util.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. #include <linux/mm.h>
  2. #include <linux/slab.h>
  3. #include <linux/string.h>
  4. #include <linux/compiler.h>
  5. #include <linux/export.h>
  6. #include <linux/err.h>
  7. #include <linux/sched.h>
  8. #include <linux/security.h>
  9. #include <linux/swap.h>
  10. #include <linux/swapops.h>
  11. #include <linux/mman.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/vmalloc.h>
  14. #include <asm/sections.h>
  15. #include <asm/uaccess.h>
  16. #include "internal.h"
  17. static inline int is_kernel_rodata(unsigned long addr)
  18. {
  19. return addr >= (unsigned long)__start_rodata &&
  20. addr < (unsigned long)__end_rodata;
  21. }
  22. /**
  23. * kfree_const - conditionally free memory
  24. * @x: pointer to the memory
  25. *
  26. * Function calls kfree only if @x is not in .rodata section.
  27. */
  28. void kfree_const(const void *x)
  29. {
  30. if (!is_kernel_rodata((unsigned long)x))
  31. kfree(x);
  32. }
  33. EXPORT_SYMBOL(kfree_const);
  34. /**
  35. * kstrdup - allocate space for and copy an existing string
  36. * @s: the string to duplicate
  37. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  38. */
  39. char *kstrdup(const char *s, gfp_t gfp)
  40. {
  41. size_t len;
  42. char *buf;
  43. if (!s)
  44. return NULL;
  45. len = strlen(s) + 1;
  46. buf = kmalloc_track_caller(len, gfp);
  47. if (buf)
  48. memcpy(buf, s, len);
  49. return buf;
  50. }
  51. EXPORT_SYMBOL(kstrdup);
  52. /**
  53. * kstrdup_const - conditionally duplicate an existing const string
  54. * @s: the string to duplicate
  55. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  56. *
  57. * Function returns source string if it is in .rodata section otherwise it
  58. * fallbacks to kstrdup.
  59. * Strings allocated by kstrdup_const should be freed by kfree_const.
  60. */
  61. const char *kstrdup_const(const char *s, gfp_t gfp)
  62. {
  63. if (is_kernel_rodata((unsigned long)s))
  64. return s;
  65. return kstrdup(s, gfp);
  66. }
  67. EXPORT_SYMBOL(kstrdup_const);
  68. /**
  69. * kstrndup - allocate space for and copy an existing string
  70. * @s: the string to duplicate
  71. * @max: read at most @max chars from @s
  72. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  73. */
  74. char *kstrndup(const char *s, size_t max, gfp_t gfp)
  75. {
  76. size_t len;
  77. char *buf;
  78. if (!s)
  79. return NULL;
  80. len = strnlen(s, max);
  81. buf = kmalloc_track_caller(len+1, gfp);
  82. if (buf) {
  83. memcpy(buf, s, len);
  84. buf[len] = '\0';
  85. }
  86. return buf;
  87. }
  88. EXPORT_SYMBOL(kstrndup);
  89. /**
  90. * kmemdup - duplicate region of memory
  91. *
  92. * @src: memory region to duplicate
  93. * @len: memory region length
  94. * @gfp: GFP mask to use
  95. */
  96. void *kmemdup(const void *src, size_t len, gfp_t gfp)
  97. {
  98. void *p;
  99. p = kmalloc_track_caller(len, gfp);
  100. if (p)
  101. memcpy(p, src, len);
  102. return p;
  103. }
  104. EXPORT_SYMBOL(kmemdup);
  105. /**
  106. * memdup_user - duplicate memory region from user space
  107. *
  108. * @src: source address in user space
  109. * @len: number of bytes to copy
  110. *
  111. * Returns an ERR_PTR() on failure.
  112. */
  113. void *memdup_user(const void __user *src, size_t len)
  114. {
  115. void *p;
  116. /*
  117. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  118. * cause pagefault, which makes it pointless to use GFP_NOFS
  119. * or GFP_ATOMIC.
  120. */
  121. p = kmalloc_track_caller(len, GFP_KERNEL);
  122. if (!p)
  123. return ERR_PTR(-ENOMEM);
  124. if (copy_from_user(p, src, len)) {
  125. kfree(p);
  126. return ERR_PTR(-EFAULT);
  127. }
  128. return p;
  129. }
  130. EXPORT_SYMBOL(memdup_user);
  131. /*
  132. * strndup_user - duplicate an existing string from user space
  133. * @s: The string to duplicate
  134. * @n: Maximum number of bytes to copy, including the trailing NUL.
