swapfile.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/mman.h>
  10. #include <linux/slab.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/namei.h>
  16. #include <linux/shmem_fs.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/random.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/ksm.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/poll.h>
  32. #include <linux/oom.h>
  33. #include <linux/frontswap.h>
  34. #include <linux/swapfile.h>
  35. #include <linux/export.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/tlbflush.h>
  38. #include <linux/swapops.h>
  39. #include <linux/swap_cgroup.h>
  40. static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  41. unsigned char);
  42. static void free_swap_count_continuations(struct swap_info_struct *);
  43. static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  44. DEFINE_SPINLOCK(swap_lock);
  45. static unsigned int nr_swapfiles;
  46. atomic_long_t nr_swap_pages;
  47. /*
  48. * Some modules use swappable objects and may try to swap them out under
  49. * memory pressure (via the shrinker). Before doing so, they may wish to
  50. * check to see if any swap space is available.
  51. */
  52. EXPORT_SYMBOL_GPL(nr_swap_pages);
  53. /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  54. long total_swap_pages;
  55. static int least_priority;
  56. static const char Bad_file[] = "Bad swap file entry ";
  57. static const char Unused_file[] = "Unused swap file entry ";
  58. static const char Bad_offset[] = "Bad swap offset entry ";
  59. static const char Unused_offset[] = "Unused swap offset entry ";
  60. /*
  61. * all active swap_info_structs
  62. * protected with swap_lock, and ordered by priority.
  63. */
  64. PLIST_HEAD(swap_active_head);
  65. /*
  66. * all available (active, not full) swap_info_structs
  67. * protected with swap_avail_lock, ordered by priority.
  68. * This is used by get_swap_page() instead of swap_active_head
  69. * because swap_active_head includes all swap_info_structs,
  70. * but get_swap_page() doesn't need to look at full ones.
  71. * This uses its own lock instead of swap_lock because when a
  72. * swap_info_struct changes between not-full/full, it needs to
  73. * add/remove itself to/from this list, but the swap_info_struct->lock
  74. * is held and the locking order requires swap_lock to be taken
  75. * before any swap_info_struct->lock.
  76. */
  77. static PLIST_HEAD(swap_avail_head);
  78. static DEFINE_SPINLOCK(swap_avail_lock);
  79. struct swap_info_struct *swap_info[MAX_SWAPFILES];
  80. static DEFINE_MUTEX(swapon_mutex);
  81. static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  82. /* Activity counter to indicate that a swapon or swapoff has occurred */
  83. static atomic_t proc_poll_event = ATOMIC_INIT(0);
  84. static inline unsigned char swap_count(unsigned char ent)
  85. {
  86. return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
  87. }
  88. /* returns 1 if swap entry is freed */
  89. static int
  90. __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
  91. {
  92. swp_entry_t entry = swp_entry(si->type, offset);
  93. struct page *page;
  94. int ret = 0;
  95. page = find_get_page(swap_address_space(entry), entry.val);
  96. if (!page)
  97. return 0;
  98. /*
  99. * This function is called from scan_swap_map() and it's called
  100. * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
  101. * We have to use trylock for avoiding deadlock. This is a special
  102. * case and you should use try_to_free_swap() with explicit lock_page()
  103. * in usual operations.
  104. */
  105. if (trylock_page(page)) {
  106. ret = try_to_free_swap(page);
  107. unlock_page(page);
  108. }
  109. page_cache_release(page);
  110. return ret;
  111. }
  112. /*
  113. * swapon tell device that all the old swap contents can be discarded,
  114. * to allow the swap device to optimize its wear-levelling.
  115. */
  116. static int discard_swap(struct swap_info_struct *si)
  117. {
  118. struct swap_extent *se;
  119. sector_t start_block;
  120. sector_t nr_blocks;
  121. int err = 0;
  122. /* Do not discard the swap header page! */
  123. se = &si->first_swap_extent;
  124. start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
  125. nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
  126. if (nr_blocks) {
  127. err = blkdev_issue_discard(si->bdev, start_block,
  128. nr_blocks, GFP_KERNEL, 0);
  129. if (err)
  130. return err;
  131. cond_resched();
  132. }
  133. list_for_each_entry(se, &si->first_swap_extent.list, list) {
  134. start_block = se->start_block << (PAGE_SHIFT - 9);
  135. nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  136. err = blkdev_issue_discard(si->bdev, start_block,
  137. nr_blocks, GFP_KERNEL, 0);
  138. if (err)
  139. break;
  140. cond_resched();
  141. }
  142. return err; /* That will often be -EOPNOTSUPP */
  143. }
  144. /*
  145. * swap allocation tell device that a cluster of swap can now be discarded,
  146. * to allow the swap device to optimize its wear-levelling.
  147. */
  148. static void discard_swap_cluster(struct swap_info_struct *si,
  149. pgoff_t start_page, pgoff_t nr_pages)
  150. {
  151. struct swap_extent *se = si->curr_swap_extent;
  152. int found_extent = 0;
  153. while (nr_pages) {
  154. if (se->start_page <= start_page &&
  155. start_page < se->start_page + se->nr_pages) {
  156. pgoff_t offset = start_page - se->start_page;
  157. sector_t start_block = se->start_block + offset;
  158. sector_t nr_blocks = se->nr_pages - offset;
  159. if (nr_blocks > nr_pages)
  160. nr_blocks = nr_pages;
  161. start_page += nr_blocks;
  162. nr_pages -= nr_blocks;
  163. if (!found_extent++)
  164. si->curr_swap_extent = se;
  165. start_block <<= PAGE_SHIFT - 9;
  166. nr_blocks <<= PAGE_SHIFT - 9;
  167. if (blkdev_issue_discard(si->bdev, start_block,
  168. nr_blocks, GFP_NOIO, 0))
  169. break;
  170. }
  171. se = list_next_entry(se, list);
  172. }
  173. }
  174. #define SWAPFILE_CLUSTER 256
  175. #define LATENCY_LIMIT 256
  176. static inline void cluster_set_flag(struct swap_cluster_info *info,
  177. unsigned int flag)
  178. {
  179. info->flags = flag;
  180. }
  181. static inline unsigned int cluster_count(struct swap_cluster_info *info)
  182. {
  183. return info->data;
  184. }
  185. static inline void cluster_set_count(struct swap_cluster_info *info,
  186. unsigned int c)
  187. {
  188. info->data = c;
  189. }
  190. static inline void cluster_set_count_flag(struct swap_cluster_info *info,
  191. unsigned int c, unsigned int f)
  192. {
  193. info->flags = f;
  194. info->data = c;
  195. }
  196. static inline unsigned int cluster_next(struct swap_cluster_info *info)
  197. {
  198. return info->data;
  199. }
  200. static inline void cluster_set_next(struct swap_cluster_info *info,
  201. unsigned int n)
  202. {
  203. info->data = n;
  204. }
  205. static inline void cluster_set_next_flag(struct swap_cluster_info *info,
  206. unsigned int n, unsigned int f)
  207. {
  208. info->flags = f;
  209. info->data = n;
  210. }
  211. static inline bool cluster_is_free(struct swap_cluster_info *info)
  212. {
  213. return info->flags & CLUSTER_FLAG_FREE;
  214. }
  215. static inline bool cluster_is_null(struct swap_cluster_info *info)
  216. {
  217. return info->flags & CLUSTER_FLAG_NEXT_NULL;
  218. }
  219. static inline void cluster_set_null(struct swap_cluster_info *info)
  220. {
  221. info->flags = CLUSTER_FLAG_NEXT_NULL;
  222. info->data = 0;
  223. }
  224. /* Add a cluster to discard list and schedule it to do discard */
  225. static void swap_cluster_schedule_discard(struct swap_info_struct *si,
  226. unsigned int idx)
  227. {
  228. /*
  229. * If scan_swap_map() can't find a free cluster, it will check
  230. * si->swap_map directly. To make sure the discarding cluster isn't
  231. * taken by scan_swap_map(), mark the swap entries bad (occupied). It
  232. * will be cleared after discard
  233. */
  234. memset(si->swap_map + idx * SWAPFILE_CLUSTER,
  235. SWAP_MAP_BAD, SWAPFILE_CLUSTER);
  236. if (cluster_is_null(&si->discard_cluster_head)) {
  237. cluster_set_next_flag(&si->discard_cluster_head,
  238. idx, 0);
  239. cluster_set_next_flag(&si->discard_cluster_tail,
  240. idx, 0);
  241. } else {
  242. unsigned int tail = cluster_next(&si->discard_cluster_tail);
  243. cluster_set_next(&si->cluster_info[tail], idx);
  244. cluster_set_next_flag(&si->discard_cluster_tail,
  245. idx, 0);
  246. }
  247. schedule_work(&si->discard_work);
  248. }
  249. /*
  250. * Doing discard actually. After a cluster discard is finished, the cluster
  251. * will be added to free cluster list. caller should hold si->lock.
  252. */
  253. static void swap_do_scheduled_discard(struct swap_info_struct *si)
  254. {
  255. struct swap_cluster_info *info;
  256. unsigned int idx;
  257. info = si->cluster_info;
  258. while (!cluster_is_null(&si->discard_cluster_head)) {
  259. idx = cluster_next(&si->discard_cluster_head);
  260. cluster_set_next_flag(&si->discard_cluster_head,
  261. cluster_next(&info[idx]), 0);
  262. if (cluster_next(&si->discard_cluster_tail) == idx) {
  263. cluster_set_null(&si->discard_cluster_head);
  264. cluster_set_null(&si->discard_cluster_tail);
  265. }
  266. spin_unlock(&si->lock);
  267. discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
  268. SWAPFILE_CLUSTER);
  269. spin_lock(&si->lock);
  270. cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
  271. if (cluster_is_null(&si->free_cluster_head)) {
  272. cluster_set_next_flag(&si->free_cluster_head,
  273. idx, 0);
  274. cluster_set_next_flag(&si->free_cluster_tail,
  275. idx, 0);
  276. } else {
  277. unsigned int tail;
  278. tail = cluster_next(&si->free_cluster_tail);
  279. cluster_set_next(&info[tail], idx);
  280. cluster_set_next_flag(&si->free_cluster_tail,
  281. idx, 0);
  282. }
  283. memset(si->swap_map + idx * SWAPFILE_CLUSTER,
  284. 0, SWAPFILE_CLUSTER);
  285. }
  286. }
  287. static void swap_discard_work(struct work_struct *work)
  288. {
  289. struct swap_info_struct *si;
  290. si = container_of(work, struct swap_info_struct, discard_work);
  291. spin_lock(&si->lock);
  292. swap_do_scheduled_discard(si);
  293. spin_unlock(&si->lock);
  294. }
  295. /*
  296. * The cluster corresponding to page_nr will be used. The cluster will be
  297. * removed from free cluster list and its usage counter will be increased.
  298. */
  299. static void inc_cluster_info_page(struct swap_info_struct *p,
  300. struct swap_cluster_info *cluster_info, unsigned long page_nr)
  301. {
  302. unsigned long idx = page_nr / SWAPFILE_CLUSTER;
  303. if (!cluster_info)
  304. return;
  305. if (cluster_is_free(&cluster_info[idx])) {
  306. VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
  307. cluster_set_next_flag(&p->free_cluster_head,
  308. cluster_next(&cluster_info[idx]), 0);
  309. if (cluster_next(&p->free_cluster_tail) == idx) {
  310. cluster_set_null(&p->free_cluster_tail);
  311. cluster_set_null(&p->free_cluster_head);
  312. }
  313. cluster_set_count_flag(&cluster_info[idx], 0, 0);
  314. }
  315. VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
  316. cluster_set_count(&cluster_info[idx],
  317. cluster_count(&cluster_info[idx]) + 1);
  318. }
  319. /*
  320. * The cluster corresponding to page_nr decreases one usage. If the usage
  321. * counter becomes 0, which means no page in the cluster is in using, we can
  322. * optionally discard the cluster and add it to free cluster list.
  323. */
  324. static void dec_cluster_info_page(struct swap_info_struct *p,
  325. struct swap_cluster_info *cluster_info, unsigned long page_nr)
  326. {
  327. unsigned long idx = page_nr / SWAPFILE_CLUSTER;
  328. if (!cluster_info)
  329. return;
  330. VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
  331. cluster_set_count(&cluster_info[idx],
  332. cluster_count(&cluster_info[idx]) - 1);
  333. if (cluster_count(&cluster_info[idx]) == 0) {
  334. /*
  335. * If the swap is discardable, prepare discard the cluster
  336. * instead of free it immediately. The cluster will be freed
  337. * after discard.
