huge_memory.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/swapops.h>
  18. #include <linux/dax.h>
  19. #include <linux/kthread.h>
  20. #include <linux/khugepaged.h>
  21. #include <linux/freezer.h>
  22. #include <linux/pfn_t.h>
  23. #include <linux/mman.h>
  24. #include <linux/memremap.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/debugfs.h>
  27. #include <linux/migrate.h>
  28. #include <linux/hashtable.h>
  29. #include <linux/userfaultfd_k.h>
  30. #include <linux/page_idle.h>
  31. #include <asm/tlb.h>
  32. #include <asm/pgalloc.h>
  33. #include "internal.h"
  34. enum scan_result {
  35. SCAN_FAIL,
  36. SCAN_SUCCEED,
  37. SCAN_PMD_NULL,
  38. SCAN_EXCEED_NONE_PTE,
  39. SCAN_PTE_NON_PRESENT,
  40. SCAN_PAGE_RO,
  41. SCAN_NO_REFERENCED_PAGE,
  42. SCAN_PAGE_NULL,
  43. SCAN_SCAN_ABORT,
  44. SCAN_PAGE_COUNT,
  45. SCAN_PAGE_LRU,
  46. SCAN_PAGE_LOCK,
  47. SCAN_PAGE_ANON,
  48. SCAN_PAGE_COMPOUND,
  49. SCAN_ANY_PROCESS,
  50. SCAN_VMA_NULL,
  51. SCAN_VMA_CHECK,
  52. SCAN_ADDRESS_RANGE,
  53. SCAN_SWAP_CACHE_PAGE,
  54. SCAN_DEL_PAGE_LRU,
  55. SCAN_ALLOC_HUGE_PAGE_FAIL,
  56. SCAN_CGROUP_CHARGE_FAIL
  57. };
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/huge_memory.h>
  60. /*
  61. * By default transparent hugepage support is disabled in order that avoid
  62. * to risk increase the memory footprint of applications without a guaranteed
  63. * benefit. When transparent hugepage support is enabled, is for all mappings,
  64. * and khugepaged scans all mappings.
  65. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  66. * for all hugepage allocations.
  67. */
  68. unsigned long transparent_hugepage_flags __read_mostly =
  69. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  70. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  71. #endif
  72. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  73. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  74. #endif
  75. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  76. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  77. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  78. /* default scan 8*512 pte (or vmas) every 30 second */
  79. static unsigned int khugepaged_pages_to_scan __read_mostly;
  80. static unsigned int khugepaged_pages_collapsed;
  81. static unsigned int khugepaged_full_scans;
  82. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  83. /* during fragmentation poll the hugepage allocator once every minute */
  84. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  85. static struct task_struct *khugepaged_thread __read_mostly;
  86. static DEFINE_MUTEX(khugepaged_mutex);
  87. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  88. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  89. /*
  90. * default collapse hugepages if there is at least one pte mapped like
  91. * it would have happened if the vma was large enough during page
  92. * fault.
  93. */
  94. static unsigned int khugepaged_max_ptes_none __read_mostly;
  95. static int khugepaged(void *none);
  96. static int khugepaged_slab_init(void);
  97. static void khugepaged_slab_exit(void);
  98. #define MM_SLOTS_HASH_BITS 10
  99. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  100. static struct kmem_cache *mm_slot_cache __read_mostly;
  101. /**
  102. * struct mm_slot - hash lookup from mm to mm_slot
  103. * @hash: hash collision list
  104. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  105. * @mm: the mm that this information is valid for
  106. */
  107. struct mm_slot {
  108. struct hlist_node hash;
  109. struct list_head mm_node;
  110. struct mm_struct *mm;
  111. };
  112. /**
  113. * struct khugepaged_scan - cursor for scanning
  114. * @mm_head: the head of the mm list to scan
  115. * @mm_slot: the current mm_slot we are scanning
  116. * @address: the next address inside that to be scanned
  117. *
  118. * There is only the one khugepaged_scan instance of this cursor structure.
  119. */
  120. struct khugepaged_scan {
  121. struct list_head mm_head;
  122. struct mm_slot *mm_slot;
  123. unsigned long address;
  124. };
  125. static struct khugepaged_scan khugepaged_scan = {
  126. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  127. };
  128. static struct shrinker deferred_split_shrinker;
  129. static void set_recommended_min_free_kbytes(void)
  130. {
  131. struct zone *zone;
  132. int nr_zones = 0;
  133. unsigned long recommended_min;
  134. for_each_populated_zone(zone)
  135. nr_zones++;
  136. /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
  137. recommended_min = pageblock_nr_pages * nr_zones * 2;
  138. /*
  139. * Make sure that on average at least two pageblocks are almost free
  140. * of another type, one for a migratetype to fall back to and a
  141. * second to avoid subsequent fallbacks of other types There are 3
  142. * MIGRATE_TYPES we care about.
  143. */
  144. recommended_min += pageblock_nr_pages * nr_zones *
  145. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  146. /* don't ever allow to reserve more than 5% of the lowmem */
  147. recommended_min = min(recommended_min,
  148. (unsigned long) nr_free_buffer_pages() / 20);
  149. recommended_min <<= (PAGE_SHIFT-10);
  150. if (recommended_min > min_free_kbytes) {
  151. if (user_min_free_kbytes >= 0)
  152. pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
  153. min_free_kbytes, recommended_min);
  154. min_free_kbytes = recommended_min;
  155. }
  156. setup_per_zone_wmarks();
  157. }
  158. static int start_stop_khugepaged(void)
  159. {
  160. int err = 0;
  161. if (khugepaged_enabled()) {
  162. if (!khugepaged_thread)
  163. khugepaged_thread = kthread_run(khugepaged, NULL,
  164. "khugepaged");
  165. if (IS_ERR(khugepaged_thread)) {
  166. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  167. err = PTR_ERR(khugepaged_thread);
  168. khugepaged_thread = NULL;
  169. goto fail;
  170. }
  171. if (!list_empty(&khugepaged_scan.mm_head))
  172. wake_up_interruptible(&khugepaged_wait);
  173. set_recommended_min_free_kbytes();
  174. } else if (khugepaged_thread) {
  175. kthread_stop(khugepaged_thread);
  176. khugepaged_thread = NULL;
  177. }
  178. fail:
  179. return err;
  180. }
  181. static atomic_t huge_zero_refcount;
  182. struct page *huge_zero_page __read_mostly;
  183. struct page *get_huge_zero_page(void)
  184. {
  185. struct page *zero_page;
  186. retry:
  187. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  188. return READ_ONCE(huge_zero_page);
  189. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  190. HPAGE_PMD_ORDER);
  191. if (!zero_page) {
  192. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  193. return NULL;
  194. }
  195. count_vm_event(THP_ZERO_PAGE_ALLOC);
  196. preempt_disable();
  197. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  198. preempt_enable();
  199. __free_pages(zero_page, compound_order(zero_page));
  200. goto retry;
  201. }
  202. /* We take additional reference here. It will be put back by shrinker */
  203. atomic_set(&huge_zero_refcount, 2);
  204. preempt_enable();
  205. return READ_ONCE(huge_zero_page);
  206. }
  207. static void put_huge_zero_page(void)
  208. {
  209. /*
  210. * Counter should never go to zero here. Only shrinker can put
  211. * last reference.
