page-writeback.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <linux/mm_inline.h>
  39. #include <trace/events/writeback.h>
  40. #include "internal.h"
  41. /*
  42. * Sleep at most 200ms at a time in balance_dirty_pages().
  43. */
  44. #define MAX_PAUSE max(HZ/5, 1)
  45. /*
  46. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  47. * by raising pause time to max_pause when falls below it.
  48. */
  49. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  50. /*
  51. * Estimate write bandwidth at 200ms intervals.
  52. */
  53. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  54. #define RATELIMIT_CALC_SHIFT 10
  55. /*
  56. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  57. * will look to see if it needs to force writeback or throttling.
  58. */
  59. static long ratelimit_pages = 32;
  60. /* The following parameters are exported via /proc/sys/vm */
  61. /*
  62. * Start background writeback (via writeback threads) at this percentage
  63. */
  64. int dirty_background_ratio = 10;
  65. /*
  66. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67. * dirty_background_ratio * the amount of dirtyable memory
  68. */
  69. unsigned long dirty_background_bytes;
  70. /*
  71. * free highmem will not be subtracted from the total free memory
  72. * for calculating free ratios if vm_highmem_is_dirtyable is true
  73. */
  74. int vm_highmem_is_dirtyable;
  75. /*
  76. * The generator of dirty data starts writeback at this percentage
  77. */
  78. int vm_dirty_ratio = 20;
  79. /*
  80. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  81. * vm_dirty_ratio * the amount of dirtyable memory
  82. */
  83. unsigned long vm_dirty_bytes;
  84. /*
  85. * The interval between `kupdate'-style writebacks
  86. */
  87. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  88. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  89. /*
  90. * The longest time for which data is allowed to remain dirty
  91. */
  92. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  93. /*
  94. * Flag that makes the machine dump writes/reads and block dirtyings.
  95. */
  96. int block_dump;
  97. /*
  98. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99. * a full sync is triggered after this time elapses without any disk activity.
  100. */
  101. int laptop_mode;
  102. EXPORT_SYMBOL(laptop_mode);
  103. /* End of sysctl-exported parameters */
  104. struct wb_domain global_wb_domain;
  105. /* consolidated parameters for balance_dirty_pages() and its subroutines */
  106. struct dirty_throttle_control {
  107. #ifdef CONFIG_CGROUP_WRITEBACK
  108. struct wb_domain *dom;
  109. struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
  110. #endif
  111. struct bdi_writeback *wb;
  112. struct fprop_local_percpu *wb_completions;
  113. unsigned long avail; /* dirtyable */
  114. unsigned long dirty; /* file_dirty + write + nfs */
  115. unsigned long thresh; /* dirty threshold */
  116. unsigned long bg_thresh; /* dirty background threshold */
  117. unsigned long wb_dirty; /* per-wb counterparts */
  118. unsigned long wb_thresh;
  119. unsigned long wb_bg_thresh;
  120. unsigned long pos_ratio;
  121. };
  122. /*
  123. * Length of period for aging writeout fractions of bdis. This is an
  124. * arbitrarily chosen number. The longer the period, the slower fractions will
  125. * reflect changes in current writeout rate.
  126. */
  127. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  128. #ifdef CONFIG_CGROUP_WRITEBACK
  129. #define GDTC_INIT(__wb) .wb = (__wb), \
  130. .dom = &global_wb_domain, \
  131. .wb_completions = &(__wb)->completions
  132. #define GDTC_INIT_NO_WB .dom = &global_wb_domain
  133. #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
  134. .dom = mem_cgroup_wb_domain(__wb), \
  135. .wb_completions = &(__wb)->memcg_completions, \
  136. .gdtc = __gdtc
  137. static bool mdtc_valid(struct dirty_throttle_control *dtc)
  138. {
  139. return dtc->dom;
  140. }
  141. static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
  142. {
  143. return dtc->dom;
  144. }
  145. static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
  146. {
  147. return mdtc->gdtc;
  148. }
  149. static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
  150. {
  151. return &wb->memcg_completions;
  152. }
  153. static void wb_min_max_ratio(struct bdi_writeback *wb,
  154. unsigned long *minp, unsigned long *maxp)
  155. {
  156. unsigned long this_bw = wb->avg_write_bandwidth;
  157. unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
  158. unsigned long long min = wb->bdi->min_ratio;
  159. unsigned long long max = wb->bdi->max_ratio;
  160. /*
  161. * @wb may already be clean by the time control reaches here and
  162. * the total may not include its bw.
  163. */
  164. if (this_bw < tot_bw) {
  165. if (min) {
  166. min *= this_bw;
  167. do_div(min, tot_bw);
  168. }
  169. if (max < 100) {
  170. max *= this_bw;
  171. do_div(max, tot_bw);
  172. }
  173. }
  174. *minp = min;
  175. *maxp = max;
  176. }
  177. #else /* CONFIG_CGROUP_WRITEBACK */
  178. #define GDTC_INIT(__wb) .wb = (__wb), \
  179. .wb_completions = &(__wb)->completions
  180. #define GDTC_INIT_NO_WB
  181. #define MDTC_INIT(__wb, __gdtc)
  182. static bool mdtc_valid(struct dirty_throttle_control *dtc)
  183. {
  184. return false;
  185. }
  186. static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
  187. {
  188. return &global_wb_domain;
  189. }
  190. static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
  191. {
  192. return NULL;
  193. }
  194. static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
  195. {
  196. return NULL;
  197. }
  198. static void wb_min_max_ratio(struct bdi_writeback *wb,
  199. unsigned long *minp, unsigned long *maxp)
  200. {
  201. *minp = wb->bdi->min_ratio;
  202. *maxp = wb->bdi->max_ratio;
  203. }
  204. #endif /* CONFIG_CGROUP_WRITEBACK */
  205. /*
  206. * In a memory zone, there is a certain amount of pages we consider
  207. * available for the page cache, which is essentially the number of
  208. * free and reclaimable pages, minus some zone reserves to protect
  209. * lowmem and the ability to uphold the zone's watermarks without
  210. * requiring writeback.
  211. *
  212. * This number of dirtyable pages is the base value of which the
  213. * user-configurable dirty ratio is the effictive number of pages that
  214. * are allowed to be actually dirtied. Per individual zone, or
  215. * globally by using the sum of dirtyable pages over all zones.
  216. *
  217. * Because the user is allowed to specify the dirty limit globally as
  218. * absolute number of bytes, calculating the per-zone dirty limit can
  219. * require translating the configured limit into a percentage of
  220. * global dirtyable memory first.
  221. */
  222. /**
  223. * zone_dirtyable_memory - number of dirtyable pages in a zone
  224. * @zone: the zone
  225. *
  226. * Returns the zone's number of pages potentially available for dirty
  227. * page cache. This is the base value for the per-zone dirty limits.
  228. */
  229. static unsigned long zone_dirtyable_memory(struct zone *zone)
  230. {
  231. unsigned long nr_pages;
  232. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  233. /*
  234. * Pages reserved for the kernel should not be considered
  235. * dirtyable, to prevent a situation where reclaim has to
  236. * clean pages in order to balance the zones.
  237. */
  238. nr_pages -= min(nr_pages, zone->totalreserve_pages);
  239. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  240. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  241. return nr_pages;
  242. }
  243. static unsigned long highmem_dirtyable_memory(unsigned long total)
  244. {
  245. #ifdef CONFIG_HIGHMEM
  246. int node;
  247. unsigned long x = 0;
  248. for_each_node_state(node, N_HIGH_MEMORY) {
  249. struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  250. x += zone_dirtyable_memory(z);
  251. }
  252. /*
  253. * Unreclaimable memory (kernel memory or anonymous memory
  254. * without swap) can bring down the dirtyable pages below
  255. * the zone's dirty balance reserve and the above calculation
  256. * will underflow. However we still want to add in nodes
  257. * which are below threshold (negative values) to get a more
  258. * accurate calculation but make sure that the total never
  259. * underflows.
  260. */
  261. if ((long)x < 0)
  262. x = 0;
  263. /*
  264. * Make sure that the number of highmem pages is never larger
  265. * than the number of the total dirtyable memory. This can only
  266. * occur in very strange VM situations but we want to make sure
  267. * that this does not occur.
  268. */
  269. return min(x, total);
  270. #else
  271. return 0;
  272. #endif
  273. }
  274. /**
  275. * global_dirtyable_memory - number of globally dirtyable pages
  276. *
  277. * Returns the global number of pages potentially available for dirty
  278. * page cache. This is the base value for the global dirty limits.
  279. */
  280. static unsigned long global_dirtyable_memory(void)
  281. {
  282. unsigned long x;
  283. x = global_page_state(NR_FREE_PAGES);
  284. /*
  285. * Pages reserved for the kernel should not be considered
  286. * dirtyable, to prevent a situation where reclaim has to
  287. * clean pages in order to balance the zones.
  288. */
  289. x -= min(x, totalreserve_pages);
  290. x += global_page_state(NR_INACTIVE_FILE);
  291. x += global_page_state(NR_ACTIVE_FILE);
  292. if (!vm_highmem_is_dirtyable)
  293. x -= highmem_dirtyable_memory(x);
  294. return x + 1; /* Ensure that we never return 0 */
  295. }
  296. /**
  297. * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
  298. * @dtc: dirty_throttle_control of interest
  299. *
  300. * Calculate @dtc->thresh and ->bg_thresh considering
  301. * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
  302. * must ensure that @dtc->avail is set before calling this function. The
  303. * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  304. * real-time tasks.
  305. */
  306. static void domain_dirty_limits(struct dirty_throttle_control *dtc)
  307. {
  308. const unsigned long available_memory = dtc->avail;
  309. struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
  310. unsigned long bytes = vm_dirty_bytes;
  311. unsigned long bg_bytes = dirty_background_bytes;
  312. unsigned long ratio = vm_dirty_ratio;
  313. unsigned long bg_ratio = dirty_background_ratio;
  314. unsigned long thresh;
  315. unsigned long bg_thresh;
  316. struct task_struct *tsk;
  317. /* gdtc is !NULL iff @dtc is for memcg domain */
  318. if (gdtc) {
  319. unsigned long global_avail = gdtc->avail;
  320. /*
  321. * The byte settings can't be applied directly to memcg
  322. * domains. Convert them to ratios by scaling against
  323. * globally available memory.
  324. */
  325. if (bytes)
  326. ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
  327. global_avail, 100UL);
  328. if (bg_bytes)
  329. bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
  330. global_avail, 100UL);
  331. bytes = bg_bytes = 0;
  332. }
  333. if (bytes)
  334. thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
  335. else
  336. thresh = (ratio * available_memory) / 100;
  337. if (bg_bytes)
  338. bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
  339. else
  340. bg_thresh = (bg_ratio * available_memory) / 100;
  341. if (bg_thresh >= thresh)
  342. bg_thresh = thresh / 2;
  343. tsk = current;
  344. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  345. bg_thresh += bg_thresh / 4;
  346. thresh += thresh / 4;
  347. }
  348. dtc->thresh = thresh;
  349. dtc->bg_thresh = bg_thresh;
  350. /* we should eventually report the domain in the TP */
  351. if (!gdtc)
  352. trace_global_dirty_state(bg_thresh, thresh);
  353. }
  354. /**
  355. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  356. * @pbackground: out parameter for bg_thresh
  357. * @pdirty: out parameter for thresh
  358. *
  359. * Calculate bg_thresh and thresh for global_wb_domain. See
  360. * domain_dirty_limits() for details.
