mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
  1580. /*
  1581. * Keep the controller around but remove all namespaces if we don't have
  1582. * any working I/O queue.
  1583. */
  1584. if (dev->online_queues < 2) {
  1585. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1586. nvme_remove_namespaces(&dev->ctrl);
  1587. } else {
  1588. nvme_start_queues(&dev->ctrl);
  1589. nvme_dev_add(dev);
  1590. }
  1591. clear_bit(NVME_CTRL_RESETTING, &dev->flags);
  1592. return;
  1593. free_tags:
  1594. nvme_dev_remove_admin(dev);
  1595. blk_put_queue(dev->ctrl.admin_q);
  1596. dev->ctrl.admin_q = NULL;
  1597. dev->queues[0]->tags = NULL;
  1598. disable:
  1599. nvme_disable_admin_queue(dev, false);
  1600. unmap:
  1601. nvme_dev_unmap(dev);
  1602. out:
  1603. nvme_remove_dead_ctrl(dev);
  1604. }
  1605. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1606. {
  1607. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1608. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1609. if (pci_get_drvdata(pdev))
  1610. pci_stop_and_remove_bus_device_locked(pdev);
  1611. nvme_put_ctrl(&dev->ctrl);
  1612. }
  1613. static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
  1614. {
  1615. dev_warn(dev->ctrl.device, "Removing after probe failure\n");
  1616. kref_get(&dev->ctrl.kref);
  1617. if (!schedule_work(&dev->remove_work))
  1618. nvme_put_ctrl(&dev->ctrl);
  1619. }
  1620. static int nvme_reset(struct nvme_dev *dev)
  1621. {
  1622. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1623. return -ENODEV;
  1624. if (!queue_work(nvme_workq, &dev->reset_work))
  1625. return -EBUSY;
  1626. flush_work(&dev->reset_work);
  1627. return 0;
  1628. }
  1629. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1630. {
  1631. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1632. return 0;
  1633. }
  1634. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1635. {
  1636. writel(val, to_nvme_dev(ctrl)->bar + off);
  1637. return 0;
  1638. }
  1639. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1640. {
  1641. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1642. return 0;
  1643. }
  1644. static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
  1645. {
  1646. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1647. return !dev->bar || dev->online_queues < 2;
  1648. }
  1649. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1650. {
  1651. return nvme_reset(to_nvme_dev(ctrl));
  1652. }
  1653. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1654. .module = THIS_MODULE,
  1655. .reg_read32 = nvme_pci_reg_read32,
  1656. .reg_write32 = nvme_pci_reg_write32,
  1657. .reg_read64 = nvme_pci_reg_read64,
  1658. .io_incapable = nvme_pci_io_incapable,
  1659. .reset_ctrl = nvme_pci_reset_ctrl,
  1660. .free_ctrl = nvme_pci_free_ctrl,
  1661. };
  1662. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1663. {
  1664. int node, result = -ENOMEM;
  1665. struct nvme_dev *dev;
  1666. node = dev_to_node(&pdev->dev);
  1667. if (node == NUMA_NO_NODE)
  1668. set_dev_node(&pdev->dev, 0);
  1669. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1670. if (!dev)
  1671. return -ENOMEM;
  1672. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  1673. GFP_KERNEL, node);
  1674. if (!dev->entry)
  1675. goto free;
  1676. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1677. GFP_KERNEL, node);
  1678. if (!dev->queues)
  1679. goto free;
  1680. dev->dev = get_device(&pdev->dev);
  1681. pci_set_drvdata(pdev, dev);
  1682. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  1683. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1684. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1685. INIT_WORK(&dev->async_work, nvme_async_event_work);
  1686. setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
  1687. (unsigned long)dev);
  1688. mutex_init(&dev->shutdown_lock);
  1689. init_completion(&dev->ioq_wait);
  1690. result = nvme_setup_prp_pools(dev);
  1691. if (result)
  1692. goto put_pci;
  1693. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1694. id->driver_data);
  1695. if (result)
  1696. goto release_pools;
  1697. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  1698. queue_work(nvme_workq, &dev->reset_work);
  1699. return 0;
  1700. release_pools:
  1701. nvme_release_prp_pools(dev);
  1702. put_pci:
  1703. put_device(dev->dev);
  1704. free:
  1705. kfree(dev->queues);
  1706. kfree(dev->entry);
  1707. kfree(dev);
  1708. return result;
  1709. }
  1710. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1711. {
  1712. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1713. if (prepare)