  338. */
  339. if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
  340. (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
  341. swap_cluster_schedule_discard(p, idx);
  342. return;
  343. }
  344. cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
  345. if (cluster_is_null(&p->free_cluster_head)) {
  346. cluster_set_next_flag(&p->free_cluster_head, idx, 0);
  347. cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
  348. } else {
  349. unsigned int tail = cluster_next(&p->free_cluster_tail);
  350. cluster_set_next(&cluster_info[tail], idx);
  351. cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
  352. }
  353. }
  354. }
  355. /*
  356. * It's possible scan_swap_map() uses a free cluster in the middle of free
  357. * cluster list. Avoiding such abuse to avoid list corruption.
  358. */
  359. static bool
  360. scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
  361. unsigned long offset)
  362. {
  363. struct percpu_cluster *percpu_cluster;
  364. bool conflict;
  365. offset /= SWAPFILE_CLUSTER;
  366. conflict = !cluster_is_null(&si->free_cluster_head) &&
  367. offset != cluster_next(&si->free_cluster_head) &&
  368. cluster_is_free(&si->cluster_info[offset]);
  369. if (!conflict)
  370. return false;
  371. percpu_cluster = this_cpu_ptr(si->percpu_cluster);
  372. cluster_set_null(&percpu_cluster->index);
  373. return true;
  374. }
  375. /*
  376. * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
  377. * might involve allocating a new cluster for current CPU too.
  378. */
  379. static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
  380. unsigned long *offset, unsigned long *scan_base)
  381. {
  382. struct percpu_cluster *cluster;
  383. bool found_free;
  384. unsigned long tmp;
  385. new_cluster:
  386. cluster = this_cpu_ptr(si->percpu_cluster);
  387. if (cluster_is_null(&cluster->index)) {
  388. if (!cluster_is_null(&si->free_cluster_head)) {
  389. cluster->index = si->free_cluster_head;
  390. cluster->next = cluster_next(&cluster->index) *
  391. SWAPFILE_CLUSTER;
  392. } else if (!cluster_is_null(&si->discard_cluster_head)) {
  393. /*
  394. * we don't have free cluster but have some clusters in
  395. * discarding, do discard now and reclaim them
  396. */
  397. swap_do_scheduled_discard(si);
  398. *scan_base = *offset = si->cluster_next;
  399. goto new_cluster;
  400. } else
  401. return;
  402. }
  403. found_free = false;
  404. /*
  405. * Other CPUs can use our cluster if they can't find a free cluster,
  406. * check if there is still free entry in the cluster
  407. */
  408. tmp = cluster->next;
  409. while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
  410. SWAPFILE_CLUSTER) {
  411. if (!si->swap_map[tmp]) {
  412. found_free = true;
  413. break;
  414. }
  415. tmp++;
  416. }
  417. if (!found_free) {
  418. cluster_set_null(&cluster->index);
  419. goto new_cluster;
  420. }
  421. cluster->next = tmp + 1;
  422. *offset = tmp;
  423. *scan_base = tmp;
  424. }
  425. static unsigned long scan_swap_map(struct swap_info_struct *si,
  426. unsigned char usage)
  427. {
  428. unsigned long offset;
  429. unsigned long scan_base;
  430. unsigned long last_in_cluster = 0;
  431. int latency_ration = LATENCY_LIMIT;
  432. /*
  433. * We try to cluster swap pages by allocating them sequentially
  434. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  435. * way, however, we resort to first-free allocation, starting
  436. * a new cluster. This prevents us from scattering swap pages
  437. * all over the entire swap partition, so that we reduce
  438. * overall disk seek times between swap pages. -- sct
  439. * But we do now try to find an empty cluster. -Andrea
  440. * And we let swap pages go all over an SSD partition. Hugh
  441. */
  442. si->flags += SWP_SCANNING;
  443. scan_base = offset = si->cluster_next;
  444. /* SSD algorithm */
  445. if (si->cluster_info) {
  446. scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
  447. goto checks;
  448. }
  449. if (unlikely(!si->cluster_nr--)) {
  450. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  451. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  452. goto checks;
  453. }
  454. spin_unlock(&si->lock);
  455. /*
  456. * If seek is expensive, start searching for new cluster from
  457. * start of partition, to minimize the span of allocated swap.
  458. * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
  459. * case, just handled by scan_swap_map_try_ssd_cluster() above.
  460. */
  461. scan_base = offset = si->lowest_bit;
  462. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  463. /* Locate the first empty (unaligned) cluster */
  464. for (; last_in_cluster <= si->highest_bit; offset++) {
  465. if (si->swap_map[offset])
  466. last_in_cluster = offset + SWAPFILE_CLUSTER;
  467. else if (offset == last_in_cluster) {
  468. spin_lock(&si->lock);
  469. offset -= SWAPFILE_CLUSTER - 1;
  470. si->cluster_next = offset;
  471. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  472. goto checks;
  473. }
  474. if (unlikely(--latency_ration < 0)) {
  475. cond_resched();
  476. latency_ration = LATENCY_LIMIT;
  477. }
  478. }
  479. offset = scan_base;
  480. spin_lock(&si->lock);
  481. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  482. }
  483. checks:
  484. if (si->cluster_info) {
  485. while (scan_swap_map_ssd_cluster_conflict(si, offset))
  486. scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
  487. }
  488. if (!(si->flags & SWP_WRITEOK))
  489. goto no_page;
  490. if (!si->highest_bit)
  491. goto no_page;
  492. if (offset > si->highest_bit)
  493. scan_base = offset = si->lowest_bit;
  494. /* reuse swap entry of cache-only swap if not busy. */
  495. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  496. int swap_was_freed;
  497. spin_unlock(&si->lock);
  498. swap_was_freed = __try_to_reclaim_swap(si, offset);
  499. spin_lock(&si->lock);
  500. /* entry was freed successfully, try to use this again */
  501. if (swap_was_freed)
  502. goto checks;
  503. goto scan; /* check next one */
  504. }
  505. if (si->swap_map[offset])
  506. goto scan;
  507. if (offset == si->lowest_bit)
  508. si->lowest_bit++;
  509. if (offset == si->highest_bit)
  510. si->highest_bit--;
  511. si->inuse_pages++;
  512. if (si->inuse_pages == si->pages) {
  513. si->lowest_bit = si->max;
  514. si->highest_bit = 0;
  515. spin_lock(&swap_avail_lock);
  516. plist_del(&si->avail_list, &swap_avail_head);
  517. spin_unlock(&swap_avail_lock);
  518. }
  519. si->swap_map[offset] = usage;
  520. inc_cluster_info_page(si, si->cluster_info, offset);
  521. si->cluster_next = offset + 1;
  522. si->flags -= SWP_SCANNING;
  523. return offset;
  524. scan:
  525. spin_unlock(&si->lock);
  526. while (++offset <= si->highest_bit) {
  527. if (!si->swap_map[offset]) {
  528. spin_lock(&si->lock);
  529. goto checks;
  530. }
  531. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  532. spin_lock(&si->lock);
  533. goto checks;
  534. }
  535. if (unlikely(--latency_ration < 0)) {
  536. cond_resched();
  537. latency_ration = LATENCY_LIMIT;
  538. }
  539. }
  540. offset = si->lowest_bit;
  541. while (offset < scan_base) {
  542. if (!si->swap_map[offset]) {
  543. spin_lock(&si->lock);
  544. goto checks;
  545. }
  546. if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
  547. spin_lock(&si->lock);
  548. goto checks;
  549. }
  550. if (unlikely(--latency_ration < 0)) {
  551. cond_resched();
  552. latency_ration = LATENCY_LIMIT;
  553. }
  554. offset++;
  555. }
  556. spin_lock(&si->lock);
  557. no_page:
  558. si->flags -= SWP_SCANNING;
  559. return 0;
  560. }
  561. swp_entry_t get_swap_page(void)
  562. {
  563. struct swap_info_struct *si, *next;
  564. pgoff_t offset;
  565. if (atomic_long_read(&nr_swap_pages) <= 0)
  566. goto noswap;
  567. atomic_long_dec(&nr_swap_pages);
  568. spin_lock(&swap_avail_lock);
  569. start_over:
  570. plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
  571. /* requeue si to after same-priority siblings */
  572. plist_requeue(&si->avail_list, &swap_avail_head);
  573. spin_unlock(&swap_avail_lock);
  574. spin_lock(&si->lock);
  575. if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
  576. spin_lock(&swap_avail_lock);
  577. if (plist_node_empty(&si->avail_list)) {
  578. spin_unlock(&si->lock);
  579. goto nextsi;
  580. }
  581. WARN(!si->highest_bit,
  582. "swap_info %d in list but !highest_bit\n",
  583. si->type);
  584. WARN(!(si->flags & SWP_WRITEOK),
  585. "swap_info %d in list but !SWP_WRITEOK\n",
  586. si->type);
  587. plist_del(&si->avail_list, &swap_avail_head);
  588. spin_unlock(&si->lock);
  589. goto nextsi;
  590. }
  591. /* This is called for allocating swap entry for cache */
  592. offset = scan_swap_map(si, SWAP_HAS_CACHE);
  593. spin_unlock(&si->lock);
  594. if (offset)
  595. return swp_entry(si->type, offset);
  596. pr_debug("scan_swap_map of si %d failed to find offset\n",
  597. si->type);
  598. spin_lock(&swap_avail_lock);
  599. nextsi:
  600. /*
  601. * if we got here, it's likely that si was almost full before,
  602. * and since scan_swap_map() can drop the si->lock, multiple
  603. * callers probably all tried to get a page from the same si
  604. * and it filled up before we could get one; or, the si filled
  605. * up between us dropping swap_avail_lock and taking si->lock.
  606. * Since we dropped the swap_avail_lock, the swap_avail_head
  607. * list may have been modified; so if next is still in the
  608. * swap_avail_head list then try it, otherwise start over.
  609. */
  610. if (plist_node_empty(&next->avail_list))
  611. goto start_over;
  612. }
  613. spin_unlock(&swap_avail_lock);
  614. atomic_long_inc(&nr_swap_pages);
  615. noswap:
  616. return (swp_entry_t) {0};
  617. }
  618. /* The only caller of this function is now suspend routine */
  619. swp_entry_t get_swap_page_of_type(int type)
  620. {
  621. struct swap_info_struct *si;
  622. pgoff_t offset;
  623. si = swap_info[type];
  624. spin_lock(&si->lock);
  625. if (si && (si->flags & SWP_WRITEOK)) {
  626. atomic_long_dec(&nr_swap_pages);
  627. /* This is called for allocating swap entry, not cache */
  628. offset = scan_swap_map(si, 1);
  629. if (offset) {
  630. spin_unlock(&si->lock);
  631. return swp_entry(type, offset);
  632. }
  633. atomic_long_inc(&nr_swap_pages);
  634. }
  635. spin_unlock(&si->lock);
  636. return (swp_entry_t) {0};
  637. }
  638. static struct swap_info_struct *swap_info_get(swp_entry_t entry)
  639. {
  640. struct swap_info_struct *p;
  641. unsigned long offset, type;
  642. if (!entry.val)
  643. goto out;
  644. type = swp_type(entry);
  645. if (type >= nr_swapfiles)
  646. goto bad_nofile;
  647. p = swap_info[type];
  648. if (!(p->flags & SWP_USED))
  649. goto bad_device;
  650. offset = swp_offset(entry);
  651. if (offset >= p->max)
  652. goto bad_offset;
  653. if (!p->swap_map[offset])
  654. goto bad_free;
  655. spin_lock(&p->lock);
  656. return p;
  657. bad_free:
  658. pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
  659. goto out;
  660. bad_offset:
  661. pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
  662. goto out;
  663. bad_device:
  664. pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
  665. goto out;
  666. bad_nofile:
  667. pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
  668. out:
  669. return NULL;
  670. }
  671. static unsigned char swap_entry_free(struct swap_info_struct *p,
  672. swp_entry_t entry, unsigned char usage)
  673. {
  674. unsigned long offset = swp_offset(entry);
  675. unsigned char count;
  676. unsigned char has_cache;
  677. count = p->swap_map[offset];
  678. has_cache = count & SWAP_HAS_CACHE;
  679. count &= ~SWAP_HAS_CACHE;
  680. if (usage == SWAP_HAS_CACHE) {
  681. VM_BUG_ON(!has_cache);
  682. has_cache = 0;
  683. } else if (count == SWAP_MAP_SHMEM) {
  684. /*
  685. * Or we could insist on shmem.c using a special
  686. * swap_shmem_free() and free_shmem_swap_and_cache()...
