memory.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/pfn_t.h>
  49. #include <linux/writeback.h>
  50. #include <linux/memcontrol.h>
  51. #include <linux/mmu_notifier.h>
  52. #include <linux/kallsyms.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #include <linux/gfp.h>
  56. #include <linux/migrate.h>
  57. #include <linux/string.h>
  58. #include <linux/dma-debug.h>
  59. #include <linux/debugfs.h>
  60. #include <linux/userfaultfd_k.h>
  61. #include <asm/io.h>
  62. #include <asm/mmu_context.h>
  63. #include <asm/pgalloc.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/tlb.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/pgtable.h>
  68. #include "internal.h"
  69. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  70. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  71. #endif
  72. #ifndef CONFIG_NEED_MULTIPLE_NODES
  73. /* use the per-pgdat data instead for discontigmem - mbligh */
  74. unsigned long max_mapnr;
  75. struct page *mem_map;
  76. EXPORT_SYMBOL(max_mapnr);
  77. EXPORT_SYMBOL(mem_map);
  78. #endif
  79. /*
  80. * A number of key systems in x86 including ioremap() rely on the assumption
  81. * that high_memory defines the upper bound on direct map memory, then end
  82. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  83. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  84. * and ZONE_HIGHMEM.
  85. */
  86. void * high_memory;
  87. EXPORT_SYMBOL(high_memory);
  88. /*
  89. * Randomize the address space (stacks, mmaps, brk, etc.).
  90. *
  91. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  92. * as ancient (libc5 based) binaries can segfault. )
  93. */
  94. int randomize_va_space __read_mostly =
  95. #ifdef CONFIG_COMPAT_BRK
  96. 1;
  97. #else
  98. 2;
  99. #endif
  100. static int __init disable_randmaps(char *s)
  101. {
  102. randomize_va_space = 0;
  103. return 1;
  104. }
  105. __setup("norandmaps", disable_randmaps);
  106. unsigned long zero_pfn __read_mostly;
  107. unsigned long highest_memmap_pfn __read_mostly;
  108. EXPORT_SYMBOL(zero_pfn);
  109. /*
  110. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  111. */
  112. static int __init init_zero_pfn(void)
  113. {
  114. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  115. return 0;
  116. }
  117. core_initcall(init_zero_pfn);
  118. #if defined(SPLIT_RSS_COUNTING)
  119. void sync_mm_rss(struct mm_struct *mm)
  120. {
  121. int i;
  122. for (i = 0; i < NR_MM_COUNTERS; i++) {
  123. if (current->rss_stat.count[i]) {
  124. add_mm_counter(mm, i, current->rss_stat.count[i]);
  125. current->rss_stat.count[i] = 0;
  126. }
  127. }
  128. current->rss_stat.events = 0;
  129. }
  130. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  131. {
  132. struct task_struct *task = current;
  133. if (likely(task->mm == mm))
  134. task->rss_stat.count[member] += val;
  135. else
  136. add_mm_counter(mm, member, val);
  137. }
  138. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  139. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  140. /* sync counter once per 64 page faults */
  141. #define TASK_RSS_EVENTS_THRESH (64)
  142. static void check_sync_rss_stat(struct task_struct *task)
  143. {
  144. if (unlikely(task != current))
  145. return;
  146. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  147. sync_mm_rss(task->mm);
  148. }
  149. #else /* SPLIT_RSS_COUNTING */
  150. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  151. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  152. static void check_sync_rss_stat(struct task_struct *task)
  153. {
  154. }
  155. #endif /* SPLIT_RSS_COUNTING */
  156. #ifdef HAVE_GENERIC_MMU_GATHER
  157. static bool tlb_next_batch(struct mmu_gather *tlb)
  158. {
  159. struct mmu_gather_batch *batch;
  160. batch = tlb->active;
  161. if (batch->next) {
  162. tlb->active = batch->next;
  163. return true;
  164. }
  165. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  166. return false;
  167. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  168. if (!batch)
  169. return false;
  170. tlb->batch_count++;
  171. batch->next = NULL;
  172. batch->nr = 0;
  173. batch->max = MAX_GATHER_BATCH;
  174. tlb->active->next = batch;
  175. tlb->active = batch;
  176. return true;
  177. }
  178. /* tlb_gather_mmu
  179. * Called to initialize an (on-stack) mmu_gather structure for page-table
  180. * tear-down from @mm. The @fullmm argument is used when @mm is without
  181. * users and we're going to destroy the full address space (exit/execve).
  182. */
  183. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  184. {
  185. tlb->mm = mm;
  186. /* Is it from 0 to ~0? */
  187. tlb->fullmm = !(start | (end+1));
  188. tlb->need_flush_all = 0;
  189. tlb->local.next = NULL;
  190. tlb->local.nr = 0;
  191. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  192. tlb->active = &tlb->local;
  193. tlb->batch_count = 0;
  194. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  195. tlb->batch = NULL;
  196. #endif
  197. __tlb_reset_range(tlb);
  198. }
  199. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  200. {
  201. if (!tlb->end)
  202. return;
  203. tlb_flush(tlb);
  204. mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
  205. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  206. tlb_table_flush(tlb);
  207. #endif
  208. __tlb_reset_range(tlb);
  209. }
  210. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  211. {
  212. struct mmu_gather_batch *batch;
  213. for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
  214. free_pages_and_swap_cache(batch->pages, batch->nr);
  215. batch->nr = 0;
  216. }
  217. tlb->active = &tlb->local;
  218. }
  219. void tlb_flush_mmu(struct mmu_gather *tlb)
  220. {
  221. tlb_flush_mmu_tlbonly(tlb);
  222. tlb_flush_mmu_free(tlb);
  223. }
  224. /* tlb_finish_mmu
  225. * Called at the end of the shootdown operation to free up any resources
  226. * that were required.
  227. */
  228. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  229. {
  230. struct mmu_gather_batch *batch, *next;
  231. tlb_flush_mmu(tlb);
  232. /* keep the page table cache within bounds */
  233. check_pgt_cache();
  234. for (batch = tlb->local.next; batch; batch = next) {
  235. next = batch->next;
  236. free_pages((unsigned long)batch, 0);
  237. }
  238. tlb->local.next = NULL;
  239. }
  240. /* __tlb_remove_page
  241. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  242. * handling the additional races in SMP caused by other CPUs caching valid
  243. * mappings in their TLBs. Returns the number of free page slots left.
  244. * When out of page slots we must call tlb_flush_mmu().
  245. */
  246. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  247. {
  248. struct mmu_gather_batch *batch;
  249. VM_BUG_ON(!tlb->end);
  250. batch = tlb->active;
  251. batch->pages[batch->nr++] = page;
  252. if (batch->nr == batch->max) {
  253. if (!tlb_next_batch(tlb))
  254. return 0;
  255. batch = tlb->active;
  256. }
  257. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  258. return batch->max - batch->nr;
  259. }
  260. #endif /* HAVE_GENERIC_MMU_GATHER */
  261. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  262. /*
  263. * See the comment near struct mmu_table_batch.
  264. */
  265. static void tlb_remove_table_smp_sync(void *arg)
  266. {
  267. /* Simply deliver the interrupt */
  268. }
  269. static void tlb_remove_table_one(void *table)
  270. {
  271. /*
  272. * This isn't an RCU grace period and hence the page-tables cannot be
  273. * assumed to be actually RCU-freed.
  274. *
  275. * It is however sufficient for software page-table walkers that rely on
  276. * IRQ disabling. See the comment near struct mmu_table_batch.
  277. */
  278. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  279. __tlb_remove_table(table);
  280. }
  281. static void tlb_remove_table_rcu(struct rcu_head *head)
  282. {
  283. struct mmu_table_batch *batch;
  284. int i;
  285. batch = container_of(head, struct mmu_table_batch, rcu);
  286. for (i = 0; i < batch->nr; i++)
  287. __tlb_remove_table(batch->tables[i]);
  288. free_page((unsigned long)batch);
  289. }
  290. void tlb_table_flush(struct mmu_gather *tlb)
  291. {
  292. struct mmu_table_batch **batch = &tlb->batch;
  293. if (*batch) {
  294. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  295. *batch = NULL;
  296. }
  297. }
  298. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  299. {
  300. struct mmu_table_batch **batch = &tlb->batch;
  301. /*
  302. * When there's less then two users of this mm there cannot be a
  303. * concurrent page-table walk.
  304. */
  305. if (atomic_read(&tlb->mm->mm_users) < 2) {
  306. __tlb_remove_table(table);
  307. return;
  308. }
  309. if (*batch == NULL) {
  310. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  311. if (*batch == NULL) {
  312. tlb_remove_table_one(table);
  313. return;
  314. }
  315. (*batch)->nr = 0;
  316. }
  317. (*batch)->tables[(*batch)->nr++] = table;
  318. if ((*batch)->nr == MAX_TABLE_BATCH)
  319. tlb_table_flush(tlb);
  320. }
  321. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  322. /*
  323. * Note: this doesn't free the actual pages themselves. That
  324. * has been handled earlier when unmapping all the memory regions.
  325. */
  326. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  327. unsigned long addr)
  328. {
  329. pgtable_t token = pmd_pgtable(*pmd);
  330. pmd_clear(pmd);
  331. pte_free_tlb(tlb, token, addr);
  332. atomic_long_dec(&tlb->mm->nr_ptes);
  333. }
  334. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  335. unsigned long addr, unsigned long end,
  336. unsigned long floor, unsigned long ceiling)
  337. {
  338. pmd_t *pmd;
  339. unsigned long next;
  340. unsigned long start;
  341. start = addr;
  342. pmd = pmd_offset(pud, addr);
  343. do {
  344. next = pmd_addr_end(addr, end);
  345. if (pmd_none_or_clear_bad(pmd))
  346. continue;
  347. free_pte_range(tlb, pmd, addr);
  348. } while (pmd++, addr = next, addr != end);
  349. start &= PUD_MASK;
  350. if (start < floor)
  351. return;
  352. if (ceiling) {
  353. ceiling &= PUD_MASK;
  354. if (!ceiling)
  355. return;
  356. }
  357. if (end - 1 > ceiling - 1)
  358. return;
  359. pmd = pmd_offset(pud, start);
  360. pud_clear(pud);
  361. pmd_free_tlb(tlb, pmd, start);
  362. mm_dec_nr_pmds(tlb->mm);
  363. }
  364. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  365. unsigned long addr, unsigned long end,
  366. unsigned long floor, unsigned long ceiling)
  367. {
  368. pud_t *pud;
  369. unsigned long next;
  370. unsigned long start;
  371. start = addr;
  372. pud = pud_offset(pgd, addr);
  373. do {
  374. next = pud_addr_end(addr, end);
  375. if (pud_none_or_clear_bad(pud))
  376. continue;
  377. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  378. } while (pud++, addr = next, addr != end);
  379. start &= PGDIR_MASK;
  380. if (start < floor)
  381. return;
  382. if (ceiling) {
  383. ceiling &= PGDIR_MASK;
  384. if (!ceiling)
  385. return;
  386. }
  387. if (end - 1 > ceiling - 1)
  388. return;
  389. pud = pud_offset(pgd, start);
  390. pgd_clear(pgd);
  391. pud_free_tlb(tlb, pud, start);
  392. }
  393. /*
  394. * This function frees user-level page tables of a process.
  395. */
  396. void free_pgd_range(struct mmu_gather *tlb,
  397. unsigned long addr, unsigned long end,
  398. unsigned long floor, unsigned long ceiling)
  399. {
  400. pgd_t *pgd;
  401. unsigned long next;
  402. /*
  403. * The next few lines have given us lots of grief...
  404. *
  405. * Why are we testing PMD* at this top level? Because often
  406. * there will be no work to do at all, and we'd prefer not to
  407. * go all the way down to the bottom just to discover that.
  408. *
  409. * Why all these "- 1"s? Because 0 represents both the bottom
  410. * of the address space and the top of it (using -1 for the
  411. * top wouldn't help much: the masks would do the wrong thing).
  412. * The rule is that addr 0 and floor 0 refer to the bottom of
  413. * the address space, but end 0 and ceiling 0 refer to the top
  414. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  415. * that end 0 case should be mythical).
  416. *
  417. * Wherever addr is brought up or ceiling brought down, we must
  418. * be careful to reject "the opposite 0" before it confuses the
  419. * subsequent tests. But what about where end is brought down
  420. * by PMD_SIZE below? no, end can't go down to 0 there.
  421. *
  422. * Whereas we round start (addr) and ceiling down, by different
  423. * masks at different levels, in order to test whether a table
  424. * now has no other vmas using it, so can be freed, we don't
  425. * bother to round floor or end up - the tests don't need that.
  426. */
  427. addr &= PMD_MASK;
  428. if (addr < floor) {
  429. addr += PMD_SIZE;
  430. if (!addr)
  431. return;
  432. }
  433. if (ceiling) {
  434. ceiling &= PMD_MASK;
  435. if (!ceiling)
  436. return;
  437. }
  438. if (end - 1 > ceiling - 1)
  439. end -= PMD_SIZE;
  440. if (addr > end - 1)
  441. return;
  442. pgd = pgd_offset(tlb->mm, addr);
  443. do {
  444. next = pgd_addr_end(addr, end);
  445. if (pgd_none_or_clear_bad(pgd))
  446. continue;
  447. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  448. } while (pgd++, addr = next, addr != end);
  449. }
  450. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  451. unsigned long floor, unsigned long ceiling)
  452. {
  453. while (vma) {
  454. struct vm_area_struct *next = vma->vm_next;
  455. unsigned long addr = vma->vm_start;
  456. /*
  457. * Hide vma from rmap and truncate_pagecache before freeing
  458. * pgtables
  459. */
  460. unlink_anon_vmas(vma);
  461. unlink_file_vma(vma);
  462. if (is_vm_hugetlb_page(vma)) {
  463. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  464. floor, next? next->vm_start: ceiling);
  465. } else {
  466. /*
  467. * Optimization: gather nearby vmas into one call down
  468. */
  469. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  470. && !is_vm_hugetlb_page(next)) {
  471. vma = next;
  472. next = vma->vm_next;
  473. unlink_anon_vmas(vma);
  474. unlink_file_vma(vma);
  475. }
  476. free_pgd_range(tlb, addr, vma->vm_end,
  477. floor, next? next->vm_start: ceiling);
  478. }
  479. vma = next;
  480. }
  481. }
  482. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  483. {
  484. spinlock_t *ptl;
  485. pgtable_t new = pte_alloc_one(mm, address);
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  504. atomic_long_inc(&mm->nr_ptes);
  505. pmd_populate(mm, pmd, new);
  506. new = NULL;
  507. }
  508. spin_unlock(ptl);
  509. if (new)
  510. pte_free(mm, new);
  511. return 0;
  512. }
  513. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  514. {
  515. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  516. if (!new)
  517. return -ENOMEM;
  518. smp_wmb(); /* See comment in __pte_alloc */
  519. spin_lock(&init_mm.page_table_lock);
  520. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  521. pmd_populate_kernel(&init_mm, pmd, new);
  522. new = NULL;
  523. }
  524. spin_unlock(&init_mm.page_table_lock);
  525. if (new)
  526. pte_free_kernel(&init_mm, new);
  527. return 0;
  528. }
  529. static inline void init_rss_vec(int *rss)
  530. {
  531. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  532. }
  533. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  534. {
  535. int i;
  536. if (current->mm == mm)
  537. sync_mm_rss(mm);
  538. for (i = 0; i < NR_MM_COUNTERS; i++)
  539. if (rss[i])
  540. add_mm_counter(mm, i, rss[i]);
  541. }
  542. /*
  543. * This function is called to print an error when a bad pte
  544. * is found. For example, we might have a PFN-mapped pte in
  545. * a region that doesn't allow it.