  212. */
  213. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  214. }
  215. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  216. struct shrink_control *sc)
  217. {
  218. /* we can free zero page only if last reference remains */
  219. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  220. }
  221. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  222. struct shrink_control *sc)
  223. {
  224. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  225. struct page *zero_page = xchg(&huge_zero_page, NULL);
  226. BUG_ON(zero_page == NULL);
  227. __free_pages(zero_page, compound_order(zero_page));
  228. return HPAGE_PMD_NR;
  229. }
  230. return 0;
  231. }
  232. static struct shrinker huge_zero_page_shrinker = {
  233. .count_objects = shrink_huge_zero_page_count,
  234. .scan_objects = shrink_huge_zero_page_scan,
  235. .seeks = DEFAULT_SEEKS,
  236. };
  237. #ifdef CONFIG_SYSFS
  238. static ssize_t triple_flag_store(struct kobject *kobj,
  239. struct kobj_attribute *attr,
  240. const char *buf, size_t count,
  241. enum transparent_hugepage_flag enabled,
  242. enum transparent_hugepage_flag deferred,
  243. enum transparent_hugepage_flag req_madv)
  244. {
  245. if (!memcmp("defer", buf,
  246. min(sizeof("defer")-1, count))) {
  247. if (enabled == deferred)
  248. return -EINVAL;
  249. clear_bit(enabled, &transparent_hugepage_flags);
  250. clear_bit(req_madv, &transparent_hugepage_flags);
  251. set_bit(deferred, &transparent_hugepage_flags);
  252. } else if (!memcmp("always", buf,
  253. min(sizeof("always")-1, count))) {
  254. clear_bit(deferred, &transparent_hugepage_flags);
  255. clear_bit(req_madv, &transparent_hugepage_flags);
  256. set_bit(enabled, &transparent_hugepage_flags);
  257. } else if (!memcmp("madvise", buf,
  258. min(sizeof("madvise")-1, count))) {
  259. clear_bit(enabled, &transparent_hugepage_flags);
  260. clear_bit(deferred, &transparent_hugepage_flags);
  261. set_bit(req_madv, &transparent_hugepage_flags);
  262. } else if (!memcmp("never", buf,
  263. min(sizeof("never")-1, count))) {
  264. clear_bit(enabled, &transparent_hugepage_flags);
  265. clear_bit(req_madv, &transparent_hugepage_flags);
  266. clear_bit(deferred, &transparent_hugepage_flags);
  267. } else
  268. return -EINVAL;
  269. return count;
  270. }
  271. static ssize_t enabled_show(struct kobject *kobj,
  272. struct kobj_attribute *attr, char *buf)
  273. {
  274. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  275. return sprintf(buf, "[always] madvise never\n");
  276. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  277. return sprintf(buf, "always [madvise] never\n");
  278. else
  279. return sprintf(buf, "always madvise [never]\n");
  280. }
  281. static ssize_t enabled_store(struct kobject *kobj,
  282. struct kobj_attribute *attr,
  283. const char *buf, size_t count)
  284. {
  285. ssize_t ret;
  286. ret = triple_flag_store(kobj, attr, buf, count,
  287. TRANSPARENT_HUGEPAGE_FLAG,
  288. TRANSPARENT_HUGEPAGE_FLAG,
  289. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  290. if (ret > 0) {
  291. int err;
  292. mutex_lock(&khugepaged_mutex);
  293. err = start_stop_khugepaged();
  294. mutex_unlock(&khugepaged_mutex);
  295. if (err)
  296. ret = err;
  297. }
  298. return ret;
  299. }
  300. static struct kobj_attribute enabled_attr =
  301. __ATTR(enabled, 0644, enabled_show, enabled_store);
  302. static ssize_t single_flag_show(struct kobject *kobj,
  303. struct kobj_attribute *attr, char *buf,
  304. enum transparent_hugepage_flag flag)
  305. {
  306. return sprintf(buf, "%d\n",
  307. !!test_bit(flag, &transparent_hugepage_flags));
  308. }
  309. static ssize_t single_flag_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count,
  312. enum transparent_hugepage_flag flag)
  313. {
  314. unsigned long value;
  315. int ret;
  316. ret = kstrtoul(buf, 10, &value);
  317. if (ret < 0)
  318. return ret;
  319. if (value > 1)
  320. return -EINVAL;
  321. if (value)
  322. set_bit(flag, &transparent_hugepage_flags);
  323. else
  324. clear_bit(flag, &transparent_hugepage_flags);
  325. return count;
  326. }
  327. /*
  328. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  329. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  330. * memory just to allocate one more hugepage.