  361. */
  362. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  363. {
  364. struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
  365. gdtc.avail = global_dirtyable_memory();
  366. domain_dirty_limits(&gdtc);
  367. *pbackground = gdtc.bg_thresh;
  368. *pdirty = gdtc.thresh;
  369. }
  370. /**
  371. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  372. * @zone: the zone
  373. *
  374. * Returns the maximum number of dirty pages allowed in a zone, based
  375. * on the zone's dirtyable memory.
  376. */
  377. static unsigned long zone_dirty_limit(struct zone *zone)
  378. {
  379. unsigned long zone_memory = zone_dirtyable_memory(zone);
  380. struct task_struct *tsk = current;
  381. unsigned long dirty;
  382. if (vm_dirty_bytes)
  383. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  384. zone_memory / global_dirtyable_memory();
  385. else
  386. dirty = vm_dirty_ratio * zone_memory / 100;
  387. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  388. dirty += dirty / 4;
  389. return dirty;
  390. }
  391. /**
  392. * zone_dirty_ok - tells whether a zone is within its dirty limits
  393. * @zone: the zone to check
  394. *
  395. * Returns %true when the dirty pages in @zone are within the zone's
  396. * dirty limit, %false if the limit is exceeded.
  397. */
  398. bool zone_dirty_ok(struct zone *zone)
  399. {
  400. unsigned long limit = zone_dirty_limit(zone);
  401. return zone_page_state(zone, NR_FILE_DIRTY) +
  402. zone_page_state(zone, NR_UNSTABLE_NFS) +
  403. zone_page_state(zone, NR_WRITEBACK) <= limit;
  404. }
  405. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  406. void __user *buffer, size_t *lenp,
  407. loff_t *ppos)
  408. {
  409. int ret;
  410. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  411. if (ret == 0 && write)
  412. dirty_background_bytes = 0;
  413. return ret;
  414. }
  415. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  416. void __user *buffer, size_t *lenp,
  417. loff_t *ppos)
  418. {
  419. int ret;
  420. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  421. if (ret == 0 && write)
  422. dirty_background_ratio = 0;
  423. return ret;
  424. }
  425. int dirty_ratio_handler(struct ctl_table *table, int write,
  426. void __user *buffer, size_t *lenp,
  427. loff_t *ppos)
  428. {
  429. int old_ratio = vm_dirty_ratio;
  430. int ret;
  431. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  432. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  433. writeback_set_ratelimit();
  434. vm_dirty_bytes = 0;
  435. }
  436. return ret;
  437. }
  438. int dirty_bytes_handler(struct ctl_table *table, int write,
  439. void __user *buffer, size_t *lenp,
  440. loff_t *ppos)
  441. {
  442. unsigned long old_bytes = vm_dirty_bytes;
  443. int ret;
  444. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  445. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  446. writeback_set_ratelimit();
  447. vm_dirty_ratio = 0;
  448. }
  449. return ret;
  450. }
  451. static unsigned long wp_next_time(unsigned long cur_time)
  452. {
  453. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  454. /* 0 has a special meaning... */
  455. if (!cur_time)
  456. return 1;
  457. return cur_time;
  458. }
  459. static void wb_domain_writeout_inc(struct wb_domain *dom,
  460. struct fprop_local_percpu *completions,
  461. unsigned int max_prop_frac)
  462. {
  463. __fprop_inc_percpu_max(&dom->completions, completions,
  464. max_prop_frac);
  465. /* First event after period switching was turned off? */
  466. if (!unlikely(dom->period_time)) {
  467. /*
  468. * We can race with other __bdi_writeout_inc calls here but
  469. * it does not cause any harm since the resulting time when
  470. * timer will fire and what is in writeout_period_time will be
  471. * roughly the same.
  472. */
  473. dom->period_time = wp_next_time(jiffies);
  474. mod_timer(&dom->period_timer, dom->period_time);
  475. }
  476. }
  477. /*
  478. * Increment @wb's writeout completion count and the global writeout
  479. * completion count. Called from test_clear_page_writeback().
  480. */
  481. static inline void __wb_writeout_inc(struct bdi_writeback *wb)
  482. {
  483. struct wb_domain *cgdom;
  484. __inc_wb_stat(wb, WB_WRITTEN);
  485. wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
  486. wb->bdi->max_prop_frac);
  487. cgdom = mem_cgroup_wb_domain(wb);
  488. if (cgdom)
  489. wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
  490. wb->bdi->max_prop_frac);
  491. }
  492. void wb_writeout_inc(struct bdi_writeback *wb)
  493. {
  494. unsigned long flags;
  495. local_irq_save(flags);
  496. __wb_writeout_inc(wb);
  497. local_irq_restore(flags);
  498. }
  499. EXPORT_SYMBOL_GPL(wb_writeout_inc);
  500. /*
  501. * On idle system, we can be called long after we scheduled because we use
  502. * deferred timers so count with missed periods.
  503. */
  504. static void writeout_period(unsigned long t)
  505. {
  506. struct wb_domain *dom = (void *)t;
  507. int miss_periods = (jiffies - dom->period_time) /
  508. VM_COMPLETIONS_PERIOD_LEN;
  509. if (fprop_new_period(&dom->completions, miss_periods + 1)) {
  510. dom->period_time = wp_next_time(dom->period_time +
  511. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  512. mod_timer(&dom->period_timer, dom->period_time);
  513. } else {
  514. /*
  515. * Aging has zeroed all fractions. Stop wasting CPU on period
  516. * updates.
  517. */
  518. dom->period_time = 0;
  519. }
  520. }
  521. int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
  522. {
  523. memset(dom, 0, sizeof(*dom));
  524. spin_lock_init(&dom->lock);
  525. init_timer_deferrable(&dom->period_timer);
  526. dom->period_timer.function = writeout_period;
  527. dom->period_timer.data = (unsigned long)dom;
  528. dom->dirty_limit_tstamp = jiffies;
  529. return fprop_global_init(&dom->completions, gfp);
  530. }
  531. #ifdef CONFIG_CGROUP_WRITEBACK
  532. void wb_domain_exit(struct wb_domain *dom)
  533. {
  534. del_timer_sync(&dom->period_timer);
  535. fprop_global_destroy(&dom->completions);
  536. }
  537. #endif
  538. /*
  539. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  540. * registered backing devices, which, for obvious reasons, can not
  541. * exceed 100%.
  542. */
  543. static unsigned int bdi_min_ratio;
  544. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  545. {
  546. int ret = 0;
  547. spin_lock_bh(&bdi_lock);
  548. if (min_ratio > bdi->max_ratio) {
  549. ret = -EINVAL;
  550. } else {
  551. min_ratio -= bdi->min_ratio;
  552. if (bdi_min_ratio + min_ratio < 100) {
  553. bdi_min_ratio += min_ratio;
  554. bdi->min_ratio += min_ratio;
  555. } else {
  556. ret = -EINVAL;
  557. }
  558. }
  559. spin_unlock_bh(&bdi_lock);
  560. return ret;
  561. }
  562. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  563. {
  564. int ret = 0;
  565. if (max_ratio > 100)
  566. return -EINVAL;
  567. spin_lock_bh(&bdi_lock);
  568. if (bdi->min_ratio > max_ratio) {
  569. ret = -EINVAL;
  570. } else {
  571. bdi->max_ratio = max_ratio;
  572. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  573. }
  574. spin_unlock_bh(&bdi_lock);
  575. return ret;
  576. }
  577. EXPORT_SYMBOL(bdi_set_max_ratio);
  578. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  579. unsigned long bg_thresh)
  580. {
  581. return (thresh + bg_thresh) / 2;
  582. }
  583. static unsigned long hard_dirty_limit(struct wb_domain *dom,
  584. unsigned long thresh)
  585. {
  586. return max(thresh, dom->dirty_limit);
  587. }
  588. /*
  589. * Memory which can be further allocated to a memcg domain is capped by
  590. * system-wide clean memory excluding the amount being used in the domain.
  591. */
  592. static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
  593. unsigned long filepages, unsigned long headroom)
  594. {
  595. struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
  596. unsigned long clean = filepages - min(filepages, mdtc->dirty);
  597. unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
  598. unsigned long other_clean = global_clean - min(global_clean, clean);
  599. mdtc->avail = filepages + min(headroom, other_clean);
  600. }
  601. /**
  602. * __wb_calc_thresh - @wb's share of dirty throttling threshold
  603. * @dtc: dirty_throttle_context of interest
  604. *
  605. * Returns @wb's dirty limit in pages. The term "dirty" in the context of
  606. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  607. *
  608. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  609. * when sleeping max_pause per page is not enough to keep the dirty pages under
  610. * control. For example, when the device is completely stalled due to some error
  611. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  612. * In the other normal situations, it acts more gently by throttling the tasks
  613. * more (rather than completely block them) when the wb dirty pages go high.
  614. *
  615. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  616. * - starving fast devices
  617. * - piling up dirty pages (that will take long time to sync) on slow devices
  618. *
  619. * The wb's share of dirty limit will be adapting to its throughput and
  620. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  621. */
  622. static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
  623. {
  624. struct wb_domain *dom = dtc_dom(dtc);
  625. unsigned long thresh = dtc->thresh;
  626. u64 wb_thresh;
  627. long numerator, denominator;
  628. unsigned long wb_min_ratio, wb_max_ratio;
  629. /*
  630. * Calculate this BDI's share of the thresh ratio.
  631. */
  632. fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
  633. &numerator, &denominator);
  634. wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
  635. wb_thresh *= numerator;
  636. do_div(wb_thresh, denominator);
  637. wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
  638. wb_thresh += (thresh * wb_min_ratio) / 100;
  639. if (wb_thresh > (thresh * wb_max_ratio) / 100)
  640. wb_thresh = thresh * wb_max_ratio / 100;
  641. return wb_thresh;
  642. }
  643. unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
  644. {
  645. struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
  646. .thresh = thresh };
  647. return __wb_calc_thresh(&gdtc);
  648. }
  649. /*
  650. * setpoint - dirty 3
  651. * f(dirty) := 1.0 + (----------------)
  652. * limit - setpoint
  653. *
  654. * it's a 3rd order polynomial that subjects to
  655. *
  656. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  657. * (2) f(setpoint) = 1.0 => the balance point
  658. * (3) f(limit) = 0 => the hard limit
  659. * (4) df/dx <= 0 => negative feedback control
  660. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  661. * => fast response on large errors; small oscillation near setpoint
  662. */
  663. static long long pos_ratio_polynom(unsigned long setpoint,
  664. unsigned long dirty,
  665. unsigned long limit)
  666. {
  667. long long pos_ratio;
  668. long x;
  669. x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  670. (limit - setpoint) | 1);
  671. pos_ratio = x;
  672. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  673. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  674. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  675. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  676. }
  677. /*
  678. * Dirty position control.
  679. *
  680. * (o) global/bdi setpoints
  681. *
  682. * We want the dirty pages be balanced around the global/wb setpoints.
  683. * When the number of dirty pages is higher/lower than the setpoint, the
  684. * dirty position control ratio (and hence task dirty ratelimit) will be
  685. * decreased/increased to bring the dirty pages back to the setpoint.