  687. */
  688. count = 0;
  689. } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
  690. if (count == COUNT_CONTINUED) {
  691. if (swap_count_continued(p, offset, count))
  692. count = SWAP_MAP_MAX | COUNT_CONTINUED;
  693. else
  694. count = SWAP_MAP_MAX;
  695. } else
  696. count--;
  697. }
  698. usage = count | has_cache;
  699. p->swap_map[offset] = usage;
  700. /* free if no reference */
  701. if (!usage) {
  702. mem_cgroup_uncharge_swap(entry);
  703. dec_cluster_info_page(p, p->cluster_info, offset);
  704. if (offset < p->lowest_bit)
  705. p->lowest_bit = offset;
  706. if (offset > p->highest_bit) {
  707. bool was_full = !p->highest_bit;
  708. p->highest_bit = offset;
  709. if (was_full && (p->flags & SWP_WRITEOK)) {
  710. spin_lock(&swap_avail_lock);
  711. WARN_ON(!plist_node_empty(&p->avail_list));
  712. if (plist_node_empty(&p->avail_list))
  713. plist_add(&p->avail_list,
  714. &swap_avail_head);
  715. spin_unlock(&swap_avail_lock);
  716. }
  717. }
  718. atomic_long_inc(&nr_swap_pages);
  719. p->inuse_pages--;
  720. frontswap_invalidate_page(p->type, offset);
  721. if (p->flags & SWP_BLKDEV) {
  722. struct gendisk *disk = p->bdev->bd_disk;
  723. if (disk->fops->swap_slot_free_notify)
  724. disk->fops->swap_slot_free_notify(p->bdev,
  725. offset);
  726. }
  727. }
  728. return usage;
  729. }
  730. /*
  731. * Caller has made sure that the swap device corresponding to entry
  732. * is still around or has not been recycled.
  733. */
  734. void swap_free(swp_entry_t entry)
  735. {
  736. struct swap_info_struct *p;
  737. p = swap_info_get(entry);
  738. if (p) {
  739. swap_entry_free(p, entry, 1);
  740. spin_unlock(&p->lock);
  741. }
  742. }
  743. /*
  744. * Called after dropping swapcache to decrease refcnt to swap entries.
  745. */
  746. void swapcache_free(swp_entry_t entry)
  747. {
  748. struct swap_info_struct *p;
  749. p = swap_info_get(entry);
  750. if (p) {
  751. swap_entry_free(p, entry, SWAP_HAS_CACHE);
  752. spin_unlock(&p->lock);
  753. }
  754. }
  755. /*
  756. * How many references to page are currently swapped out?
  757. * This does not give an exact answer when swap count is continued,
  758. * but does include the high COUNT_CONTINUED flag to allow for that.
  759. */
  760. int page_swapcount(struct page *page)
  761. {
  762. int count = 0;
  763. struct swap_info_struct *p;
  764. swp_entry_t entry;
  765. entry.val = page_private(page);
  766. p = swap_info_get(entry);
  767. if (p) {
  768. count = swap_count(p->swap_map[swp_offset(entry)]);
  769. spin_unlock(&p->lock);
  770. }
  771. return count;
  772. }
  773. /*
  774. * How many references to @entry are currently swapped out?
  775. * This considers COUNT_CONTINUED so it returns exact answer.
  776. */
  777. int swp_swapcount(swp_entry_t entry)
  778. {
  779. int count, tmp_count, n;
  780. struct swap_info_struct *p;
  781. struct page *page;
  782. pgoff_t offset;
  783. unsigned char *map;
  784. p = swap_info_get(entry);
  785. if (!p)
  786. return 0;
  787. count = swap_count(p->swap_map[swp_offset(entry)]);
  788. if (!(count & COUNT_CONTINUED))
  789. goto out;
  790. count &= ~COUNT_CONTINUED;
  791. n = SWAP_MAP_MAX + 1;
  792. offset = swp_offset(entry);
  793. page = vmalloc_to_page(p->swap_map + offset);
  794. offset &= ~PAGE_MASK;
  795. VM_BUG_ON(page_private(page) != SWP_CONTINUED);
  796. do {
  797. page = list_next_entry(page, lru);
  798. map = kmap_atomic(page);
  799. tmp_count = map[offset];
  800. kunmap_atomic(map);
  801. count += (tmp_count & ~COUNT_CONTINUED) * n;
  802. n *= (SWAP_CONT_MAX + 1);
  803. } while (tmp_count & COUNT_CONTINUED);
  804. out:
  805. spin_unlock(&p->lock);
  806. return count;
  807. }
  808. /*
  809. * We can write to an anon page without COW if there are no other references
  810. * to it. And as a side-effect, free up its swap: because the old content
  811. * on disk will never be read, and seeking back there to write new content
  812. * later would only waste time away from clustering.
  813. */
  814. int reuse_swap_page(struct page *page)
  815. {
  816. int count;
  817. VM_BUG_ON_PAGE(!PageLocked(page), page);
  818. if (unlikely(PageKsm(page)))
  819. return 0;
  820. /* The page is part of THP and cannot be reused */
  821. if (PageTransCompound(page))
  822. return 0;
  823. count = page_mapcount(page);
  824. if (count <= 1 && PageSwapCache(page)) {
  825. count += page_swapcount(page);
  826. if (count == 1 && !PageWriteback(page)) {
  827. delete_from_swap_cache(page);
  828. SetPageDirty(page);
  829. }
  830. }
  831. return count <= 1;
  832. }
  833. /*
  834. * If swap is getting full, or if there are no more mappings of this page,
  835. * then try_to_free_swap is called to free its swap space.
  836. */
  837. int try_to_free_swap(struct page *page)
  838. {
  839. VM_BUG_ON_PAGE(!PageLocked(page), page);
  840. if (!PageSwapCache(page))
  841. return 0;
  842. if (PageWriteback(page))
  843. return 0;
  844. if (page_swapcount(page))
  845. return 0;
  846. /*
  847. * Once hibernation has begun to create its image of memory,
  848. * there's a danger that one of the calls to try_to_free_swap()
  849. * - most probably a call from __try_to_reclaim_swap() while
  850. * hibernation is allocating its own swap pages for the image,
  851. * but conceivably even a call from memory reclaim - will free
  852. * the swap from a page which has already been recorded in the
  853. * image as a clean swapcache page, and then reuse its swap for
  854. * another page of the image. On waking from hibernation, the
  855. * original page might be freed under memory pressure, then
  856. * later read back in from swap, now with the wrong data.
  857. *
  858. * Hibernation suspends storage while it is writing the image
  859. * to disk so check that here.
  860. */
  861. if (pm_suspended_storage())
  862. return 0;
  863. delete_from_swap_cache(page);
  864. SetPageDirty(page);
  865. return 1;
  866. }
  867. /*
  868. * Free the swap entry like above, but also try to
  869. * free the page cache entry if it is the last user.
  870. */
  871. int free_swap_and_cache(swp_entry_t entry)
  872. {
  873. struct swap_info_struct *p;
  874. struct page *page = NULL;
  875. if (non_swap_entry(entry))
  876. return 1;
  877. p = swap_info_get(entry);
  878. if (p) {
  879. if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
  880. page = find_get_page(swap_address_space(entry),
  881. entry.val);
  882. if (page && !trylock_page(page)) {
  883. page_cache_release(page);
  884. page = NULL;
  885. }
  886. }
  887. spin_unlock(&p->lock);
  888. }
  889. if (page) {
  890. /*
  891. * Not mapped elsewhere, or swap space full? Free it!
  892. * Also recheck PageSwapCache now page is locked (above).
  893. */
  894. if (PageSwapCache(page) && !PageWriteback(page) &&
  895. (!page_mapped(page) || mem_cgroup_swap_full(page))) {
  896. delete_from_swap_cache(page);
  897. SetPageDirty(page);
  898. }
  899. unlock_page(page);
  900. page_cache_release(page);
  901. }
  902. return p != NULL;
  903. }
  904. #ifdef CONFIG_HIBERNATION
  905. /*
  906. * Find the swap type that corresponds to given device (if any).
  907. *
  908. * @offset - number of the PAGE_SIZE-sized block of the device, starting
  909. * from 0, in which the swap header is expected to be located.
  910. *
  911. * This is needed for the suspend to disk (aka swsusp).
  912. */
  913. int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  914. {
  915. struct block_device *bdev = NULL;
  916. int type;
  917. if (device)
  918. bdev = bdget(device);
  919. spin_lock(&swap_lock);
  920. for (type = 0; type < nr_swapfiles; type++) {
  921. struct swap_info_struct *sis = swap_info[type];
  922. if (!(sis->flags & SWP_WRITEOK))
  923. continue;
  924. if (!bdev) {
  925. if (bdev_p)
  926. *bdev_p = bdgrab(sis->bdev);
  927. spin_unlock(&swap_lock);
  928. return type;
  929. }
  930. if (bdev == sis->bdev) {
  931. struct swap_extent *se = &sis->first_swap_extent;
  932. if (se->start_block == offset) {
  933. if (bdev_p)
  934. *bdev_p = bdgrab(sis->bdev);
  935. spin_unlock(&swap_lock);
  936. bdput(bdev);
  937. return type;
  938. }
  939. }
  940. }
  941. spin_unlock(&swap_lock);
  942. if (bdev)
  943. bdput(bdev);
  944. return -ENODEV;
  945. }
  946. /*
  947. * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  948. * corresponding to given index in swap_info (swap type).
  949. */
  950. sector_t swapdev_block(int type, pgoff_t offset)
  951. {
  952. struct block_device *bdev;
  953. if ((unsigned int)type >= nr_swapfiles)
  954. return 0;
  955. if (!(swap_info[type]->flags & SWP_WRITEOK))
  956. return 0;
  957. return map_swap_entry(swp_entry(type, offset), &bdev);
  958. }
  959. /*
  960. * Return either the total number of swap pages of given type, or the number
  961. * of free pages of that type (depending on @free)
  962. *
  963. * This is needed for software suspend
  964. */
  965. unsigned int count_swap_pages(int type, int free)
  966. {
  967. unsigned int n = 0;
  968. spin_lock(&swap_lock);
  969. if ((unsigned int)type < nr_swapfiles) {
  970. struct swap_info_struct *sis = swap_info[type];
  971. spin_lock(&sis->lock);
  972. if (sis->flags & SWP_WRITEOK) {
  973. n = sis->pages;
  974. if (free)
  975. n -= sis->inuse_pages;
  976. }
  977. spin_unlock(&sis->lock);
  978. }
  979. spin_unlock(&swap_lock);
  980. return n;
  981. }
  982. #endif /* CONFIG_HIBERNATION */
  983. static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
  984. {
  985. return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
  986. }
  987. /*
  988. * No need to decide whether this PTE shares the swap entry with others,
  989. * just let do_wp_page work it out if a write is requested later - to
  990. * force COW, vm_page_prot omits write permission from any private vma.
  991. */
  992. static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  993. unsigned long addr, swp_entry_t entry, struct page *page)
  994. {
  995. struct page *swapcache;
  996. struct mem_cgroup *memcg;
  997. spinlock_t *ptl;
  998. pte_t *pte;
  999. int ret = 1;
  1000. swapcache = page;
  1001. page = ksm_might_need_to_copy(page, vma, addr);
  1002. if (unlikely(!page))
  1003. return -ENOMEM;
  1004. if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
  1005. &memcg, false)) {
  1006. ret = -ENOMEM;
  1007. goto out_nolock;
  1008. }
  1009. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  1010. if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
  1011. mem_cgroup_cancel_charge(page, memcg, false);
  1012. ret = 0;
  1013. goto out;
  1014. }
  1015. dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
  1016. inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
  1017. get_page(page);
  1018. set_pte_at(vma->vm_mm, addr, pte,
  1019. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  1020. if (page == swapcache) {
  1021. page_add_anon_rmap(page, vma, addr, false);
  1022. mem_cgroup_commit_charge(page, memcg, true, false);
  1023. } else { /* ksm created a completely new copy */
  1024. page_add_new_anon_rmap(page, vma, addr, false);
  1025. mem_cgroup_commit_charge(page, memcg, false, false);
  1026. lru_cache_add_active_or_unevictable(page, vma);
  1027. }
  1028. swap_free(entry);
  1029. /*
  1030. * Move the page to the active list so it is not
  1031. * immediately swapped out again after swapon.