  331. */
  332. static ssize_t defrag_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  336. return sprintf(buf, "[always] defer madvise never\n");
  337. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  338. return sprintf(buf, "always [defer] madvise never\n");
  339. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  340. return sprintf(buf, "always defer [madvise] never\n");
  341. else
  342. return sprintf(buf, "always defer madvise [never]\n");
  343. }
  344. static ssize_t defrag_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. return triple_flag_store(kobj, attr, buf, count,
  349. TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
  350. TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
  351. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  352. }
  353. static struct kobj_attribute defrag_attr =
  354. __ATTR(defrag, 0644, defrag_show, defrag_store);
  355. static ssize_t use_zero_page_show(struct kobject *kobj,
  356. struct kobj_attribute *attr, char *buf)
  357. {
  358. return single_flag_show(kobj, attr, buf,
  359. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  360. }
  361. static ssize_t use_zero_page_store(struct kobject *kobj,
  362. struct kobj_attribute *attr, const char *buf, size_t count)
  363. {
  364. return single_flag_store(kobj, attr, buf, count,
  365. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  366. }
  367. static struct kobj_attribute use_zero_page_attr =
  368. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  369. #ifdef CONFIG_DEBUG_VM
  370. static ssize_t debug_cow_show(struct kobject *kobj,
  371. struct kobj_attribute *attr, char *buf)
  372. {
  373. return single_flag_show(kobj, attr, buf,
  374. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  375. }
  376. static ssize_t debug_cow_store(struct kobject *kobj,
  377. struct kobj_attribute *attr,
  378. const char *buf, size_t count)
  379. {
  380. return single_flag_store(kobj, attr, buf, count,
  381. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  382. }
  383. static struct kobj_attribute debug_cow_attr =
  384. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  385. #endif /* CONFIG_DEBUG_VM */
  386. static struct attribute *hugepage_attr[] = {
  387. &enabled_attr.attr,
  388. &defrag_attr.attr,
  389. &use_zero_page_attr.attr,
  390. #ifdef CONFIG_DEBUG_VM
  391. &debug_cow_attr.attr,
  392. #endif
  393. NULL,
  394. };
  395. static struct attribute_group hugepage_attr_group = {
  396. .attrs = hugepage_attr,
  397. };
  398. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  403. }
  404. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. unsigned long msecs;
  409. int err;
  410. err = kstrtoul(buf, 10, &msecs);
  411. if (err || msecs > UINT_MAX)
  412. return -EINVAL;
  413. khugepaged_scan_sleep_millisecs = msecs;
  414. wake_up_interruptible(&khugepaged_wait);
  415. return count;
  416. }
  417. static struct kobj_attribute scan_sleep_millisecs_attr =
  418. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  419. scan_sleep_millisecs_store);
  420. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  421. struct kobj_attribute *attr,
  422. char *buf)
  423. {
  424. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  425. }
  426. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  427. struct kobj_attribute *attr,
  428. const char *buf, size_t count)
  429. {
  430. unsigned long msecs;
  431. int err;
  432. err = kstrtoul(buf, 10, &msecs);
  433. if (err || msecs > UINT_MAX)
  434. return -EINVAL;
  435. khugepaged_alloc_sleep_millisecs = msecs;
  436. wake_up_interruptible(&khugepaged_wait);
  437. return count;
  438. }
  439. static struct kobj_attribute alloc_sleep_millisecs_attr =
  440. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  441. alloc_sleep_millisecs_store);
  442. static ssize_t pages_to_scan_show(struct kobject *kobj,
  443. struct kobj_attribute *attr,
  444. char *buf)
  445. {
  446. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  447. }
  448. static ssize_t pages_to_scan_store(struct kobject *kobj,
  449. struct kobj_attribute *attr,
  450. const char *buf, size_t count)
  451. {
  452. int err;
  453. unsigned long pages;
  454. err = kstrtoul(buf, 10, &pages);
  455. if (err || !pages || pages > UINT_MAX)
  456. return -EINVAL;
  457. khugepaged_pages_to_scan = pages;
  458. return count;
  459. }
  460. static struct kobj_attribute pages_to_scan_attr =
  461. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  462. pages_to_scan_store);
  463. static ssize_t pages_collapsed_show(struct kobject *kobj,
  464. struct kobj_attribute *attr,
  465. char *buf)
  466. {
  467. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  468. }
  469. static struct kobj_attribute pages_collapsed_attr =
  470. __ATTR_RO(pages_collapsed);
  471. static ssize_t full_scans_show(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. char *buf)
  474. {
  475. return sprintf(buf, "%u\n", khugepaged_full_scans);
  476. }
  477. static struct kobj_attribute full_scans_attr =
  478. __ATTR_RO(full_scans);
  479. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  480. struct kobj_attribute *attr, char *buf)
  481. {
  482. return single_flag_show(kobj, attr, buf,
  483. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  484. }
  485. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  486. struct kobj_attribute *attr,
  487. const char *buf, size_t count)
  488. {
  489. return single_flag_store(kobj, attr, buf, count,
  490. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  491. }
  492. static struct kobj_attribute khugepaged_defrag_attr =
  493. __ATTR(defrag, 0644, khugepaged_defrag_show,
  494. khugepaged_defrag_store);
  495. /*
  496. * max_ptes_none controls if khugepaged should collapse hugepages over
  497. * any unmapped ptes in turn potentially increasing the memory
  498. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  499. * reduce the available free memory in the system as it
  500. * runs. Increasing max_ptes_none will instead potentially reduce the
  501. * free memory in the system during the khugepaged scan.