  546. *
  547. * The calling function must still handle the error.
  548. */
  549. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  550. pte_t pte, struct page *page)
  551. {
  552. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  553. pud_t *pud = pud_offset(pgd, addr);
  554. pmd_t *pmd = pmd_offset(pud, addr);
  555. struct address_space *mapping;
  556. pgoff_t index;
  557. static unsigned long resume;
  558. static unsigned long nr_shown;
  559. static unsigned long nr_unshown;
  560. /*
  561. * Allow a burst of 60 reports, then keep quiet for that minute;
  562. * or allow a steady drip of one report per second.
  563. */
  564. if (nr_shown == 60) {
  565. if (time_before(jiffies, resume)) {
  566. nr_unshown++;
  567. return;
  568. }
  569. if (nr_unshown) {
  570. pr_alert("BUG: Bad page map: %lu messages suppressed\n",
  571. nr_unshown);
  572. nr_unshown = 0;
  573. }
  574. nr_shown = 0;
  575. }
  576. if (nr_shown++ == 0)
  577. resume = jiffies + 60 * HZ;
  578. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  579. index = linear_page_index(vma, addr);
  580. pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  581. current->comm,
  582. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  583. if (page)
  584. dump_page(page, "bad pte");
  585. pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  586. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  587. /*
  588. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  589. */
  590. pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
  591. vma->vm_file,
  592. vma->vm_ops ? vma->vm_ops->fault : NULL,
  593. vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
  594. mapping ? mapping->a_ops->readpage : NULL);
  595. dump_stack();
  596. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  597. }
  598. /*
  599. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  600. *
  601. * "Special" mappings do not wish to be associated with a "struct page" (either
  602. * it doesn't exist, or it exists but they don't want to touch it). In this
  603. * case, NULL is returned here. "Normal" mappings do have a struct page.
  604. *
  605. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  606. * pte bit, in which case this function is trivial. Secondly, an architecture
  607. * may not have a spare pte bit, which requires a more complicated scheme,
  608. * described below.
  609. *
  610. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  611. * special mapping (even if there are underlying and valid "struct pages").
  612. * COWed pages of a VM_PFNMAP are always normal.
  613. *
  614. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  615. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  616. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  617. * mapping will always honor the rule
  618. *
  619. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  620. *
  621. * And for normal mappings this is false.
  622. *
  623. * This restricts such mappings to be a linear translation from virtual address
  624. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  625. * as the vma is not a COW mapping; in that case, we know that all ptes are
  626. * special (because none can have been COWed).
  627. *
  628. *
  629. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  630. *
  631. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  632. * page" backing, however the difference is that _all_ pages with a struct
  633. * page (that is, those where pfn_valid is true) are refcounted and considered
  634. * normal pages by the VM. The disadvantage is that pages are refcounted
  635. * (which can be slower and simply not an option for some PFNMAP users). The
  636. * advantage is that we don't have to follow the strict linearity rule of
  637. * PFNMAP mappings in order to support COWable mappings.
  638. *
  639. */
  640. #ifdef __HAVE_ARCH_PTE_SPECIAL
  641. # define HAVE_PTE_SPECIAL 1
  642. #else
  643. # define HAVE_PTE_SPECIAL 0
  644. #endif
  645. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  646. pte_t pte)
  647. {
  648. unsigned long pfn = pte_pfn(pte);
  649. if (HAVE_PTE_SPECIAL) {
  650. if (likely(!pte_special(pte)))
  651. goto check_pfn;
  652. if (vma->vm_ops && vma->vm_ops->find_special_page)
  653. return vma->vm_ops->find_special_page(vma, addr);
  654. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  655. return NULL;
  656. if (!is_zero_pfn(pfn))
  657. print_bad_pte(vma, addr, pte, NULL);
  658. return NULL;
  659. }
  660. /* !HAVE_PTE_SPECIAL case follows: */
  661. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  662. if (vma->vm_flags & VM_MIXEDMAP) {
  663. if (!pfn_valid(pfn))
  664. return NULL;
  665. goto out;
  666. } else {
  667. unsigned long off;
  668. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  669. if (pfn == vma->vm_pgoff + off)
  670. return NULL;
  671. if (!is_cow_mapping(vma->vm_flags))
  672. return NULL;
  673. }
  674. }
  675. if (is_zero_pfn(pfn))
  676. return NULL;
  677. check_pfn:
  678. if (unlikely(pfn > highest_memmap_pfn)) {
  679. print_bad_pte(vma, addr, pte, NULL);
  680. return NULL;
  681. }
  682. /*
  683. * NOTE! We still have PageReserved() pages in the page tables.
  684. * eg. VDSO mappings can cause them to exist.
  685. */
  686. out:
  687. return pfn_to_page(pfn);
  688. }
  689. /*
  690. * copy one vm_area from one task to the other. Assumes the page tables
  691. * already present in the new task to be cleared in the whole range
  692. * covered by this vma.
  693. */
  694. static inline unsigned long
  695. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  696. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  697. unsigned long addr, int *rss)
  698. {
  699. unsigned long vm_flags = vma->vm_flags;
  700. pte_t pte = *src_pte;
  701. struct page *page;
  702. /* pte contains position in swap or file, so copy. */
  703. if (unlikely(!pte_present(pte))) {
  704. swp_entry_t entry = pte_to_swp_entry(pte);
  705. if (likely(!non_swap_entry(entry))) {
  706. if (swap_duplicate(entry) < 0)
  707. return entry.val;
  708. /* make sure dst_mm is on swapoff's mmlist. */
  709. if (unlikely(list_empty(&dst_mm->mmlist))) {
  710. spin_lock(&mmlist_lock);
  711. if (list_empty(&dst_mm->mmlist))
  712. list_add(&dst_mm->mmlist,
  713. &src_mm->mmlist);
  714. spin_unlock(&mmlist_lock);
  715. }
  716. rss[MM_SWAPENTS]++;
  717. } else if (is_migration_entry(entry)) {
  718. page = migration_entry_to_page(entry);
  719. rss[mm_counter(page)]++;
  720. if (is_write_migration_entry(entry) &&
  721. is_cow_mapping(vm_flags)) {
  722. /*
  723. * COW mappings require pages in both
  724. * parent and child to be set to read.
  725. */
  726. make_migration_entry_read(&entry);
  727. pte = swp_entry_to_pte(entry);
  728. if (pte_swp_soft_dirty(*src_pte))
  729. pte = pte_swp_mksoft_dirty(pte);
  730. set_pte_at(src_mm, addr, src_pte, pte);
  731. }
  732. }
  733. goto out_set_pte;
  734. }
  735. /*
  736. * If it's a COW mapping, write protect it both
  737. * in the parent and the child
  738. */
  739. if (is_cow_mapping(vm_flags)) {
  740. ptep_set_wrprotect(src_mm, addr, src_pte);
  741. pte = pte_wrprotect(pte);
  742. }
  743. /*
  744. * If it's a shared mapping, mark it clean in
  745. * the child
  746. */
  747. if (vm_flags & VM_SHARED)
  748. pte = pte_mkclean(pte);
  749. pte = pte_mkold(pte);
  750. page = vm_normal_page(vma, addr, pte);
  751. if (page) {
  752. get_page(page);
  753. page_dup_rmap(page, false);
  754. rss[mm_counter(page)]++;
  755. }
  756. out_set_pte:
  757. set_pte_at(dst_mm, addr, dst_pte, pte);
  758. return 0;
  759. }
  760. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  761. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  762. unsigned long addr, unsigned long end)
  763. {
  764. pte_t *orig_src_pte, *orig_dst_pte;
  765. pte_t *src_pte, *dst_pte;
  766. spinlock_t *src_ptl, *dst_ptl;
  767. int progress = 0;
  768. int rss[NR_MM_COUNTERS];
  769. swp_entry_t entry = (swp_entry_t){0};
  770. again:
  771. init_rss_vec(rss);
  772. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  773. if (!dst_pte)
  774. return -ENOMEM;
  775. src_pte = pte_offset_map(src_pmd, addr);
  776. src_ptl = pte_lockptr(src_mm, src_pmd);
  777. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  778. orig_src_pte = src_pte;
  779. orig_dst_pte = dst_pte;
  780. arch_enter_lazy_mmu_mode();
  781. do {
  782. /*
  783. * We are holding two locks at this point - either of them
  784. * could generate latencies in another task on another CPU.
  785. */
  786. if (progress >= 32) {
  787. progress = 0;
  788. if (need_resched() ||
  789. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  790. break;
  791. }
  792. if (pte_none(*src_pte)) {
  793. progress++;
  794. continue;
  795. }
  796. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  797. vma, addr, rss);
  798. if (entry.val)
  799. break;
  800. progress += 8;
  801. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  802. arch_leave_lazy_mmu_mode();
  803. spin_unlock(src_ptl);
  804. pte_unmap(orig_src_pte);
  805. add_mm_rss_vec(dst_mm, rss);
  806. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  807. cond_resched();
  808. if (entry.val) {
  809. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  810. return -ENOMEM;
  811. progress = 0;
  812. }
  813. if (addr != end)
  814. goto again;
  815. return 0;
  816. }
  817. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  818. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  819. unsigned long addr, unsigned long end)
  820. {
  821. pmd_t *src_pmd, *dst_pmd;
  822. unsigned long next;
  823. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  824. if (!dst_pmd)
  825. return -ENOMEM;
  826. src_pmd = pmd_offset(src_pud, addr);
  827. do {
  828. next = pmd_addr_end(addr, end);
  829. if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
  830. int err;
  831. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  832. err = copy_huge_pmd(dst_mm, src_mm,
  833. dst_pmd, src_pmd, addr, vma);
  834. if (err == -ENOMEM)
  835. return -ENOMEM;
  836. if (!err)
  837. continue;
  838. /* fall through */
  839. }
  840. if (pmd_none_or_clear_bad(src_pmd))
  841. continue;
  842. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  843. vma, addr, next))
  844. return -ENOMEM;
  845. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  846. return 0;
  847. }
  848. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  849. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  850. unsigned long addr, unsigned long end)
  851. {
  852. pud_t *src_pud, *dst_pud;
  853. unsigned long next;
  854. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  855. if (!dst_pud)
  856. return -ENOMEM;
  857. src_pud = pud_offset(src_pgd, addr);
  858. do {
  859. next = pud_addr_end(addr, end);
  860. if (pud_none_or_clear_bad(src_pud))
  861. continue;
  862. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  863. vma, addr, next))
  864. return -ENOMEM;
  865. } while (dst_pud++, src_pud++, addr = next, addr != end);
  866. return 0;
  867. }
  868. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  869. struct vm_area_struct *vma)
  870. {
  871. pgd_t *src_pgd, *dst_pgd;
  872. unsigned long next;
  873. unsigned long addr = vma->vm_start;
  874. unsigned long end = vma->vm_end;
  875. unsigned long mmun_start; /* For mmu_notifiers */
  876. unsigned long mmun_end; /* For mmu_notifiers */
  877. bool is_cow;
  878. int ret;
  879. /*
  880. * Don't copy ptes where a page fault will fill them correctly.
  881. * Fork becomes much lighter when there are big shared or private
  882. * readonly mappings. The tradeoff is that copy_page_range is more
  883. * efficient than faulting.
  884. */
  885. if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
  886. !vma->anon_vma)
  887. return 0;
  888. if (is_vm_hugetlb_page(vma))
  889. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  890. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  891. /*
  892. * We do not free on error cases below as remove_vma
  893. * gets called on error from higher level routine
  894. */
  895. ret = track_pfn_copy(vma);
  896. if (ret)
  897. return ret;
  898. }
  899. /*
  900. * We need to invalidate the secondary MMU mappings only when
  901. * there could be a permission downgrade on the ptes of the
  902. * parent mm. And a permission downgrade will only happen if
  903. * is_cow_mapping() returns true.
  904. */
  905. is_cow = is_cow_mapping(vma->vm_flags);
  906. mmun_start = addr;
  907. mmun_end = end;
  908. if (is_cow)
  909. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  910. mmun_end);
  911. ret = 0;
  912. dst_pgd = pgd_offset(dst_mm, addr);
  913. src_pgd = pgd_offset(src_mm, addr);
  914. do {
  915. next = pgd_addr_end(addr, end);
  916. if (pgd_none_or_clear_bad(src_pgd))
  917. continue;
  918. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  919. vma, addr, next))) {
  920. ret = -ENOMEM;
  921. break;
  922. }
  923. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  924. if (is_cow)
  925. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  926. return ret;
  927. }
  928. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  929. struct vm_area_struct *vma, pmd_t *pmd,
  930. unsigned long addr, unsigned long end,
  931. struct zap_details *details)
  932. {
  933. struct mm_struct *mm = tlb->mm;
  934. int force_flush = 0;
  935. int rss[NR_MM_COUNTERS];
  936. spinlock_t *ptl;
  937. pte_t *start_pte;
  938. pte_t *pte;
  939. swp_entry_t entry;
  940. again:
  941. init_rss_vec(rss);
  942. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  943. pte = start_pte;
  944. arch_enter_lazy_mmu_mode();
  945. do {
  946. pte_t ptent = *pte;
  947. if (pte_none(ptent)) {
  948. continue;
  949. }
  950. if (pte_present(ptent)) {
  951. struct page *page;
  952. page = vm_normal_page(vma, addr, ptent);
  953. if (unlikely(details) && page) {
  954. /*
  955. * unmap_shared_mapping_pages() wants to
  956. * invalidate cache without truncating:
  957. * unmap shared but keep private pages.