  686. *
  687. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  688. *
  689. * if (dirty < setpoint) scale up pos_ratio
  690. * if (dirty > setpoint) scale down pos_ratio
  691. *
  692. * if (wb_dirty < wb_setpoint) scale up pos_ratio
  693. * if (wb_dirty > wb_setpoint) scale down pos_ratio
  694. *
  695. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  696. *
  697. * (o) global control line
  698. *
  699. * ^ pos_ratio
  700. * |
  701. * | |<===== global dirty control scope ======>|
  702. * 2.0 .............*
  703. * | .*
  704. * | . *
  705. * | . *
  706. * | . *
  707. * | . *
  708. * | . *
  709. * 1.0 ................................*
  710. * | . . *
  711. * | . . *
  712. * | . . *
  713. * | . . *
  714. * | . . *
  715. * 0 +------------.------------------.----------------------*------------->
  716. * freerun^ setpoint^ limit^ dirty pages
  717. *
  718. * (o) wb control line
  719. *
  720. * ^ pos_ratio
  721. * |
  722. * | *
  723. * | *
  724. * | *
  725. * | *
  726. * | * |<=========== span ============>|
  727. * 1.0 .......................*
  728. * | . *
  729. * | . *
  730. * | . *
  731. * | . *
  732. * | . *
  733. * | . *
  734. * | . *
  735. * | . *
  736. * | . *
  737. * | . *
  738. * | . *
  739. * 1/4 ...............................................* * * * * * * * * * * *
  740. * | . .
  741. * | . .
  742. * | . .
  743. * 0 +----------------------.-------------------------------.------------->
  744. * wb_setpoint^ x_intercept^
  745. *
  746. * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
  747. * be smoothly throttled down to normal if it starts high in situations like
  748. * - start writing to a slow SD card and a fast disk at the same time. The SD
  749. * card's wb_dirty may rush to many times higher than wb_setpoint.
  750. * - the wb dirty thresh drops quickly due to change of JBOD workload
  751. */
  752. static void wb_position_ratio(struct dirty_throttle_control *dtc)
  753. {
  754. struct bdi_writeback *wb = dtc->wb;
  755. unsigned long write_bw = wb->avg_write_bandwidth;
  756. unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
  757. unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
  758. unsigned long wb_thresh = dtc->wb_thresh;
  759. unsigned long x_intercept;
  760. unsigned long setpoint; /* dirty pages' target balance point */
  761. unsigned long wb_setpoint;
  762. unsigned long span;
  763. long long pos_ratio; /* for scaling up/down the rate limit */
  764. long x;
  765. dtc->pos_ratio = 0;
  766. if (unlikely(dtc->dirty >= limit))
  767. return;
  768. /*
  769. * global setpoint
  770. *
  771. * See comment for pos_ratio_polynom().
  772. */
  773. setpoint = (freerun + limit) / 2;
  774. pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
  775. /*
  776. * The strictlimit feature is a tool preventing mistrusted filesystems
  777. * from growing a large number of dirty pages before throttling. For
  778. * such filesystems balance_dirty_pages always checks wb counters
  779. * against wb limits. Even if global "nr_dirty" is under "freerun".
  780. * This is especially important for fuse which sets bdi->max_ratio to
  781. * 1% by default. Without strictlimit feature, fuse writeback may
  782. * consume arbitrary amount of RAM because it is accounted in
  783. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  784. *
  785. * Here, in wb_position_ratio(), we calculate pos_ratio based on
  786. * two values: wb_dirty and wb_thresh. Let's consider an example:
  787. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  788. * limits are set by default to 10% and 20% (background and throttle).
  789. * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  790. * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
  791. * about ~6K pages (as the average of background and throttle wb
  792. * limits). The 3rd order polynomial will provide positive feedback if
  793. * wb_dirty is under wb_setpoint and vice versa.
  794. *
  795. * Note, that we cannot use global counters in these calculations
  796. * because we want to throttle process writing to a strictlimit wb
  797. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  798. * in the example above).
  799. */
  800. if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  801. long long wb_pos_ratio;
  802. if (dtc->wb_dirty < 8) {
  803. dtc->pos_ratio = min_t(long long, pos_ratio * 2,
  804. 2 << RATELIMIT_CALC_SHIFT);
  805. return;
  806. }
  807. if (dtc->wb_dirty >= wb_thresh)
  808. return;
  809. wb_setpoint = dirty_freerun_ceiling(wb_thresh,
  810. dtc->wb_bg_thresh);
  811. if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
  812. return;
  813. wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
  814. wb_thresh);
  815. /*
  816. * Typically, for strictlimit case, wb_setpoint << setpoint
  817. * and pos_ratio >> wb_pos_ratio. In the other words global
  818. * state ("dirty") is not limiting factor and we have to
  819. * make decision based on wb counters. But there is an
  820. * important case when global pos_ratio should get precedence:
  821. * global limits are exceeded (e.g. due to activities on other
  822. * wb's) while given strictlimit wb is below limit.
  823. *
  824. * "pos_ratio * wb_pos_ratio" would work for the case above,
  825. * but it would look too non-natural for the case of all
  826. * activity in the system coming from a single strictlimit wb
  827. * with bdi->max_ratio == 100%.
  828. *
  829. * Note that min() below somewhat changes the dynamics of the
  830. * control system. Normally, pos_ratio value can be well over 3
  831. * (when globally we are at freerun and wb is well below wb
  832. * setpoint). Now the maximum pos_ratio in the same situation
  833. * is 2. We might want to tweak this if we observe the control
  834. * system is too slow to adapt.
  835. */
  836. dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
  837. return;
  838. }
  839. /*
  840. * We have computed basic pos_ratio above based on global situation. If
  841. * the wb is over/under its share of dirty pages, we want to scale
  842. * pos_ratio further down/up. That is done by the following mechanism.
  843. */
  844. /*
  845. * wb setpoint
  846. *
  847. * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
  848. *
  849. * x_intercept - wb_dirty
  850. * := --------------------------
  851. * x_intercept - wb_setpoint
  852. *
  853. * The main wb control line is a linear function that subjects to
  854. *
  855. * (1) f(wb_setpoint) = 1.0
  856. * (2) k = - 1 / (8 * write_bw) (in single wb case)
  857. * or equally: x_intercept = wb_setpoint + 8 * write_bw
  858. *
  859. * For single wb case, the dirty pages are observed to fluctuate
  860. * regularly within range
  861. * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
  862. * for various filesystems, where (2) can yield in a reasonable 12.5%
  863. * fluctuation range for pos_ratio.
  864. *
  865. * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
  866. * own size, so move the slope over accordingly and choose a slope that
  867. * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
  868. */
  869. if (unlikely(wb_thresh > dtc->thresh))
  870. wb_thresh = dtc->thresh;
  871. /*
  872. * It's very possible that wb_thresh is close to 0 not because the
  873. * device is slow, but that it has remained inactive for long time.
  874. * Honour such devices a reasonable good (hopefully IO efficient)
  875. * threshold, so that the occasional writes won't be blocked and active
  876. * writes can rampup the threshold quickly.
  877. */
  878. wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
  879. /*
  880. * scale global setpoint to wb's:
  881. * wb_setpoint = setpoint * wb_thresh / thresh
  882. */
  883. x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
  884. wb_setpoint = setpoint * (u64)x >> 16;
  885. /*
  886. * Use span=(8*write_bw) in single wb case as indicated by
  887. * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
  888. *
  889. * wb_thresh thresh - wb_thresh
  890. * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
  891. * thresh thresh
  892. */
  893. span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
  894. x_intercept = wb_setpoint + span;
  895. if (dtc->wb_dirty < x_intercept - span / 4) {
  896. pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
  897. (x_intercept - wb_setpoint) | 1);
  898. } else
  899. pos_ratio /= 4;
  900. /*
  901. * wb reserve area, safeguard against dirty pool underrun and disk idle
  902. * It may push the desired control point of global dirty pages higher
  903. * than setpoint.
  904. */
  905. x_intercept = wb_thresh / 2;
  906. if (dtc->wb_dirty < x_intercept) {
  907. if (dtc->wb_dirty > x_intercept / 8)
  908. pos_ratio = div_u64(pos_ratio * x_intercept,
  909. dtc->wb_dirty);
  910. else
  911. pos_ratio *= 8;
  912. }
  913. dtc->pos_ratio = pos_ratio;
  914. }
  915. static void wb_update_write_bandwidth(struct bdi_writeback *wb,
  916. unsigned long elapsed,
  917. unsigned long written)
  918. {
  919. const unsigned long period = roundup_pow_of_two(3 * HZ);
  920. unsigned long avg = wb->avg_write_bandwidth;
  921. unsigned long old = wb->write_bandwidth;
  922. u64 bw;
  923. /*
  924. * bw = written * HZ / elapsed
  925. *
  926. * bw * elapsed + write_bandwidth * (period - elapsed)
  927. * write_bandwidth = ---------------------------------------------------
  928. * period
  929. *
  930. * @written may have decreased due to account_page_redirty().
  931. * Avoid underflowing @bw calculation.
  932. */
  933. bw = written - min(written, wb->written_stamp);
  934. bw *= HZ;
  935. if (unlikely(elapsed > period)) {
  936. do_div(bw, elapsed);
  937. avg = bw;
  938. goto out;
  939. }
  940. bw += (u64)wb->write_bandwidth * (period - elapsed);
  941. bw >>= ilog2(period);
  942. /*
  943. * one more level of smoothing, for filtering out sudden spikes
  944. */
  945. if (avg > old && old >= (unsigned long)bw)
  946. avg -= (avg - old) >> 3;
  947. if (avg < old && old <= (unsigned long)bw)
  948. avg += (old - avg) >> 3;
  949. out:
  950. /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
  951. avg = max(avg, 1LU);
  952. if (wb_has_dirty_io(wb)) {
  953. long delta = avg - wb->avg_write_bandwidth;
  954. WARN_ON_ONCE(atomic_long_add_return(delta,
  955. &wb->bdi->tot_write_bandwidth) <= 0);
  956. }
  957. wb->write_bandwidth = bw;
  958. wb->avg_write_bandwidth = avg;
  959. }
  960. static void update_dirty_limit(struct dirty_throttle_control *dtc)
  961. {
  962. struct wb_domain *dom = dtc_dom(dtc);
  963. unsigned long thresh = dtc->thresh;
  964. unsigned long limit = dom->dirty_limit;
  965. /*
  966. * Follow up in one step.
  967. */
  968. if (limit < thresh) {
  969. limit = thresh;
  970. goto update;
  971. }
  972. /*
  973. * Follow down slowly. Use the higher one as the target, because thresh
  974. * may drop below dirty. This is exactly the reason to introduce
  975. * dom->dirty_limit which is guaranteed to lie above the dirty pages.
  976. */
  977. thresh = max(thresh, dtc->dirty);
  978. if (limit > thresh) {
  979. limit -= (limit - thresh) >> 5;
  980. goto update;
  981. }
  982. return;
  983. update:
  984. dom->dirty_limit = limit;
  985. }
  986. static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
  987. unsigned long now)
  988. {
  989. struct wb_domain *dom = dtc_dom(dtc);
  990. /*
  991. * check locklessly first to optimize away locking for the most time
  992. */
  993. if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
  994. return;
  995. spin_lock(&dom->lock);
  996. if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
  997. update_dirty_limit(dtc);
  998. dom->dirty_limit_tstamp = now;
  999. }
  1000. spin_unlock(&dom->lock);
  1001. }
  1002. /*
  1003. * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
  1004. *
  1005. * Normal wb tasks will be curbed at or below it in long term.