  502. */
  503. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  504. struct kobj_attribute *attr,
  505. char *buf)
  506. {
  507. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  508. }
  509. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  510. struct kobj_attribute *attr,
  511. const char *buf, size_t count)
  512. {
  513. int err;
  514. unsigned long max_ptes_none;
  515. err = kstrtoul(buf, 10, &max_ptes_none);
  516. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  517. return -EINVAL;
  518. khugepaged_max_ptes_none = max_ptes_none;
  519. return count;
  520. }
  521. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  522. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  523. khugepaged_max_ptes_none_store);
  524. static struct attribute *khugepaged_attr[] = {
  525. &khugepaged_defrag_attr.attr,
  526. &khugepaged_max_ptes_none_attr.attr,
  527. &pages_to_scan_attr.attr,
  528. &pages_collapsed_attr.attr,
  529. &full_scans_attr.attr,
  530. &scan_sleep_millisecs_attr.attr,
  531. &alloc_sleep_millisecs_attr.attr,
  532. NULL,
  533. };
  534. static struct attribute_group khugepaged_attr_group = {
  535. .attrs = khugepaged_attr,
  536. .name = "khugepaged",
  537. };
  538. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  539. {
  540. int err;
  541. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  542. if (unlikely(!*hugepage_kobj)) {
  543. pr_err("failed to create transparent hugepage kobject\n");
  544. return -ENOMEM;
  545. }
  546. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  547. if (err) {
  548. pr_err("failed to register transparent hugepage group\n");
  549. goto delete_obj;
  550. }
  551. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  552. if (err) {
  553. pr_err("failed to register transparent hugepage group\n");
  554. goto remove_hp_group;
  555. }
  556. return 0;
  557. remove_hp_group:
  558. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  559. delete_obj:
  560. kobject_put(*hugepage_kobj);
  561. return err;
  562. }
  563. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  564. {
  565. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  566. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  567. kobject_put(hugepage_kobj);
  568. }
  569. #else
  570. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  571. {
  572. return 0;
  573. }
  574. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  575. {
  576. }
  577. #endif /* CONFIG_SYSFS */
  578. static int __init hugepage_init(void)
  579. {
  580. int err;
  581. struct kobject *hugepage_kobj;
  582. if (!has_transparent_hugepage()) {
  583. transparent_hugepage_flags = 0;
  584. return -EINVAL;
  585. }
  586. khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
  587. khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
  588. /*
  589. * hugepages can't be allocated by the buddy allocator
  590. */
  591. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  592. /*
  593. * we use page->mapping and page->index in second tail page
  594. * as list_head: assuming THP order >= 2
  595. */
  596. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  597. err = hugepage_init_sysfs(&hugepage_kobj);
  598. if (err)
  599. goto err_sysfs;
  600. err = khugepaged_slab_init();
  601. if (err)
  602. goto err_slab;
  603. err = register_shrinker(&huge_zero_page_shrinker);
  604. if (err)
  605. goto err_hzp_shrinker;
  606. err = register_shrinker(&deferred_split_shrinker);
  607. if (err)
  608. goto err_split_shrinker;
  609. /*
  610. * By default disable transparent hugepages on smaller systems,
  611. * where the extra memory used could hurt more than TLB overhead
  612. * is likely to save. The admin can still enable it through /sys.
  613. */
  614. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  615. transparent_hugepage_flags = 0;
  616. return 0;
  617. }
  618. err = start_stop_khugepaged();
  619. if (err)
  620. goto err_khugepaged;
  621. return 0;
  622. err_khugepaged:
  623. unregister_shrinker(&deferred_split_shrinker);
  624. err_split_shrinker:
  625. unregister_shrinker(&huge_zero_page_shrinker);
  626. err_hzp_shrinker:
  627. khugepaged_slab_exit();
  628. err_slab:
  629. hugepage_exit_sysfs(hugepage_kobj);
  630. err_sysfs:
  631. return err;
  632. }
  633. subsys_initcall(hugepage_init);
  634. static int __init setup_transparent_hugepage(char *str)
  635. {
  636. int ret = 0;
  637. if (!str)
  638. goto out;
  639. if (!strcmp(str, "always")) {
  640. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  641. &transparent_hugepage_flags);
  642. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  643. &transparent_hugepage_flags);
  644. ret = 1;
  645. } else if (!strcmp(str, "madvise")) {
  646. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  647. &transparent_hugepage_flags);
  648. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  649. &transparent_hugepage_flags);
  650. ret = 1;
  651. } else if (!strcmp(str, "never")) {
  652. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  653. &transparent_hugepage_flags);
  654. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  655. &transparent_hugepage_flags);
  656. ret = 1;
  657. }
  658. out:
  659. if (!ret)
  660. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  661. return ret;
  662. }
  663. __setup("transparent_hugepage=", setup_transparent_hugepage);
  664. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  665. {
  666. if (likely(vma->vm_flags & VM_WRITE))
  667. pmd = pmd_mkwrite(pmd);
  668. return pmd;
  669. }
  670. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  671. {
  672. pmd_t entry;
  673. entry = mk_pmd(page, prot);
  674. entry = pmd_mkhuge(entry);
  675. return entry;
  676. }
  677. static inline struct list_head *page_deferred_list(struct page *page)
  678. {
  679. /*
  680. * ->lru in the tail pages is occupied by compound_head.
  681. * Let's use ->mapping + ->index in the second tail page as list_head.
  682. */
  683. return (struct list_head *)&page[2].mapping;
  684. }
  685. void prep_transhuge_page(struct page *page)
  686. {
  687. /*
  688. * we use page->mapping and page->indexlru in second tail page
  689. * as list_head: assuming THP order >= 2
  690. */
  691. INIT_LIST_HEAD(page_deferred_list(page));
  692. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  693. }
  694. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  695. struct vm_area_struct *vma,
  696. unsigned long address, pmd_t *pmd,
  697. struct page *page, gfp_t gfp,
  698. unsigned int flags)
  699. {
  700. struct mem_cgroup *memcg;
  701. pgtable_t pgtable;
  702. spinlock_t *ptl;
  703. unsigned long haddr = address & HPAGE_PMD_MASK;
  704. VM_BUG_ON_PAGE(!PageCompound(page), page);
  705. if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
  706. put_page(page);
  707. count_vm_event(THP_FAULT_FALLBACK);
  708. return VM_FAULT_FALLBACK;
  709. }
  710. pgtable = pte_alloc_one(mm, haddr);
  711. if (unlikely(!pgtable)) {
  712. mem_cgroup_cancel_charge(page, memcg, true);
  713. put_page(page);
  714. return VM_FAULT_OOM;
  715. }
  716. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  717. /*
  718. * The memory barrier inside __SetPageUptodate makes sure that
  719. * clear_huge_page writes become visible before the set_pmd_at()
  720. * write.