  1032. */
  1033. activate_page(page);
  1034. out:
  1035. pte_unmap_unlock(pte, ptl);
  1036. out_nolock:
  1037. if (page != swapcache) {
  1038. unlock_page(page);
  1039. put_page(page);
  1040. }
  1041. return ret;
  1042. }
  1043. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  1044. unsigned long addr, unsigned long end,
  1045. swp_entry_t entry, struct page *page)
  1046. {
  1047. pte_t swp_pte = swp_entry_to_pte(entry);
  1048. pte_t *pte;
  1049. int ret = 0;
  1050. /*
  1051. * We don't actually need pte lock while scanning for swp_pte: since
  1052. * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  1053. * page table while we're scanning; though it could get zapped, and on
  1054. * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  1055. * of unmatched parts which look like swp_pte, so unuse_pte must
  1056. * recheck under pte lock. Scanning without pte lock lets it be
  1057. * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  1058. */
  1059. pte = pte_offset_map(pmd, addr);
  1060. do {
  1061. /*
  1062. * swapoff spends a _lot_ of time in this loop!
  1063. * Test inline before going to call unuse_pte.
  1064. */
  1065. if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
  1066. pte_unmap(pte);
  1067. ret = unuse_pte(vma, pmd, addr, entry, page);
  1068. if (ret)
  1069. goto out;
  1070. pte = pte_offset_map(pmd, addr);
  1071. }
  1072. } while (pte++, addr += PAGE_SIZE, addr != end);
  1073. pte_unmap(pte - 1);
  1074. out:
  1075. return ret;
  1076. }
  1077. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  1078. unsigned long addr, unsigned long end,
  1079. swp_entry_t entry, struct page *page)
  1080. {
  1081. pmd_t *pmd;
  1082. unsigned long next;
  1083. int ret;
  1084. pmd = pmd_offset(pud, addr);
  1085. do {
  1086. next = pmd_addr_end(addr, end);
  1087. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1088. continue;
  1089. ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  1090. if (ret)
  1091. return ret;
  1092. } while (pmd++, addr = next, addr != end);
  1093. return 0;
  1094. }
  1095. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  1096. unsigned long addr, unsigned long end,
  1097. swp_entry_t entry, struct page *page)
  1098. {
  1099. pud_t *pud;
  1100. unsigned long next;
  1101. int ret;
  1102. pud = pud_offset(pgd, addr);
  1103. do {
  1104. next = pud_addr_end(addr, end);
  1105. if (pud_none_or_clear_bad(pud))
  1106. continue;
  1107. ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  1108. if (ret)
  1109. return ret;
  1110. } while (pud++, addr = next, addr != end);
  1111. return 0;
  1112. }
  1113. static int unuse_vma(struct vm_area_struct *vma,
  1114. swp_entry_t entry, struct page *page)
  1115. {
  1116. pgd_t *pgd;
  1117. unsigned long addr, end, next;
  1118. int ret;
  1119. if (page_anon_vma(page)) {
  1120. addr = page_address_in_vma(page, vma);
  1121. if (addr == -EFAULT)
  1122. return 0;
  1123. else
  1124. end = addr + PAGE_SIZE;
  1125. } else {
  1126. addr = vma->vm_start;
  1127. end = vma->vm_end;
  1128. }
  1129. pgd = pgd_offset(vma->vm_mm, addr);
  1130. do {
  1131. next = pgd_addr_end(addr, end);
  1132. if (pgd_none_or_clear_bad(pgd))
  1133. continue;
  1134. ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  1135. if (ret)
  1136. return ret;
  1137. } while (pgd++, addr = next, addr != end);
  1138. return 0;
  1139. }
  1140. static int unuse_mm(struct mm_struct *mm,
  1141. swp_entry_t entry, struct page *page)
  1142. {
  1143. struct vm_area_struct *vma;
  1144. int ret = 0;
  1145. if (!down_read_trylock(&mm->mmap_sem)) {
  1146. /*
  1147. * Activate page so shrink_inactive_list is unlikely to unmap
  1148. * its ptes while lock is dropped, so swapoff can make progress.
  1149. */
  1150. activate_page(page);
  1151. unlock_page(page);
  1152. down_read(&mm->mmap_sem);
  1153. lock_page(page);
  1154. }
  1155. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1156. if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  1157. break;
  1158. }
  1159. up_read(&mm->mmap_sem);
  1160. return (ret < 0)? ret: 0;
  1161. }
  1162. /*
  1163. * Scan swap_map (or frontswap_map if frontswap parameter is true)
  1164. * from current position to next entry still in use.
  1165. * Recycle to start on reaching the end, returning 0 when empty.
  1166. */
  1167. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  1168. unsigned int prev, bool frontswap)
  1169. {
  1170. unsigned int max = si->max;
  1171. unsigned int i = prev;
  1172. unsigned char count;
  1173. /*
  1174. * No need for swap_lock here: we're just looking
  1175. * for whether an entry is in use, not modifying it; false
  1176. * hits are okay, and sys_swapoff() has already prevented new
  1177. * allocations from this area (while holding swap_lock).
  1178. */
  1179. for (;;) {
  1180. if (++i >= max) {
  1181. if (!prev) {
  1182. i = 0;
  1183. break;
  1184. }
  1185. /*
  1186. * No entries in use at top of swap_map,
  1187. * loop back to start and recheck there.
  1188. */
  1189. max = prev + 1;
  1190. prev = 0;
  1191. i = 1;
  1192. }
  1193. if (frontswap) {
  1194. if (frontswap_test(si, i))
  1195. break;
  1196. else
  1197. continue;
  1198. }
  1199. count = READ_ONCE(si->swap_map[i]);
  1200. if (count && swap_count(count) != SWAP_MAP_BAD)
  1201. break;
  1202. }
  1203. return i;
  1204. }
  1205. /*
  1206. * We completely avoid races by reading each swap page in advance,
  1207. * and then search for the process using it. All the necessary
  1208. * page table adjustments can then be made atomically.
  1209. *
  1210. * if the boolean frontswap is true, only unuse pages_to_unuse pages;
  1211. * pages_to_unuse==0 means all pages; ignored if frontswap is false
  1212. */
  1213. int try_to_unuse(unsigned int type, bool frontswap,
  1214. unsigned long pages_to_unuse)
  1215. {
  1216. struct swap_info_struct *si = swap_info[type];
  1217. struct mm_struct *start_mm;
  1218. volatile unsigned char *swap_map; /* swap_map is accessed without
  1219. * locking. Mark it as volatile
  1220. * to prevent compiler doing
  1221. * something odd.
  1222. */
  1223. unsigned char swcount;
  1224. struct page *page;
  1225. swp_entry_t entry;
  1226. unsigned int i = 0;
  1227. int retval = 0;
  1228. /*
  1229. * When searching mms for an entry, a good strategy is to
  1230. * start at the first mm we freed the previous entry from
  1231. * (though actually we don't notice whether we or coincidence
  1232. * freed the entry). Initialize this start_mm with a hold.
  1233. *
  1234. * A simpler strategy would be to start at the last mm we
  1235. * freed the previous entry from; but that would take less
  1236. * advantage of mmlist ordering, which clusters forked mms
  1237. * together, child after parent. If we race with dup_mmap(), we
  1238. * prefer to resolve parent before child, lest we miss entries
  1239. * duplicated after we scanned child: using last mm would invert
  1240. * that.
  1241. */
  1242. start_mm = &init_mm;
  1243. atomic_inc(&init_mm.mm_users);
  1244. /*
  1245. * Keep on scanning until all entries have gone. Usually,
  1246. * one pass through swap_map is enough, but not necessarily:
  1247. * there are races when an instance of an entry might be missed.
  1248. */
  1249. while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
  1250. if (signal_pending(current)) {
  1251. retval = -EINTR;
  1252. break;
  1253. }
  1254. /*
  1255. * Get a page for the entry, using the existing swap
  1256. * cache page if there is one. Otherwise, get a clean
  1257. * page and read the swap into it.
  1258. */
  1259. swap_map = &si->swap_map[i];
  1260. entry = swp_entry(type, i);
  1261. page = read_swap_cache_async(entry,
  1262. GFP_HIGHUSER_MOVABLE, NULL, 0);
  1263. if (!page) {
  1264. /*
  1265. * Either swap_duplicate() failed because entry
  1266. * has been freed independently, and will not be
  1267. * reused since sys_swapoff() already disabled
  1268. * allocation from here, or alloc_page() failed.
  1269. */
  1270. swcount = *swap_map;
  1271. /*
  1272. * We don't hold lock here, so the swap entry could be
  1273. * SWAP_MAP_BAD (when the cluster is discarding).
  1274. * Instead of fail out, We can just skip the swap
  1275. * entry because swapoff will wait for discarding
  1276. * finish anyway.
  1277. */
  1278. if (!swcount || swcount == SWAP_MAP_BAD)
  1279. continue;
  1280. retval = -ENOMEM;
  1281. break;
  1282. }
  1283. /*
  1284. * Don't hold on to start_mm if it looks like exiting.
  1285. */
  1286. if (atomic_read(&start_mm->mm_users) == 1) {
  1287. mmput(start_mm);
  1288. start_mm = &init_mm;
  1289. atomic_inc(&init_mm.mm_users);
  1290. }
  1291. /*
  1292. * Wait for and lock page. When do_swap_page races with
  1293. * try_to_unuse, do_swap_page can handle the fault much
  1294. * faster than try_to_unuse can locate the entry. This
  1295. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  1296. * defer to do_swap_page in such a case - in some tests,
  1297. * do_swap_page and try_to_unuse repeatedly compete.
  1298. */
  1299. wait_on_page_locked(page);
  1300. wait_on_page_writeback(page);
  1301. lock_page(page);
  1302. wait_on_page_writeback(page);
  1303. /*
  1304. * Remove all references to entry.
  1305. */
  1306. swcount = *swap_map;
  1307. if (swap_count(swcount) == SWAP_MAP_SHMEM) {
  1308. retval = shmem_unuse(entry, page);
  1309. /* page has already been unlocked and released */
  1310. if (retval < 0)
  1311. break;
  1312. continue;
  1313. }
  1314. if (swap_count(swcount) && start_mm != &init_mm)
  1315. retval = unuse_mm(start_mm, entry, page);
  1316. if (swap_count(*swap_map)) {
  1317. int set_start_mm = (*swap_map >= swcount);
  1318. struct list_head *p = &start_mm->mmlist;
  1319. struct mm_struct *new_start_mm = start_mm;
  1320. struct mm_struct *prev_mm = start_mm;
  1321. struct mm_struct *mm;
  1322. atomic_inc(&new_start_mm->mm_users);
  1323. atomic_inc(&prev_mm->mm_users);
  1324. spin_lock(&mmlist_lock);
  1325. while (swap_count(*swap_map) && !retval &&
  1326. (p = p->next) != &start_mm->mmlist) {
  1327. mm = list_entry(p, struct mm_struct, mmlist);
  1328. if (!atomic_inc_not_zero(&mm->mm_users))
  1329. continue;
  1330. spin_unlock(&mmlist_lock);
  1331. mmput(prev_mm);
  1332. prev_mm = mm;
  1333. cond_resched();
  1334. swcount = *swap_map;
  1335. if (!swap_count(swcount)) /* any usage ? */
  1336. ;
  1337. else if (mm == &init_mm)
  1338. set_start_mm = 1;
  1339. else
  1340. retval = unuse_mm(mm, entry, page);
  1341. if (set_start_mm && *swap_map < swcount) {
  1342. mmput(new_start_mm);
  1343. atomic_inc(&mm->mm_users);
  1344. new_start_mm = mm;
  1345. set_start_mm = 0;
  1346. }
  1347. spin_lock(&mmlist_lock);
  1348. }
  1349. spin_unlock(&mmlist_lock);
  1350. mmput(prev_mm);
  1351. mmput(start_mm);
  1352. start_mm = new_start_mm;
  1353. }
  1354. if (retval) {
  1355. unlock_page(page);
  1356. page_cache_release(page);
  1357. break;
  1358. }
  1359. /*
  1360. * If a reference remains (rare), we would like to leave
  1361. * the page in the swap cache; but try_to_unmap could
  1362. * then re-duplicate the entry once we drop page lock,
  1363. * so we might loop indefinitely; also, that page could
  1364. * not be swapped out to other storage meanwhile. So:
  1365. * delete from cache even if there's another reference,
  1366. * after ensuring that the data has been saved to disk -
  1367. * since if the reference remains (rarer), it will be
  1368. * read from disk into another page. Splitting into two
  1369. * pages would be incorrect if swap supported "shared
  1370. * private" pages, but they are handled by tmpfs files.