  1006. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  1007. */
  1008. static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
  1009. unsigned long dirtied,
  1010. unsigned long elapsed)
  1011. {
  1012. struct bdi_writeback *wb = dtc->wb;
  1013. unsigned long dirty = dtc->dirty;
  1014. unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
  1015. unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
  1016. unsigned long setpoint = (freerun + limit) / 2;
  1017. unsigned long write_bw = wb->avg_write_bandwidth;
  1018. unsigned long dirty_ratelimit = wb->dirty_ratelimit;
  1019. unsigned long dirty_rate;
  1020. unsigned long task_ratelimit;
  1021. unsigned long balanced_dirty_ratelimit;
  1022. unsigned long step;
  1023. unsigned long x;
  1024. unsigned long shift;
  1025. /*
  1026. * The dirty rate will match the writeout rate in long term, except
  1027. * when dirty pages are truncated by userspace or re-dirtied by FS.
  1028. */
  1029. dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
  1030. /*
  1031. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  1032. */
  1033. task_ratelimit = (u64)dirty_ratelimit *
  1034. dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
  1035. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  1036. /*
  1037. * A linear estimation of the "balanced" throttle rate. The theory is,
  1038. * if there are N dd tasks, each throttled at task_ratelimit, the wb's
  1039. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  1040. * formula will yield the balanced rate limit (write_bw / N).
  1041. *
  1042. * Note that the expanded form is not a pure rate feedback:
  1043. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  1044. * but also takes pos_ratio into account:
  1045. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  1046. *
  1047. * (1) is not realistic because pos_ratio also takes part in balancing
  1048. * the dirty rate. Consider the state
  1049. * pos_ratio = 0.5 (3)
  1050. * rate = 2 * (write_bw / N) (4)
  1051. * If (1) is used, it will stuck in that state! Because each dd will
  1052. * be throttled at
  1053. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  1054. * yielding
  1055. * dirty_rate = N * task_ratelimit = write_bw (6)
  1056. * put (6) into (1) we get
  1057. * rate_(i+1) = rate_(i) (7)
  1058. *
  1059. * So we end up using (2) to always keep
  1060. * rate_(i+1) ~= (write_bw / N) (8)
  1061. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  1062. * pos_ratio is able to drive itself to 1.0, which is not only where
  1063. * the dirty count meet the setpoint, but also where the slope of
  1064. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  1065. */
  1066. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  1067. dirty_rate | 1);
  1068. /*
  1069. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  1070. */
  1071. if (unlikely(balanced_dirty_ratelimit > write_bw))
  1072. balanced_dirty_ratelimit = write_bw;
  1073. /*
  1074. * We could safely do this and return immediately:
  1075. *
  1076. * wb->dirty_ratelimit = balanced_dirty_ratelimit;
  1077. *
  1078. * However to get a more stable dirty_ratelimit, the below elaborated
  1079. * code makes use of task_ratelimit to filter out singular points and
  1080. * limit the step size.
  1081. *
  1082. * The below code essentially only uses the relative value of
  1083. *
  1084. * task_ratelimit - dirty_ratelimit
  1085. * = (pos_ratio - 1) * dirty_ratelimit
  1086. *
  1087. * which reflects the direction and size of dirty position error.
  1088. */
  1089. /*
  1090. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  1091. * task_ratelimit is on the same side of dirty_ratelimit, too.
  1092. * For example, when
  1093. * - dirty_ratelimit > balanced_dirty_ratelimit
  1094. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  1095. * lowering dirty_ratelimit will help meet both the position and rate
  1096. * control targets. Otherwise, don't update dirty_ratelimit if it will
  1097. * only help meet the rate target. After all, what the users ultimately
  1098. * feel and care are stable dirty rate and small position error.
  1099. *
  1100. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  1101. * and filter out the singular points of balanced_dirty_ratelimit. Which
  1102. * keeps jumping around randomly and can even leap far away at times
  1103. * due to the small 200ms estimation period of dirty_rate (we want to
  1104. * keep that period small to reduce time lags).
  1105. */
  1106. step = 0;
  1107. /*
  1108. * For strictlimit case, calculations above were based on wb counters
  1109. * and limits (starting from pos_ratio = wb_position_ratio() and up to
  1110. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  1111. * Hence, to calculate "step" properly, we have to use wb_dirty as
  1112. * "dirty" and wb_setpoint as "setpoint".
  1113. *
  1114. * We rampup dirty_ratelimit forcibly if wb_dirty is low because
  1115. * it's possible that wb_thresh is close to zero due to inactivity
  1116. * of backing device.
  1117. */
  1118. if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  1119. dirty = dtc->wb_dirty;
  1120. if (dtc->wb_dirty < 8)
  1121. setpoint = dtc->wb_dirty + 1;
  1122. else
  1123. setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
  1124. }
  1125. if (dirty < setpoint) {
  1126. x = min3(wb->balanced_dirty_ratelimit,
  1127. balanced_dirty_ratelimit, task_ratelimit);
  1128. if (dirty_ratelimit < x)
  1129. step = x - dirty_ratelimit;
  1130. } else {
  1131. x = max3(wb->balanced_dirty_ratelimit,
  1132. balanced_dirty_ratelimit, task_ratelimit);
  1133. if (dirty_ratelimit > x)
  1134. step = dirty_ratelimit - x;
  1135. }
  1136. /*
  1137. * Don't pursue 100% rate matching. It's impossible since the balanced
  1138. * rate itself is constantly fluctuating. So decrease the track speed
  1139. * when it gets close to the target. Helps eliminate pointless tremors.
  1140. */
  1141. shift = dirty_ratelimit / (2 * step + 1);
  1142. if (shift < BITS_PER_LONG)
  1143. step = DIV_ROUND_UP(step >> shift, 8);
  1144. else
  1145. step = 0;
  1146. if (dirty_ratelimit < balanced_dirty_ratelimit)
  1147. dirty_ratelimit += step;
  1148. else
  1149. dirty_ratelimit -= step;
  1150. wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  1151. wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  1152. trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
  1153. }
  1154. static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
  1155. struct dirty_throttle_control *mdtc,
  1156. unsigned long start_time,
  1157. bool update_ratelimit)
  1158. {
  1159. struct bdi_writeback *wb = gdtc->wb;
  1160. unsigned long now = jiffies;
  1161. unsigned long elapsed = now - wb->bw_time_stamp;
  1162. unsigned long dirtied;
  1163. unsigned long written;
  1164. lockdep_assert_held(&wb->list_lock);
  1165. /*
  1166. * rate-limit, only update once every 200ms.
  1167. */
  1168. if (elapsed < BANDWIDTH_INTERVAL)
  1169. return;
  1170. dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
  1171. written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
  1172. /*
  1173. * Skip quiet periods when disk bandwidth is under-utilized.
  1174. * (at least 1s idle time between two flusher runs)
  1175. */
  1176. if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
  1177. goto snapshot;
  1178. if (update_ratelimit) {
  1179. domain_update_bandwidth(gdtc, now);
  1180. wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
  1181. /*
  1182. * @mdtc is always NULL if !CGROUP_WRITEBACK but the
  1183. * compiler has no way to figure that out. Help it.
  1184. */
  1185. if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
  1186. domain_update_bandwidth(mdtc, now);
  1187. wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
  1188. }
  1189. }
  1190. wb_update_write_bandwidth(wb, elapsed, written);
  1191. snapshot:
  1192. wb->dirtied_stamp = dirtied;
  1193. wb->written_stamp = written;
  1194. wb->bw_time_stamp = now;
  1195. }
  1196. void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
  1197. {
  1198. struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
  1199. __wb_update_bandwidth(&gdtc, NULL, start_time, false);
  1200. }
  1201. /*
  1202. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  1203. * will look to see if it needs to start dirty throttling.
  1204. *
  1205. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1206. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1207. * (the number of pages we may dirty without exceeding the dirty limits).
  1208. */
  1209. static unsigned long dirty_poll_interval(unsigned long dirty,
  1210. unsigned long thresh)
  1211. {
  1212. if (thresh > dirty)
  1213. return 1UL << (ilog2(thresh - dirty) >> 1);
  1214. return 1;
  1215. }
  1216. static unsigned long wb_max_pause(struct bdi_writeback *wb,
  1217. unsigned long wb_dirty)
  1218. {
  1219. unsigned long bw = wb->avg_write_bandwidth;
  1220. unsigned long t;
  1221. /*
  1222. * Limit pause time for small memory systems. If sleeping for too long
  1223. * time, a small pool of dirty/writeback pages may go empty and disk go
  1224. * idle.
  1225. *
  1226. * 8 serves as the safety ratio.
  1227. */
  1228. t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1229. t++;
  1230. return min_t(unsigned long, t, MAX_PAUSE);
  1231. }
  1232. static long wb_min_pause(struct bdi_writeback *wb,
  1233. long max_pause,
  1234. unsigned long task_ratelimit,
  1235. unsigned long dirty_ratelimit,
  1236. int *nr_dirtied_pause)
  1237. {
  1238. long hi = ilog2(wb->avg_write_bandwidth);
  1239. long lo = ilog2(wb->dirty_ratelimit);
  1240. long t; /* target pause */
  1241. long pause; /* estimated next pause */
  1242. int pages; /* target nr_dirtied_pause */
  1243. /* target for 10ms pause on 1-dd case */
  1244. t = max(1, HZ / 100);
  1245. /*
  1246. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1247. * overheads.
  1248. *
  1249. * (N * 10ms) on 2^N concurrent tasks.
  1250. */
  1251. if (hi > lo)
  1252. t += (hi - lo) * (10 * HZ) / 1024;
  1253. /*
  1254. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1255. * on the much more stable dirty_ratelimit. However the next pause time
  1256. * will be computed based on task_ratelimit and the two rate limits may
  1257. * depart considerably at some time. Especially if task_ratelimit goes
  1258. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1259. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1260. * result task_ratelimit won't be executed faithfully, which could
  1261. * eventually bring down dirty_ratelimit.
  1262. *
  1263. * We apply two rules to fix it up:
  1264. * 1) try to estimate the next pause time and if necessary, use a lower
  1265. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1266. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1267. * 2) limit the target pause time to max_pause/2, so that the normal
  1268. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1269. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1270. */
  1271. t = min(t, 1 + max_pause / 2);
  1272. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1273. /*
  1274. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1275. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1276. * When the 16 consecutive reads are often interrupted by some dirty
  1277. * throttling pause during the async writes, cfq will go into idles
  1278. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1279. * until reaches DIRTY_POLL_THRESH=32 pages.
  1280. */
  1281. if (pages < DIRTY_POLL_THRESH) {
  1282. t = max_pause;
  1283. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1284. if (pages > DIRTY_POLL_THRESH) {
  1285. pages = DIRTY_POLL_THRESH;
  1286. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1287. }
  1288. }
  1289. pause = HZ * pages / (task_ratelimit + 1);
  1290. if (pause > max_pause) {
  1291. t = max_pause;
  1292. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1293. }
  1294. *nr_dirtied_pause = pages;
  1295. /*
  1296. * The minimal pause time will normally be half the target pause time.