  721. */
  722. __SetPageUptodate(page);
  723. ptl = pmd_lock(mm, pmd);
  724. if (unlikely(!pmd_none(*pmd))) {
  725. spin_unlock(ptl);
  726. mem_cgroup_cancel_charge(page, memcg, true);
  727. put_page(page);
  728. pte_free(mm, pgtable);
  729. } else {
  730. pmd_t entry;
  731. /* Deliver the page fault to userland */
  732. if (userfaultfd_missing(vma)) {
  733. int ret;
  734. spin_unlock(ptl);
  735. mem_cgroup_cancel_charge(page, memcg, true);
  736. put_page(page);
  737. pte_free(mm, pgtable);
  738. ret = handle_userfault(vma, address, flags,
  739. VM_UFFD_MISSING);
  740. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  741. return ret;
  742. }
  743. entry = mk_huge_pmd(page, vma->vm_page_prot);
  744. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  745. page_add_new_anon_rmap(page, vma, haddr, true);
  746. mem_cgroup_commit_charge(page, memcg, false, true);
  747. lru_cache_add_active_or_unevictable(page, vma);
  748. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  749. set_pmd_at(mm, haddr, pmd, entry);
  750. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  751. atomic_long_inc(&mm->nr_ptes);
  752. spin_unlock(ptl);
  753. count_vm_event(THP_FAULT_ALLOC);
  754. }
  755. return 0;
  756. }
  757. /*
  758. * If THP is set to always then directly reclaim/compact as necessary
  759. * If set to defer then do no reclaim and defer to khugepaged
  760. * If set to madvise and the VMA is flagged then directly reclaim/compact
  761. */
  762. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  763. {
  764. gfp_t reclaim_flags = 0;
  765. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
  766. (vma->vm_flags & VM_HUGEPAGE))
  767. reclaim_flags = __GFP_DIRECT_RECLAIM;
  768. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  769. reclaim_flags = __GFP_KSWAPD_RECLAIM;
  770. else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  771. reclaim_flags = __GFP_DIRECT_RECLAIM;
  772. return GFP_TRANSHUGE | reclaim_flags;
  773. }
  774. /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
  775. static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
  776. {
  777. return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
  778. }
  779. /* Caller must hold page table lock. */
  780. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  781. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  782. struct page *zero_page)
  783. {
  784. pmd_t entry;
  785. if (!pmd_none(*pmd))
  786. return false;
  787. entry = mk_pmd(zero_page, vma->vm_page_prot);
  788. entry = pmd_mkhuge(entry);
  789. if (pgtable)
  790. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  791. set_pmd_at(mm, haddr, pmd, entry);
  792. atomic_long_inc(&mm->nr_ptes);
  793. return true;
  794. }
  795. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  796. unsigned long address, pmd_t *pmd,
  797. unsigned int flags)
  798. {
  799. gfp_t gfp;
  800. struct page *page;
  801. unsigned long haddr = address & HPAGE_PMD_MASK;
  802. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  803. return VM_FAULT_FALLBACK;
  804. if (unlikely(anon_vma_prepare(vma)))
  805. return VM_FAULT_OOM;
  806. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  807. return VM_FAULT_OOM;
  808. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  809. transparent_hugepage_use_zero_page()) {
  810. spinlock_t *ptl;
  811. pgtable_t pgtable;
  812. struct page *zero_page;
  813. bool set;
  814. int ret;
  815. pgtable = pte_alloc_one(mm, haddr);
  816. if (unlikely(!pgtable))
  817. return VM_FAULT_OOM;
  818. zero_page = get_huge_zero_page();
  819. if (unlikely(!zero_page)) {
  820. pte_free(mm, pgtable);
  821. count_vm_event(THP_FAULT_FALLBACK);
  822. return VM_FAULT_FALLBACK;
  823. }
  824. ptl = pmd_lock(mm, pmd);
  825. ret = 0;
  826. set = false;
  827. if (pmd_none(*pmd)) {
  828. if (userfaultfd_missing(vma)) {
  829. spin_unlock(ptl);
  830. ret = handle_userfault(vma, address, flags,
  831. VM_UFFD_MISSING);
  832. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  833. } else {
  834. set_huge_zero_page(pgtable, mm, vma,
  835. haddr, pmd,
  836. zero_page);
  837. spin_unlock(ptl);
  838. set = true;
  839. }
  840. } else
  841. spin_unlock(ptl);
  842. if (!set) {
  843. pte_free(mm, pgtable);
  844. put_huge_zero_page();
  845. }
  846. return ret;
  847. }
  848. gfp = alloc_hugepage_direct_gfpmask(vma);
  849. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  850. if (unlikely(!page)) {
  851. count_vm_event(THP_FAULT_FALLBACK);
  852. return VM_FAULT_FALLBACK;
  853. }
  854. prep_transhuge_page(page);
  855. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  856. flags);
  857. }
  858. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  859. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
  860. {
  861. struct mm_struct *mm = vma->vm_mm;
  862. pmd_t entry;
  863. spinlock_t *ptl;
  864. ptl = pmd_lock(mm, pmd);
  865. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  866. if (pfn_t_devmap(pfn))
  867. entry = pmd_mkdevmap(entry);
  868. if (write) {
  869. entry = pmd_mkyoung(pmd_mkdirty(entry));
  870. entry = maybe_pmd_mkwrite(entry, vma);
  871. }
  872. set_pmd_at(mm, addr, pmd, entry);
  873. update_mmu_cache_pmd(vma, addr, pmd);
  874. spin_unlock(ptl);
  875. }
  876. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  877. pmd_t *pmd, pfn_t pfn, bool write)
  878. {
  879. pgprot_t pgprot = vma->vm_page_prot;
  880. /*
  881. * If we had pmd_special, we could avoid all these restrictions,
  882. * but we need to be consistent with PTEs and architectures that
  883. * can't support a 'special' bit.
  884. */
  885. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  886. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  887. (VM_PFNMAP|VM_MIXEDMAP));
  888. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  889. BUG_ON(!pfn_t_devmap(pfn));
  890. if (addr < vma->vm_start || addr >= vma->vm_end)
  891. return VM_FAULT_SIGBUS;
  892. if (track_pfn_insert(vma, &pgprot, pfn))
  893. return VM_FAULT_SIGBUS;
  894. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  895. return VM_FAULT_NOPAGE;
  896. }
  897. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  898. pmd_t *pmd)
  899. {
  900. pmd_t _pmd;
  901. /*
  902. * We should set the dirty bit only for FOLL_WRITE but for now
  903. * the dirty bit in the pmd is meaningless. And if the dirty
  904. * bit will become meaningful and we'll only set it with
  905. * FOLL_WRITE, an atomic set_bit will be required on the pmd to
  906. * set the young bit, instead of the current set_pmd_at.
  907. */
  908. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  909. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  910. pmd, _pmd, 1))
  911. update_mmu_cache_pmd(vma, addr, pmd);
  912. }
  913. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  914. pmd_t *pmd, int flags)
  915. {
  916. unsigned long pfn = pmd_pfn(*pmd);
  917. struct mm_struct *mm = vma->vm_mm;
  918. struct dev_pagemap *pgmap;
  919. struct page *page;
  920. assert_spin_locked(pmd_lockptr(mm, pmd));
  921. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  922. return NULL;
  923. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  924. /* pass */;
  925. else
  926. return NULL;
  927. if (flags & FOLL_TOUCH)
  928. touch_pmd(vma, addr, pmd);
  929. /*
  930. * device mapped pages can only be returned if the
  931. * caller will manage the page reference count.