  1371. *
  1372. * Given how unuse_vma() targets one particular offset
  1373. * in an anon_vma, once the anon_vma has been determined,
  1374. * this splitting happens to be just what is needed to
  1375. * handle where KSM pages have been swapped out: re-reading
  1376. * is unnecessarily slow, but we can fix that later on.
  1377. */
  1378. if (swap_count(*swap_map) &&
  1379. PageDirty(page) && PageSwapCache(page)) {
  1380. struct writeback_control wbc = {
  1381. .sync_mode = WB_SYNC_NONE,
  1382. };
  1383. swap_writepage(page, &wbc);
  1384. lock_page(page);
  1385. wait_on_page_writeback(page);
  1386. }
  1387. /*
  1388. * It is conceivable that a racing task removed this page from
  1389. * swap cache just before we acquired the page lock at the top,
  1390. * or while we dropped it in unuse_mm(). The page might even
  1391. * be back in swap cache on another swap area: that we must not
  1392. * delete, since it may not have been written out to swap yet.
  1393. */
  1394. if (PageSwapCache(page) &&
  1395. likely(page_private(page) == entry.val))
  1396. delete_from_swap_cache(page);
  1397. /*
  1398. * So we could skip searching mms once swap count went
  1399. * to 1, we did not mark any present ptes as dirty: must
  1400. * mark page dirty so shrink_page_list will preserve it.
  1401. */
  1402. SetPageDirty(page);
  1403. unlock_page(page);
  1404. page_cache_release(page);
  1405. /*
  1406. * Make sure that we aren't completely killing
  1407. * interactive performance.
  1408. */
  1409. cond_resched();
  1410. if (frontswap && pages_to_unuse > 0) {
  1411. if (!--pages_to_unuse)
  1412. break;
  1413. }
  1414. }
  1415. mmput(start_mm);
  1416. return retval;
  1417. }
  1418. /*
  1419. * After a successful try_to_unuse, if no swap is now in use, we know
  1420. * we can empty the mmlist. swap_lock must be held on entry and exit.
  1421. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  1422. * added to the mmlist just after page_duplicate - before would be racy.
  1423. */
  1424. static void drain_mmlist(void)
  1425. {
  1426. struct list_head *p, *next;
  1427. unsigned int type;
  1428. for (type = 0; type < nr_swapfiles; type++)
  1429. if (swap_info[type]->inuse_pages)
  1430. return;
  1431. spin_lock(&mmlist_lock);
  1432. list_for_each_safe(p, next, &init_mm.mmlist)
  1433. list_del_init(p);
  1434. spin_unlock(&mmlist_lock);
  1435. }
  1436. /*
  1437. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  1438. * corresponds to page offset for the specified swap entry.
  1439. * Note that the type of this function is sector_t, but it returns page offset
  1440. * into the bdev, not sector offset.
  1441. */
  1442. static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
  1443. {
  1444. struct swap_info_struct *sis;
  1445. struct swap_extent *start_se;
  1446. struct swap_extent *se;
  1447. pgoff_t offset;
  1448. sis = swap_info[swp_type(entry)];
  1449. *bdev = sis->bdev;
  1450. offset = swp_offset(entry);
  1451. start_se = sis->curr_swap_extent;
  1452. se = start_se;
  1453. for ( ; ; ) {
  1454. if (se->start_page <= offset &&
  1455. offset < (se->start_page + se->nr_pages)) {
  1456. return se->start_block + (offset - se->start_page);
  1457. }
  1458. se = list_next_entry(se, list);
  1459. sis->curr_swap_extent = se;
  1460. BUG_ON(se == start_se); /* It *must* be present */
  1461. }
  1462. }
  1463. /*
  1464. * Returns the page offset into bdev for the specified page's swap entry.
  1465. */
  1466. sector_t map_swap_page(struct page *page, struct block_device **bdev)
  1467. {
  1468. swp_entry_t entry;
  1469. entry.val = page_private(page);
  1470. return map_swap_entry(entry, bdev);
  1471. }
  1472. /*
  1473. * Free all of a swapdev's extent information
  1474. */
  1475. static void destroy_swap_extents(struct swap_info_struct *sis)
  1476. {
  1477. while (!list_empty(&sis->first_swap_extent.list)) {
  1478. struct swap_extent *se;
  1479. se = list_first_entry(&sis->first_swap_extent.list,
  1480. struct swap_extent, list);
  1481. list_del(&se->list);
  1482. kfree(se);
  1483. }
  1484. if (sis->flags & SWP_FILE) {
  1485. struct file *swap_file = sis->swap_file;
  1486. struct address_space *mapping = swap_file->f_mapping;
  1487. sis->flags &= ~SWP_FILE;
  1488. mapping->a_ops->swap_deactivate(swap_file);
  1489. }
  1490. }
  1491. /*
  1492. * Add a block range (and the corresponding page range) into this swapdev's
  1493. * extent list. The extent list is kept sorted in page order.
  1494. *
  1495. * This function rather assumes that it is called in ascending page order.
  1496. */
  1497. int
  1498. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  1499. unsigned long nr_pages, sector_t start_block)
  1500. {
  1501. struct swap_extent *se;
  1502. struct swap_extent *new_se;
  1503. struct list_head *lh;
  1504. if (start_page == 0) {
  1505. se = &sis->first_swap_extent;
  1506. sis->curr_swap_extent = se;
  1507. se->start_page = 0;
  1508. se->nr_pages = nr_pages;
  1509. se->start_block = start_block;
  1510. return 1;
  1511. } else {
  1512. lh = sis->first_swap_extent.list.prev; /* Highest extent */
  1513. se = list_entry(lh, struct swap_extent, list);
  1514. BUG_ON(se->start_page + se->nr_pages != start_page);
  1515. if (se->start_block + se->nr_pages == start_block) {
  1516. /* Merge it */
  1517. se->nr_pages += nr_pages;
  1518. return 0;
  1519. }
  1520. }
  1521. /*
  1522. * No merge. Insert a new extent, preserving ordering.
  1523. */
  1524. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  1525. if (new_se == NULL)
  1526. return -ENOMEM;
  1527. new_se->start_page = start_page;
  1528. new_se->nr_pages = nr_pages;
  1529. new_se->start_block = start_block;
  1530. list_add_tail(&new_se->list, &sis->first_swap_extent.list);
  1531. return 1;
  1532. }
  1533. /*
  1534. * A `swap extent' is a simple thing which maps a contiguous range of pages
  1535. * onto a contiguous range of disk blocks. An ordered list of swap extents
  1536. * is built at swapon time and is then used at swap_writepage/swap_readpage
  1537. * time for locating where on disk a page belongs.
  1538. *
  1539. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  1540. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  1541. * swap files identically.
  1542. *
  1543. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  1544. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  1545. * swapfiles are handled *identically* after swapon time.
  1546. *
  1547. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  1548. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  1549. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  1550. * requirements, they are simply tossed out - we will never use those blocks
  1551. * for swapping.
  1552. *
  1553. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  1554. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  1555. * which will scribble on the fs.
  1556. *
  1557. * The amount of disk space which a single swap extent represents varies.
  1558. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  1559. * extents in the list. To avoid much list walking, we cache the previous
  1560. * search location in `curr_swap_extent', and start new searches from there.
  1561. * This is extremely effective. The average number of iterations in
  1562. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  1563. */
  1564. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  1565. {
  1566. struct file *swap_file = sis->swap_file;
  1567. struct address_space *mapping = swap_file->f_mapping;
  1568. struct inode *inode = mapping->host;
  1569. int ret;
  1570. if (S_ISBLK(inode->i_mode)) {
  1571. ret = add_swap_extent(sis, 0, sis->max, 0);
  1572. *span = sis->pages;
  1573. return ret;
  1574. }
  1575. if (mapping->a_ops->swap_activate) {
  1576. ret = mapping->a_ops->swap_activate(sis, swap_file, span);
  1577. if (!ret) {
  1578. sis->flags |= SWP_FILE;
  1579. ret = add_swap_extent(sis, 0, sis->max, 0);
  1580. *span = sis->pages;
  1581. }
  1582. return ret;
  1583. }
  1584. return generic_swapfile_activate(sis, swap_file, span);
  1585. }
  1586. static void _enable_swap_info(struct swap_info_struct *p, int prio,
  1587. unsigned char *swap_map,
  1588. struct swap_cluster_info *cluster_info)
  1589. {
  1590. if (prio >= 0)
  1591. p->prio = prio;
  1592. else
  1593. p->prio = --least_priority;
  1594. /*
  1595. * the plist prio is negated because plist ordering is
  1596. * low-to-high, while swap ordering is high-to-low
  1597. */
  1598. p->list.prio = -p->prio;
  1599. p->avail_list.prio = -p->prio;
  1600. p->swap_map = swap_map;
  1601. p->cluster_info = cluster_info;
  1602. p->flags |= SWP_WRITEOK;
  1603. atomic_long_add(p->pages, &nr_swap_pages);
  1604. total_swap_pages += p->pages;
  1605. assert_spin_locked(&swap_lock);
  1606. /*
  1607. * both lists are plists, and thus priority ordered.
  1608. * swap_active_head needs to be priority ordered for swapoff(),
  1609. * which on removal of any swap_info_struct with an auto-assigned
  1610. * (i.e. negative) priority increments the auto-assigned priority
  1611. * of any lower-priority swap_info_structs.
  1612. * swap_avail_head needs to be priority ordered for get_swap_page(),
  1613. * which allocates swap pages from the highest available priority
  1614. * swap_info_struct.