  135. */
  136. char *strndup_user(const char __user *s, long n)
  137. {
  138. char *p;
  139. long length;
  140. length = strnlen_user(s, n);
  141. if (!length)
  142. return ERR_PTR(-EFAULT);
  143. if (length > n)
  144. return ERR_PTR(-EINVAL);
  145. p = memdup_user(s, length);
  146. if (IS_ERR(p))
  147. return p;
  148. p[length - 1] = '\0';
  149. return p;
  150. }
  151. EXPORT_SYMBOL(strndup_user);
  152. /**
  153. * memdup_user_nul - duplicate memory region from user space and NUL-terminate
  154. *
  155. * @src: source address in user space
  156. * @len: number of bytes to copy
  157. *
  158. * Returns an ERR_PTR() on failure.
  159. */
  160. void *memdup_user_nul(const void __user *src, size_t len)
  161. {
  162. char *p;
  163. /*
  164. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  165. * cause pagefault, which makes it pointless to use GFP_NOFS
  166. * or GFP_ATOMIC.
  167. */
  168. p = kmalloc_track_caller(len + 1, GFP_KERNEL);
  169. if (!p)
  170. return ERR_PTR(-ENOMEM);
  171. if (copy_from_user(p, src, len)) {
  172. kfree(p);
  173. return ERR_PTR(-EFAULT);
  174. }
  175. p[len] = '\0';
  176. return p;
  177. }
  178. EXPORT_SYMBOL(memdup_user_nul);
  179. void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
  180. struct vm_area_struct *prev, struct rb_node *rb_parent)
  181. {
  182. struct vm_area_struct *next;
  183. vma->vm_prev = prev;
  184. if (prev) {
  185. next = prev->vm_next;
  186. prev->vm_next = vma;
  187. } else {
  188. mm->mmap = vma;
  189. if (rb_parent)
  190. next = rb_entry(rb_parent,
  191. struct vm_area_struct, vm_rb);
  192. else
  193. next = NULL;
  194. }
  195. vma->vm_next = next;
  196. if (next)
  197. next->vm_prev = vma;
  198. }
  199. /* Check if the vma is being used as a stack by this task */
  200. int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
  201. {
  202. return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
  203. }
  204. #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
  205. void arch_pick_mmap_layout(struct mm_struct *mm)
  206. {
  207. mm->mmap_base = TASK_UNMAPPED_BASE;
  208. mm->get_unmapped_area = arch_get_unmapped_area;
  209. }
  210. #endif
  211. /*
  212. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  213. * back to the regular GUP.
  214. * If the architecture not support this function, simply return with no
  215. * page pinned
  216. */
  217. int __weak __get_user_pages_fast(unsigned long start,
  218. int nr_pages, int write, struct page **pages)
  219. {
  220. return 0;
  221. }
  222. EXPORT_SYMBOL_GPL(__get_user_pages_fast);
  223. /**
  224. * get_user_pages_fast() - pin user pages in memory
  225. * @start: starting user address
  226. * @nr_pages: number of pages from start to pin
  227. * @write: whether pages will be written to
  228. * @pages: array that receives pointers to the pages pinned.
  229. * Should be at least nr_pages long.
  230. *
  231. * Returns number of pages pinned. This may be fewer than the number
  232. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  233. * were pinned, returns -errno.
  234. *
  235. * get_user_pages_fast provides equivalent functionality to get_user_pages,
  236. * operating on current and current->mm, with force=0 and vma=NULL. However
  237. * unlike get_user_pages, it must be called without mmap_sem held.
  238. *
  239. * get_user_pages_fast may take mmap_sem and page table locks, so no
  240. * assumptions can be made about lack of locking. get_user_pages_fast is to be
  241. * implemented in a way that is advantageous (vs get_user_pages()) when the
  242. * user memory area is already faulted in and present in ptes. However if the
  243. * pages have to be faulted in, it may turn out to be slightly slower so
  244. * callers need to carefully consider what to use. On many architectures,
  245. * get_user_pages_fast simply falls back to get_user_pages.