  958. */
  959. if (details->check_mapping &&
  960. details->check_mapping != page->mapping)
  961. continue;
  962. }
  963. ptent = ptep_get_and_clear_full(mm, addr, pte,
  964. tlb->fullmm);
  965. tlb_remove_tlb_entry(tlb, pte, addr);
  966. if (unlikely(!page))
  967. continue;
  968. if (!PageAnon(page)) {
  969. if (pte_dirty(ptent)) {
  970. /*
  971. * oom_reaper cannot tear down dirty
  972. * pages
  973. */
  974. if (unlikely(details && details->ignore_dirty))
  975. continue;
  976. force_flush = 1;
  977. set_page_dirty(page);
  978. }
  979. if (pte_young(ptent) &&
  980. likely(!(vma->vm_flags & VM_SEQ_READ)))
  981. mark_page_accessed(page);
  982. }
  983. rss[mm_counter(page)]--;
  984. page_remove_rmap(page, false);
  985. if (unlikely(page_mapcount(page) < 0))
  986. print_bad_pte(vma, addr, ptent, page);
  987. if (unlikely(!__tlb_remove_page(tlb, page))) {
  988. force_flush = 1;
  989. addr += PAGE_SIZE;
  990. break;
  991. }
  992. continue;
  993. }
  994. /* only check swap_entries if explicitly asked for in details */
  995. if (unlikely(details && !details->check_swap_entries))
  996. continue;
  997. entry = pte_to_swp_entry(ptent);
  998. if (!non_swap_entry(entry))
  999. rss[MM_SWAPENTS]--;
  1000. else if (is_migration_entry(entry)) {
  1001. struct page *page;
  1002. page = migration_entry_to_page(entry);
  1003. rss[mm_counter(page)]--;
  1004. }
  1005. if (unlikely(!free_swap_and_cache(entry)))
  1006. print_bad_pte(vma, addr, ptent, NULL);
  1007. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1008. } while (pte++, addr += PAGE_SIZE, addr != end);
  1009. add_mm_rss_vec(mm, rss);
  1010. arch_leave_lazy_mmu_mode();
  1011. /* Do the actual TLB flush before dropping ptl */
  1012. if (force_flush)
  1013. tlb_flush_mmu_tlbonly(tlb);
  1014. pte_unmap_unlock(start_pte, ptl);
  1015. /*
  1016. * If we forced a TLB flush (either due to running out of
  1017. * batch buffers or because we needed to flush dirty TLB
  1018. * entries before releasing the ptl), free the batched
  1019. * memory too. Restart if we didn't do everything.
  1020. */
  1021. if (force_flush) {
  1022. force_flush = 0;
  1023. tlb_flush_mmu_free(tlb);
  1024. if (addr != end)
  1025. goto again;
  1026. }
  1027. return addr;
  1028. }
  1029. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1030. struct vm_area_struct *vma, pud_t *pud,
  1031. unsigned long addr, unsigned long end,
  1032. struct zap_details *details)
  1033. {
  1034. pmd_t *pmd;
  1035. unsigned long next;
  1036. pmd = pmd_offset(pud, addr);
  1037. do {
  1038. next = pmd_addr_end(addr, end);
  1039. if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
  1040. if (next - addr != HPAGE_PMD_SIZE) {
  1041. #ifdef CONFIG_DEBUG_VM
  1042. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1043. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1044. __func__, addr, end,
  1045. vma->vm_start,
  1046. vma->vm_end);
  1047. BUG();
  1048. }
  1049. #endif
  1050. split_huge_pmd(vma, pmd, addr);
  1051. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1052. goto next;
  1053. /* fall through */
  1054. }
  1055. /*
  1056. * Here there can be other concurrent MADV_DONTNEED or
  1057. * trans huge page faults running, and if the pmd is
  1058. * none or trans huge it can change under us. This is
  1059. * because MADV_DONTNEED holds the mmap_sem in read
  1060. * mode.
  1061. */
  1062. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1063. goto next;
  1064. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1065. next:
  1066. cond_resched();
  1067. } while (pmd++, addr = next, addr != end);
  1068. return addr;
  1069. }
  1070. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1071. struct vm_area_struct *vma, pgd_t *pgd,
  1072. unsigned long addr, unsigned long end,
  1073. struct zap_details *details)
  1074. {
  1075. pud_t *pud;
  1076. unsigned long next;
  1077. pud = pud_offset(pgd, addr);
  1078. do {
  1079. next = pud_addr_end(addr, end);
  1080. if (pud_none_or_clear_bad(pud))
  1081. continue;
  1082. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1083. } while (pud++, addr = next, addr != end);
  1084. return addr;
  1085. }
  1086. void unmap_page_range(struct mmu_gather *tlb,
  1087. struct vm_area_struct *vma,
  1088. unsigned long addr, unsigned long end,
  1089. struct zap_details *details)
  1090. {
  1091. pgd_t *pgd;
  1092. unsigned long next;
  1093. BUG_ON(addr >= end);
  1094. tlb_start_vma(tlb, vma);
  1095. pgd = pgd_offset(vma->vm_mm, addr);
  1096. do {
  1097. next = pgd_addr_end(addr, end);
  1098. if (pgd_none_or_clear_bad(pgd))
  1099. continue;
  1100. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1101. } while (pgd++, addr = next, addr != end);
  1102. tlb_end_vma(tlb, vma);
  1103. }
  1104. static void unmap_single_vma(struct mmu_gather *tlb,
  1105. struct vm_area_struct *vma, unsigned long start_addr,
  1106. unsigned long end_addr,
  1107. struct zap_details *details)
  1108. {
  1109. unsigned long start = max(vma->vm_start, start_addr);
  1110. unsigned long end;
  1111. if (start >= vma->vm_end)
  1112. return;
  1113. end = min(vma->vm_end, end_addr);
  1114. if (end <= vma->vm_start)
  1115. return;
  1116. if (vma->vm_file)
  1117. uprobe_munmap(vma, start, end);
  1118. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1119. untrack_pfn(vma, 0, 0);
  1120. if (start != end) {
  1121. if (unlikely(is_vm_hugetlb_page(vma))) {
  1122. /*
  1123. * It is undesirable to test vma->vm_file as it
  1124. * should be non-null for valid hugetlb area.
  1125. * However, vm_file will be NULL in the error
  1126. * cleanup path of mmap_region. When
  1127. * hugetlbfs ->mmap method fails,
  1128. * mmap_region() nullifies vma->vm_file
  1129. * before calling this function to clean up.
  1130. * Since no pte has actually been setup, it is
  1131. * safe to do nothing in this case.
  1132. */
  1133. if (vma->vm_file) {
  1134. i_mmap_lock_write(vma->vm_file->f_mapping);
  1135. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1136. i_mmap_unlock_write(vma->vm_file->f_mapping);
  1137. }
  1138. } else
  1139. unmap_page_range(tlb, vma, start, end, details);
  1140. }
  1141. }
  1142. /**
  1143. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1144. * @tlb: address of the caller's struct mmu_gather
  1145. * @vma: the starting vma
  1146. * @start_addr: virtual address at which to start unmapping
  1147. * @end_addr: virtual address at which to end unmapping
  1148. *
  1149. * Unmap all pages in the vma list.
  1150. *
  1151. * Only addresses between `start' and `end' will be unmapped.
  1152. *
  1153. * The VMA list must be sorted in ascending virtual address order.
  1154. *
  1155. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1156. * range after unmap_vmas() returns. So the only responsibility here is to
  1157. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1158. * drops the lock and schedules.
  1159. */
  1160. void unmap_vmas(struct mmu_gather *tlb,
  1161. struct vm_area_struct *vma, unsigned long start_addr,
  1162. unsigned long end_addr)
  1163. {
  1164. struct mm_struct *mm = vma->vm_mm;
  1165. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1166. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1167. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1168. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1169. }
  1170. /**
  1171. * zap_page_range - remove user pages in a given range
  1172. * @vma: vm_area_struct holding the applicable pages
  1173. * @start: starting address of pages to zap
  1174. * @size: number of bytes to zap
  1175. * @details: details of shared cache invalidation
  1176. *
  1177. * Caller must protect the VMA list
  1178. */
  1179. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1180. unsigned long size, struct zap_details *details)
  1181. {
  1182. struct mm_struct *mm = vma->vm_mm;
  1183. struct mmu_gather tlb;
  1184. unsigned long end = start + size;
  1185. lru_add_drain();
  1186. tlb_gather_mmu(&tlb, mm, start, end);
  1187. update_hiwater_rss(mm);
  1188. mmu_notifier_invalidate_range_start(mm, start, end);
  1189. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1190. unmap_single_vma(&tlb, vma, start, end, details);
  1191. mmu_notifier_invalidate_range_end(mm, start, end);
  1192. tlb_finish_mmu(&tlb, start, end);
  1193. }
  1194. /**
  1195. * zap_page_range_single - remove user pages in a given range
  1196. * @vma: vm_area_struct holding the applicable pages
  1197. * @address: starting address of pages to zap
  1198. * @size: number of bytes to zap
  1199. * @details: details of shared cache invalidation
  1200. *
  1201. * The range must fit into one VMA.
  1202. */
  1203. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1204. unsigned long size, struct zap_details *details)
  1205. {
  1206. struct mm_struct *mm = vma->vm_mm;
  1207. struct mmu_gather tlb;
  1208. unsigned long end = address + size;
  1209. lru_add_drain();
  1210. tlb_gather_mmu(&tlb, mm, address, end);
  1211. update_hiwater_rss(mm);
  1212. mmu_notifier_invalidate_range_start(mm, address, end);
  1213. unmap_single_vma(&tlb, vma, address, end, details);
  1214. mmu_notifier_invalidate_range_end(mm, address, end);
  1215. tlb_finish_mmu(&tlb, address, end);
  1216. }
  1217. /**
  1218. * zap_vma_ptes - remove ptes mapping the vma
  1219. * @vma: vm_area_struct holding ptes to be zapped
  1220. * @address: starting address of pages to zap
  1221. * @size: number of bytes to zap
  1222. *
  1223. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1224. *
  1225. * The entire address range must be fully contained within the vma.
  1226. *
  1227. * Returns 0 if successful.
  1228. */
  1229. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1230. unsigned long size)
  1231. {
  1232. if (address < vma->vm_start || address + size > vma->vm_end ||
  1233. !(vma->vm_flags & VM_PFNMAP))
  1234. return -1;
  1235. zap_page_range_single(vma, address, size, NULL);
  1236. return 0;
  1237. }
  1238. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1239. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1240. spinlock_t **ptl)
  1241. {
  1242. pgd_t * pgd = pgd_offset(mm, addr);
  1243. pud_t * pud = pud_alloc(mm, pgd, addr);
  1244. if (pud) {
  1245. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1246. if (pmd) {
  1247. VM_BUG_ON(pmd_trans_huge(*pmd));
  1248. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1249. }
  1250. }
  1251. return NULL;
  1252. }
  1253. /*
  1254. * This is the old fallback for page remapping.
  1255. *
  1256. * For historical reasons, it only allows reserved pages. Only
  1257. * old drivers should use this, and they needed to mark their
  1258. * pages reserved for the old functions anyway.
  1259. */
  1260. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1261. struct page *page, pgprot_t prot)
  1262. {
  1263. struct mm_struct *mm = vma->vm_mm;
  1264. int retval;
  1265. pte_t *pte;
  1266. spinlock_t *ptl;
  1267. retval = -EINVAL;
  1268. if (PageAnon(page))
  1269. goto out;
  1270. retval = -ENOMEM;
  1271. flush_dcache_page(page);
  1272. pte = get_locked_pte(mm, addr, &ptl);
  1273. if (!pte)
  1274. goto out;
  1275. retval = -EBUSY;
  1276. if (!pte_none(*pte))
  1277. goto out_unlock;
  1278. /* Ok, finally just insert the thing.. */
  1279. get_page(page);
  1280. inc_mm_counter_fast(mm, mm_counter_file(page));
  1281. page_add_file_rmap(page);
  1282. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1283. retval = 0;
  1284. pte_unmap_unlock(pte, ptl);
  1285. return retval;
  1286. out_unlock:
  1287. pte_unmap_unlock(pte, ptl);
  1288. out:
  1289. return retval;
  1290. }
  1291. /**
  1292. * vm_insert_page - insert single page into user vma
  1293. * @vma: user vma to map to
  1294. * @addr: target user address of this page
  1295. * @page: source kernel page
  1296. *
  1297. * This allows drivers to insert individual pages they've allocated
  1298. * into a user vma.
  1299. *
  1300. * The page has to be a nice clean _individual_ kernel allocation.
  1301. * If you allocate a compound page, you need to have marked it as
  1302. * such (__GFP_COMP), or manually just split the page up yourself
  1303. * (see split_page()).
  1304. *
  1305. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1306. * took an arbitrary page protection parameter. This doesn't allow
  1307. * that. Your vma protection will have to be set up correctly, which
  1308. * means that if you want a shared writable mapping, you'd better
  1309. * ask for a shared writable mapping!
  1310. *
  1311. * The page does not need to be reserved.
  1312. *
  1313. * Usually this function is called from f_op->mmap() handler
  1314. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1315. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1316. * function from other places, for example from page-fault handler.
  1317. */
  1318. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1319. struct page *page)
  1320. {
  1321. if (addr < vma->vm_start || addr >= vma->vm_end)
  1322. return -EFAULT;
  1323. if (!page_count(page))
  1324. return -EINVAL;
  1325. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1326. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1327. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1328. vma->vm_flags |= VM_MIXEDMAP;
  1329. }
  1330. return insert_page(vma, addr, page, vma->vm_page_prot);
  1331. }
  1332. EXPORT_SYMBOL(vm_insert_page);
  1333. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1334. pfn_t pfn, pgprot_t prot)
  1335. {
  1336. struct mm_struct *mm = vma->vm_mm;
  1337. int retval;
  1338. pte_t *pte, entry;
  1339. spinlock_t *ptl;
  1340. retval = -ENOMEM;
  1341. pte = get_locked_pte(mm, addr, &ptl);
  1342. if (!pte)
  1343. goto out;
  1344. retval = -EBUSY;
  1345. if (!pte_none(*pte))
  1346. goto out_unlock;
  1347. /* Ok, finally just insert the thing.. */
  1348. if (pfn_t_devmap(pfn))
  1349. entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
  1350. else
  1351. entry = pte_mkspecial(pfn_t_pte(pfn, prot));
  1352. set_pte_at(mm, addr, pte, entry);
  1353. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1354. retval = 0;
  1355. out_unlock:
  1356. pte_unmap_unlock(pte, ptl);
  1357. out:
  1358. return retval;
  1359. }
  1360. /**
  1361. * vm_insert_pfn - insert single pfn into user vma
  1362. * @vma: user vma to map to
  1363. * @addr: target user address of this page
  1364. * @pfn: source kernel pfn
  1365. *
  1366. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1367. * they've allocated into a user vma. Same comments apply.
  1368. *
  1369. * This function should only be called from a vm_ops->fault handler, and
  1370. * in that case the handler should return NULL.
  1371. *
  1372. * vma cannot be a COW mapping.
  1373. *
  1374. * As this is called only for pages that do not currently exist, we
  1375. * do not need to flush old virtual caches or the TLB.
  1376. */
  1377. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1378. unsigned long pfn)
  1379. {
  1380. return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
  1381. }
  1382. EXPORT_SYMBOL(vm_insert_pfn);
  1383. /**
  1384. * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
  1385. * @vma: user vma to map to
  1386. * @addr: target user address of this page
  1387. * @pfn: source kernel pfn
  1388. * @pgprot: pgprot flags for the inserted page
  1389. *
  1390. * This is exactly like vm_insert_pfn, except that it allows drivers to
  1391. * to override pgprot on a per-page basis.
  1392. *
  1393. * This only makes sense for IO mappings, and it makes no sense for
  1394. * cow mappings. In general, using multiple vmas is preferable;
  1395. * vm_insert_pfn_prot should only be used if using multiple VMAs is
  1396. * impractical.