  1714. nvme_dev_disable(dev, false);
  1715. else
  1716. queue_work(nvme_workq, &dev->reset_work);
  1717. }
  1718. static void nvme_shutdown(struct pci_dev *pdev)
  1719. {
  1720. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1721. nvme_dev_disable(dev, true);
  1722. }
  1723. static void nvme_remove(struct pci_dev *pdev)
  1724. {
  1725. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1726. del_timer_sync(&dev->watchdog_timer);
  1727. pci_set_drvdata(pdev, NULL);
  1728. flush_work(&dev->async_work);
  1729. flush_work(&dev->reset_work);
  1730. flush_work(&dev->scan_work);
  1731. nvme_remove_namespaces(&dev->ctrl);
  1732. nvme_uninit_ctrl(&dev->ctrl);
  1733. nvme_dev_disable(dev, true);
  1734. nvme_dev_remove_admin(dev);
  1735. nvme_free_queues(dev, 0);
  1736. nvme_release_cmb(dev);
  1737. nvme_release_prp_pools(dev);
  1738. nvme_put_ctrl(&dev->ctrl);
  1739. }
  1740. #ifdef CONFIG_PM_SLEEP
  1741. static int nvme_suspend(struct device *dev)
  1742. {
  1743. struct pci_dev *pdev = to_pci_dev(dev);
  1744. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1745. nvme_dev_disable(ndev, true);
  1746. return 0;
  1747. }
  1748. static int nvme_resume(struct device *dev)
  1749. {
  1750. struct pci_dev *pdev = to_pci_dev(dev);
  1751. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1752. queue_work(nvme_workq, &ndev->reset_work);
  1753. return 0;
  1754. }
  1755. #endif
  1756. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1757. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1758. pci_channel_state_t state)
  1759. {
  1760. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1761. /*
  1762. * A frozen channel requires a reset. When detected, this method will
  1763. * shutdown the controller to quiesce. The controller will be restarted
  1764. * after the slot reset through driver's slot_reset callback.
  1765. */
  1766. dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
  1767. switch (state) {
  1768. case pci_channel_io_normal:
  1769. return PCI_ERS_RESULT_CAN_RECOVER;
  1770. case pci_channel_io_frozen:
  1771. nvme_dev_disable(dev, false);
  1772. return PCI_ERS_RESULT_NEED_RESET;
  1773. case pci_channel_io_perm_failure:
  1774. return PCI_ERS_RESULT_DISCONNECT;
  1775. }
  1776. return PCI_ERS_RESULT_NEED_RESET;
  1777. }
  1778. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1779. {
  1780. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1781. dev_info(dev->ctrl.device, "restart after slot reset\n");
  1782. pci_restore_state(pdev);
  1783. queue_work(nvme_workq, &dev->reset_work);
  1784. return PCI_ERS_RESULT_RECOVERED;
  1785. }
  1786. static void nvme_error_resume(struct pci_dev *pdev)
  1787. {
  1788. pci_cleanup_aer_uncorrect_error_status(pdev);
  1789. }
  1790. static const struct pci_error_handlers nvme_err_handler = {
  1791. .error_detected = nvme_error_detected,
  1792. .slot_reset = nvme_slot_reset,
  1793. .resume = nvme_error_resume,
  1794. .reset_notify = nvme_reset_notify,
  1795. };
  1796. /* Move to pci_ids.h later */
  1797. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1798. static const struct pci_device_id nvme_id_table[] = {
  1799. { PCI_VDEVICE(INTEL, 0x0953),
  1800. .driver_data = NVME_QUIRK_STRIPE_SIZE, },
  1801. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1802. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1803. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1804. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1805. { 0, }
  1806. };
  1807. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1808. static struct pci_driver nvme_driver = {
  1809. .name = "nvme",
  1810. .id_table = nvme_id_table,
  1811. .probe = nvme_probe,
  1812. .remove = nvme_remove,
  1813. .shutdown = nvme_shutdown,
  1814. .driver = {
  1815. .pm = &nvme_dev_pm_ops,
  1816. },
  1817. .err_handler = &nvme_err_handler,
  1818. };
  1819. static int __init nvme_init(void)
  1820. {
  1821. int result;
  1822. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1823. if (!nvme_workq)
  1824. return -ENOMEM;
  1825. result = pci_register_driver(&nvme_driver);
  1826. if (result)
  1827. destroy_workqueue(nvme_workq);
  1828. return result;
  1829. }
  1830. static void __exit nvme_exit(void)
  1831. {
  1832. pci_unregister_driver(&nvme_driver);
  1833. destroy_workqueue(nvme_workq);
  1834. _nvme_check_size();
  1835. }
  1836. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1837. MODULE_LICENSE("GPL");
  1838. MODULE_VERSION("1.0");
  1839. module_init(nvme_init);
  1840. module_exit(nvme_exit);