  246. */
  247. int __weak get_user_pages_fast(unsigned long start,
  248. int nr_pages, int write, struct page **pages)
  249. {
  250. return get_user_pages_unlocked(start, nr_pages, write, 0, pages);
  251. }
  252. EXPORT_SYMBOL_GPL(get_user_pages_fast);
  253. unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
  254. unsigned long len, unsigned long prot,
  255. unsigned long flag, unsigned long pgoff)
  256. {
  257. unsigned long ret;
  258. struct mm_struct *mm = current->mm;
  259. unsigned long populate;
  260. ret = security_mmap_file(file, prot, flag);
  261. if (!ret) {
  262. down_write(&mm->mmap_sem);
  263. ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
  264. &populate);
  265. up_write(&mm->mmap_sem);
  266. if (populate)
  267. mm_populate(ret, populate);
  268. }
  269. return ret;
  270. }
  271. unsigned long vm_mmap(struct file *file, unsigned long addr,
  272. unsigned long len, unsigned long prot,
  273. unsigned long flag, unsigned long offset)
  274. {
  275. if (unlikely(offset + PAGE_ALIGN(len) < offset))
  276. return -EINVAL;
  277. if (unlikely(offset_in_page(offset)))
  278. return -EINVAL;
  279. return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  280. }
  281. EXPORT_SYMBOL(vm_mmap);
  282. void kvfree(const void *addr)
  283. {
  284. if (is_vmalloc_addr(addr))
  285. vfree(addr);
  286. else
  287. kfree(addr);
  288. }
  289. EXPORT_SYMBOL(kvfree);
  290. static inline void *__page_rmapping(struct page *page)
  291. {
  292. unsigned long mapping;
  293. mapping = (unsigned long)page->mapping;
  294. mapping &= ~PAGE_MAPPING_FLAGS;
  295. return (void *)mapping;
  296. }
  297. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  298. void *page_rmapping(struct page *page)
  299. {
  300. page = compound_head(page);
  301. return __page_rmapping(page);
  302. }
  303. struct anon_vma *page_anon_vma(struct page *page)
  304. {
  305. unsigned long mapping;
  306. page = compound_head(page);
  307. mapping = (unsigned long)page->mapping;
  308. if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  309. return NULL;
  310. return __page_rmapping(page);
  311. }
  312. struct address_space *page_mapping(struct page *page)
  313. {
  314. struct address_space *mapping;
  315. page = compound_head(page);
  316. /* This happens if someone calls flush_dcache_page on slab page */
  317. if (unlikely(PageSlab(page)))
  318. return NULL;
  319. if (unlikely(PageSwapCache(page))) {
  320. swp_entry_t entry;
  321. entry.val = page_private(page);
  322. return swap_address_space(entry);
  323. }
  324. mapping = page->mapping;
  325. if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
  326. return NULL;
  327. return mapping;
  328. }
  329. /* Slow path of page_mapcount() for compound pages */
  330. int __page_mapcount(struct page *page)
  331. {
  332. int ret;
  333. ret = atomic_read(&page->_mapcount) + 1;
  334. page = compound_head(page);
  335. ret += atomic_read(compound_mapcount_ptr(page)) + 1;
  336. if (PageDoubleMap(page))
  337. ret--;
  338. return ret;
  339. }
  340. EXPORT_SYMBOL_GPL(__page_mapcount);
  341. int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
  342. int sysctl_overcommit_ratio __read_mostly = 50;
  343. unsigned long sysctl_overcommit_kbytes __read_mostly;
  344. int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  345. unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  346. unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  347. int overcommit_ratio_handler(struct ctl_table *table, int write,
  348. void __user *buffer, size_t *lenp,
  349. loff_t *ppos)
  350. {
  351. int ret;
  352. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  353. if (ret == 0 && write)
  354. sysctl_overcommit_kbytes = 0;
  355. return ret;
  356. }
  357. int overcommit_kbytes_handler(struct ctl_table *table, int write,
  358. void __user *buffer, size_t *lenp,
  359. loff_t *ppos)
  360. {
  361. int ret;
  362. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  363. if (ret == 0 && write)
  364. sysctl_overcommit_ratio = 0;
  365. return ret;
  366. }
  367. /*
  368. * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
  369. */
  370. unsigned long vm_commit_limit(void)
  371. {
  372. unsigned long allowed;
  373. if (sysctl_overcommit_kbytes)
  374. allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
  375. else
  376. allowed = ((totalram_pages - hugetlb_total_pages())
  377. * sysctl_overcommit_ratio / 100);
  378. allowed += total_swap_pages;
  379. return allowed;
  380. }
  381. /*
  382. * Make sure vm_committed_as in one cacheline and not cacheline shared with
  383. * other variables. It can be updated by several CPUs frequently.
  384. */
  385. struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  386. /*
  387. * The global memory commitment made in the system can be a metric
  388. * that can be used to drive ballooning decisions when Linux is hosted
  389. * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  390. * balancing memory across competing virtual machines that are hosted.
  391. * Several metrics drive this policy engine including the guest reported
  392. * memory commitment.