  1397. */
  1398. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1399. unsigned long pfn, pgprot_t pgprot)
  1400. {
  1401. int ret;
  1402. /*
  1403. * Technically, architectures with pte_special can avoid all these
  1404. * restrictions (same for remap_pfn_range). However we would like
  1405. * consistency in testing and feature parity among all, so we should
  1406. * try to keep these invariants in place for everybody.
  1407. */
  1408. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1409. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1410. (VM_PFNMAP|VM_MIXEDMAP));
  1411. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1412. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1413. if (addr < vma->vm_start || addr >= vma->vm_end)
  1414. return -EFAULT;
  1415. if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
  1416. return -EINVAL;
  1417. ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
  1418. return ret;
  1419. }
  1420. EXPORT_SYMBOL(vm_insert_pfn_prot);
  1421. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1422. pfn_t pfn)
  1423. {
  1424. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1425. if (addr < vma->vm_start || addr >= vma->vm_end)
  1426. return -EFAULT;
  1427. /*
  1428. * If we don't have pte special, then we have to use the pfn_valid()
  1429. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1430. * refcount the page if pfn_valid is true (hence insert_page rather
  1431. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1432. * without pte special, it would there be refcounted as a normal page.
  1433. */
  1434. if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
  1435. struct page *page;
  1436. /*
  1437. * At this point we are committed to insert_page()
  1438. * regardless of whether the caller specified flags that
  1439. * result in pfn_t_has_page() == false.
  1440. */
  1441. page = pfn_to_page(pfn_t_to_pfn(pfn));
  1442. return insert_page(vma, addr, page, vma->vm_page_prot);
  1443. }
  1444. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1445. }
  1446. EXPORT_SYMBOL(vm_insert_mixed);
  1447. /*
  1448. * maps a range of physical memory into the requested pages. the old
  1449. * mappings are removed. any references to nonexistent pages results
  1450. * in null mappings (currently treated as "copy-on-access")
  1451. */
  1452. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1453. unsigned long addr, unsigned long end,
  1454. unsigned long pfn, pgprot_t prot)
  1455. {
  1456. pte_t *pte;
  1457. spinlock_t *ptl;
  1458. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1459. if (!pte)
  1460. return -ENOMEM;
  1461. arch_enter_lazy_mmu_mode();
  1462. do {
  1463. BUG_ON(!pte_none(*pte));
  1464. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1465. pfn++;
  1466. } while (pte++, addr += PAGE_SIZE, addr != end);
  1467. arch_leave_lazy_mmu_mode();
  1468. pte_unmap_unlock(pte - 1, ptl);
  1469. return 0;
  1470. }
  1471. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1472. unsigned long addr, unsigned long end,
  1473. unsigned long pfn, pgprot_t prot)
  1474. {
  1475. pmd_t *pmd;
  1476. unsigned long next;
  1477. pfn -= addr >> PAGE_SHIFT;
  1478. pmd = pmd_alloc(mm, pud, addr);
  1479. if (!pmd)
  1480. return -ENOMEM;
  1481. VM_BUG_ON(pmd_trans_huge(*pmd));
  1482. do {
  1483. next = pmd_addr_end(addr, end);
  1484. if (remap_pte_range(mm, pmd, addr, next,
  1485. pfn + (addr >> PAGE_SHIFT), prot))
  1486. return -ENOMEM;
  1487. } while (pmd++, addr = next, addr != end);
  1488. return 0;
  1489. }
  1490. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1491. unsigned long addr, unsigned long end,
  1492. unsigned long pfn, pgprot_t prot)
  1493. {
  1494. pud_t *pud;
  1495. unsigned long next;
  1496. pfn -= addr >> PAGE_SHIFT;
  1497. pud = pud_alloc(mm, pgd, addr);
  1498. if (!pud)
  1499. return -ENOMEM;
  1500. do {
  1501. next = pud_addr_end(addr, end);
  1502. if (remap_pmd_range(mm, pud, addr, next,
  1503. pfn + (addr >> PAGE_SHIFT), prot))
  1504. return -ENOMEM;
  1505. } while (pud++, addr = next, addr != end);
  1506. return 0;
  1507. }
  1508. /**
  1509. * remap_pfn_range - remap kernel memory to userspace
  1510. * @vma: user vma to map to
  1511. * @addr: target user address to start at
  1512. * @pfn: physical address of kernel memory
  1513. * @size: size of map area
  1514. * @prot: page protection flags for this mapping
  1515. *
  1516. * Note: this is only safe if the mm semaphore is held when called.
  1517. */
  1518. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1519. unsigned long pfn, unsigned long size, pgprot_t prot)
  1520. {
  1521. pgd_t *pgd;
  1522. unsigned long next;
  1523. unsigned long end = addr + PAGE_ALIGN(size);
  1524. struct mm_struct *mm = vma->vm_mm;
  1525. int err;
  1526. /*
  1527. * Physically remapped pages are special. Tell the
  1528. * rest of the world about it:
  1529. * VM_IO tells people not to look at these pages
  1530. * (accesses can have side effects).
  1531. * VM_PFNMAP tells the core MM that the base pages are just
  1532. * raw PFN mappings, and do not have a "struct page" associated
  1533. * with them.
  1534. * VM_DONTEXPAND
  1535. * Disable vma merging and expanding with mremap().
  1536. * VM_DONTDUMP
  1537. * Omit vma from core dump, even when VM_IO turned off.
  1538. *
  1539. * There's a horrible special case to handle copy-on-write
  1540. * behaviour that some programs depend on. We mark the "original"
  1541. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1542. * See vm_normal_page() for details.
  1543. */
  1544. if (is_cow_mapping(vma->vm_flags)) {
  1545. if (addr != vma->vm_start || end != vma->vm_end)
  1546. return -EINVAL;
  1547. vma->vm_pgoff = pfn;
  1548. }
  1549. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1550. if (err)
  1551. return -EINVAL;
  1552. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1553. BUG_ON(addr >= end);
  1554. pfn -= addr >> PAGE_SHIFT;
  1555. pgd = pgd_offset(mm, addr);
  1556. flush_cache_range(vma, addr, end);
  1557. do {
  1558. next = pgd_addr_end(addr, end);
  1559. err = remap_pud_range(mm, pgd, addr, next,
  1560. pfn + (addr >> PAGE_SHIFT), prot);
  1561. if (err)
  1562. break;
  1563. } while (pgd++, addr = next, addr != end);
  1564. if (err)
  1565. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1566. return err;
  1567. }
  1568. EXPORT_SYMBOL(remap_pfn_range);
  1569. /**
  1570. * vm_iomap_memory - remap memory to userspace
  1571. * @vma: user vma to map to
  1572. * @start: start of area
  1573. * @len: size of area
  1574. *
  1575. * This is a simplified io_remap_pfn_range() for common driver use. The
  1576. * driver just needs to give us the physical memory range to be mapped,
  1577. * we'll figure out the rest from the vma information.
  1578. *
  1579. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1580. * whatever write-combining details or similar.
  1581. */
  1582. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1583. {
  1584. unsigned long vm_len, pfn, pages;
  1585. /* Check that the physical memory area passed in looks valid */
  1586. if (start + len < start)
  1587. return -EINVAL;
  1588. /*
  1589. * You *really* shouldn't map things that aren't page-aligned,
  1590. * but we've historically allowed it because IO memory might
  1591. * just have smaller alignment.
  1592. */
  1593. len += start & ~PAGE_MASK;
  1594. pfn = start >> PAGE_SHIFT;
  1595. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1596. if (pfn + pages < pfn)
  1597. return -EINVAL;
  1598. /* We start the mapping 'vm_pgoff' pages into the area */
  1599. if (vma->vm_pgoff > pages)
  1600. return -EINVAL;
  1601. pfn += vma->vm_pgoff;
  1602. pages -= vma->vm_pgoff;
  1603. /* Can we fit all of the mapping? */
  1604. vm_len = vma->vm_end - vma->vm_start;
  1605. if (vm_len >> PAGE_SHIFT > pages)
  1606. return -EINVAL;
  1607. /* Ok, let it rip */
  1608. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1609. }
  1610. EXPORT_SYMBOL(vm_iomap_memory);
  1611. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1612. unsigned long addr, unsigned long end,
  1613. pte_fn_t fn, void *data)
  1614. {
  1615. pte_t *pte;
  1616. int err;
  1617. pgtable_t token;
  1618. spinlock_t *uninitialized_var(ptl);
  1619. pte = (mm == &init_mm) ?
  1620. pte_alloc_kernel(pmd, addr) :
  1621. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1622. if (!pte)
  1623. return -ENOMEM;
  1624. BUG_ON(pmd_huge(*pmd));
  1625. arch_enter_lazy_mmu_mode();
  1626. token = pmd_pgtable(*pmd);
  1627. do {
  1628. err = fn(pte++, token, addr, data);
  1629. if (err)
  1630. break;
  1631. } while (addr += PAGE_SIZE, addr != end);
  1632. arch_leave_lazy_mmu_mode();
  1633. if (mm != &init_mm)
  1634. pte_unmap_unlock(pte-1, ptl);
  1635. return err;
  1636. }
  1637. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1638. unsigned long addr, unsigned long end,
  1639. pte_fn_t fn, void *data)
  1640. {
  1641. pmd_t *pmd;
  1642. unsigned long next;
  1643. int err;
  1644. BUG_ON(pud_huge(*pud));
  1645. pmd = pmd_alloc(mm, pud, addr);
  1646. if (!pmd)
  1647. return -ENOMEM;
  1648. do {
  1649. next = pmd_addr_end(addr, end);
  1650. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1651. if (err)
  1652. break;
  1653. } while (pmd++, addr = next, addr != end);
  1654. return err;
  1655. }
  1656. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1657. unsigned long addr, unsigned long end,
  1658. pte_fn_t fn, void *data)
  1659. {
  1660. pud_t *pud;
  1661. unsigned long next;
  1662. int err;
  1663. pud = pud_alloc(mm, pgd, addr);
  1664. if (!pud)
  1665. return -ENOMEM;
  1666. do {
  1667. next = pud_addr_end(addr, end);
  1668. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1669. if (err)
  1670. break;
  1671. } while (pud++, addr = next, addr != end);
  1672. return err;
  1673. }
  1674. /*
  1675. * Scan a region of virtual memory, filling in page tables as necessary
  1676. * and calling a provided function on each leaf page table.
  1677. */
  1678. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1679. unsigned long size, pte_fn_t fn, void *data)
  1680. {
  1681. pgd_t *pgd;
  1682. unsigned long next;
  1683. unsigned long end = addr + size;
  1684. int err;
  1685. if (WARN_ON(addr >= end))
  1686. return -EINVAL;
  1687. pgd = pgd_offset(mm, addr);
  1688. do {
  1689. next = pgd_addr_end(addr, end);
  1690. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1691. if (err)
  1692. break;
  1693. } while (pgd++, addr = next, addr != end);
  1694. return err;
  1695. }
  1696. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1697. /*
  1698. * handle_pte_fault chooses page fault handler according to an entry which was
  1699. * read non-atomically. Before making any commitment, on those architectures
  1700. * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
  1701. * parts, do_swap_page must check under lock before unmapping the pte and
  1702. * proceeding (but do_wp_page is only called after already making such a check;
  1703. * and do_anonymous_page can safely check later on).
  1704. */
  1705. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1706. pte_t *page_table, pte_t orig_pte)
  1707. {
  1708. int same = 1;
  1709. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1710. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1711. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1712. spin_lock(ptl);
  1713. same = pte_same(*page_table, orig_pte);
  1714. spin_unlock(ptl);
  1715. }
  1716. #endif
  1717. pte_unmap(page_table);
  1718. return same;
  1719. }
  1720. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1721. {
  1722. debug_dma_assert_idle(src);
  1723. /*
  1724. * If the source page was a PFN mapping, we don't have
  1725. * a "struct page" for it. We do a best-effort copy by
  1726. * just copying from the original user address. If that
  1727. * fails, we just zero-fill it. Live with it.
  1728. */
  1729. if (unlikely(!src)) {
  1730. void *kaddr = kmap_atomic(dst);
  1731. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1732. /*
  1733. * This really shouldn't fail, because the page is there
  1734. * in the page tables. But it might just be unreadable,
  1735. * in which case we just give up and fill the result with
  1736. * zeroes.
  1737. */
  1738. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1739. clear_page(kaddr);
  1740. kunmap_atomic(kaddr);
  1741. flush_dcache_page(dst);
  1742. } else
  1743. copy_user_highpage(dst, src, va, vma);
  1744. }
  1745. static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
  1746. {
  1747. struct file *vm_file = vma->vm_file;
  1748. if (vm_file)
  1749. return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
  1750. /*
  1751. * Special mappings (e.g. VDSO) do not have any file so fake
  1752. * a default GFP_KERNEL for them.
  1753. */
  1754. return GFP_KERNEL;
  1755. }
  1756. /*
  1757. * Notify the address space that the page is about to become writable so that
  1758. * it can prohibit this or wait for the page to get into an appropriate state.
  1759. *
  1760. * We do this without the lock held, so that it can sleep if it needs to.
  1761. */
  1762. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1763. unsigned long address)
  1764. {
  1765. struct vm_fault vmf;
  1766. int ret;
  1767. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1768. vmf.pgoff = page->index;
  1769. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1770. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  1771. vmf.page = page;
  1772. vmf.cow_page = NULL;
  1773. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1774. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1775. return ret;
  1776. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1777. lock_page(page);
  1778. if (!page->mapping) {
  1779. unlock_page(page);
  1780. return 0; /* retry */
  1781. }
  1782. ret |= VM_FAULT_LOCKED;
  1783. } else
  1784. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1785. return ret;
  1786. }
  1787. /*
  1788. * Handle write page faults for pages that can be reused in the current vma
  1789. *
  1790. * This can happen either due to the mapping being with the VM_SHARED flag,
  1791. * or due to us being the last reference standing to the page. In either
  1792. * case, all we need to do here is to mark the page as writable and update
  1793. * any related book-keeping.
  1794. */
  1795. static inline int wp_page_reuse(struct mm_struct *mm,
  1796. struct vm_area_struct *vma, unsigned long address,
  1797. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1798. struct page *page, int page_mkwrite,
  1799. int dirty_shared)
  1800. __releases(ptl)
  1801. {
  1802. pte_t entry;
  1803. /*
  1804. * Clear the pages cpupid information as the existing
  1805. * information potentially belongs to a now completely
  1806. * unrelated process.