  1615. */
  1616. plist_add(&p->list, &swap_active_head);
  1617. spin_lock(&swap_avail_lock);
  1618. plist_add(&p->avail_list, &swap_avail_head);
  1619. spin_unlock(&swap_avail_lock);
  1620. }
  1621. static void enable_swap_info(struct swap_info_struct *p, int prio,
  1622. unsigned char *swap_map,
  1623. struct swap_cluster_info *cluster_info,
  1624. unsigned long *frontswap_map)
  1625. {
  1626. frontswap_init(p->type, frontswap_map);
  1627. spin_lock(&swap_lock);
  1628. spin_lock(&p->lock);
  1629. _enable_swap_info(p, prio, swap_map, cluster_info);
  1630. spin_unlock(&p->lock);
  1631. spin_unlock(&swap_lock);
  1632. }
  1633. static void reinsert_swap_info(struct swap_info_struct *p)
  1634. {
  1635. spin_lock(&swap_lock);
  1636. spin_lock(&p->lock);
  1637. _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
  1638. spin_unlock(&p->lock);
  1639. spin_unlock(&swap_lock);
  1640. }
  1641. SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
  1642. {
  1643. struct swap_info_struct *p = NULL;
  1644. unsigned char *swap_map;
  1645. struct swap_cluster_info *cluster_info;
  1646. unsigned long *frontswap_map;
  1647. struct file *swap_file, *victim;
  1648. struct address_space *mapping;
  1649. struct inode *inode;
  1650. struct filename *pathname;
  1651. int err, found = 0;
  1652. unsigned int old_block_size;
  1653. if (!capable(CAP_SYS_ADMIN))
  1654. return -EPERM;
  1655. BUG_ON(!current->mm);
  1656. pathname = getname(specialfile);
  1657. if (IS_ERR(pathname))
  1658. return PTR_ERR(pathname);
  1659. victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
  1660. err = PTR_ERR(victim);
  1661. if (IS_ERR(victim))
  1662. goto out;
  1663. mapping = victim->f_mapping;
  1664. spin_lock(&swap_lock);
  1665. plist_for_each_entry(p, &swap_active_head, list) {
  1666. if (p->flags & SWP_WRITEOK) {
  1667. if (p->swap_file->f_mapping == mapping) {
  1668. found = 1;
  1669. break;
  1670. }
  1671. }
  1672. }
  1673. if (!found) {
  1674. err = -EINVAL;
  1675. spin_unlock(&swap_lock);
  1676. goto out_dput;
  1677. }
  1678. if (!security_vm_enough_memory_mm(current->mm, p->pages))
  1679. vm_unacct_memory(p->pages);
  1680. else {
  1681. err = -ENOMEM;
  1682. spin_unlock(&swap_lock);
  1683. goto out_dput;
  1684. }
  1685. spin_lock(&swap_avail_lock);
  1686. plist_del(&p->avail_list, &swap_avail_head);
  1687. spin_unlock(&swap_avail_lock);
  1688. spin_lock(&p->lock);
  1689. if (p->prio < 0) {
  1690. struct swap_info_struct *si = p;
  1691. plist_for_each_entry_continue(si, &swap_active_head, list) {
  1692. si->prio++;
  1693. si->list.prio--;
  1694. si->avail_list.prio--;
  1695. }
  1696. least_priority++;
  1697. }
  1698. plist_del(&p->list, &swap_active_head);
  1699. atomic_long_sub(p->pages, &nr_swap_pages);
  1700. total_swap_pages -= p->pages;
  1701. p->flags &= ~SWP_WRITEOK;
  1702. spin_unlock(&p->lock);
  1703. spin_unlock(&swap_lock);
  1704. set_current_oom_origin();
  1705. err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
  1706. clear_current_oom_origin();
  1707. if (err) {
  1708. /* re-insert swap space back into swap_list */
  1709. reinsert_swap_info(p);
  1710. goto out_dput;
  1711. }
  1712. flush_work(&p->discard_work);
  1713. destroy_swap_extents(p);
  1714. if (p->flags & SWP_CONTINUED)
  1715. free_swap_count_continuations(p);
  1716. mutex_lock(&swapon_mutex);
  1717. spin_lock(&swap_lock);
  1718. spin_lock(&p->lock);
  1719. drain_mmlist();
  1720. /* wait for anyone still in scan_swap_map */
  1721. p->highest_bit = 0; /* cuts scans short */
  1722. while (p->flags >= SWP_SCANNING) {
  1723. spin_unlock(&p->lock);
  1724. spin_unlock(&swap_lock);
  1725. schedule_timeout_uninterruptible(1);
  1726. spin_lock(&swap_lock);
  1727. spin_lock(&p->lock);
  1728. }
  1729. swap_file = p->swap_file;
  1730. old_block_size = p->old_block_size;
  1731. p->swap_file = NULL;
  1732. p->max = 0;
  1733. swap_map = p->swap_map;
  1734. p->swap_map = NULL;
  1735. cluster_info = p->cluster_info;
  1736. p->cluster_info = NULL;
  1737. frontswap_map = frontswap_map_get(p);
  1738. spin_unlock(&p->lock);
  1739. spin_unlock(&swap_lock);
  1740. frontswap_invalidate_area(p->type);
  1741. frontswap_map_set(p, NULL);
  1742. mutex_unlock(&swapon_mutex);
  1743. free_percpu(p->percpu_cluster);
  1744. p->percpu_cluster = NULL;
  1745. vfree(swap_map);
  1746. vfree(cluster_info);
  1747. vfree(frontswap_map);
  1748. /* Destroy swap account information */
  1749. swap_cgroup_swapoff(p->type);
  1750. inode = mapping->host;
  1751. if (S_ISBLK(inode->i_mode)) {
  1752. struct block_device *bdev = I_BDEV(inode);
  1753. set_blocksize(bdev, old_block_size);
  1754. blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
  1755. } else {
  1756. inode_lock(inode);
  1757. inode->i_flags &= ~S_SWAPFILE;
  1758. inode_unlock(inode);
  1759. }
  1760. filp_close(swap_file, NULL);
  1761. /*
  1762. * Clear the SWP_USED flag after all resources are freed so that swapon
  1763. * can reuse this swap_info in alloc_swap_info() safely. It is ok to
  1764. * not hold p->lock after we cleared its SWP_WRITEOK.
  1765. */
  1766. spin_lock(&swap_lock);
  1767. p->flags = 0;
  1768. spin_unlock(&swap_lock);
  1769. err = 0;
  1770. atomic_inc(&proc_poll_event);
  1771. wake_up_interruptible(&proc_poll_wait);
  1772. out_dput:
  1773. filp_close(victim, NULL);
  1774. out:
  1775. putname(pathname);
  1776. return err;
  1777. }
  1778. #ifdef CONFIG_PROC_FS
  1779. static unsigned swaps_poll(struct file *file, poll_table *wait)
  1780. {
  1781. struct seq_file *seq = file->private_data;
  1782. poll_wait(file, &proc_poll_wait, wait);
  1783. if (seq->poll_event != atomic_read(&proc_poll_event)) {
  1784. seq->poll_event = atomic_read(&proc_poll_event);
  1785. return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
  1786. }
  1787. return POLLIN | POLLRDNORM;
  1788. }
  1789. /* iterator */
  1790. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1791. {
  1792. struct swap_info_struct *si;
  1793. int type;
  1794. loff_t l = *pos;
  1795. mutex_lock(&swapon_mutex);
  1796. if (!l)
  1797. return SEQ_START_TOKEN;
  1798. for (type = 0; type < nr_swapfiles; type++) {
  1799. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1800. si = swap_info[type];
  1801. if (!(si->flags & SWP_USED) || !si->swap_map)
  1802. continue;
  1803. if (!--l)
  1804. return si;
  1805. }
  1806. return NULL;
  1807. }
  1808. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1809. {
  1810. struct swap_info_struct *si = v;
  1811. int type;
  1812. if (v == SEQ_START_TOKEN)
  1813. type = 0;
  1814. else
  1815. type = si->type + 1;
  1816. for (; type < nr_swapfiles; type++) {
  1817. smp_rmb(); /* read nr_swapfiles before swap_info[type] */
  1818. si = swap_info[type];
  1819. if (!(si->flags & SWP_USED) || !si->swap_map)
  1820. continue;
  1821. ++*pos;
  1822. return si;
  1823. }
  1824. return NULL;
  1825. }
  1826. static void swap_stop(struct seq_file *swap, void *v)
  1827. {
  1828. mutex_unlock(&swapon_mutex);
  1829. }
  1830. static int swap_show(struct seq_file *swap, void *v)
  1831. {
  1832. struct swap_info_struct *si = v;
  1833. struct file *file;
  1834. int len;
  1835. if (si == SEQ_START_TOKEN) {
  1836. seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1837. return 0;
  1838. }
  1839. file = si->swap_file;
  1840. len = seq_file_path(swap, file, " \t\n\\");
  1841. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1842. len < 40 ? 40 - len : 1, " ",
  1843. S_ISBLK(file_inode(file)->i_mode) ?
  1844. "partition" : "file\t",
  1845. si->pages << (PAGE_SHIFT - 10),
  1846. si->inuse_pages << (PAGE_SHIFT - 10),
  1847. si->prio);
  1848. return 0;
  1849. }
  1850. static const struct seq_operations swaps_op = {
  1851. .start = swap_start,
  1852. .next = swap_next,
  1853. .stop = swap_stop,
  1854. .show = swap_show
  1855. };
  1856. static int swaps_open(struct inode *inode, struct file *file)
  1857. {
  1858. struct seq_file *seq;
  1859. int ret;
  1860. ret = seq_open(file, &swaps_op);
  1861. if (ret)
  1862. return ret;
  1863. seq = file->private_data;
  1864. seq->poll_event = atomic_read(&proc_poll_event);
  1865. return 0;
  1866. }
  1867. static const struct file_operations proc_swaps_operations = {
  1868. .open = swaps_open,
  1869. .read = seq_read,
  1870. .llseek = seq_lseek,
  1871. .release = seq_release,
  1872. .poll = swaps_poll,
  1873. };
  1874. static int __init procswaps_init(void)
  1875. {
  1876. proc_create("swaps", 0, NULL, &proc_swaps_operations);
  1877. return 0;
  1878. }
  1879. __initcall(procswaps_init);
  1880. #endif /* CONFIG_PROC_FS */
  1881. #ifdef MAX_SWAPFILES_CHECK
  1882. static int __init max_swapfiles_check(void)
  1883. {
  1884. MAX_SWAPFILES_CHECK();
  1885. return 0;
  1886. }
  1887. late_initcall(max_swapfiles_check);
  1888. #endif
  1889. static struct swap_info_struct *alloc_swap_info(void)
  1890. {
  1891. struct swap_info_struct *p;
  1892. unsigned int type;
  1893. p = kzalloc(sizeof(*p), GFP_KERNEL);
  1894. if (!p)
  1895. return ERR_PTR(-ENOMEM);
  1896. spin_lock(&swap_lock);
  1897. for (type = 0; type < nr_swapfiles; type++) {
  1898. if (!(swap_info[type]->flags & SWP_USED))
  1899. break;
  1900. }
  1901. if (type >= MAX_SWAPFILES) {
  1902. spin_unlock(&swap_lock);
  1903. kfree(p);
  1904. return ERR_PTR(-EPERM);
  1905. }
  1906. if (type >= nr_swapfiles) {
  1907. p->type = type;
  1908. swap_info[type] = p;
  1909. /*
  1910. * Write swap_info[type] before nr_swapfiles, in case a
  1911. * racing procfs swap_start() or swap_next() is reading them.
  1912. * (We never shrink nr_swapfiles, we never free this entry.)
  1913. */
  1914. smp_wmb();
  1915. nr_swapfiles++;
  1916. } else {
  1917. kfree(p);
  1918. p = swap_info[type];
  1919. /*
  1920. * Do not memset this entry: a racing procfs swap_next()
  1921. * would be relying on p->type to remain valid.
  1922. */
  1923. }
  1924. INIT_LIST_HEAD(&p->first_swap_extent.list);
  1925. plist_node_init(&p->list, 0);
  1926. plist_node_init(&p->avail_list, 0);
  1927. p->flags = SWP_USED;
  1928. spin_unlock(&swap_lock);
  1929. spin_lock_init(&p->lock);
  1930. return p;
  1931. }
  1932. static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
  1933. {
  1934. int error;
  1935. if (S_ISBLK(inode->i_mode)) {
  1936. p->bdev = bdgrab(I_BDEV(inode));
  1937. error = blkdev_get(p->bdev,
  1938. FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
  1939. if (error < 0) {
  1940. p->bdev = NULL;
  1941. return error;
  1942. }
  1943. p->old_block_size = block_size(p->bdev);
  1944. error = set_blocksize(p->bdev, PAGE_SIZE);
  1945. if (error < 0)
  1946. return error;
  1947. p->flags |= SWP_BLKDEV;
  1948. } else if (S_ISREG(inode->i_mode)) {
  1949. p->bdev = inode->i_sb->s_bdev;
  1950. inode_lock(inode);
  1951. if (IS_SWAPFILE(inode))
  1952. return -EBUSY;
  1953. } else
  1954. return -EINVAL;
  1955. return 0;
  1956. }
  1957. static unsigned long read_swap_header(struct swap_info_struct *p,
  1958. union swap_header *swap_header,
  1959. struct inode *inode)
  1960. {
  1961. int i;
  1962. unsigned long maxpages;
  1963. unsigned long swapfilepages;
  1964. unsigned long last_page;
  1965. if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
  1966. pr_err("Unable to find swap-space signature\n");
  1967. return 0;
  1968. }
  1969. /* swap partition endianess hack... */
  1970. if (swab32(swap_header->info.version) == 1) {
  1971. swab32s(&swap_header->info.version);
  1972. swab32s(&swap_header->info.last_page);
  1973. swab32s(&swap_header->info.nr_badpages);
  1974. for (i = 0; i < swap_header->info.nr_badpages; i++)
  1975. swab32s(&swap_header->info.badpages[i]);
  1976. }
  1977. /* Check the swap header's sub-version */
  1978. if (swap_header->info.version != 1) {
  1979. pr_warn("Unable to handle swap header version %d\n",
  1980. swap_header->info.version);
  1981. return 0;
  1982. }
  1983. p->lowest_bit = 1;
  1984. p->cluster_next = 1;
  1985. p->cluster_nr = 0;
  1986. /*
  1987. * Find out how many pages are allowed for a single swap
  1988. * device. There are two limiting factors: 1) the number
  1989. * of bits for the swap offset in the swp_entry_t type, and
  1990. * 2) the number of bits in the swap pte as defined by the
  1991. * different architectures. In order to find the
  1992. * largest possible bit mask, a swap entry with swap type 0
  1993. * and swap offset ~0UL is created, encoded to a swap pte,
  1994. * decoded to a swp_entry_t again, and finally the swap
  1995. * offset is extracted. This will mask all the bits from
  1996. * the initial ~0UL mask that can't be encoded in either
  1997. * the swp_entry_t or the architecture definition of a
  1998. * swap pte.