  932. */
  933. if (!(flags & FOLL_GET))
  934. return ERR_PTR(-EEXIST);
  935. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  936. pgmap = get_dev_pagemap(pfn, NULL);
  937. if (!pgmap)
  938. return ERR_PTR(-EFAULT);
  939. page = pfn_to_page(pfn);
  940. get_page(page);
  941. put_dev_pagemap(pgmap);
  942. return page;
  943. }
  944. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  945. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  946. struct vm_area_struct *vma)
  947. {
  948. spinlock_t *dst_ptl, *src_ptl;
  949. struct page *src_page;
  950. pmd_t pmd;
  951. pgtable_t pgtable = NULL;
  952. int ret;
  953. if (!vma_is_dax(vma)) {
  954. ret = -ENOMEM;
  955. pgtable = pte_alloc_one(dst_mm, addr);
  956. if (unlikely(!pgtable))
  957. goto out;
  958. }
  959. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  960. src_ptl = pmd_lockptr(src_mm, src_pmd);
  961. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  962. ret = -EAGAIN;
  963. pmd = *src_pmd;
  964. if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
  965. pte_free(dst_mm, pgtable);
  966. goto out_unlock;
  967. }
  968. /*
  969. * When page table lock is held, the huge zero pmd should not be
  970. * under splitting since we don't split the page itself, only pmd to
  971. * a page table.
  972. */
  973. if (is_huge_zero_pmd(pmd)) {
  974. struct page *zero_page;
  975. /*
  976. * get_huge_zero_page() will never allocate a new page here,
  977. * since we already have a zero page to copy. It just takes a
  978. * reference.
  979. */
  980. zero_page = get_huge_zero_page();
  981. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  982. zero_page);
  983. ret = 0;
  984. goto out_unlock;
  985. }
  986. if (!vma_is_dax(vma)) {
  987. /* thp accounting separate from pmd_devmap accounting */
  988. src_page = pmd_page(pmd);
  989. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  990. get_page(src_page);
  991. page_dup_rmap(src_page, true);
  992. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  993. atomic_long_inc(&dst_mm->nr_ptes);
  994. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  995. }
  996. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  997. pmd = pmd_mkold(pmd_wrprotect(pmd));
  998. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  999. ret = 0;
  1000. out_unlock:
  1001. spin_unlock(src_ptl);
  1002. spin_unlock(dst_ptl);
  1003. out:
  1004. return ret;
  1005. }
  1006. void huge_pmd_set_accessed(struct mm_struct *mm,
  1007. struct vm_area_struct *vma,
  1008. unsigned long address,
  1009. pmd_t *pmd, pmd_t orig_pmd,
  1010. int dirty)
  1011. {
  1012. spinlock_t *ptl;
  1013. pmd_t entry;
  1014. unsigned long haddr;
  1015. ptl = pmd_lock(mm, pmd);
  1016. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1017. goto unlock;
  1018. entry = pmd_mkyoung(orig_pmd);
  1019. haddr = address & HPAGE_PMD_MASK;
  1020. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  1021. update_mmu_cache_pmd(vma, address, pmd);
  1022. unlock:
  1023. spin_unlock(ptl);
  1024. }
  1025. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  1026. struct vm_area_struct *vma,
  1027. unsigned long address,
  1028. pmd_t *pmd, pmd_t orig_pmd,
  1029. struct page *page,
  1030. unsigned long haddr)
  1031. {
  1032. struct mem_cgroup *memcg;
  1033. spinlock_t *ptl;
  1034. pgtable_t pgtable;
  1035. pmd_t _pmd;
  1036. int ret = 0, i;
  1037. struct page **pages;
  1038. unsigned long mmun_start; /* For mmu_notifiers */
  1039. unsigned long mmun_end; /* For mmu_notifiers */
  1040. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  1041. GFP_KERNEL);
  1042. if (unlikely(!pages)) {
  1043. ret |= VM_FAULT_OOM;
  1044. goto out;
  1045. }
  1046. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1047. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  1048. __GFP_OTHER_NODE,
  1049. vma, address, page_to_nid(page));
  1050. if (unlikely(!pages[i] ||
  1051. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  1052. &memcg, false))) {
  1053. if (pages[i])
  1054. put_page(pages[i]);
  1055. while (--i >= 0) {
  1056. memcg = (void *)page_private(pages[i]);
  1057. set_page_private(pages[i], 0);
  1058. mem_cgroup_cancel_charge(pages[i], memcg,
  1059. false);
  1060. put_page(pages[i]);
  1061. }
  1062. kfree(pages);
  1063. ret |= VM_FAULT_OOM;
  1064. goto out;
  1065. }
  1066. set_page_private(pages[i], (unsigned long)memcg);
  1067. }
  1068. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1069. copy_user_highpage(pages[i], page + i,
  1070. haddr + PAGE_SIZE * i, vma);
  1071. __SetPageUptodate(pages[i]);
  1072. cond_resched();
  1073. }
  1074. mmun_start = haddr;
  1075. mmun_end = haddr + HPAGE_PMD_SIZE;
  1076. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1077. ptl = pmd_lock(mm, pmd);
  1078. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1079. goto out_free_pages;
  1080. VM_BUG_ON_PAGE(!PageHead(page), page);
  1081. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1082. /* leave pmd empty until pte is filled */
  1083. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1084. pmd_populate(mm, &_pmd, pgtable);
  1085. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1086. pte_t *pte, entry;
  1087. entry = mk_pte(pages[i], vma->vm_page_prot);
  1088. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1089. memcg = (void *)page_private(pages[i]);
  1090. set_page_private(pages[i], 0);
  1091. page_add_new_anon_rmap(pages[i], vma, haddr, false);
  1092. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1093. lru_cache_add_active_or_unevictable(pages[i], vma);
  1094. pte = pte_offset_map(&_pmd, haddr);
  1095. VM_BUG_ON(!pte_none(*pte));
  1096. set_pte_at(mm, haddr, pte, entry);
  1097. pte_unmap(pte);
  1098. }
  1099. kfree(pages);
  1100. smp_wmb(); /* make pte visible before pmd */
  1101. pmd_populate(mm, pmd, pgtable);
  1102. page_remove_rmap(page, true);
  1103. spin_unlock(ptl);
  1104. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1105. ret |= VM_FAULT_WRITE;
  1106. put_page(page);
  1107. out:
  1108. return ret;
  1109. out_free_pages:
  1110. spin_unlock(ptl);
  1111. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1112. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1113. memcg = (void *)page_private(pages[i]);
  1114. set_page_private(pages[i], 0);
  1115. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1116. put_page(pages[i]);
  1117. }
  1118. kfree(pages);
  1119. goto out;
  1120. }
  1121. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1122. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1123. {
  1124. spinlock_t *ptl;
  1125. int ret = 0;
  1126. struct page *page = NULL, *new_page;
  1127. struct mem_cgroup *memcg;
  1128. unsigned long haddr;
  1129. unsigned long mmun_start; /* For mmu_notifiers */
  1130. unsigned long mmun_end; /* For mmu_notifiers */
  1131. gfp_t huge_gfp; /* for allocation and charge */
  1132. ptl = pmd_lockptr(mm, pmd);
  1133. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1134. haddr = address & HPAGE_PMD_MASK;
  1135. if (is_huge_zero_pmd(orig_pmd))
  1136. goto alloc;
  1137. spin_lock(ptl);
  1138. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1139. goto out_unlock;
  1140. page = pmd_page(orig_pmd);
  1141. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1142. /*
  1143. * We can only reuse the page if nobody else maps the huge page or it's
  1144. * part. We can do it by checking page_mapcount() on each sub-page, but
  1145. * it's expensive.