  1807. */
  1808. if (page)
  1809. page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
  1810. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1811. entry = pte_mkyoung(orig_pte);
  1812. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1813. if (ptep_set_access_flags(vma, address, page_table, entry, 1))
  1814. update_mmu_cache(vma, address, page_table);
  1815. pte_unmap_unlock(page_table, ptl);
  1816. if (dirty_shared) {
  1817. struct address_space *mapping;
  1818. int dirtied;
  1819. if (!page_mkwrite)
  1820. lock_page(page);
  1821. dirtied = set_page_dirty(page);
  1822. VM_BUG_ON_PAGE(PageAnon(page), page);
  1823. mapping = page->mapping;
  1824. unlock_page(page);
  1825. page_cache_release(page);
  1826. if ((dirtied || page_mkwrite) && mapping) {
  1827. /*
  1828. * Some device drivers do not set page.mapping
  1829. * but still dirty their pages
  1830. */
  1831. balance_dirty_pages_ratelimited(mapping);
  1832. }
  1833. if (!page_mkwrite)
  1834. file_update_time(vma->vm_file);
  1835. }
  1836. return VM_FAULT_WRITE;
  1837. }
  1838. /*
  1839. * Handle the case of a page which we actually need to copy to a new page.
  1840. *
  1841. * Called with mmap_sem locked and the old page referenced, but
  1842. * without the ptl held.
  1843. *
  1844. * High level logic flow:
  1845. *
  1846. * - Allocate a page, copy the content of the old page to the new one.
  1847. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
  1848. * - Take the PTL. If the pte changed, bail out and release the allocated page
  1849. * - If the pte is still the way we remember it, update the page table and all
  1850. * relevant references. This includes dropping the reference the page-table
  1851. * held to the old page, as well as updating the rmap.
  1852. * - In any case, unlock the PTL and drop the reference we took to the old page.
  1853. */
  1854. static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
  1855. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1856. pte_t orig_pte, struct page *old_page)
  1857. {
  1858. struct page *new_page = NULL;
  1859. spinlock_t *ptl = NULL;
  1860. pte_t entry;
  1861. int page_copied = 0;
  1862. const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
  1863. const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
  1864. struct mem_cgroup *memcg;
  1865. if (unlikely(anon_vma_prepare(vma)))
  1866. goto oom;
  1867. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1868. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1869. if (!new_page)
  1870. goto oom;
  1871. } else {
  1872. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1873. if (!new_page)
  1874. goto oom;
  1875. cow_user_page(new_page, old_page, address, vma);
  1876. }
  1877. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
  1878. goto oom_free_new;
  1879. __SetPageUptodate(new_page);
  1880. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1881. /*
  1882. * Re-check the pte - we dropped the lock
  1883. */
  1884. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1885. if (likely(pte_same(*page_table, orig_pte))) {
  1886. if (old_page) {
  1887. if (!PageAnon(old_page)) {
  1888. dec_mm_counter_fast(mm,
  1889. mm_counter_file(old_page));
  1890. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1891. }
  1892. } else {
  1893. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1894. }
  1895. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1896. entry = mk_pte(new_page, vma->vm_page_prot);
  1897. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1898. /*
  1899. * Clear the pte entry and flush it first, before updating the
  1900. * pte with the new entry. This will avoid a race condition
  1901. * seen in the presence of one thread doing SMC and another
  1902. * thread doing COW.
  1903. */
  1904. ptep_clear_flush_notify(vma, address, page_table);
  1905. page_add_new_anon_rmap(new_page, vma, address, false);
  1906. mem_cgroup_commit_charge(new_page, memcg, false, false);
  1907. lru_cache_add_active_or_unevictable(new_page, vma);
  1908. /*
  1909. * We call the notify macro here because, when using secondary
  1910. * mmu page tables (such as kvm shadow page tables), we want the
  1911. * new page to be mapped directly into the secondary page table.
  1912. */
  1913. set_pte_at_notify(mm, address, page_table, entry);
  1914. update_mmu_cache(vma, address, page_table);
  1915. if (old_page) {
  1916. /*
  1917. * Only after switching the pte to the new page may
  1918. * we remove the mapcount here. Otherwise another
  1919. * process may come and find the rmap count decremented
  1920. * before the pte is switched to the new page, and
  1921. * "reuse" the old page writing into it while our pte
  1922. * here still points into it and can be read by other
  1923. * threads.
  1924. *
  1925. * The critical issue is to order this
  1926. * page_remove_rmap with the ptp_clear_flush above.
  1927. * Those stores are ordered by (if nothing else,)
  1928. * the barrier present in the atomic_add_negative
  1929. * in page_remove_rmap.
  1930. *
  1931. * Then the TLB flush in ptep_clear_flush ensures that
  1932. * no process can access the old page before the
  1933. * decremented mapcount is visible. And the old page
  1934. * cannot be reused until after the decremented
  1935. * mapcount is visible. So transitively, TLBs to
  1936. * old page will be flushed before it can be reused.
  1937. */
  1938. page_remove_rmap(old_page, false);
  1939. }
  1940. /* Free the old page.. */
  1941. new_page = old_page;
  1942. page_copied = 1;
  1943. } else {
  1944. mem_cgroup_cancel_charge(new_page, memcg, false);
  1945. }
  1946. if (new_page)
  1947. page_cache_release(new_page);
  1948. pte_unmap_unlock(page_table, ptl);
  1949. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1950. if (old_page) {
  1951. /*
  1952. * Don't let another task, with possibly unlocked vma,
  1953. * keep the mlocked page.
  1954. */
  1955. if (page_copied && (vma->vm_flags & VM_LOCKED)) {
  1956. lock_page(old_page); /* LRU manipulation */
  1957. if (PageMlocked(old_page))
  1958. munlock_vma_page(old_page);
  1959. unlock_page(old_page);
  1960. }
  1961. page_cache_release(old_page);
  1962. }
  1963. return page_copied ? VM_FAULT_WRITE : 0;
  1964. oom_free_new:
  1965. page_cache_release(new_page);
  1966. oom:
  1967. if (old_page)
  1968. page_cache_release(old_page);
  1969. return VM_FAULT_OOM;
  1970. }
  1971. /*
  1972. * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
  1973. * mapping
  1974. */
  1975. static int wp_pfn_shared(struct mm_struct *mm,
  1976. struct vm_area_struct *vma, unsigned long address,
  1977. pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
  1978. pmd_t *pmd)
  1979. {
  1980. if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
  1981. struct vm_fault vmf = {
  1982. .page = NULL,
  1983. .pgoff = linear_page_index(vma, address),
  1984. .virtual_address = (void __user *)(address & PAGE_MASK),
  1985. .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
  1986. };
  1987. int ret;
  1988. pte_unmap_unlock(page_table, ptl);
  1989. ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
  1990. if (ret & VM_FAULT_ERROR)
  1991. return ret;
  1992. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1993. /*
  1994. * We might have raced with another page fault while we
  1995. * released the pte_offset_map_lock.
  1996. */
  1997. if (!pte_same(*page_table, orig_pte)) {
  1998. pte_unmap_unlock(page_table, ptl);
  1999. return 0;
  2000. }
  2001. }
  2002. return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
  2003. NULL, 0, 0);
  2004. }
  2005. static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
  2006. unsigned long address, pte_t *page_table,
  2007. pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
  2008. struct page *old_page)
  2009. __releases(ptl)
  2010. {
  2011. int page_mkwrite = 0;
  2012. page_cache_get(old_page);
  2013. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2014. int tmp;
  2015. pte_unmap_unlock(page_table, ptl);
  2016. tmp = do_page_mkwrite(vma, old_page, address);
  2017. if (unlikely(!tmp || (tmp &
  2018. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2019. page_cache_release(old_page);
  2020. return tmp;
  2021. }
  2022. /*
  2023. * Since we dropped the lock we need to revalidate
  2024. * the PTE as someone else may have changed it. If
  2025. * they did, we just return, as we can count on the
  2026. * MMU to tell us if they didn't also make it writable.
  2027. */
  2028. page_table = pte_offset_map_lock(mm, pmd, address,
  2029. &ptl);
  2030. if (!pte_same(*page_table, orig_pte)) {
  2031. unlock_page(old_page);
  2032. pte_unmap_unlock(page_table, ptl);
  2033. page_cache_release(old_page);
  2034. return 0;
  2035. }
  2036. page_mkwrite = 1;
  2037. }
  2038. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2039. orig_pte, old_page, page_mkwrite, 1);
  2040. }
  2041. /*
  2042. * This routine handles present pages, when users try to write
  2043. * to a shared page. It is done by copying the page to a new address
  2044. * and decrementing the shared-page counter for the old page.
  2045. *
  2046. * Note that this routine assumes that the protection checks have been
  2047. * done by the caller (the low-level page fault routine in most cases).
  2048. * Thus we can safely just mark it writable once we've done any necessary
  2049. * COW.
  2050. *
  2051. * We also mark the page dirty at this point even though the page will
  2052. * change only once the write actually happens. This avoids a few races,
  2053. * and potentially makes it more efficient.
  2054. *
  2055. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2056. * but allow concurrent faults), with pte both mapped and locked.
  2057. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2058. */
  2059. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2060. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2061. spinlock_t *ptl, pte_t orig_pte)
  2062. __releases(ptl)
  2063. {
  2064. struct page *old_page;
  2065. old_page = vm_normal_page(vma, address, orig_pte);
  2066. if (!old_page) {
  2067. /*
  2068. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  2069. * VM_PFNMAP VMA.
  2070. *
  2071. * We should not cow pages in a shared writeable mapping.
  2072. * Just mark the pages writable and/or call ops->pfn_mkwrite.
  2073. */
  2074. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2075. (VM_WRITE|VM_SHARED))
  2076. return wp_pfn_shared(mm, vma, address, page_table, ptl,
  2077. orig_pte, pmd);
  2078. pte_unmap_unlock(page_table, ptl);
  2079. return wp_page_copy(mm, vma, address, page_table, pmd,
  2080. orig_pte, old_page);
  2081. }
  2082. /*
  2083. * Take out anonymous pages first, anonymous shared vmas are
  2084. * not dirty accountable.
  2085. */
  2086. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2087. if (!trylock_page(old_page)) {
  2088. page_cache_get(old_page);
  2089. pte_unmap_unlock(page_table, ptl);
  2090. lock_page(old_page);
  2091. page_table = pte_offset_map_lock(mm, pmd, address,
  2092. &ptl);
  2093. if (!pte_same(*page_table, orig_pte)) {
  2094. unlock_page(old_page);
  2095. pte_unmap_unlock(page_table, ptl);
  2096. page_cache_release(old_page);
  2097. return 0;
  2098. }
  2099. page_cache_release(old_page);
  2100. }
  2101. if (reuse_swap_page(old_page)) {
  2102. /*
  2103. * The page is all ours. Move it to our anon_vma so
  2104. * the rmap code will not search our parent or siblings.
  2105. * Protected against the rmap code by the page lock.
  2106. */
  2107. page_move_anon_rmap(old_page, vma, address);
  2108. unlock_page(old_page);
  2109. return wp_page_reuse(mm, vma, address, page_table, ptl,
  2110. orig_pte, old_page, 0, 0);
  2111. }
  2112. unlock_page(old_page);
  2113. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2114. (VM_WRITE|VM_SHARED))) {
  2115. return wp_page_shared(mm, vma, address, page_table, pmd,
  2116. ptl, orig_pte, old_page);
  2117. }
  2118. /*
  2119. * Ok, we need to copy. Oh, well..
  2120. */
  2121. page_cache_get(old_page);
  2122. pte_unmap_unlock(page_table, ptl);
  2123. return wp_page_copy(mm, vma, address, page_table, pmd,
  2124. orig_pte, old_page);
  2125. }
  2126. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2127. unsigned long start_addr, unsigned long end_addr,
  2128. struct zap_details *details)
  2129. {
  2130. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2131. }
  2132. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2133. struct zap_details *details)
  2134. {
  2135. struct vm_area_struct *vma;
  2136. pgoff_t vba, vea, zba, zea;
  2137. vma_interval_tree_foreach(vma, root,
  2138. details->first_index, details->last_index) {
  2139. vba = vma->vm_pgoff;
  2140. vea = vba + vma_pages(vma) - 1;
  2141. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2142. zba = details->first_index;
  2143. if (zba < vba)
  2144. zba = vba;
  2145. zea = details->last_index;
  2146. if (zea > vea)
  2147. zea = vea;
  2148. unmap_mapping_range_vma(vma,
  2149. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2150. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2151. details);
  2152. }
  2153. }
  2154. /**
  2155. * unmap_mapping_range - unmap the portion of all mmaps in the specified
  2156. * address_space corresponding to the specified page range in the underlying
  2157. * file.
  2158. *
  2159. * @mapping: the address space containing mmaps to be unmapped.
  2160. * @holebegin: byte in first page to unmap, relative to the start of
  2161. * the underlying file. This will be rounded down to a PAGE_SIZE
  2162. * boundary. Note that this is different from truncate_pagecache(), which
  2163. * must keep the partial page. In contrast, we must get rid of
  2164. * partial pages.
  2165. * @holelen: size of prospective hole in bytes. This will be rounded
  2166. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2167. * end of the file.
  2168. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2169. * but 0 when invalidating pagecache, don't throw away private data.
  2170. */
  2171. void unmap_mapping_range(struct address_space *mapping,
  2172. loff_t const holebegin, loff_t const holelen, int even_cows)
  2173. {
  2174. struct zap_details details = { };
  2175. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2176. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2177. /* Check for overflow. */
  2178. if (sizeof(holelen) > sizeof(hlen)) {
  2179. long long holeend =
  2180. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2181. if (holeend & ~(long long)ULONG_MAX)
  2182. hlen = ULONG_MAX - hba + 1;
  2183. }
  2184. details.check_mapping = even_cows? NULL: mapping;
  2185. details.first_index = hba;
  2186. details.last_index = hba + hlen - 1;
  2187. if (details.last_index < details.first_index)
  2188. details.last_index = ULONG_MAX;
  2189. /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
  2190. i_mmap_lock_write(mapping);
  2191. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2192. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2193. i_mmap_unlock_write(mapping);
  2194. }
  2195. EXPORT_SYMBOL(unmap_mapping_range);
  2196. /*
  2197. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2198. * but allow concurrent faults), and pte mapped but not yet locked.
  2199. * We return with pte unmapped and unlocked.
  2200. *
  2201. * We return with the mmap_sem locked or unlocked in the same cases
  2202. * as does filemap_fault().
  2203. */
  2204. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2205. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2206. unsigned int flags, pte_t orig_pte)
  2207. {
  2208. spinlock_t *ptl;
  2209. struct page *page, *swapcache;
  2210. struct mem_cgroup *memcg;
  2211. swp_entry_t entry;
  2212. pte_t pte;
  2213. int locked;
  2214. int exclusive = 0;
  2215. int ret = 0;
  2216. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2217. goto out;
  2218. entry = pte_to_swp_entry(orig_pte);
  2219. if (unlikely(non_swap_entry(entry))) {
  2220. if (is_migration_entry(entry)) {
  2221. migration_entry_wait(mm, pmd, address);
  2222. } else if (is_hwpoison_entry(entry)) {
  2223. ret = VM_FAULT_HWPOISON;
  2224. } else {
  2225. print_bad_pte(vma, address, orig_pte, NULL);
  2226. ret = VM_FAULT_SIGBUS;
  2227. }
  2228. goto out;
  2229. }
  2230. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2231. page = lookup_swap_cache(entry);
  2232. if (!page) {
  2233. page = swapin_readahead(entry,
  2234. GFP_HIGHUSER_MOVABLE, vma, address);
  2235. if (!page) {
  2236. /*
  2237. * Back out if somebody else faulted in this pte
  2238. * while we released the pte lock.