  1297. */
  1298. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1299. }
  1300. static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
  1301. {
  1302. struct bdi_writeback *wb = dtc->wb;
  1303. unsigned long wb_reclaimable;
  1304. /*
  1305. * wb_thresh is not treated as some limiting factor as
  1306. * dirty_thresh, due to reasons
  1307. * - in JBOD setup, wb_thresh can fluctuate a lot
  1308. * - in a system with HDD and USB key, the USB key may somehow
  1309. * go into state (wb_dirty >> wb_thresh) either because
  1310. * wb_dirty starts high, or because wb_thresh drops low.
  1311. * In this case we don't want to hard throttle the USB key
  1312. * dirtiers for 100 seconds until wb_dirty drops under
  1313. * wb_thresh. Instead the auxiliary wb control line in
  1314. * wb_position_ratio() will let the dirtier task progress
  1315. * at some rate <= (write_bw / 2) for bringing down wb_dirty.
  1316. */
  1317. dtc->wb_thresh = __wb_calc_thresh(dtc);
  1318. dtc->wb_bg_thresh = dtc->thresh ?
  1319. div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
  1320. /*
  1321. * In order to avoid the stacked BDI deadlock we need
  1322. * to ensure we accurately count the 'dirty' pages when
  1323. * the threshold is low.
  1324. *
  1325. * Otherwise it would be possible to get thresh+n pages
  1326. * reported dirty, even though there are thresh-m pages
  1327. * actually dirty; with m+n sitting in the percpu
  1328. * deltas.
  1329. */
  1330. if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
  1331. wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
  1332. dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
  1333. } else {
  1334. wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
  1335. dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
  1336. }
  1337. }
  1338. /*
  1339. * balance_dirty_pages() must be called by processes which are generating dirty
  1340. * data. It looks at the number of dirty pages in the machine and will force
  1341. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1342. * If we're over `background_thresh' then the writeback threads are woken to
  1343. * perform some writeout.
  1344. */
  1345. static void balance_dirty_pages(struct address_space *mapping,
  1346. struct bdi_writeback *wb,
  1347. unsigned long pages_dirtied)
  1348. {
  1349. struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
  1350. struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
  1351. struct dirty_throttle_control * const gdtc = &gdtc_stor;
  1352. struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
  1353. &mdtc_stor : NULL;
  1354. struct dirty_throttle_control *sdtc;
  1355. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1356. long period;
  1357. long pause;
  1358. long max_pause;
  1359. long min_pause;
  1360. int nr_dirtied_pause;
  1361. bool dirty_exceeded = false;
  1362. unsigned long task_ratelimit;
  1363. unsigned long dirty_ratelimit;
  1364. struct backing_dev_info *bdi = wb->bdi;
  1365. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1366. unsigned long start_time = jiffies;
  1367. for (;;) {
  1368. unsigned long now = jiffies;
  1369. unsigned long dirty, thresh, bg_thresh;
  1370. unsigned long m_dirty = 0; /* stop bogus uninit warnings */
  1371. unsigned long m_thresh = 0;
  1372. unsigned long m_bg_thresh = 0;
  1373. /*
  1374. * Unstable writes are a feature of certain networked
  1375. * filesystems (i.e. NFS) in which data may have been
  1376. * written to the server's write cache, but has not yet
  1377. * been flushed to permanent storage.
  1378. */
  1379. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1380. global_page_state(NR_UNSTABLE_NFS);
  1381. gdtc->avail = global_dirtyable_memory();
  1382. gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1383. domain_dirty_limits(gdtc);
  1384. if (unlikely(strictlimit)) {
  1385. wb_dirty_limits(gdtc);
  1386. dirty = gdtc->wb_dirty;
  1387. thresh = gdtc->wb_thresh;
  1388. bg_thresh = gdtc->wb_bg_thresh;
  1389. } else {
  1390. dirty = gdtc->dirty;
  1391. thresh = gdtc->thresh;
  1392. bg_thresh = gdtc->bg_thresh;
  1393. }
  1394. if (mdtc) {
  1395. unsigned long filepages, headroom, writeback;
  1396. /*
  1397. * If @wb belongs to !root memcg, repeat the same
  1398. * basic calculations for the memcg domain.
  1399. */
  1400. mem_cgroup_wb_stats(wb, &filepages, &headroom,
  1401. &mdtc->dirty, &writeback);
  1402. mdtc->dirty += writeback;
  1403. mdtc_calc_avail(mdtc, filepages, headroom);
  1404. domain_dirty_limits(mdtc);
  1405. if (unlikely(strictlimit)) {
  1406. wb_dirty_limits(mdtc);
  1407. m_dirty = mdtc->wb_dirty;
  1408. m_thresh = mdtc->wb_thresh;
  1409. m_bg_thresh = mdtc->wb_bg_thresh;
  1410. } else {
  1411. m_dirty = mdtc->dirty;
  1412. m_thresh = mdtc->thresh;
  1413. m_bg_thresh = mdtc->bg_thresh;
  1414. }
  1415. }
  1416. /*
  1417. * Throttle it only when the background writeback cannot
  1418. * catch-up. This avoids (excessively) small writeouts
  1419. * when the wb limits are ramping up in case of !strictlimit.
  1420. *
  1421. * In strictlimit case make decision based on the wb counters
  1422. * and limits. Small writeouts when the wb limits are ramping
  1423. * up are the price we consciously pay for strictlimit-ing.
  1424. *
  1425. * If memcg domain is in effect, @dirty should be under
  1426. * both global and memcg freerun ceilings.
  1427. */
  1428. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
  1429. (!mdtc ||
  1430. m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
  1431. unsigned long intv = dirty_poll_interval(dirty, thresh);
  1432. unsigned long m_intv = ULONG_MAX;
  1433. current->dirty_paused_when = now;
  1434. current->nr_dirtied = 0;
  1435. if (mdtc)
  1436. m_intv = dirty_poll_interval(m_dirty, m_thresh);
  1437. current->nr_dirtied_pause = min(intv, m_intv);
  1438. break;
  1439. }
  1440. if (unlikely(!writeback_in_progress(wb)))
  1441. wb_start_background_writeback(wb);
  1442. /*
  1443. * Calculate global domain's pos_ratio and select the
  1444. * global dtc by default.
  1445. */
  1446. if (!strictlimit)
  1447. wb_dirty_limits(gdtc);
  1448. dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
  1449. ((gdtc->dirty > gdtc->thresh) || strictlimit);
  1450. wb_position_ratio(gdtc);
  1451. sdtc = gdtc;
  1452. if (mdtc) {
  1453. /*
  1454. * If memcg domain is in effect, calculate its
  1455. * pos_ratio. @wb should satisfy constraints from
  1456. * both global and memcg domains. Choose the one
  1457. * w/ lower pos_ratio.
  1458. */
  1459. if (!strictlimit)
  1460. wb_dirty_limits(mdtc);
  1461. dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
  1462. ((mdtc->dirty > mdtc->thresh) || strictlimit);
  1463. wb_position_ratio(mdtc);
  1464. if (mdtc->pos_ratio < gdtc->pos_ratio)
  1465. sdtc = mdtc;
  1466. }
  1467. if (dirty_exceeded && !wb->dirty_exceeded)
  1468. wb->dirty_exceeded = 1;
  1469. if (time_is_before_jiffies(wb->bw_time_stamp +
  1470. BANDWIDTH_INTERVAL)) {
  1471. spin_lock(&wb->list_lock);
  1472. __wb_update_bandwidth(gdtc, mdtc, start_time, true);
  1473. spin_unlock(&wb->list_lock);
  1474. }
  1475. /* throttle according to the chosen dtc */
  1476. dirty_ratelimit = wb->dirty_ratelimit;
  1477. task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
  1478. RATELIMIT_CALC_SHIFT;
  1479. max_pause = wb_max_pause(wb, sdtc->wb_dirty);
  1480. min_pause = wb_min_pause(wb, max_pause,
  1481. task_ratelimit, dirty_ratelimit,
  1482. &nr_dirtied_pause);
  1483. if (unlikely(task_ratelimit == 0)) {
  1484. period = max_pause;
  1485. pause = max_pause;
  1486. goto pause;
  1487. }
  1488. period = HZ * pages_dirtied / task_ratelimit;
  1489. pause = period;
  1490. if (current->dirty_paused_when)
  1491. pause -= now - current->dirty_paused_when;
  1492. /*
  1493. * For less than 1s think time (ext3/4 may block the dirtier
  1494. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1495. * however at much less frequency), try to compensate it in
  1496. * future periods by updating the virtual time; otherwise just
  1497. * do a reset, as it may be a light dirtier.
  1498. */
  1499. if (pause < min_pause) {
  1500. trace_balance_dirty_pages(wb,
  1501. sdtc->thresh,
  1502. sdtc->bg_thresh,
  1503. sdtc->dirty,
  1504. sdtc->wb_thresh,
  1505. sdtc->wb_dirty,
  1506. dirty_ratelimit,
  1507. task_ratelimit,
  1508. pages_dirtied,
  1509. period,
  1510. min(pause, 0L),
  1511. start_time);
  1512. if (pause < -HZ) {
  1513. current->dirty_paused_when = now;
  1514. current->nr_dirtied = 0;
  1515. } else if (period) {
  1516. current->dirty_paused_when += period;
  1517. current->nr_dirtied = 0;
  1518. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1519. current->nr_dirtied_pause += pages_dirtied;
  1520. break;
  1521. }
  1522. if (unlikely(pause > max_pause)) {
  1523. /* for occasional dropped task_ratelimit */
  1524. now += min(pause - max_pause, max_pause);
  1525. pause = max_pause;
  1526. }
  1527. pause:
  1528. trace_balance_dirty_pages(wb,
  1529. sdtc->thresh,
  1530. sdtc->bg_thresh,
  1531. sdtc->dirty,
  1532. sdtc->wb_thresh,
  1533. sdtc->wb_dirty,
  1534. dirty_ratelimit,
  1535. task_ratelimit,
  1536. pages_dirtied,
  1537. period,
  1538. pause,
  1539. start_time);
  1540. __set_current_state(TASK_KILLABLE);
  1541. io_schedule_timeout(pause);
  1542. current->dirty_paused_when = now + pause;
  1543. current->nr_dirtied = 0;
  1544. current->nr_dirtied_pause = nr_dirtied_pause;
  1545. /*
  1546. * This is typically equal to (dirty < thresh) and can also
  1547. * keep "1000+ dd on a slow USB stick" under control.
  1548. */
  1549. if (task_ratelimit)
  1550. break;
  1551. /*
  1552. * In the case of an unresponding NFS server and the NFS dirty
  1553. * pages exceeds dirty_thresh, give the other good wb's a pipe
  1554. * to go through, so that tasks on them still remain responsive.
  1555. *
  1556. * In theory 1 page is enough to keep the comsumer-producer
  1557. * pipe going: the flusher cleans 1 page => the task dirties 1
  1558. * more page. However wb_dirty has accounting errors. So use
  1559. * the larger and more IO friendly wb_stat_error.
  1560. */
  1561. if (sdtc->wb_dirty <= wb_stat_error(wb))
  1562. break;
  1563. if (fatal_signal_pending(current))
  1564. break;
  1565. }
  1566. if (!dirty_exceeded && wb->dirty_exceeded)
  1567. wb->dirty_exceeded = 0;
  1568. if (writeback_in_progress(wb))
  1569. return;
  1570. /*
  1571. * In laptop mode, we wait until hitting the higher threshold before
  1572. * starting background writeout, and then write out all the way down
  1573. * to the lower threshold. So slow writers cause minimal disk activity.
  1574. *
  1575. * In normal mode, we start background writeout at the lower
  1576. * background_thresh, to keep the amount of dirty memory low.