  1999. */
  2000. maxpages = swp_offset(pte_to_swp_entry(
  2001. swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
  2002. last_page = swap_header->info.last_page;
  2003. if (last_page > maxpages) {
  2004. pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
  2005. maxpages << (PAGE_SHIFT - 10),
  2006. last_page << (PAGE_SHIFT - 10));
  2007. }
  2008. if (maxpages > last_page) {
  2009. maxpages = last_page + 1;
  2010. /* p->max is an unsigned int: don't overflow it */
  2011. if ((unsigned int)maxpages == 0)
  2012. maxpages = UINT_MAX;
  2013. }
  2014. p->highest_bit = maxpages - 1;
  2015. if (!maxpages)
  2016. return 0;
  2017. swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
  2018. if (swapfilepages && maxpages > swapfilepages) {
  2019. pr_warn("Swap area shorter than signature indicates\n");
  2020. return 0;
  2021. }
  2022. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  2023. return 0;
  2024. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  2025. return 0;
  2026. return maxpages;
  2027. }
  2028. static int setup_swap_map_and_extents(struct swap_info_struct *p,
  2029. union swap_header *swap_header,
  2030. unsigned char *swap_map,
  2031. struct swap_cluster_info *cluster_info,
  2032. unsigned long maxpages,
  2033. sector_t *span)
  2034. {
  2035. int i;
  2036. unsigned int nr_good_pages;
  2037. int nr_extents;
  2038. unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
  2039. unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
  2040. nr_good_pages = maxpages - 1; /* omit header page */
  2041. cluster_set_null(&p->free_cluster_head);
  2042. cluster_set_null(&p->free_cluster_tail);
  2043. cluster_set_null(&p->discard_cluster_head);
  2044. cluster_set_null(&p->discard_cluster_tail);
  2045. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  2046. unsigned int page_nr = swap_header->info.badpages[i];
  2047. if (page_nr == 0 || page_nr > swap_header->info.last_page)
  2048. return -EINVAL;
  2049. if (page_nr < maxpages) {
  2050. swap_map[page_nr] = SWAP_MAP_BAD;
  2051. nr_good_pages--;
  2052. /*
  2053. * Haven't marked the cluster free yet, no list
  2054. * operation involved
  2055. */
  2056. inc_cluster_info_page(p, cluster_info, page_nr);
  2057. }
  2058. }
  2059. /* Haven't marked the cluster free yet, no list operation involved */
  2060. for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
  2061. inc_cluster_info_page(p, cluster_info, i);
  2062. if (nr_good_pages) {
  2063. swap_map[0] = SWAP_MAP_BAD;
  2064. /*
  2065. * Not mark the cluster free yet, no list
  2066. * operation involved
  2067. */
  2068. inc_cluster_info_page(p, cluster_info, 0);
  2069. p->max = maxpages;
  2070. p->pages = nr_good_pages;
  2071. nr_extents = setup_swap_extents(p, span);
  2072. if (nr_extents < 0)
  2073. return nr_extents;
  2074. nr_good_pages = p->pages;
  2075. }
  2076. if (!nr_good_pages) {
  2077. pr_warn("Empty swap-file\n");
  2078. return -EINVAL;
  2079. }
  2080. if (!cluster_info)
  2081. return nr_extents;
  2082. for (i = 0; i < nr_clusters; i++) {
  2083. if (!cluster_count(&cluster_info[idx])) {
  2084. cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
  2085. if (cluster_is_null(&p->free_cluster_head)) {
  2086. cluster_set_next_flag(&p->free_cluster_head,
  2087. idx, 0);
  2088. cluster_set_next_flag(&p->free_cluster_tail,
  2089. idx, 0);
  2090. } else {
  2091. unsigned int tail;
  2092. tail = cluster_next(&p->free_cluster_tail);
  2093. cluster_set_next(&cluster_info[tail], idx);
  2094. cluster_set_next_flag(&p->free_cluster_tail,
  2095. idx, 0);
  2096. }
  2097. }
  2098. idx++;
  2099. if (idx == nr_clusters)
  2100. idx = 0;
  2101. }
  2102. return nr_extents;
  2103. }
  2104. /*
  2105. * Helper to sys_swapon determining if a given swap
  2106. * backing device queue supports DISCARD operations.
  2107. */
  2108. static bool swap_discardable(struct swap_info_struct *si)
  2109. {
  2110. struct request_queue *q = bdev_get_queue(si->bdev);
  2111. if (!q || !blk_queue_discard(q))
  2112. return false;
  2113. return true;
  2114. }
  2115. SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
  2116. {
  2117. struct swap_info_struct *p;
  2118. struct filename *name;
  2119. struct file *swap_file = NULL;
  2120. struct address_space *mapping;
  2121. int prio;
  2122. int error;
  2123. union swap_header *swap_header;
  2124. int nr_extents;
  2125. sector_t span;
  2126. unsigned long maxpages;
  2127. unsigned char *swap_map = NULL;
  2128. struct swap_cluster_info *cluster_info = NULL;
  2129. unsigned long *frontswap_map = NULL;
  2130. struct page *page = NULL;
  2131. struct inode *inode = NULL;
  2132. if (swap_flags & ~SWAP_FLAGS_VALID)
  2133. return -EINVAL;
  2134. if (!capable(CAP_SYS_ADMIN))
  2135. return -EPERM;
  2136. p = alloc_swap_info();
  2137. if (IS_ERR(p))
  2138. return PTR_ERR(p);
  2139. INIT_WORK(&p->discard_work, swap_discard_work);
  2140. name = getname(specialfile);
  2141. if (IS_ERR(name)) {
  2142. error = PTR_ERR(name);
  2143. name = NULL;
  2144. goto bad_swap;
  2145. }
  2146. swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
  2147. if (IS_ERR(swap_file)) {
  2148. error = PTR_ERR(swap_file);
  2149. swap_file = NULL;
  2150. goto bad_swap;
  2151. }
  2152. p->swap_file = swap_file;
  2153. mapping = swap_file->f_mapping;
  2154. inode = mapping->host;
  2155. /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
  2156. error = claim_swapfile(p, inode);
  2157. if (unlikely(error))
  2158. goto bad_swap;
  2159. /*
  2160. * Read the swap header.
  2161. */
  2162. if (!mapping->a_ops->readpage) {
  2163. error = -EINVAL;
  2164. goto bad_swap;
  2165. }
  2166. page = read_mapping_page(mapping, 0, swap_file);
  2167. if (IS_ERR(page)) {
  2168. error = PTR_ERR(page);
  2169. goto bad_swap;
  2170. }
  2171. swap_header = kmap(page);
  2172. maxpages = read_swap_header(p, swap_header, inode);
  2173. if (unlikely(!maxpages)) {
  2174. error = -EINVAL;
  2175. goto bad_swap;
  2176. }
  2177. /* OK, set up the swap map and apply the bad block list */
  2178. swap_map = vzalloc(maxpages);
  2179. if (!swap_map) {
  2180. error = -ENOMEM;
  2181. goto bad_swap;
  2182. }
  2183. if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
  2184. int cpu;
  2185. p->flags |= SWP_SOLIDSTATE;
  2186. /*
  2187. * select a random position to start with to help wear leveling
  2188. * SSD
  2189. */
  2190. p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
  2191. cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
  2192. SWAPFILE_CLUSTER) * sizeof(*cluster_info));
  2193. if (!cluster_info) {
  2194. error = -ENOMEM;
  2195. goto bad_swap;
  2196. }
  2197. p->percpu_cluster = alloc_percpu(struct percpu_cluster);
  2198. if (!p->percpu_cluster) {
  2199. error = -ENOMEM;
  2200. goto bad_swap;
  2201. }
  2202. for_each_possible_cpu(cpu) {
  2203. struct percpu_cluster *cluster;
  2204. cluster = per_cpu_ptr(p->percpu_cluster, cpu);
  2205. cluster_set_null(&cluster->index);
  2206. }
  2207. }
  2208. error = swap_cgroup_swapon(p->type, maxpages);
  2209. if (error)
  2210. goto bad_swap;
  2211. nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
  2212. cluster_info, maxpages, &span);
  2213. if (unlikely(nr_extents < 0)) {
  2214. error = nr_extents;
  2215. goto bad_swap;
  2216. }
  2217. /* frontswap enabled? set up bit-per-page map for frontswap */
  2218. if (frontswap_enabled)
  2219. frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
  2220. if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
  2221. /*
  2222. * When discard is enabled for swap with no particular
  2223. * policy flagged, we set all swap discard flags here in
  2224. * order to sustain backward compatibility with older
  2225. * swapon(8) releases.
  2226. */
  2227. p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
  2228. SWP_PAGE_DISCARD);
  2229. /*
  2230. * By flagging sys_swapon, a sysadmin can tell us to
  2231. * either do single-time area discards only, or to just
  2232. * perform discards for released swap page-clusters.
  2233. * Now it's time to adjust the p->flags accordingly.
  2234. */
  2235. if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
  2236. p->flags &= ~SWP_PAGE_DISCARD;
  2237. else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
  2238. p->flags &= ~SWP_AREA_DISCARD;
  2239. /* issue a swapon-time discard if it's still required */
  2240. if (p->flags & SWP_AREA_DISCARD) {
  2241. int err = discard_swap(p);
  2242. if (unlikely(err))
  2243. pr_err("swapon: discard_swap(%p): %d\n",
  2244. p, err);
  2245. }
  2246. }
  2247. mutex_lock(&swapon_mutex);
  2248. prio = -1;
  2249. if (swap_flags & SWAP_FLAG_PREFER)
  2250. prio =
  2251. (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
  2252. enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
  2253. pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
  2254. p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
  2255. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
  2256. (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
  2257. (p->flags & SWP_DISCARDABLE) ? "D" : "",
  2258. (p->flags & SWP_AREA_DISCARD) ? "s" : "",
  2259. (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
  2260. (frontswap_map) ? "FS" : "");
  2261. mutex_unlock(&swapon_mutex);
  2262. atomic_inc(&proc_poll_event);
  2263. wake_up_interruptible(&proc_poll_wait);
  2264. if (S_ISREG(inode->i_mode))
  2265. inode->i_flags |= S_SWAPFILE;
  2266. error = 0;
  2267. goto out;
  2268. bad_swap:
  2269. free_percpu(p->percpu_cluster);
  2270. p->percpu_cluster = NULL;
  2271. if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
  2272. set_blocksize(p->bdev, p->old_block_size);
  2273. blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
  2274. }
  2275. destroy_swap_extents(p);
  2276. swap_cgroup_swapoff(p->type);
  2277. spin_lock(&swap_lock);
  2278. p->swap_file = NULL;
  2279. p->flags = 0;
  2280. spin_unlock(&swap_lock);
  2281. vfree(swap_map);
  2282. vfree(cluster_info);
  2283. if (swap_file) {
  2284. if (inode && S_ISREG(inode->i_mode)) {
  2285. inode_unlock(inode);
  2286. inode = NULL;
  2287. }
  2288. filp_close(swap_file, NULL);
  2289. }
  2290. out:
  2291. if (page && !IS_ERR(page)) {
  2292. kunmap(page);
  2293. page_cache_release(page);
  2294. }
  2295. if (name)
  2296. putname(name);
  2297. if (inode && S_ISREG(inode->i_mode))
  2298. inode_unlock(inode);
  2299. return error;
  2300. }
  2301. void si_swapinfo(struct sysinfo *val)
  2302. {
  2303. unsigned int type;
  2304. unsigned long nr_to_be_unused = 0;
  2305. spin_lock(&swap_lock);
  2306. for (type = 0; type < nr_swapfiles; type++) {
  2307. struct swap_info_struct *si = swap_info[type];
  2308. if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
  2309. nr_to_be_unused += si->inuse_pages;
  2310. }
  2311. val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
  2312. val->totalswap = total_swap_pages + nr_to_be_unused;
  2313. spin_unlock(&swap_lock);
  2314. }
  2315. /*
  2316. * Verify that a swap entry is valid and increment its swap map count.