  2239. */
  2240. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2241. if (likely(pte_same(*page_table, orig_pte)))
  2242. ret = VM_FAULT_OOM;
  2243. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2244. goto unlock;
  2245. }
  2246. /* Had to read the page from swap area: Major fault */
  2247. ret = VM_FAULT_MAJOR;
  2248. count_vm_event(PGMAJFAULT);
  2249. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2250. } else if (PageHWPoison(page)) {
  2251. /*
  2252. * hwpoisoned dirty swapcache pages are kept for killing
  2253. * owner processes (which may be unknown at hwpoison time)
  2254. */
  2255. ret = VM_FAULT_HWPOISON;
  2256. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2257. swapcache = page;
  2258. goto out_release;
  2259. }
  2260. swapcache = page;
  2261. locked = lock_page_or_retry(page, mm, flags);
  2262. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2263. if (!locked) {
  2264. ret |= VM_FAULT_RETRY;
  2265. goto out_release;
  2266. }
  2267. /*
  2268. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2269. * release the swapcache from under us. The page pin, and pte_same
  2270. * test below, are not enough to exclude that. Even if it is still
  2271. * swapcache, we need to check that the page's swap has not changed.
  2272. */
  2273. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2274. goto out_page;
  2275. page = ksm_might_need_to_copy(page, vma, address);
  2276. if (unlikely(!page)) {
  2277. ret = VM_FAULT_OOM;
  2278. page = swapcache;
  2279. goto out_page;
  2280. }
  2281. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
  2282. ret = VM_FAULT_OOM;
  2283. goto out_page;
  2284. }
  2285. /*
  2286. * Back out if somebody else already faulted in this pte.
  2287. */
  2288. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2289. if (unlikely(!pte_same(*page_table, orig_pte)))
  2290. goto out_nomap;
  2291. if (unlikely(!PageUptodate(page))) {
  2292. ret = VM_FAULT_SIGBUS;
  2293. goto out_nomap;
  2294. }
  2295. /*
  2296. * The page isn't present yet, go ahead with the fault.
  2297. *
  2298. * Be careful about the sequence of operations here.
  2299. * To get its accounting right, reuse_swap_page() must be called
  2300. * while the page is counted on swap but not yet in mapcount i.e.
  2301. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2302. * must be called after the swap_free(), or it will never succeed.
  2303. */
  2304. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2305. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2306. pte = mk_pte(page, vma->vm_page_prot);
  2307. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2308. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2309. flags &= ~FAULT_FLAG_WRITE;
  2310. ret |= VM_FAULT_WRITE;
  2311. exclusive = RMAP_EXCLUSIVE;
  2312. }
  2313. flush_icache_page(vma, page);
  2314. if (pte_swp_soft_dirty(orig_pte))
  2315. pte = pte_mksoft_dirty(pte);
  2316. set_pte_at(mm, address, page_table, pte);
  2317. if (page == swapcache) {
  2318. do_page_add_anon_rmap(page, vma, address, exclusive);
  2319. mem_cgroup_commit_charge(page, memcg, true, false);
  2320. } else { /* ksm created a completely new copy */
  2321. page_add_new_anon_rmap(page, vma, address, false);
  2322. mem_cgroup_commit_charge(page, memcg, false, false);
  2323. lru_cache_add_active_or_unevictable(page, vma);
  2324. }
  2325. swap_free(entry);
  2326. if (mem_cgroup_swap_full(page) ||
  2327. (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2328. try_to_free_swap(page);
  2329. unlock_page(page);
  2330. if (page != swapcache) {
  2331. /*
  2332. * Hold the lock to avoid the swap entry to be reused
  2333. * until we take the PT lock for the pte_same() check
  2334. * (to avoid false positives from pte_same). For
  2335. * further safety release the lock after the swap_free
  2336. * so that the swap count won't change under a
  2337. * parallel locked swapcache.
  2338. */
  2339. unlock_page(swapcache);
  2340. page_cache_release(swapcache);
  2341. }
  2342. if (flags & FAULT_FLAG_WRITE) {
  2343. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2344. if (ret & VM_FAULT_ERROR)
  2345. ret &= VM_FAULT_ERROR;
  2346. goto out;
  2347. }
  2348. /* No need to invalidate - it was non-present before */
  2349. update_mmu_cache(vma, address, page_table);
  2350. unlock:
  2351. pte_unmap_unlock(page_table, ptl);
  2352. out:
  2353. return ret;
  2354. out_nomap:
  2355. mem_cgroup_cancel_charge(page, memcg, false);
  2356. pte_unmap_unlock(page_table, ptl);
  2357. out_page:
  2358. unlock_page(page);
  2359. out_release:
  2360. page_cache_release(page);
  2361. if (page != swapcache) {
  2362. unlock_page(swapcache);
  2363. page_cache_release(swapcache);
  2364. }
  2365. return ret;
  2366. }
  2367. /*
  2368. * This is like a special single-page "expand_{down|up}wards()",
  2369. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2370. * doesn't hit another vma.
  2371. */
  2372. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2373. {
  2374. address &= PAGE_MASK;
  2375. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2376. struct vm_area_struct *prev = vma->vm_prev;
  2377. /*
  2378. * Is there a mapping abutting this one below?
  2379. *
  2380. * That's only ok if it's the same stack mapping
  2381. * that has gotten split..
  2382. */
  2383. if (prev && prev->vm_end == address)
  2384. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2385. return expand_downwards(vma, address - PAGE_SIZE);
  2386. }
  2387. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2388. struct vm_area_struct *next = vma->vm_next;
  2389. /* As VM_GROWSDOWN but s/below/above/ */
  2390. if (next && next->vm_start == address + PAGE_SIZE)
  2391. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2392. return expand_upwards(vma, address + PAGE_SIZE);
  2393. }
  2394. return 0;
  2395. }
  2396. /*
  2397. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2398. * but allow concurrent faults), and pte mapped but not yet locked.
  2399. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2400. */
  2401. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2402. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2403. unsigned int flags)
  2404. {
  2405. struct mem_cgroup *memcg;
  2406. struct page *page;
  2407. spinlock_t *ptl;
  2408. pte_t entry;
  2409. pte_unmap(page_table);
  2410. /* File mapping without ->vm_ops ? */
  2411. if (vma->vm_flags & VM_SHARED)
  2412. return VM_FAULT_SIGBUS;
  2413. /* Check if we need to add a guard page to the stack */
  2414. if (check_stack_guard_page(vma, address) < 0)
  2415. return VM_FAULT_SIGSEGV;
  2416. /* Use the zero-page for reads */
  2417. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2418. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2419. vma->vm_page_prot));
  2420. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2421. if (!pte_none(*page_table))
  2422. goto unlock;
  2423. /* Deliver the page fault to userland, check inside PT lock */
  2424. if (userfaultfd_missing(vma)) {
  2425. pte_unmap_unlock(page_table, ptl);
  2426. return handle_userfault(vma, address, flags,
  2427. VM_UFFD_MISSING);
  2428. }
  2429. goto setpte;
  2430. }
  2431. /* Allocate our own private page. */
  2432. if (unlikely(anon_vma_prepare(vma)))
  2433. goto oom;
  2434. page = alloc_zeroed_user_highpage_movable(vma, address);
  2435. if (!page)
  2436. goto oom;
  2437. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
  2438. goto oom_free_page;
  2439. /*
  2440. * The memory barrier inside __SetPageUptodate makes sure that
  2441. * preceeding stores to the page contents become visible before
  2442. * the set_pte_at() write.
  2443. */
  2444. __SetPageUptodate(page);
  2445. entry = mk_pte(page, vma->vm_page_prot);
  2446. if (vma->vm_flags & VM_WRITE)
  2447. entry = pte_mkwrite(pte_mkdirty(entry));
  2448. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2449. if (!pte_none(*page_table))
  2450. goto release;
  2451. /* Deliver the page fault to userland, check inside PT lock */
  2452. if (userfaultfd_missing(vma)) {
  2453. pte_unmap_unlock(page_table, ptl);
  2454. mem_cgroup_cancel_charge(page, memcg, false);
  2455. page_cache_release(page);
  2456. return handle_userfault(vma, address, flags,
  2457. VM_UFFD_MISSING);
  2458. }
  2459. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2460. page_add_new_anon_rmap(page, vma, address, false);
  2461. mem_cgroup_commit_charge(page, memcg, false, false);
  2462. lru_cache_add_active_or_unevictable(page, vma);
  2463. setpte:
  2464. set_pte_at(mm, address, page_table, entry);
  2465. /* No need to invalidate - it was non-present before */
  2466. update_mmu_cache(vma, address, page_table);
  2467. unlock:
  2468. pte_unmap_unlock(page_table, ptl);
  2469. return 0;
  2470. release:
  2471. mem_cgroup_cancel_charge(page, memcg, false);
  2472. page_cache_release(page);
  2473. goto unlock;
  2474. oom_free_page:
  2475. page_cache_release(page);
  2476. oom:
  2477. return VM_FAULT_OOM;
  2478. }
  2479. /*
  2480. * The mmap_sem must have been held on entry, and may have been
  2481. * released depending on flags and vma->vm_ops->fault() return value.
  2482. * See filemap_fault() and __lock_page_retry().
  2483. */
  2484. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2485. pgoff_t pgoff, unsigned int flags,
  2486. struct page *cow_page, struct page **page)
  2487. {
  2488. struct vm_fault vmf;
  2489. int ret;
  2490. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2491. vmf.pgoff = pgoff;
  2492. vmf.flags = flags;
  2493. vmf.page = NULL;
  2494. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2495. vmf.cow_page = cow_page;
  2496. ret = vma->vm_ops->fault(vma, &vmf);
  2497. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2498. return ret;
  2499. if (!vmf.page)
  2500. goto out;
  2501. if (unlikely(PageHWPoison(vmf.page))) {
  2502. if (ret & VM_FAULT_LOCKED)
  2503. unlock_page(vmf.page);
  2504. page_cache_release(vmf.page);
  2505. return VM_FAULT_HWPOISON;
  2506. }
  2507. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2508. lock_page(vmf.page);
  2509. else
  2510. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2511. out:
  2512. *page = vmf.page;
  2513. return ret;
  2514. }
  2515. /**
  2516. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2517. *
  2518. * @vma: virtual memory area
  2519. * @address: user virtual address
  2520. * @page: page to map
  2521. * @pte: pointer to target page table entry
  2522. * @write: true, if new entry is writable
  2523. * @anon: true, if it's anonymous page
  2524. *
  2525. * Caller must hold page table lock relevant for @pte.
  2526. *
  2527. * Target users are page handler itself and implementations of
  2528. * vm_ops->map_pages.
  2529. */
  2530. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2531. struct page *page, pte_t *pte, bool write, bool anon)
  2532. {
  2533. pte_t entry;
  2534. flush_icache_page(vma, page);
  2535. entry = mk_pte(page, vma->vm_page_prot);
  2536. if (write)
  2537. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2538. if (anon) {
  2539. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2540. page_add_new_anon_rmap(page, vma, address, false);
  2541. } else {
  2542. inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
  2543. page_add_file_rmap(page);
  2544. }
  2545. set_pte_at(vma->vm_mm, address, pte, entry);
  2546. /* no need to invalidate: a not-present page won't be cached */
  2547. update_mmu_cache(vma, address, pte);
  2548. }
  2549. static unsigned long fault_around_bytes __read_mostly =
  2550. rounddown_pow_of_two(65536);
  2551. #ifdef CONFIG_DEBUG_FS
  2552. static int fault_around_bytes_get(void *data, u64 *val)
  2553. {
  2554. *val = fault_around_bytes;
  2555. return 0;
  2556. }
  2557. /*
  2558. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2559. * rounded down to nearest page order. It's what do_fault_around() expects to
  2560. * see.
  2561. */
  2562. static int fault_around_bytes_set(void *data, u64 val)
  2563. {
  2564. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2565. return -EINVAL;
  2566. if (val > PAGE_SIZE)
  2567. fault_around_bytes = rounddown_pow_of_two(val);
  2568. else
  2569. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2570. return 0;
  2571. }
  2572. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2573. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2574. static int __init fault_around_debugfs(void)
  2575. {
  2576. void *ret;
  2577. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2578. &fault_around_bytes_fops);
  2579. if (!ret)
  2580. pr_warn("Failed to create fault_around_bytes in debugfs");
  2581. return 0;
  2582. }
  2583. late_initcall(fault_around_debugfs);
  2584. #endif
  2585. /*
  2586. * do_fault_around() tries to map few pages around the fault address. The hope
  2587. * is that the pages will be needed soon and this will lower the number of
  2588. * faults to handle.
  2589. *
  2590. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2591. * not ready to be mapped: not up-to-date, locked, etc.
  2592. *
  2593. * This function is called with the page table lock taken. In the split ptlock
  2594. * case the page table lock only protects only those entries which belong to
  2595. * the page table corresponding to the fault address.
  2596. *
  2597. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2598. * only once.
  2599. *
  2600. * fault_around_pages() defines how many pages we'll try to map.
  2601. * do_fault_around() expects it to return a power of two less than or equal to
  2602. * PTRS_PER_PTE.
  2603. *
  2604. * The virtual address of the area that we map is naturally aligned to the
  2605. * fault_around_pages() value (and therefore to page order). This way it's
  2606. * easier to guarantee that we don't cross page table boundaries.
  2607. */
  2608. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2609. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2610. {
  2611. unsigned long start_addr, nr_pages, mask;
  2612. pgoff_t max_pgoff;
  2613. struct vm_fault vmf;
  2614. int off;
  2615. nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2616. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2617. start_addr = max(address & mask, vma->vm_start);
  2618. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2619. pte -= off;
  2620. pgoff -= off;
  2621. /*
  2622. * max_pgoff is either end of page table or end of vma
  2623. * or fault_around_pages() from pgoff, depending what is nearest.
  2624. */
  2625. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2626. PTRS_PER_PTE - 1;
  2627. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2628. pgoff + nr_pages - 1);
  2629. /* Check if it makes any sense to call ->map_pages */
  2630. while (!pte_none(*pte)) {
  2631. if (++pgoff > max_pgoff)
  2632. return;
  2633. start_addr += PAGE_SIZE;
  2634. if (start_addr >= vma->vm_end)
  2635. return;
  2636. pte++;
  2637. }
  2638. vmf.virtual_address = (void __user *) start_addr;
  2639. vmf.pte = pte;
  2640. vmf.pgoff = pgoff;
  2641. vmf.max_pgoff = max_pgoff;
  2642. vmf.flags = flags;
  2643. vmf.gfp_mask = __get_fault_gfp_mask(vma);
  2644. vma->vm_ops->map_pages(vma, &vmf);
  2645. }
  2646. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2647. unsigned long address, pmd_t *pmd,
  2648. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2649. {
  2650. struct page *fault_page;
  2651. spinlock_t *ptl;
  2652. pte_t *pte;
  2653. int ret = 0;
  2654. /*
  2655. * Let's call ->map_pages() first and use ->fault() as fallback
  2656. * if page by the offset is not ready to be mapped (cold cache or
  2657. * something).