  1577. */
  1578. if (laptop_mode)
  1579. return;
  1580. if (nr_reclaimable > gdtc->bg_thresh)
  1581. wb_start_background_writeback(wb);
  1582. }
  1583. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1584. /*
  1585. * Normal tasks are throttled by
  1586. * loop {
  1587. * dirty tsk->nr_dirtied_pause pages;
  1588. * take a snap in balance_dirty_pages();
  1589. * }
  1590. * However there is a worst case. If every task exit immediately when dirtied
  1591. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1592. * called to throttle the page dirties. The solution is to save the not yet
  1593. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1594. * randomly into the running tasks. This works well for the above worst case,
  1595. * as the new task will pick up and accumulate the old task's leaked dirty
  1596. * count and eventually get throttled.
  1597. */
  1598. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1599. /**
  1600. * balance_dirty_pages_ratelimited - balance dirty memory state
  1601. * @mapping: address_space which was dirtied
  1602. *
  1603. * Processes which are dirtying memory should call in here once for each page
  1604. * which was newly dirtied. The function will periodically check the system's
  1605. * dirty state and will initiate writeback if needed.
  1606. *
  1607. * On really big machines, get_writeback_state is expensive, so try to avoid
  1608. * calling it too often (ratelimiting). But once we're over the dirty memory
  1609. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1610. * from overshooting the limit by (ratelimit_pages) each.
  1611. */
  1612. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1613. {
  1614. struct inode *inode = mapping->host;
  1615. struct backing_dev_info *bdi = inode_to_bdi(inode);
  1616. struct bdi_writeback *wb = NULL;
  1617. int ratelimit;
  1618. int *p;
  1619. if (!bdi_cap_account_dirty(bdi))
  1620. return;
  1621. if (inode_cgwb_enabled(inode))
  1622. wb = wb_get_create_current(bdi, GFP_KERNEL);
  1623. if (!wb)
  1624. wb = &bdi->wb;
  1625. ratelimit = current->nr_dirtied_pause;
  1626. if (wb->dirty_exceeded)
  1627. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1628. preempt_disable();
  1629. /*
  1630. * This prevents one CPU to accumulate too many dirtied pages without
  1631. * calling into balance_dirty_pages(), which can happen when there are
  1632. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1633. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1634. */
  1635. p = this_cpu_ptr(&bdp_ratelimits);
  1636. if (unlikely(current->nr_dirtied >= ratelimit))
  1637. *p = 0;
  1638. else if (unlikely(*p >= ratelimit_pages)) {
  1639. *p = 0;
  1640. ratelimit = 0;
  1641. }
  1642. /*
  1643. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1644. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1645. * the dirty throttling and livelock other long-run dirtiers.
  1646. */
  1647. p = this_cpu_ptr(&dirty_throttle_leaks);
  1648. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1649. unsigned long nr_pages_dirtied;
  1650. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1651. *p -= nr_pages_dirtied;
  1652. current->nr_dirtied += nr_pages_dirtied;
  1653. }
  1654. preempt_enable();
  1655. if (unlikely(current->nr_dirtied >= ratelimit))
  1656. balance_dirty_pages(mapping, wb, current->nr_dirtied);
  1657. wb_put(wb);
  1658. }
  1659. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1660. /**
  1661. * wb_over_bg_thresh - does @wb need to be written back?
  1662. * @wb: bdi_writeback of interest
  1663. *
  1664. * Determines whether background writeback should keep writing @wb or it's
  1665. * clean enough. Returns %true if writeback should continue.
  1666. */
  1667. bool wb_over_bg_thresh(struct bdi_writeback *wb)
  1668. {
  1669. struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
  1670. struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
  1671. struct dirty_throttle_control * const gdtc = &gdtc_stor;
  1672. struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
  1673. &mdtc_stor : NULL;
  1674. /*
  1675. * Similar to balance_dirty_pages() but ignores pages being written
  1676. * as we're trying to decide whether to put more under writeback.
  1677. */
  1678. gdtc->avail = global_dirtyable_memory();
  1679. gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
  1680. global_page_state(NR_UNSTABLE_NFS);
  1681. domain_dirty_limits(gdtc);
  1682. if (gdtc->dirty > gdtc->bg_thresh)
  1683. return true;
  1684. if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
  1685. return true;
  1686. if (mdtc) {
  1687. unsigned long filepages, headroom, writeback;
  1688. mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
  1689. &writeback);
  1690. mdtc_calc_avail(mdtc, filepages, headroom);
  1691. domain_dirty_limits(mdtc); /* ditto, ignore writeback */
  1692. if (mdtc->dirty > mdtc->bg_thresh)
  1693. return true;
  1694. if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
  1695. return true;
  1696. }
  1697. return false;
  1698. }
  1699. void throttle_vm_writeout(gfp_t gfp_mask)
  1700. {
  1701. unsigned long background_thresh;
  1702. unsigned long dirty_thresh;
  1703. for ( ; ; ) {
  1704. global_dirty_limits(&background_thresh, &dirty_thresh);
  1705. dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
  1706. /*
  1707. * Boost the allowable dirty threshold a bit for page
  1708. * allocators so they don't get DoS'ed by heavy writers
  1709. */
  1710. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1711. if (global_page_state(NR_UNSTABLE_NFS) +
  1712. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1713. break;
  1714. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1715. /*
  1716. * The caller might hold locks which can prevent IO completion
  1717. * or progress in the filesystem. So we cannot just sit here
  1718. * waiting for IO to complete.
  1719. */
  1720. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1721. break;
  1722. }
  1723. }
  1724. /*
  1725. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1726. */
  1727. int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
  1728. void __user *buffer, size_t *length, loff_t *ppos)
  1729. {
  1730. proc_dointvec(table, write, buffer, length, ppos);
  1731. return 0;
  1732. }
  1733. #ifdef CONFIG_BLOCK
  1734. void laptop_mode_timer_fn(unsigned long data)
  1735. {
  1736. struct request_queue *q = (struct request_queue *)data;
  1737. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1738. global_page_state(NR_UNSTABLE_NFS);
  1739. struct bdi_writeback *wb;
  1740. /*
  1741. * We want to write everything out, not just down to the dirty
  1742. * threshold
  1743. */
  1744. if (!bdi_has_dirty_io(&q->backing_dev_info))
  1745. return;
  1746. rcu_read_lock();
  1747. list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
  1748. if (wb_has_dirty_io(wb))
  1749. wb_start_writeback(wb, nr_pages, true,
  1750. WB_REASON_LAPTOP_TIMER);
  1751. rcu_read_unlock();
  1752. }
  1753. /*
  1754. * We've spun up the disk and we're in laptop mode: schedule writeback
  1755. * of all dirty data a few seconds from now. If the flush is already scheduled
  1756. * then push it back - the user is still using the disk.
  1757. */
  1758. void laptop_io_completion(struct backing_dev_info *info)
  1759. {
  1760. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1761. }
  1762. /*
  1763. * We're in laptop mode and we've just synced. The sync's writes will have
  1764. * caused another writeback to be scheduled by laptop_io_completion.
  1765. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1766. */
  1767. void laptop_sync_completion(void)
  1768. {
  1769. struct backing_dev_info *bdi;
  1770. rcu_read_lock();
  1771. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1772. del_timer(&bdi->laptop_mode_wb_timer);
  1773. rcu_read_unlock();
  1774. }
  1775. #endif
  1776. /*
  1777. * If ratelimit_pages is too high then we can get into dirty-data overload
  1778. * if a large number of processes all perform writes at the same time.
  1779. * If it is too low then SMP machines will call the (expensive)
  1780. * get_writeback_state too often.
  1781. *
  1782. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1783. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1784. * thresholds.
  1785. */
  1786. void writeback_set_ratelimit(void)
  1787. {
  1788. struct wb_domain *dom = &global_wb_domain;
  1789. unsigned long background_thresh;
  1790. unsigned long dirty_thresh;
  1791. global_dirty_limits(&background_thresh, &dirty_thresh);
  1792. dom->dirty_limit = dirty_thresh;
  1793. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1794. if (ratelimit_pages < 16)
  1795. ratelimit_pages = 16;
  1796. }
  1797. static int
  1798. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1799. void *hcpu)
  1800. {
  1801. switch (action & ~CPU_TASKS_FROZEN) {
  1802. case CPU_ONLINE:
  1803. case CPU_DEAD:
  1804. writeback_set_ratelimit();
  1805. return NOTIFY_OK;
  1806. default:
  1807. return NOTIFY_DONE;
  1808. }
  1809. }
  1810. static struct notifier_block ratelimit_nb = {
  1811. .notifier_call = ratelimit_handler,
  1812. .next = NULL,
  1813. };
  1814. /*
  1815. * Called early on to tune the page writeback dirty limits.
  1816. *
  1817. * We used to scale dirty pages according to how total memory
  1818. * related to pages that could be allocated for buffers (by
  1819. * comparing nr_free_buffer_pages() to vm_total_pages.
  1820. *
  1821. * However, that was when we used "dirty_ratio" to scale with
  1822. * all memory, and we don't do that any more. "dirty_ratio"
  1823. * is now applied to total non-HIGHPAGE memory (by subtracting
  1824. * totalhigh_pages from vm_total_pages), and as such we can't
  1825. * get into the old insane situation any more where we had
  1826. * large amounts of dirty pages compared to a small amount of
  1827. * non-HIGHMEM memory.
  1828. *
  1829. * But we might still want to scale the dirty_ratio by how
  1830. * much memory the box has..
  1831. */
  1832. void __init page_writeback_init(void)
  1833. {
  1834. BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
  1835. writeback_set_ratelimit();
  1836. register_cpu_notifier(&ratelimit_nb);
  1837. }
  1838. /**
  1839. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1840. * @mapping: address space structure to write
  1841. * @start: starting page index
  1842. * @end: ending page index (inclusive)
  1843. *
  1844. * This function scans the page range from @start to @end (inclusive) and tags
  1845. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1846. * that write_cache_pages (or whoever calls this function) will then use
  1847. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1848. * used to avoid livelocking of writeback by a process steadily creating new
  1849. * dirty pages in the file (thus it is important for this function to be quick
  1850. * so that it can tag pages faster than a dirtying process can create them).
  1851. */
  1852. /*
  1853. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1854. */
  1855. void tag_pages_for_writeback(struct address_space *mapping,
  1856. pgoff_t start, pgoff_t end)
  1857. {
  1858. #define WRITEBACK_TAG_BATCH 4096
  1859. unsigned long tagged;
  1860. do {
  1861. spin_lock_irq(&mapping->tree_lock);
  1862. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1863. &start, end, WRITEBACK_TAG_BATCH,
  1864. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1865. spin_unlock_irq(&mapping->tree_lock);
  1866. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1867. cond_resched();
  1868. /* We check 'start' to handle wrapping when end == ~0UL */
  1869. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1870. }
  1871. EXPORT_SYMBOL(tag_pages_for_writeback);
  1872. /**
  1873. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1874. * @mapping: address space structure to write
  1875. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1876. * @writepage: function called for each page
  1877. * @data: data passed to writepage function
  1878. *
  1879. * If a page is already under I/O, write_cache_pages() skips it, even
  1880. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1881. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1882. * and msync() need to guarantee that all the data which was dirty at the time
  1883. * the call was made get new I/O started against them. If wbc->sync_mode is
  1884. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1885. * existing IO to complete.