  393. */
  394. unsigned long vm_memory_committed(void)
  395. {
  396. return percpu_counter_read_positive(&vm_committed_as);
  397. }
  398. EXPORT_SYMBOL_GPL(vm_memory_committed);
  399. /*
  400. * Check that a process has enough memory to allocate a new virtual
  401. * mapping. 0 means there is enough memory for the allocation to
  402. * succeed and -ENOMEM implies there is not.
  403. *
  404. * We currently support three overcommit policies, which are set via the
  405. * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
  406. *
  407. * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
  408. * Additional code 2002 Jul 20 by Robert Love.
  409. *
  410. * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
  411. *
  412. * Note this is a helper function intended to be used by LSMs which
  413. * wish to use this logic.
  414. */
  415. int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
  416. {
  417. long free, allowed, reserve;
  418. VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
  419. -(s64)vm_committed_as_batch * num_online_cpus(),
  420. "memory commitment underflow");
  421. vm_acct_memory(pages);
  422. /*
  423. * Sometimes we want to use more memory than we have
  424. */
  425. if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
  426. return 0;
  427. if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
  428. free = global_page_state(NR_FREE_PAGES);
  429. free += global_page_state(NR_FILE_PAGES);
  430. /*
  431. * shmem pages shouldn't be counted as free in this
  432. * case, they can't be purged, only swapped out, and
  433. * that won't affect the overall amount of available
  434. * memory in the system.
  435. */
  436. free -= global_page_state(NR_SHMEM);
  437. free += get_nr_swap_pages();
  438. /*
  439. * Any slabs which are created with the
  440. * SLAB_RECLAIM_ACCOUNT flag claim to have contents
  441. * which are reclaimable, under pressure. The dentry
  442. * cache and most inode caches should fall into this
  443. */
  444. free += global_page_state(NR_SLAB_RECLAIMABLE);
  445. /*
  446. * Leave reserved pages. The pages are not for anonymous pages.
  447. */
  448. if (free <= totalreserve_pages)
  449. goto error;
  450. else
  451. free -= totalreserve_pages;
  452. /*
  453. * Reserve some for root
  454. */
  455. if (!cap_sys_admin)
  456. free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  457. if (free > pages)
  458. return 0;
  459. goto error;
  460. }
  461. allowed = vm_commit_limit();
  462. /*
  463. * Reserve some for root
  464. */
  465. if (!cap_sys_admin)
  466. allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  467. /*
  468. * Don't let a single process grow so big a user can't recover
  469. */
  470. if (mm) {
  471. reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
  472. allowed -= min_t(long, mm->total_vm / 32, reserve);
  473. }
  474. if (percpu_counter_read_positive(&vm_committed_as) < allowed)
  475. return 0;
  476. error:
  477. vm_unacct_memory(pages);
  478. return -ENOMEM;
  479. }
  480. /**
  481. * get_cmdline() - copy the cmdline value to a buffer.
  482. * @task: the task whose cmdline value to copy.
  483. * @buffer: the buffer to copy to.
  484. * @buflen: the length of the buffer. Larger cmdline values are truncated
  485. * to this length.
  486. * Returns the size of the cmdline field copied. Note that the copy does
  487. * not guarantee an ending NULL byte.
  488. */
  489. int get_cmdline(struct task_struct *task, char *buffer, int buflen)
  490. {
  491. int res = 0;
  492. unsigned int len;
  493. struct mm_struct *mm = get_task_mm(task);
  494. unsigned long arg_start, arg_end, env_start, env_end;
  495. if (!mm)
  496. goto out;
  497. if (!mm->arg_end)
  498. goto out_mm; /* Shh! No looking before we're done */
  499. down_read(&mm->mmap_sem);
  500. arg_start = mm->arg_start;
  501. arg_end = mm->arg_end;
  502. env_start = mm->env_start;
  503. env_end = mm->env_end;
  504. up_read(&mm->mmap_sem);
  505. len = arg_end - arg_start;
  506. if (len > buflen)
  507. len = buflen;
  508. res = access_process_vm(task, arg_start, buffer, len, 0);
  509. /*
  510. * If the nul at the end of args has been overwritten, then
  511. * assume application is using setproctitle(3).
  512. */
  513. if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
  514. len = strnlen(buffer, res);
  515. if (len < res) {
  516. res = len;
  517. } else {
  518. len = env_end - env_start;
  519. if (len > buflen - res)
  520. len = buflen - res;
  521. res += access_process_vm(task, env_start,
  522. buffer+res, len, 0);
  523. res = strnlen(buffer, res);
  524. }
  525. }
  526. out_mm:
  527. mmput(mm);
  528. out:
  529. return res;
  530. }