  2658. */
  2659. if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
  2660. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2661. do_fault_around(vma, address, pte, pgoff, flags);
  2662. if (!pte_same(*pte, orig_pte))
  2663. goto unlock_out;
  2664. pte_unmap_unlock(pte, ptl);
  2665. }
  2666. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2667. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2668. return ret;
  2669. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2670. if (unlikely(!pte_same(*pte, orig_pte))) {
  2671. pte_unmap_unlock(pte, ptl);
  2672. unlock_page(fault_page);
  2673. page_cache_release(fault_page);
  2674. return ret;
  2675. }
  2676. do_set_pte(vma, address, fault_page, pte, false, false);
  2677. unlock_page(fault_page);
  2678. unlock_out:
  2679. pte_unmap_unlock(pte, ptl);
  2680. return ret;
  2681. }
  2682. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2683. unsigned long address, pmd_t *pmd,
  2684. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2685. {
  2686. struct page *fault_page, *new_page;
  2687. struct mem_cgroup *memcg;
  2688. spinlock_t *ptl;
  2689. pte_t *pte;
  2690. int ret;
  2691. if (unlikely(anon_vma_prepare(vma)))
  2692. return VM_FAULT_OOM;
  2693. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2694. if (!new_page)
  2695. return VM_FAULT_OOM;
  2696. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
  2697. page_cache_release(new_page);
  2698. return VM_FAULT_OOM;
  2699. }
  2700. ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
  2701. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2702. goto uncharge_out;
  2703. if (fault_page)
  2704. copy_user_highpage(new_page, fault_page, address, vma);
  2705. __SetPageUptodate(new_page);
  2706. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2707. if (unlikely(!pte_same(*pte, orig_pte))) {
  2708. pte_unmap_unlock(pte, ptl);
  2709. if (fault_page) {
  2710. unlock_page(fault_page);
  2711. page_cache_release(fault_page);
  2712. } else {
  2713. /*
  2714. * The fault handler has no page to lock, so it holds
  2715. * i_mmap_lock for read to protect against truncate.
  2716. */
  2717. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2718. }
  2719. goto uncharge_out;
  2720. }
  2721. do_set_pte(vma, address, new_page, pte, true, true);
  2722. mem_cgroup_commit_charge(new_page, memcg, false, false);
  2723. lru_cache_add_active_or_unevictable(new_page, vma);
  2724. pte_unmap_unlock(pte, ptl);
  2725. if (fault_page) {
  2726. unlock_page(fault_page);
  2727. page_cache_release(fault_page);
  2728. } else {
  2729. /*
  2730. * The fault handler has no page to lock, so it holds
  2731. * i_mmap_lock for read to protect against truncate.
  2732. */
  2733. i_mmap_unlock_read(vma->vm_file->f_mapping);
  2734. }
  2735. return ret;
  2736. uncharge_out:
  2737. mem_cgroup_cancel_charge(new_page, memcg, false);
  2738. page_cache_release(new_page);
  2739. return ret;
  2740. }
  2741. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2742. unsigned long address, pmd_t *pmd,
  2743. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2744. {
  2745. struct page *fault_page;
  2746. struct address_space *mapping;
  2747. spinlock_t *ptl;
  2748. pte_t *pte;
  2749. int dirtied = 0;
  2750. int ret, tmp;
  2751. ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
  2752. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2753. return ret;
  2754. /*
  2755. * Check if the backing address space wants to know that the page is
  2756. * about to become writable
  2757. */
  2758. if (vma->vm_ops->page_mkwrite) {
  2759. unlock_page(fault_page);
  2760. tmp = do_page_mkwrite(vma, fault_page, address);
  2761. if (unlikely(!tmp ||
  2762. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2763. page_cache_release(fault_page);
  2764. return tmp;
  2765. }
  2766. }
  2767. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2768. if (unlikely(!pte_same(*pte, orig_pte))) {
  2769. pte_unmap_unlock(pte, ptl);
  2770. unlock_page(fault_page);
  2771. page_cache_release(fault_page);
  2772. return ret;
  2773. }
  2774. do_set_pte(vma, address, fault_page, pte, true, false);
  2775. pte_unmap_unlock(pte, ptl);
  2776. if (set_page_dirty(fault_page))
  2777. dirtied = 1;
  2778. /*
  2779. * Take a local copy of the address_space - page.mapping may be zeroed
  2780. * by truncate after unlock_page(). The address_space itself remains
  2781. * pinned by vma->vm_file's reference. We rely on unlock_page()'s
  2782. * release semantics to prevent the compiler from undoing this copying.
  2783. */
  2784. mapping = page_rmapping(fault_page);
  2785. unlock_page(fault_page);
  2786. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2787. /*
  2788. * Some device drivers do not set page.mapping but still
  2789. * dirty their pages
  2790. */
  2791. balance_dirty_pages_ratelimited(mapping);
  2792. }
  2793. if (!vma->vm_ops->page_mkwrite)
  2794. file_update_time(vma->vm_file);
  2795. return ret;
  2796. }
  2797. /*
  2798. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2799. * but allow concurrent faults).
  2800. * The mmap_sem may have been released depending on flags and our
  2801. * return value. See filemap_fault() and __lock_page_or_retry().
  2802. */
  2803. static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2804. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2805. unsigned int flags, pte_t orig_pte)
  2806. {
  2807. pgoff_t pgoff = linear_page_index(vma, address);
  2808. pte_unmap(page_table);
  2809. /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
  2810. if (!vma->vm_ops->fault)
  2811. return VM_FAULT_SIGBUS;
  2812. if (!(flags & FAULT_FLAG_WRITE))
  2813. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2814. orig_pte);
  2815. if (!(vma->vm_flags & VM_SHARED))
  2816. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2817. orig_pte);
  2818. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2819. }
  2820. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2821. unsigned long addr, int page_nid,
  2822. int *flags)
  2823. {
  2824. get_page(page);
  2825. count_vm_numa_event(NUMA_HINT_FAULTS);
  2826. if (page_nid == numa_node_id()) {
  2827. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2828. *flags |= TNF_FAULT_LOCAL;
  2829. }
  2830. return mpol_misplaced(page, vma, addr);
  2831. }
  2832. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2833. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2834. {
  2835. struct page *page = NULL;
  2836. spinlock_t *ptl;
  2837. int page_nid = -1;
  2838. int last_cpupid;
  2839. int target_nid;
  2840. bool migrated = false;
  2841. bool was_writable = pte_write(pte);
  2842. int flags = 0;
  2843. /* A PROT_NONE fault should not end up here */
  2844. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  2845. /*
  2846. * The "pte" at this point cannot be used safely without
  2847. * validation through pte_unmap_same(). It's of NUMA type but
  2848. * the pfn may be screwed if the read is non atomic.
  2849. *
  2850. * We can safely just do a "set_pte_at()", because the old
  2851. * page table entry is not accessible, so there would be no
  2852. * concurrent hardware modifications to the PTE.
  2853. */
  2854. ptl = pte_lockptr(mm, pmd);
  2855. spin_lock(ptl);
  2856. if (unlikely(!pte_same(*ptep, pte))) {
  2857. pte_unmap_unlock(ptep, ptl);
  2858. goto out;
  2859. }
  2860. /* Make it present again */
  2861. pte = pte_modify(pte, vma->vm_page_prot);
  2862. pte = pte_mkyoung(pte);
  2863. if (was_writable)
  2864. pte = pte_mkwrite(pte);
  2865. set_pte_at(mm, addr, ptep, pte);
  2866. update_mmu_cache(vma, addr, ptep);
  2867. page = vm_normal_page(vma, addr, pte);
  2868. if (!page) {
  2869. pte_unmap_unlock(ptep, ptl);
  2870. return 0;
  2871. }
  2872. /* TODO: handle PTE-mapped THP */
  2873. if (PageCompound(page)) {
  2874. pte_unmap_unlock(ptep, ptl);
  2875. return 0;
  2876. }
  2877. /*
  2878. * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
  2879. * much anyway since they can be in shared cache state. This misses
  2880. * the case where a mapping is writable but the process never writes
  2881. * to it but pte_write gets cleared during protection updates and
  2882. * pte_dirty has unpredictable behaviour between PTE scan updates,
  2883. * background writeback, dirty balancing and application behaviour.
  2884. */
  2885. if (!(vma->vm_flags & VM_WRITE))
  2886. flags |= TNF_NO_GROUP;
  2887. /*
  2888. * Flag if the page is shared between multiple address spaces. This
  2889. * is later used when determining whether to group tasks together
  2890. */
  2891. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2892. flags |= TNF_SHARED;
  2893. last_cpupid = page_cpupid_last(page);
  2894. page_nid = page_to_nid(page);
  2895. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2896. pte_unmap_unlock(ptep, ptl);
  2897. if (target_nid == -1) {
  2898. put_page(page);
  2899. goto out;
  2900. }
  2901. /* Migrate to the requested node */
  2902. migrated = migrate_misplaced_page(page, vma, target_nid);
  2903. if (migrated) {
  2904. page_nid = target_nid;
  2905. flags |= TNF_MIGRATED;
  2906. } else
  2907. flags |= TNF_MIGRATE_FAIL;
  2908. out:
  2909. if (page_nid != -1)
  2910. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2911. return 0;
  2912. }
  2913. static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2914. unsigned long address, pmd_t *pmd, unsigned int flags)
  2915. {
  2916. if (vma_is_anonymous(vma))
  2917. return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
  2918. if (vma->vm_ops->pmd_fault)
  2919. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2920. return VM_FAULT_FALLBACK;
  2921. }
  2922. static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  2923. unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
  2924. unsigned int flags)
  2925. {
  2926. if (vma_is_anonymous(vma))
  2927. return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
  2928. if (vma->vm_ops->pmd_fault)
  2929. return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
  2930. return VM_FAULT_FALLBACK;
  2931. }
  2932. /*
  2933. * These routines also need to handle stuff like marking pages dirty
  2934. * and/or accessed for architectures that don't do it in hardware (most
  2935. * RISC architectures). The early dirtying is also good on the i386.
  2936. *
  2937. * There is also a hook called "update_mmu_cache()" that architectures
  2938. * with external mmu caches can use to update those (ie the Sparc or
  2939. * PowerPC hashed page tables that act as extended TLBs).
  2940. *
  2941. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2942. * but allow concurrent faults), and pte mapped but not yet locked.
  2943. * We return with pte unmapped and unlocked.
  2944. *
  2945. * The mmap_sem may have been released depending on flags and our
  2946. * return value. See filemap_fault() and __lock_page_or_retry().
  2947. */
  2948. static int handle_pte_fault(struct mm_struct *mm,
  2949. struct vm_area_struct *vma, unsigned long address,
  2950. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2951. {
  2952. pte_t entry;
  2953. spinlock_t *ptl;
  2954. /*
  2955. * some architectures can have larger ptes than wordsize,
  2956. * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
  2957. * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
  2958. * The code below just needs a consistent view for the ifs and
  2959. * we later double check anyway with the ptl lock held. So here
  2960. * a barrier will do.
  2961. */
  2962. entry = *pte;
  2963. barrier();
  2964. if (!pte_present(entry)) {
  2965. if (pte_none(entry)) {
  2966. if (vma_is_anonymous(vma))
  2967. return do_anonymous_page(mm, vma, address,
  2968. pte, pmd, flags);
  2969. else
  2970. return do_fault(mm, vma, address, pte, pmd,
  2971. flags, entry);
  2972. }
  2973. return do_swap_page(mm, vma, address,
  2974. pte, pmd, flags, entry);
  2975. }
  2976. if (pte_protnone(entry))
  2977. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2978. ptl = pte_lockptr(mm, pmd);
  2979. spin_lock(ptl);
  2980. if (unlikely(!pte_same(*pte, entry)))
  2981. goto unlock;
  2982. if (flags & FAULT_FLAG_WRITE) {
  2983. if (!pte_write(entry))
  2984. return do_wp_page(mm, vma, address,
  2985. pte, pmd, ptl, entry);
  2986. entry = pte_mkdirty(entry);
  2987. }
  2988. entry = pte_mkyoung(entry);
  2989. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2990. update_mmu_cache(vma, address, pte);
  2991. } else {
  2992. /*
  2993. * This is needed only for protection faults but the arch code
  2994. * is not yet telling us if this is a protection fault or not.
  2995. * This still avoids useless tlb flushes for .text page faults
  2996. * with threads.
  2997. */
  2998. if (flags & FAULT_FLAG_WRITE)
  2999. flush_tlb_fix_spurious_fault(vma, address);
  3000. }
  3001. unlock:
  3002. pte_unmap_unlock(pte, ptl);
  3003. return 0;
  3004. }
  3005. /*
  3006. * By the time we get here, we already hold the mm semaphore
  3007. *
  3008. * The mmap_sem may have been released depending on flags and our
  3009. * return value. See filemap_fault() and __lock_page_or_retry().
  3010. */
  3011. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3012. unsigned long address, unsigned int flags)
  3013. {
  3014. pgd_t *pgd;
  3015. pud_t *pud;
  3016. pmd_t *pmd;
  3017. pte_t *pte;
  3018. if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
  3019. flags & FAULT_FLAG_INSTRUCTION,
  3020. flags & FAULT_FLAG_REMOTE))
  3021. return VM_FAULT_SIGSEGV;
  3022. if (unlikely(is_vm_hugetlb_page(vma)))
  3023. return hugetlb_fault(mm, vma, address, flags);
  3024. pgd = pgd_offset(mm, address);
  3025. pud = pud_alloc(mm, pgd, address);
  3026. if (!pud)
  3027. return VM_FAULT_OOM;
  3028. pmd = pmd_alloc(mm, pud, address);
  3029. if (!pmd)
  3030. return VM_FAULT_OOM;
  3031. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3032. int ret = create_huge_pmd(mm, vma, address, pmd, flags);
  3033. if (!(ret & VM_FAULT_FALLBACK))
  3034. return ret;
  3035. } else {
  3036. pmd_t orig_pmd = *pmd;
  3037. int ret;
  3038. barrier();
  3039. if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
  3040. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3041. if (pmd_protnone(orig_pmd))
  3042. return do_huge_pmd_numa_page(mm, vma, address,
  3043. orig_pmd, pmd);
  3044. if (dirty && !pmd_write(orig_pmd)) {
  3045. ret = wp_huge_pmd(mm, vma, address, pmd,
  3046. orig_pmd, flags);
  3047. if (!(ret & VM_FAULT_FALLBACK))
  3048. return ret;
  3049. } else {
  3050. huge_pmd_set_accessed(mm, vma, address, pmd,
  3051. orig_pmd, dirty);
  3052. return 0;
  3053. }
  3054. }
  3055. }
  3056. /*
  3057. * Use pte_alloc() instead of pte_alloc_map, because we can't
  3058. * run pte_offset_map on the pmd, if an huge pmd could
  3059. * materialize from under us from a different thread.