  1886. *
  1887. * To avoid livelocks (when other process dirties new pages), we first tag
  1888. * pages which should be written back with TOWRITE tag and only then start
  1889. * writing them. For data-integrity sync we have to be careful so that we do
  1890. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1891. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1892. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1893. */
  1894. int write_cache_pages(struct address_space *mapping,
  1895. struct writeback_control *wbc, writepage_t writepage,
  1896. void *data)
  1897. {
  1898. int ret = 0;
  1899. int done = 0;
  1900. struct pagevec pvec;
  1901. int nr_pages;
  1902. pgoff_t uninitialized_var(writeback_index);
  1903. pgoff_t index;
  1904. pgoff_t end; /* Inclusive */
  1905. pgoff_t done_index;
  1906. int cycled;
  1907. int range_whole = 0;
  1908. int tag;
  1909. pagevec_init(&pvec, 0);
  1910. if (wbc->range_cyclic) {
  1911. writeback_index = mapping->writeback_index; /* prev offset */
  1912. index = writeback_index;
  1913. if (index == 0)
  1914. cycled = 1;
  1915. else
  1916. cycled = 0;
  1917. end = -1;
  1918. } else {
  1919. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1920. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1921. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1922. range_whole = 1;
  1923. cycled = 1; /* ignore range_cyclic tests */
  1924. }
  1925. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1926. tag = PAGECACHE_TAG_TOWRITE;
  1927. else
  1928. tag = PAGECACHE_TAG_DIRTY;
  1929. retry:
  1930. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1931. tag_pages_for_writeback(mapping, index, end);
  1932. done_index = index;
  1933. while (!done && (index <= end)) {
  1934. int i;
  1935. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1936. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1937. if (nr_pages == 0)
  1938. break;
  1939. for (i = 0; i < nr_pages; i++) {
  1940. struct page *page = pvec.pages[i];
  1941. /*
  1942. * At this point, the page may be truncated or
  1943. * invalidated (changing page->mapping to NULL), or
  1944. * even swizzled back from swapper_space to tmpfs file
  1945. * mapping. However, page->index will not change
  1946. * because we have a reference on the page.
  1947. */
  1948. if (page->index > end) {
  1949. /*
  1950. * can't be range_cyclic (1st pass) because
  1951. * end == -1 in that case.
  1952. */
  1953. done = 1;
  1954. break;
  1955. }
  1956. done_index = page->index;
  1957. lock_page(page);
  1958. /*
  1959. * Page truncated or invalidated. We can freely skip it
  1960. * then, even for data integrity operations: the page
  1961. * has disappeared concurrently, so there could be no
  1962. * real expectation of this data interity operation
  1963. * even if there is now a new, dirty page at the same
  1964. * pagecache address.
  1965. */
  1966. if (unlikely(page->mapping != mapping)) {
  1967. continue_unlock:
  1968. unlock_page(page);
  1969. continue;
  1970. }
  1971. if (!PageDirty(page)) {
  1972. /* someone wrote it for us */
  1973. goto continue_unlock;
  1974. }
  1975. if (PageWriteback(page)) {
  1976. if (wbc->sync_mode != WB_SYNC_NONE)
  1977. wait_on_page_writeback(page);
  1978. else
  1979. goto continue_unlock;
  1980. }
  1981. BUG_ON(PageWriteback(page));
  1982. if (!clear_page_dirty_for_io(page))
  1983. goto continue_unlock;
  1984. trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
  1985. ret = (*writepage)(page, wbc, data);
  1986. if (unlikely(ret)) {
  1987. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1988. unlock_page(page);
  1989. ret = 0;
  1990. } else {
  1991. /*
  1992. * done_index is set past this page,
  1993. * so media errors will not choke
  1994. * background writeout for the entire
  1995. * file. This has consequences for
  1996. * range_cyclic semantics (ie. it may
  1997. * not be suitable for data integrity
  1998. * writeout).
  1999. */
  2000. done_index = page->index + 1;
  2001. done = 1;
  2002. break;
  2003. }
  2004. }
  2005. /*
  2006. * We stop writing back only if we are not doing
  2007. * integrity sync. In case of integrity sync we have to
  2008. * keep going until we have written all the pages
  2009. * we tagged for writeback prior to entering this loop.
  2010. */
  2011. if (--wbc->nr_to_write <= 0 &&
  2012. wbc->sync_mode == WB_SYNC_NONE) {
  2013. done = 1;
  2014. break;
  2015. }
  2016. }
  2017. pagevec_release(&pvec);
  2018. cond_resched();
  2019. }
  2020. if (!cycled && !done) {
  2021. /*
  2022. * range_cyclic:
  2023. * We hit the last page and there is more work to be done: wrap
  2024. * back to the start of the file
  2025. */
  2026. cycled = 1;
  2027. index = 0;
  2028. end = writeback_index - 1;
  2029. goto retry;
  2030. }
  2031. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  2032. mapping->writeback_index = done_index;
  2033. return ret;
  2034. }
  2035. EXPORT_SYMBOL(write_cache_pages);
  2036. /*
  2037. * Function used by generic_writepages to call the real writepage
  2038. * function and set the mapping flags on error
  2039. */
  2040. static int __writepage(struct page *page, struct writeback_control *wbc,
  2041. void *data)
  2042. {
  2043. struct address_space *mapping = data;
  2044. int ret = mapping->a_ops->writepage(page, wbc);
  2045. mapping_set_error(mapping, ret);
  2046. return ret;
  2047. }
  2048. /**
  2049. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  2050. * @mapping: address space structure to write
  2051. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  2052. *
  2053. * This is a library function, which implements the writepages()
  2054. * address_space_operation.
  2055. */
  2056. int generic_writepages(struct address_space *mapping,
  2057. struct writeback_control *wbc)
  2058. {
  2059. struct blk_plug plug;
  2060. int ret;
  2061. /* deal with chardevs and other special file */
  2062. if (!mapping->a_ops->writepage)
  2063. return 0;
  2064. blk_start_plug(&plug);
  2065. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  2066. blk_finish_plug(&plug);
  2067. return ret;
  2068. }
  2069. EXPORT_SYMBOL(generic_writepages);
  2070. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  2071. {
  2072. int ret;
  2073. if (wbc->nr_to_write <= 0)
  2074. return 0;
  2075. if (mapping->a_ops->writepages)
  2076. ret = mapping->a_ops->writepages(mapping, wbc);
  2077. else
  2078. ret = generic_writepages(mapping, wbc);
  2079. return ret;
  2080. }
  2081. /**
  2082. * write_one_page - write out a single page and optionally wait on I/O
  2083. * @page: the page to write
  2084. * @wait: if true, wait on writeout
  2085. *
  2086. * The page must be locked by the caller and will be unlocked upon return.
  2087. *
  2088. * write_one_page() returns a negative error code if I/O failed.
  2089. */
  2090. int write_one_page(struct page *page, int wait)
  2091. {
  2092. struct address_space *mapping = page->mapping;
  2093. int ret = 0;
  2094. struct writeback_control wbc = {
  2095. .sync_mode = WB_SYNC_ALL,
  2096. .nr_to_write = 1,
  2097. };
  2098. BUG_ON(!PageLocked(page));
  2099. if (wait)
  2100. wait_on_page_writeback(page);
  2101. if (clear_page_dirty_for_io(page)) {
  2102. page_cache_get(page);
  2103. ret = mapping->a_ops->writepage(page, &wbc);
  2104. if (ret == 0 && wait) {
  2105. wait_on_page_writeback(page);
  2106. if (PageError(page))
  2107. ret = -EIO;
  2108. }
  2109. page_cache_release(page);
  2110. } else {
  2111. unlock_page(page);
  2112. }
  2113. return ret;
  2114. }
  2115. EXPORT_SYMBOL(write_one_page);
  2116. /*
  2117. * For address_spaces which do not use buffers nor write back.
  2118. */
  2119. int __set_page_dirty_no_writeback(struct page *page)
  2120. {
  2121. if (!PageDirty(page))
  2122. return !TestSetPageDirty(page);
  2123. return 0;
  2124. }
  2125. /*
  2126. * Helper function for set_page_dirty family.
  2127. *
  2128. * Caller must hold lock_page_memcg().
  2129. *
  2130. * NOTE: This relies on being atomic wrt interrupts.
  2131. */
  2132. void account_page_dirtied(struct page *page, struct address_space *mapping)
  2133. {
  2134. struct inode *inode = mapping->host;
  2135. trace_writeback_dirty_page(page, mapping);
  2136. if (mapping_cap_account_dirty(mapping)) {
  2137. struct bdi_writeback *wb;
  2138. inode_attach_wb(inode, page);
  2139. wb = inode_to_wb(inode);
  2140. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2141. __inc_zone_page_state(page, NR_FILE_DIRTY);
  2142. __inc_zone_page_state(page, NR_DIRTIED);
  2143. __inc_wb_stat(wb, WB_RECLAIMABLE);
  2144. __inc_wb_stat(wb, WB_DIRTIED);
  2145. task_io_account_write(PAGE_CACHE_SIZE);
  2146. current->nr_dirtied++;
  2147. this_cpu_inc(bdp_ratelimits);
  2148. }
  2149. }
  2150. EXPORT_SYMBOL(account_page_dirtied);
  2151. /*
  2152. * Helper function for deaccounting dirty page without writeback.
  2153. *
  2154. * Caller must hold lock_page_memcg().
  2155. */
  2156. void account_page_cleaned(struct page *page, struct address_space *mapping,
  2157. struct bdi_writeback *wb)
  2158. {
  2159. if (mapping_cap_account_dirty(mapping)) {
  2160. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2161. dec_zone_page_state(page, NR_FILE_DIRTY);
  2162. dec_wb_stat(wb, WB_RECLAIMABLE);
  2163. task_io_account_cancelled_write(PAGE_CACHE_SIZE);
  2164. }
  2165. }
  2166. /*
  2167. * For address_spaces which do not use buffers. Just tag the page as dirty in
  2168. * its radix tree.
  2169. *
  2170. * This is also used when a single buffer is being dirtied: we want to set the
  2171. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  2172. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  2173. *
  2174. * The caller must ensure this doesn't race with truncation. Most will simply
  2175. * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
  2176. * the pte lock held, which also locks out truncation.
  2177. */
  2178. int __set_page_dirty_nobuffers(struct page *page)
  2179. {
  2180. lock_page_memcg(page);
  2181. if (!TestSetPageDirty(page)) {
  2182. struct address_space *mapping = page_mapping(page);
  2183. unsigned long flags;
  2184. if (!mapping) {
  2185. unlock_page_memcg(page);
  2186. return 1;
  2187. }
  2188. spin_lock_irqsave(&mapping->tree_lock, flags);
  2189. BUG_ON(page_mapping(page) != mapping);
  2190. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  2191. account_page_dirtied(page, mapping);
  2192. radix_tree_tag_set(&mapping->page_tree, page_index(page),
  2193. PAGECACHE_TAG_DIRTY);
  2194. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2195. unlock_page_memcg(page);
  2196. if (mapping->host) {
  2197. /* !PageAnon && !swapper_space */
  2198. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  2199. }
  2200. return 1;
  2201. }
  2202. unlock_page_memcg(page);
  2203. return 0;
  2204. }
  2205. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  2206. /*
  2207. * Call this whenever redirtying a page, to de-account the dirty counters
  2208. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  2209. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  2210. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  2211. * control.