  1146. * The cheaper way is to check page_count() to be equal 1: every
  1147. * mapcount takes page reference reference, so this way we can
  1148. * guarantee, that the PMD is the only mapping.
  1149. * This can give false negative if somebody pinned the page, but that's
  1150. * fine.
  1151. */
  1152. if (page_mapcount(page) == 1 && page_count(page) == 1) {
  1153. pmd_t entry;
  1154. entry = pmd_mkyoung(orig_pmd);
  1155. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1156. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1157. update_mmu_cache_pmd(vma, address, pmd);
  1158. ret |= VM_FAULT_WRITE;
  1159. goto out_unlock;
  1160. }
  1161. get_page(page);
  1162. spin_unlock(ptl);
  1163. alloc:
  1164. if (transparent_hugepage_enabled(vma) &&
  1165. !transparent_hugepage_debug_cow()) {
  1166. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1167. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1168. } else
  1169. new_page = NULL;
  1170. if (likely(new_page)) {
  1171. prep_transhuge_page(new_page);
  1172. } else {
  1173. if (!page) {
  1174. split_huge_pmd(vma, pmd, address);
  1175. ret |= VM_FAULT_FALLBACK;
  1176. } else {
  1177. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1178. pmd, orig_pmd, page, haddr);
  1179. if (ret & VM_FAULT_OOM) {
  1180. split_huge_pmd(vma, pmd, address);
  1181. ret |= VM_FAULT_FALLBACK;
  1182. }
  1183. put_page(page);
  1184. }
  1185. count_vm_event(THP_FAULT_FALLBACK);
  1186. goto out;
  1187. }
  1188. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
  1189. true))) {
  1190. put_page(new_page);
  1191. if (page) {
  1192. split_huge_pmd(vma, pmd, address);
  1193. put_page(page);
  1194. } else
  1195. split_huge_pmd(vma, pmd, address);
  1196. ret |= VM_FAULT_FALLBACK;
  1197. count_vm_event(THP_FAULT_FALLBACK);
  1198. goto out;
  1199. }
  1200. count_vm_event(THP_FAULT_ALLOC);
  1201. if (!page)
  1202. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1203. else
  1204. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1205. __SetPageUptodate(new_page);
  1206. mmun_start = haddr;
  1207. mmun_end = haddr + HPAGE_PMD_SIZE;
  1208. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1209. spin_lock(ptl);
  1210. if (page)
  1211. put_page(page);
  1212. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1213. spin_unlock(ptl);
  1214. mem_cgroup_cancel_charge(new_page, memcg, true);
  1215. put_page(new_page);
  1216. goto out_mn;
  1217. } else {
  1218. pmd_t entry;
  1219. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1220. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1221. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1222. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1223. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1224. lru_cache_add_active_or_unevictable(new_page, vma);
  1225. set_pmd_at(mm, haddr, pmd, entry);
  1226. update_mmu_cache_pmd(vma, address, pmd);
  1227. if (!page) {
  1228. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1229. put_huge_zero_page();
  1230. } else {
  1231. VM_BUG_ON_PAGE(!PageHead(page), page);
  1232. page_remove_rmap(page, true);
  1233. put_page(page);
  1234. }
  1235. ret |= VM_FAULT_WRITE;
  1236. }
  1237. spin_unlock(ptl);
  1238. out_mn:
  1239. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1240. out:
  1241. return ret;
  1242. out_unlock:
  1243. spin_unlock(ptl);
  1244. return ret;
  1245. }
  1246. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1247. unsigned long addr,
  1248. pmd_t *pmd,
  1249. unsigned int flags)
  1250. {
  1251. struct mm_struct *mm = vma->vm_mm;
  1252. struct page *page = NULL;
  1253. assert_spin_locked(pmd_lockptr(mm, pmd));
  1254. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1255. goto out;
  1256. /* Avoid dumping huge zero page */
  1257. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1258. return ERR_PTR(-EFAULT);
  1259. /* Full NUMA hinting faults to serialise migration in fault paths */
  1260. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1261. goto out;
  1262. page = pmd_page(*pmd);
  1263. VM_BUG_ON_PAGE(!PageHead(page), page);
  1264. if (flags & FOLL_TOUCH)
  1265. touch_pmd(vma, addr, pmd);
  1266. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1267. /*
  1268. * We don't mlock() pte-mapped THPs. This way we can avoid
  1269. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1270. *
  1271. * In most cases the pmd is the only mapping of the page as we
  1272. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1273. * writable private mappings in populate_vma_page_range().