  3060. */
  3061. if (unlikely(pte_alloc(mm, pmd, address)))
  3062. return VM_FAULT_OOM;
  3063. /*
  3064. * If a huge pmd materialized under us just retry later. Use
  3065. * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
  3066. * didn't become pmd_trans_huge under us and then back to pmd_none, as
  3067. * a result of MADV_DONTNEED running immediately after a huge pmd fault
  3068. * in a different thread of this mm, in turn leading to a misleading
  3069. * pmd_trans_huge() retval. All we have to ensure is that it is a
  3070. * regular pmd that we can walk with pte_offset_map() and we can do that
  3071. * through an atomic read in C, which is what pmd_trans_unstable()
  3072. * provides.
  3073. */
  3074. if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
  3075. return 0;
  3076. /*
  3077. * A regular pmd is established and it can't morph into a huge pmd
  3078. * from under us anymore at this point because we hold the mmap_sem
  3079. * read mode and khugepaged takes it in write mode. So now it's
  3080. * safe to run pte_offset_map().
  3081. */
  3082. pte = pte_offset_map(pmd, address);
  3083. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3084. }
  3085. /*
  3086. * By the time we get here, we already hold the mm semaphore
  3087. *
  3088. * The mmap_sem may have been released depending on flags and our
  3089. * return value. See filemap_fault() and __lock_page_or_retry().
  3090. */
  3091. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3092. unsigned long address, unsigned int flags)
  3093. {
  3094. int ret;
  3095. __set_current_state(TASK_RUNNING);
  3096. count_vm_event(PGFAULT);
  3097. mem_cgroup_count_vm_event(mm, PGFAULT);
  3098. /* do counter updates before entering really critical section. */
  3099. check_sync_rss_stat(current);
  3100. /*
  3101. * Enable the memcg OOM handling for faults triggered in user
  3102. * space. Kernel faults are handled more gracefully.
  3103. */
  3104. if (flags & FAULT_FLAG_USER)
  3105. mem_cgroup_oom_enable();
  3106. ret = __handle_mm_fault(mm, vma, address, flags);
  3107. if (flags & FAULT_FLAG_USER) {
  3108. mem_cgroup_oom_disable();
  3109. /*
  3110. * The task may have entered a memcg OOM situation but
  3111. * if the allocation error was handled gracefully (no
  3112. * VM_FAULT_OOM), there is no need to kill anything.
  3113. * Just clean up the OOM state peacefully.
  3114. */
  3115. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3116. mem_cgroup_oom_synchronize(false);
  3117. }
  3118. return ret;
  3119. }
  3120. EXPORT_SYMBOL_GPL(handle_mm_fault);
  3121. #ifndef __PAGETABLE_PUD_FOLDED
  3122. /*
  3123. * Allocate page upper directory.
  3124. * We've already handled the fast-path in-line.
  3125. */
  3126. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3127. {
  3128. pud_t *new = pud_alloc_one(mm, address);
  3129. if (!new)
  3130. return -ENOMEM;
  3131. smp_wmb(); /* See comment in __pte_alloc */
  3132. spin_lock(&mm->page_table_lock);
  3133. if (pgd_present(*pgd)) /* Another has populated it */
  3134. pud_free(mm, new);
  3135. else
  3136. pgd_populate(mm, pgd, new);
  3137. spin_unlock(&mm->page_table_lock);
  3138. return 0;
  3139. }
  3140. #endif /* __PAGETABLE_PUD_FOLDED */
  3141. #ifndef __PAGETABLE_PMD_FOLDED
  3142. /*
  3143. * Allocate page middle directory.
  3144. * We've already handled the fast-path in-line.
  3145. */
  3146. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3147. {
  3148. pmd_t *new = pmd_alloc_one(mm, address);
  3149. if (!new)
  3150. return -ENOMEM;
  3151. smp_wmb(); /* See comment in __pte_alloc */
  3152. spin_lock(&mm->page_table_lock);
  3153. #ifndef __ARCH_HAS_4LEVEL_HACK
  3154. if (!pud_present(*pud)) {
  3155. mm_inc_nr_pmds(mm);
  3156. pud_populate(mm, pud, new);
  3157. } else /* Another has populated it */
  3158. pmd_free(mm, new);
  3159. #else
  3160. if (!pgd_present(*pud)) {
  3161. mm_inc_nr_pmds(mm);
  3162. pgd_populate(mm, pud, new);
  3163. } else /* Another has populated it */
  3164. pmd_free(mm, new);
  3165. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3166. spin_unlock(&mm->page_table_lock);
  3167. return 0;
  3168. }
  3169. #endif /* __PAGETABLE_PMD_FOLDED */
  3170. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3171. pte_t **ptepp, spinlock_t **ptlp)
  3172. {
  3173. pgd_t *pgd;
  3174. pud_t *pud;
  3175. pmd_t *pmd;
  3176. pte_t *ptep;
  3177. pgd = pgd_offset(mm, address);
  3178. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3179. goto out;
  3180. pud = pud_offset(pgd, address);
  3181. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3182. goto out;
  3183. pmd = pmd_offset(pud, address);
  3184. VM_BUG_ON(pmd_trans_huge(*pmd));
  3185. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3186. goto out;
  3187. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3188. if (pmd_huge(*pmd))
  3189. goto out;
  3190. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3191. if (!ptep)
  3192. goto out;
  3193. if (!pte_present(*ptep))
  3194. goto unlock;
  3195. *ptepp = ptep;
  3196. return 0;
  3197. unlock:
  3198. pte_unmap_unlock(ptep, *ptlp);
  3199. out:
  3200. return -EINVAL;
  3201. }
  3202. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3203. pte_t **ptepp, spinlock_t **ptlp)
  3204. {
  3205. int res;
  3206. /* (void) is needed to make gcc happy */
  3207. (void) __cond_lock(*ptlp,
  3208. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3209. return res;
  3210. }
  3211. /**
  3212. * follow_pfn - look up PFN at a user virtual address
  3213. * @vma: memory mapping
  3214. * @address: user virtual address
  3215. * @pfn: location to store found PFN
  3216. *
  3217. * Only IO mappings and raw PFN mappings are allowed.
  3218. *
  3219. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3220. */
  3221. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3222. unsigned long *pfn)
  3223. {
  3224. int ret = -EINVAL;
  3225. spinlock_t *ptl;
  3226. pte_t *ptep;
  3227. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3228. return ret;
  3229. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3230. if (ret)
  3231. return ret;
  3232. *pfn = pte_pfn(*ptep);
  3233. pte_unmap_unlock(ptep, ptl);
  3234. return 0;
  3235. }
  3236. EXPORT_SYMBOL(follow_pfn);
  3237. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3238. int follow_phys(struct vm_area_struct *vma,
  3239. unsigned long address, unsigned int flags,
  3240. unsigned long *prot, resource_size_t *phys)
  3241. {
  3242. int ret = -EINVAL;
  3243. pte_t *ptep, pte;
  3244. spinlock_t *ptl;
  3245. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3246. goto out;
  3247. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3248. goto out;
  3249. pte = *ptep;
  3250. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3251. goto unlock;
  3252. *prot = pgprot_val(pte_pgprot(pte));
  3253. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3254. ret = 0;
  3255. unlock:
  3256. pte_unmap_unlock(ptep, ptl);
  3257. out:
  3258. return ret;
  3259. }
  3260. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3261. void *buf, int len, int write)
  3262. {
  3263. resource_size_t phys_addr;
  3264. unsigned long prot = 0;
  3265. void __iomem *maddr;
  3266. int offset = addr & (PAGE_SIZE-1);
  3267. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3268. return -EINVAL;
  3269. maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
  3270. if (write)
  3271. memcpy_toio(maddr + offset, buf, len);
  3272. else
  3273. memcpy_fromio(buf, maddr + offset, len);
  3274. iounmap(maddr);
  3275. return len;
  3276. }
  3277. EXPORT_SYMBOL_GPL(generic_access_phys);
  3278. #endif
  3279. /*
  3280. * Access another process' address space as given in mm. If non-NULL, use the
  3281. * given task for page fault accounting.
  3282. */
  3283. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3284. unsigned long addr, void *buf, int len, int write)
  3285. {
  3286. struct vm_area_struct *vma;
  3287. void *old_buf = buf;
  3288. down_read(&mm->mmap_sem);
  3289. /* ignore errors, just check how much was successfully transferred */
  3290. while (len) {
  3291. int bytes, ret, offset;
  3292. void *maddr;
  3293. struct page *page = NULL;
  3294. ret = get_user_pages_remote(tsk, mm, addr, 1,
  3295. write, 1, &page, &vma);
  3296. if (ret <= 0) {
  3297. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3298. break;
  3299. #else
  3300. /*
  3301. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3302. * we can access using slightly different code.
  3303. */
  3304. vma = find_vma(mm, addr);
  3305. if (!vma || vma->vm_start > addr)
  3306. break;
  3307. if (vma->vm_ops && vma->vm_ops->access)
  3308. ret = vma->vm_ops->access(vma, addr, buf,
  3309. len, write);
  3310. if (ret <= 0)
  3311. break;
  3312. bytes = ret;
  3313. #endif
  3314. } else {
  3315. bytes = len;
  3316. offset = addr & (PAGE_SIZE-1);
  3317. if (bytes > PAGE_SIZE-offset)
  3318. bytes = PAGE_SIZE-offset;
  3319. maddr = kmap(page);
  3320. if (write) {
  3321. copy_to_user_page(vma, page, addr,
  3322. maddr + offset, buf, bytes);
  3323. set_page_dirty_lock(page);
  3324. } else {
  3325. copy_from_user_page(vma, page, addr,
  3326. buf, maddr + offset, bytes);
  3327. }
  3328. kunmap(page);
  3329. page_cache_release(page);
  3330. }
  3331. len -= bytes;
  3332. buf += bytes;
  3333. addr += bytes;
  3334. }
  3335. up_read(&mm->mmap_sem);
  3336. return buf - old_buf;
  3337. }
  3338. /**
  3339. * access_remote_vm - access another process' address space
  3340. * @mm: the mm_struct of the target address space
  3341. * @addr: start address to access
  3342. * @buf: source or destination buffer
  3343. * @len: number of bytes to transfer
  3344. * @write: whether the access is a write
  3345. *
  3346. * The caller must hold a reference on @mm.
  3347. */
  3348. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3349. void *buf, int len, int write)
  3350. {
  3351. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3352. }
  3353. /*
  3354. * Access another process' address space.
  3355. * Source/target buffer must be kernel space,
  3356. * Do not walk the page table directly, use get_user_pages
  3357. */
  3358. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3359. void *buf, int len, int write)
  3360. {
  3361. struct mm_struct *mm;
  3362. int ret;
  3363. mm = get_task_mm(tsk);
  3364. if (!mm)
  3365. return 0;
  3366. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3367. mmput(mm);
  3368. return ret;
  3369. }
  3370. /*
  3371. * Print the name of a VMA.
  3372. */
  3373. void print_vma_addr(char *prefix, unsigned long ip)
  3374. {
  3375. struct mm_struct *mm = current->mm;
  3376. struct vm_area_struct *vma;
  3377. /*
  3378. * Do not print if we are in atomic
  3379. * contexts (in exception stacks, etc.):
  3380. */
  3381. if (preempt_count())
  3382. return;
  3383. down_read(&mm->mmap_sem);
  3384. vma = find_vma(mm, ip);
  3385. if (vma && vma->vm_file) {
  3386. struct file *f = vma->vm_file;
  3387. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3388. if (buf) {
  3389. char *p;
  3390. p = file_path(f, buf, PAGE_SIZE);
  3391. if (IS_ERR(p))
  3392. p = "?";
  3393. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3394. vma->vm_start,
  3395. vma->vm_end - vma->vm_start);
  3396. free_page((unsigned long)buf);
  3397. }
  3398. }
  3399. up_read(&mm->mmap_sem);
  3400. }
  3401. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3402. void __might_fault(const char *file, int line)
  3403. {
  3404. /*
  3405. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3406. * holding the mmap_sem, this is safe because kernel memory doesn't
  3407. * get paged out, therefore we'll never actually fault, and the
  3408. * below annotations will generate false positives.
  3409. */
  3410. if (segment_eq(get_fs(), KERNEL_DS))
  3411. return;
  3412. if (pagefault_disabled())
  3413. return;
  3414. __might_sleep(file, line, 0);
  3415. #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3416. if (current->mm)
  3417. might_lock_read(&current->mm->mmap_sem);
  3418. #endif
  3419. }
  3420. EXPORT_SYMBOL(__might_fault);
  3421. #endif
  3422. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3423. static void clear_gigantic_page(struct page *page,
  3424. unsigned long addr,
  3425. unsigned int pages_per_huge_page)
  3426. {
  3427. int i;
  3428. struct page *p = page;
  3429. might_sleep();
  3430. for (i = 0; i < pages_per_huge_page;
  3431. i++, p = mem_map_next(p, page, i)) {
  3432. cond_resched();
  3433. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3434. }
  3435. }
  3436. void clear_huge_page(struct page *page,
  3437. unsigned long addr, unsigned int pages_per_huge_page)
  3438. {
  3439. int i;
  3440. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3441. clear_gigantic_page(page, addr, pages_per_huge_page);
  3442. return;
  3443. }
  3444. might_sleep();
  3445. for (i = 0; i < pages_per_huge_page; i++) {
  3446. cond_resched();
  3447. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3448. }
  3449. }
  3450. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3451. unsigned long addr,
  3452. struct vm_area_struct *vma,
  3453. unsigned int pages_per_huge_page)
  3454. {
  3455. int i;
  3456. struct page *dst_base = dst;
  3457. struct page *src_base = src;
  3458. for (i = 0; i < pages_per_huge_page; ) {
  3459. cond_resched();
  3460. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3461. i++;
  3462. dst = mem_map_next(dst, dst_base, i);
  3463. src = mem_map_next(src, src_base, i);
  3464. }
  3465. }
  3466. void copy_user_huge_page(struct page *dst, struct page *src,
  3467. unsigned long addr, struct vm_area_struct *vma,
  3468. unsigned int pages_per_huge_page)
  3469. {
  3470. int i;
  3471. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3472. copy_user_gigantic_page(dst, src, addr, vma,
  3473. pages_per_huge_page);
  3474. return;
  3475. }
  3476. might_sleep();
  3477. for (i = 0; i < pages_per_huge_page; i++) {
  3478. cond_resched();
  3479. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3480. }
  3481. }
  3482. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3483. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3484. static struct kmem_cache *page_ptl_cachep;
  3485. void __init ptlock_cache_init(void)
  3486. {
  3487. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3488. SLAB_PANIC, NULL);
  3489. }
  3490. bool ptlock_alloc(struct page *page)
  3491. {
  3492. spinlock_t *ptl;
  3493. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3494. if (!ptl)
  3495. return false;
  3496. page->ptl = ptl;
  3497. return true;
  3498. }
  3499. void ptlock_free(struct page *page)
  3500. {
  3501. kmem_cache_free(page_ptl_cachep, page->ptl);
  3502. }
  3503. #endif