  2212. */
  2213. void account_page_redirty(struct page *page)
  2214. {
  2215. struct address_space *mapping = page->mapping;
  2216. if (mapping && mapping_cap_account_dirty(mapping)) {
  2217. struct inode *inode = mapping->host;
  2218. struct bdi_writeback *wb;
  2219. bool locked;
  2220. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2221. current->nr_dirtied--;
  2222. dec_zone_page_state(page, NR_DIRTIED);
  2223. dec_wb_stat(wb, WB_DIRTIED);
  2224. unlocked_inode_to_wb_end(inode, locked);
  2225. }
  2226. }
  2227. EXPORT_SYMBOL(account_page_redirty);
  2228. /*
  2229. * When a writepage implementation decides that it doesn't want to write this
  2230. * page for some reason, it should redirty the locked page via
  2231. * redirty_page_for_writepage() and it should then unlock the page and return 0
  2232. */
  2233. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  2234. {
  2235. int ret;
  2236. wbc->pages_skipped++;
  2237. ret = __set_page_dirty_nobuffers(page);
  2238. account_page_redirty(page);
  2239. return ret;
  2240. }
  2241. EXPORT_SYMBOL(redirty_page_for_writepage);
  2242. /*
  2243. * Dirty a page.
  2244. *
  2245. * For pages with a mapping this should be done under the page lock
  2246. * for the benefit of asynchronous memory errors who prefer a consistent
  2247. * dirty state. This rule can be broken in some special cases,
  2248. * but should be better not to.
  2249. *
  2250. * If the mapping doesn't provide a set_page_dirty a_op, then
  2251. * just fall through and assume that it wants buffer_heads.
  2252. */
  2253. int set_page_dirty(struct page *page)
  2254. {
  2255. struct address_space *mapping = page_mapping(page);
  2256. if (likely(mapping)) {
  2257. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  2258. /*
  2259. * readahead/lru_deactivate_page could remain
  2260. * PG_readahead/PG_reclaim due to race with end_page_writeback
  2261. * About readahead, if the page is written, the flags would be
  2262. * reset. So no problem.
  2263. * About lru_deactivate_page, if the page is redirty, the flag
  2264. * will be reset. So no problem. but if the page is used by readahead
  2265. * it will confuse readahead and make it restart the size rampup
  2266. * process. But it's a trivial problem.
  2267. */
  2268. if (PageReclaim(page))
  2269. ClearPageReclaim(page);
  2270. #ifdef CONFIG_BLOCK
  2271. if (!spd)
  2272. spd = __set_page_dirty_buffers;
  2273. #endif
  2274. return (*spd)(page);
  2275. }
  2276. if (!PageDirty(page)) {
  2277. if (!TestSetPageDirty(page))
  2278. return 1;
  2279. }
  2280. return 0;
  2281. }
  2282. EXPORT_SYMBOL(set_page_dirty);
  2283. /*
  2284. * set_page_dirty() is racy if the caller has no reference against
  2285. * page->mapping->host, and if the page is unlocked. This is because another
  2286. * CPU could truncate the page off the mapping and then free the mapping.
  2287. *
  2288. * Usually, the page _is_ locked, or the caller is a user-space process which
  2289. * holds a reference on the inode by having an open file.
  2290. *
  2291. * In other cases, the page should be locked before running set_page_dirty().
  2292. */
  2293. int set_page_dirty_lock(struct page *page)
  2294. {
  2295. int ret;
  2296. lock_page(page);
  2297. ret = set_page_dirty(page);
  2298. unlock_page(page);
  2299. return ret;
  2300. }
  2301. EXPORT_SYMBOL(set_page_dirty_lock);
  2302. /*
  2303. * This cancels just the dirty bit on the kernel page itself, it does NOT
  2304. * actually remove dirty bits on any mmap's that may be around. It also
  2305. * leaves the page tagged dirty, so any sync activity will still find it on
  2306. * the dirty lists, and in particular, clear_page_dirty_for_io() will still
  2307. * look at the dirty bits in the VM.
  2308. *
  2309. * Doing this should *normally* only ever be done when a page is truncated,
  2310. * and is not actually mapped anywhere at all. However, fs/buffer.c does
  2311. * this when it notices that somebody has cleaned out all the buffers on a
  2312. * page without actually doing it through the VM. Can you say "ext3 is
  2313. * horribly ugly"? Thought you could.
  2314. */
  2315. void cancel_dirty_page(struct page *page)
  2316. {
  2317. struct address_space *mapping = page_mapping(page);
  2318. if (mapping_cap_account_dirty(mapping)) {
  2319. struct inode *inode = mapping->host;
  2320. struct bdi_writeback *wb;
  2321. bool locked;
  2322. lock_page_memcg(page);
  2323. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2324. if (TestClearPageDirty(page))
  2325. account_page_cleaned(page, mapping, wb);
  2326. unlocked_inode_to_wb_end(inode, locked);
  2327. unlock_page_memcg(page);
  2328. } else {
  2329. ClearPageDirty(page);
  2330. }
  2331. }
  2332. EXPORT_SYMBOL(cancel_dirty_page);
  2333. /*
  2334. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2335. * Returns true if the page was previously dirty.
  2336. *
  2337. * This is for preparing to put the page under writeout. We leave the page
  2338. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2339. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2340. * implementation will run either set_page_writeback() or set_page_dirty(),
  2341. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2342. * back into sync.
  2343. *
  2344. * This incoherency between the page's dirty flag and radix-tree tag is
  2345. * unfortunate, but it only exists while the page is locked.
  2346. */
  2347. int clear_page_dirty_for_io(struct page *page)
  2348. {
  2349. struct address_space *mapping = page_mapping(page);
  2350. int ret = 0;
  2351. BUG_ON(!PageLocked(page));
  2352. if (mapping && mapping_cap_account_dirty(mapping)) {
  2353. struct inode *inode = mapping->host;
  2354. struct bdi_writeback *wb;
  2355. bool locked;
  2356. /*
  2357. * Yes, Virginia, this is indeed insane.
  2358. *
  2359. * We use this sequence to make sure that
  2360. * (a) we account for dirty stats properly
  2361. * (b) we tell the low-level filesystem to
  2362. * mark the whole page dirty if it was
  2363. * dirty in a pagetable. Only to then
  2364. * (c) clean the page again and return 1 to
  2365. * cause the writeback.
  2366. *
  2367. * This way we avoid all nasty races with the
  2368. * dirty bit in multiple places and clearing
  2369. * them concurrently from different threads.
  2370. *
  2371. * Note! Normally the "set_page_dirty(page)"
  2372. * has no effect on the actual dirty bit - since
  2373. * that will already usually be set. But we
  2374. * need the side effects, and it can help us
  2375. * avoid races.
  2376. *
  2377. * We basically use the page "master dirty bit"
  2378. * as a serialization point for all the different
  2379. * threads doing their things.
  2380. */
  2381. if (page_mkclean(page))
  2382. set_page_dirty(page);
  2383. /*
  2384. * We carefully synchronise fault handlers against
  2385. * installing a dirty pte and marking the page dirty
  2386. * at this point. We do this by having them hold the
  2387. * page lock while dirtying the page, and pages are
  2388. * always locked coming in here, so we get the desired
  2389. * exclusion.
  2390. */
  2391. wb = unlocked_inode_to_wb_begin(inode, &locked);
  2392. if (TestClearPageDirty(page)) {
  2393. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
  2394. dec_zone_page_state(page, NR_FILE_DIRTY);
  2395. dec_wb_stat(wb, WB_RECLAIMABLE);
  2396. ret = 1;
  2397. }
  2398. unlocked_inode_to_wb_end(inode, locked);
  2399. return ret;
  2400. }
  2401. return TestClearPageDirty(page);
  2402. }
  2403. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2404. int test_clear_page_writeback(struct page *page)
  2405. {
  2406. struct address_space *mapping = page_mapping(page);
  2407. int ret;
  2408. lock_page_memcg(page);
  2409. if (mapping) {
  2410. struct inode *inode = mapping->host;
  2411. struct backing_dev_info *bdi = inode_to_bdi(inode);
  2412. unsigned long flags;
  2413. spin_lock_irqsave(&mapping->tree_lock, flags);
  2414. ret = TestClearPageWriteback(page);
  2415. if (ret) {
  2416. radix_tree_tag_clear(&mapping->page_tree,
  2417. page_index(page),
  2418. PAGECACHE_TAG_WRITEBACK);
  2419. if (bdi_cap_account_writeback(bdi)) {
  2420. struct bdi_writeback *wb = inode_to_wb(inode);
  2421. __dec_wb_stat(wb, WB_WRITEBACK);
  2422. __wb_writeout_inc(wb);
  2423. }
  2424. }
  2425. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2426. } else {
  2427. ret = TestClearPageWriteback(page);
  2428. }
  2429. if (ret) {
  2430. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2431. dec_zone_page_state(page, NR_WRITEBACK);
  2432. inc_zone_page_state(page, NR_WRITTEN);
  2433. }
  2434. unlock_page_memcg(page);
  2435. return ret;
  2436. }
  2437. int __test_set_page_writeback(struct page *page, bool keep_write)
  2438. {
  2439. struct address_space *mapping = page_mapping(page);
  2440. int ret;
  2441. lock_page_memcg(page);
  2442. if (mapping) {
  2443. struct inode *inode = mapping->host;
  2444. struct backing_dev_info *bdi = inode_to_bdi(inode);
  2445. unsigned long flags;
  2446. spin_lock_irqsave(&mapping->tree_lock, flags);
  2447. ret = TestSetPageWriteback(page);
  2448. if (!ret) {
  2449. radix_tree_tag_set(&mapping->page_tree,
  2450. page_index(page),
  2451. PAGECACHE_TAG_WRITEBACK);
  2452. if (bdi_cap_account_writeback(bdi))
  2453. __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
  2454. }
  2455. if (!PageDirty(page))
  2456. radix_tree_tag_clear(&mapping->page_tree,
  2457. page_index(page),
  2458. PAGECACHE_TAG_DIRTY);
  2459. if (!keep_write)
  2460. radix_tree_tag_clear(&mapping->page_tree,
  2461. page_index(page),
  2462. PAGECACHE_TAG_TOWRITE);
  2463. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2464. } else {
  2465. ret = TestSetPageWriteback(page);
  2466. }
  2467. if (!ret) {
  2468. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2469. inc_zone_page_state(page, NR_WRITEBACK);
  2470. }
  2471. unlock_page_memcg(page);
  2472. return ret;
  2473. }
  2474. EXPORT_SYMBOL(__test_set_page_writeback);
  2475. /*
  2476. * Return true if any of the pages in the mapping are marked with the
  2477. * passed tag.
  2478. */
  2479. int mapping_tagged(struct address_space *mapping, int tag)
  2480. {
  2481. return radix_tree_tagged(&mapping->page_tree, tag);
  2482. }
  2483. EXPORT_SYMBOL(mapping_tagged);
  2484. /**
  2485. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2486. * @page: The page to wait on.
  2487. *
  2488. * This function determines if the given page is related to a backing device
  2489. * that requires page contents to be held stable during writeback. If so, then
  2490. * it will wait for any pending writeback to complete.
  2491. */
  2492. void wait_for_stable_page(struct page *page)
  2493. {
  2494. if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
  2495. wait_on_page_writeback(page);
  2496. }
  2497. EXPORT_SYMBOL_GPL(wait_for_stable_page);