  2317. *
  2318. * Returns error code in following case.
  2319. * - success -> 0
  2320. * - swp_entry is invalid -> EINVAL
  2321. * - swp_entry is migration entry -> EINVAL
  2322. * - swap-cache reference is requested but there is already one. -> EEXIST
  2323. * - swap-cache reference is requested but the entry is not used. -> ENOENT
  2324. * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
  2325. */
  2326. static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
  2327. {
  2328. struct swap_info_struct *p;
  2329. unsigned long offset, type;
  2330. unsigned char count;
  2331. unsigned char has_cache;
  2332. int err = -EINVAL;
  2333. if (non_swap_entry(entry))
  2334. goto out;
  2335. type = swp_type(entry);
  2336. if (type >= nr_swapfiles)
  2337. goto bad_file;
  2338. p = swap_info[type];
  2339. offset = swp_offset(entry);
  2340. spin_lock(&p->lock);
  2341. if (unlikely(offset >= p->max))
  2342. goto unlock_out;
  2343. count = p->swap_map[offset];
  2344. /*
  2345. * swapin_readahead() doesn't check if a swap entry is valid, so the
  2346. * swap entry could be SWAP_MAP_BAD. Check here with lock held.
  2347. */
  2348. if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
  2349. err = -ENOENT;
  2350. goto unlock_out;
  2351. }
  2352. has_cache = count & SWAP_HAS_CACHE;
  2353. count &= ~SWAP_HAS_CACHE;
  2354. err = 0;
  2355. if (usage == SWAP_HAS_CACHE) {
  2356. /* set SWAP_HAS_CACHE if there is no cache and entry is used */
  2357. if (!has_cache && count)
  2358. has_cache = SWAP_HAS_CACHE;
  2359. else if (has_cache) /* someone else added cache */
  2360. err = -EEXIST;
  2361. else /* no users remaining */
  2362. err = -ENOENT;
  2363. } else if (count || has_cache) {
  2364. if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
  2365. count += usage;
  2366. else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
  2367. err = -EINVAL;
  2368. else if (swap_count_continued(p, offset, count))
  2369. count = COUNT_CONTINUED;
  2370. else
  2371. err = -ENOMEM;
  2372. } else
  2373. err = -ENOENT; /* unused swap entry */
  2374. p->swap_map[offset] = count | has_cache;
  2375. unlock_out:
  2376. spin_unlock(&p->lock);
  2377. out:
  2378. return err;
  2379. bad_file:
  2380. pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
  2381. goto out;
  2382. }
  2383. /*
  2384. * Help swapoff by noting that swap entry belongs to shmem/tmpfs
  2385. * (in which case its reference count is never incremented).
  2386. */
  2387. void swap_shmem_alloc(swp_entry_t entry)
  2388. {
  2389. __swap_duplicate(entry, SWAP_MAP_SHMEM);
  2390. }
  2391. /*
  2392. * Increase reference count of swap entry by 1.
  2393. * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
  2394. * but could not be atomically allocated. Returns 0, just as if it succeeded,
  2395. * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
  2396. * might occur if a page table entry has got corrupted.
  2397. */
  2398. int swap_duplicate(swp_entry_t entry)
  2399. {
  2400. int err = 0;
  2401. while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
  2402. err = add_swap_count_continuation(entry, GFP_ATOMIC);
  2403. return err;
  2404. }
  2405. /*
  2406. * @entry: swap entry for which we allocate swap cache.
  2407. *
  2408. * Called when allocating swap cache for existing swap entry,
  2409. * This can return error codes. Returns 0 at success.
  2410. * -EBUSY means there is a swap cache.
  2411. * Note: return code is different from swap_duplicate().
  2412. */
  2413. int swapcache_prepare(swp_entry_t entry)
  2414. {
  2415. return __swap_duplicate(entry, SWAP_HAS_CACHE);
  2416. }
  2417. struct swap_info_struct *page_swap_info(struct page *page)
  2418. {
  2419. swp_entry_t swap = { .val = page_private(page) };
  2420. BUG_ON(!PageSwapCache(page));
  2421. return swap_info[swp_type(swap)];
  2422. }
  2423. /*
  2424. * out-of-line __page_file_ methods to avoid include hell.
  2425. */
  2426. struct address_space *__page_file_mapping(struct page *page)
  2427. {
  2428. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  2429. return page_swap_info(page)->swap_file->f_mapping;
  2430. }
  2431. EXPORT_SYMBOL_GPL(__page_file_mapping);
  2432. pgoff_t __page_file_index(struct page *page)
  2433. {
  2434. swp_entry_t swap = { .val = page_private(page) };
  2435. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  2436. return swp_offset(swap);
  2437. }
  2438. EXPORT_SYMBOL_GPL(__page_file_index);
  2439. /*
  2440. * add_swap_count_continuation - called when a swap count is duplicated
  2441. * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
  2442. * page of the original vmalloc'ed swap_map, to hold the continuation count
  2443. * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
  2444. * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
  2445. *
  2446. * These continuation pages are seldom referenced: the common paths all work
  2447. * on the original swap_map, only referring to a continuation page when the
  2448. * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
  2449. *
  2450. * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
  2451. * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
  2452. * can be called after dropping locks.
  2453. */
  2454. int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
  2455. {
  2456. struct swap_info_struct *si;
  2457. struct page *head;
  2458. struct page *page;
  2459. struct page *list_page;
  2460. pgoff_t offset;
  2461. unsigned char count;
  2462. /*
  2463. * When debugging, it's easier to use __GFP_ZERO here; but it's better
  2464. * for latency not to zero a page while GFP_ATOMIC and holding locks.
  2465. */
  2466. page = alloc_page(gfp_mask | __GFP_HIGHMEM);
  2467. si = swap_info_get(entry);
  2468. if (!si) {
  2469. /*
  2470. * An acceptable race has occurred since the failing
  2471. * __swap_duplicate(): the swap entry has been freed,
  2472. * perhaps even the whole swap_map cleared for swapoff.
  2473. */
  2474. goto outer;
  2475. }
  2476. offset = swp_offset(entry);
  2477. count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
  2478. if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
  2479. /*
  2480. * The higher the swap count, the more likely it is that tasks
  2481. * will race to add swap count continuation: we need to avoid
  2482. * over-provisioning.
  2483. */
  2484. goto out;
  2485. }
  2486. if (!page) {
  2487. spin_unlock(&si->lock);
  2488. return -ENOMEM;
  2489. }
  2490. /*
  2491. * We are fortunate that although vmalloc_to_page uses pte_offset_map,
  2492. * no architecture is using highmem pages for kernel page tables: so it
  2493. * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
  2494. */
  2495. head = vmalloc_to_page(si->swap_map + offset);
  2496. offset &= ~PAGE_MASK;
  2497. /*
  2498. * Page allocation does not initialize the page's lru field,
  2499. * but it does always reset its private field.
  2500. */
  2501. if (!page_private(head)) {
  2502. BUG_ON(count & COUNT_CONTINUED);
  2503. INIT_LIST_HEAD(&head->lru);
  2504. set_page_private(head, SWP_CONTINUED);
  2505. si->flags |= SWP_CONTINUED;
  2506. }
  2507. list_for_each_entry(list_page, &head->lru, lru) {
  2508. unsigned char *map;
  2509. /*
  2510. * If the previous map said no continuation, but we've found
  2511. * a continuation page, free our allocation and use this one.
  2512. */
  2513. if (!(count & COUNT_CONTINUED))
  2514. goto out;
  2515. map = kmap_atomic(list_page) + offset;
  2516. count = *map;
  2517. kunmap_atomic(map);
  2518. /*
  2519. * If this continuation count now has some space in it,
  2520. * free our allocation and use this one.
  2521. */
  2522. if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
  2523. goto out;
  2524. }
  2525. list_add_tail(&page->lru, &head->lru);
  2526. page = NULL; /* now it's attached, don't free it */
  2527. out:
  2528. spin_unlock(&si->lock);
  2529. outer:
  2530. if (page)
  2531. __free_page(page);
  2532. return 0;
  2533. }
  2534. /*
  2535. * swap_count_continued - when the original swap_map count is incremented
  2536. * from SWAP_MAP_MAX, check if there is already a continuation page to carry
  2537. * into, carry if so, or else fail until a new continuation page is allocated;
  2538. * when the original swap_map count is decremented from 0 with continuation,
  2539. * borrow from the continuation and report whether it still holds more.
  2540. * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
  2541. */
  2542. static bool swap_count_continued(struct swap_info_struct *si,
  2543. pgoff_t offset, unsigned char count)
  2544. {
  2545. struct page *head;
  2546. struct page *page;
  2547. unsigned char *map;
  2548. head = vmalloc_to_page(si->swap_map + offset);
  2549. if (page_private(head) != SWP_CONTINUED) {
  2550. BUG_ON(count & COUNT_CONTINUED);
  2551. return false; /* need to add count continuation */
  2552. }
  2553. offset &= ~PAGE_MASK;
  2554. page = list_entry(head->lru.next, struct page, lru);
  2555. map = kmap_atomic(page) + offset;
  2556. if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
  2557. goto init_map; /* jump over SWAP_CONT_MAX checks */
  2558. if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
  2559. /*
  2560. * Think of how you add 1 to 999
  2561. */
  2562. while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
  2563. kunmap_atomic(map);
  2564. page = list_entry(page->lru.next, struct page, lru);
  2565. BUG_ON(page == head);
  2566. map = kmap_atomic(page) + offset;
  2567. }
  2568. if (*map == SWAP_CONT_MAX) {
  2569. kunmap_atomic(map);
  2570. page = list_entry(page->lru.next, struct page, lru);
  2571. if (page == head)
  2572. return false; /* add count continuation */
  2573. map = kmap_atomic(page) + offset;
  2574. init_map: *map = 0; /* we didn't zero the page */
  2575. }
  2576. *map += 1;
  2577. kunmap_atomic(map);
  2578. page = list_entry(page->lru.prev, struct page, lru);
  2579. while (page != head) {
  2580. map = kmap_atomic(page) + offset;
  2581. *map = COUNT_CONTINUED;
  2582. kunmap_atomic(map);
  2583. page = list_entry(page->lru.prev, struct page, lru);
  2584. }
  2585. return true; /* incremented */
  2586. } else { /* decrementing */
  2587. /*
  2588. * Think of how you subtract 1 from 1000
  2589. */
  2590. BUG_ON(count != COUNT_CONTINUED);
  2591. while (*map == COUNT_CONTINUED) {
  2592. kunmap_atomic(map);
  2593. page = list_entry(page->lru.next, struct page, lru);
  2594. BUG_ON(page == head);
  2595. map = kmap_atomic(page) + offset;
  2596. }
  2597. BUG_ON(*map == 0);
  2598. *map -= 1;
  2599. if (*map == 0)
  2600. count = 0;
  2601. kunmap_atomic(map);
  2602. page = list_entry(page->lru.prev, struct page, lru);
  2603. while (page != head) {
  2604. map = kmap_atomic(page) + offset;
  2605. *map = SWAP_CONT_MAX | count;
  2606. count = COUNT_CONTINUED;
  2607. kunmap_atomic(map);
  2608. page = list_entry(page->lru.prev, struct page, lru);
  2609. }
  2610. return count == COUNT_CONTINUED;
  2611. }
  2612. }
  2613. /*
  2614. * free_swap_count_continuations - swapoff free all the continuation pages
  2615. * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
  2616. */
  2617. static void free_swap_count_continuations(struct swap_info_struct *si)
  2618. {
  2619. pgoff_t offset;
  2620. for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
  2621. struct page *head;
  2622. head = vmalloc_to_page(si->swap_map + offset);
  2623. if (page_private(head)) {
  2624. struct page *page, *next;
  2625. list_for_each_entry_safe(page, next, &head->lru, lru) {
  2626. list_del(&page->lru);
  2627. __free_page(page);
  2628. }
  2629. }
  2630. }
  2631. }