  1274. *
  1275. * The only scenario when we have the page shared here is if we
  1276. * mlocking read-only mapping shared over fork(). We skip
  1277. * mlocking such pages.
  1278. */
  1279. if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
  1280. page->mapping && trylock_page(page)) {
  1281. lru_add_drain();
  1282. if (page->mapping)
  1283. mlock_vma_page(page);
  1284. unlock_page(page);
  1285. }
  1286. }
  1287. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1288. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1289. if (flags & FOLL_GET)
  1290. get_page(page);
  1291. out:
  1292. return page;
  1293. }
  1294. /* NUMA hinting page fault entry point for trans huge pmds */
  1295. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1296. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1297. {
  1298. spinlock_t *ptl;
  1299. struct anon_vma *anon_vma = NULL;
  1300. struct page *page;
  1301. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1302. int page_nid = -1, this_nid = numa_node_id();
  1303. int target_nid, last_cpupid = -1;
  1304. bool page_locked;
  1305. bool migrated = false;
  1306. bool was_writable;
  1307. int flags = 0;
  1308. /* A PROT_NONE fault should not end up here */
  1309. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1310. ptl = pmd_lock(mm, pmdp);
  1311. if (unlikely(!pmd_same(pmd, *pmdp)))
  1312. goto out_unlock;
  1313. /*
  1314. * If there are potential migrations, wait for completion and retry
  1315. * without disrupting NUMA hinting information. Do not relock and
  1316. * check_same as the page may no longer be mapped.
  1317. */
  1318. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1319. page = pmd_page(*pmdp);
  1320. spin_unlock(ptl);
  1321. wait_on_page_locked(page);
  1322. goto out;
  1323. }
  1324. page = pmd_page(pmd);
  1325. BUG_ON(is_huge_zero_page(page));
  1326. page_nid = page_to_nid(page);
  1327. last_cpupid = page_cpupid_last(page);
  1328. count_vm_numa_event(NUMA_HINT_FAULTS);
  1329. if (page_nid == this_nid) {
  1330. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1331. flags |= TNF_FAULT_LOCAL;
  1332. }
  1333. /* See similar comment in do_numa_page for explanation */
  1334. if (!(vma->vm_flags & VM_WRITE))
  1335. flags |= TNF_NO_GROUP;
  1336. /*
  1337. * Acquire the page lock to serialise THP migrations but avoid dropping
  1338. * page_table_lock if at all possible
  1339. */
  1340. page_locked = trylock_page(page);
  1341. target_nid = mpol_misplaced(page, vma, haddr);
  1342. if (target_nid == -1) {
  1343. /* If the page was locked, there are no parallel migrations */
  1344. if (page_locked)
  1345. goto clear_pmdnuma;
  1346. }
  1347. /* Migration could have started since the pmd_trans_migrating check */
  1348. if (!page_locked) {
  1349. spin_unlock(ptl);
  1350. wait_on_page_locked(page);
  1351. page_nid = -1;
  1352. goto out;
  1353. }
  1354. /*
  1355. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1356. * to serialises splits
  1357. */
  1358. get_page(page);
  1359. spin_unlock(ptl);
  1360. anon_vma = page_lock_anon_vma_read(page);
  1361. /* Confirm the PMD did not change while page_table_lock was released */
  1362. spin_lock(ptl);
  1363. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1364. unlock_page(page);
  1365. put_page(page);
  1366. page_nid = -1;
  1367. goto out_unlock;
  1368. }
  1369. /* Bail if we fail to protect against THP splits for any reason */
  1370. if (unlikely(!anon_vma)) {
  1371. put_page(page);
  1372. page_nid = -1;
  1373. goto clear_pmdnuma;
  1374. }
  1375. /*
  1376. * Migrate the THP to the requested node, returns with page unlocked
  1377. * and access rights restored.
  1378. */
  1379. spin_unlock(ptl);
  1380. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1381. pmdp, pmd, addr, page, target_nid);
  1382. if (migrated) {
  1383. flags |= TNF_MIGRATED;
  1384. page_nid = target_nid;
  1385. } else
  1386. flags |= TNF_MIGRATE_FAIL;
  1387. goto out;
  1388. clear_pmdnuma:
  1389. BUG_ON(!PageLocked(page));
  1390. was_writable = pmd_write(pmd);
  1391. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1392. pmd = pmd_mkyoung(pmd);
  1393. if (was_writable)
  1394. pmd = pmd_mkwrite(pmd);
  1395. set_pmd_at(mm, haddr, pmdp, pmd);
  1396. update_mmu_cache_pmd(vma, addr, pmdp);
  1397. unlock_page(page);
  1398. out_unlock:
  1399. spin_unlock(ptl);
  1400. out:
  1401. if (anon_vma)
  1402. page_unlock_anon_vma_read(anon_vma);
  1403. if (page_nid != -1)
  1404. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1405. return 0;
  1406. }
  1407. int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1408. pmd_t *pmd, unsigned long addr, unsigned long next)
  1409. {
  1410. spinlock_t *ptl;
  1411. pmd_t orig_pmd;
  1412. struct page *page;
  1413. struct mm_struct *mm = tlb->mm;
  1414. int ret = 0;
  1415. ptl = pmd_trans_huge_lock(pmd, vma);
  1416. if (!ptl)
  1417. goto out_unlocked;
  1418. orig_pmd = *pmd;
  1419. if (is_huge_zero_pmd(orig_pmd)) {
  1420. ret = 1;
  1421. goto out;
  1422. }
  1423. page = pmd_page(orig_pmd);
  1424. /*
  1425. * If other processes are mapping this page, we couldn't discard
  1426. * the page unless they all do MADV_FREE so let's skip the page.
  1427. */
  1428. if (page_mapcount(page) != 1)
  1429. goto out;
  1430. if (!trylock_page(page))
  1431. goto out;
  1432. /*
  1433. * If user want to discard part-pages of THP, split it so MADV_FREE
  1434. * will deactivate only them.
  1435. */
  1436. if (next - addr != HPAGE_PMD_SIZE) {
  1437. get_page(page);
  1438. spin_unlock(ptl);
  1439. if (split_huge_page(page)) {
  1440. put_page(page);
  1441. unlock_page(page);
  1442. goto out_unlocked;
  1443. }
  1444. put_page(page);
  1445. unlock_page(page);
  1446. ret = 1;
  1447. goto out_unlocked;
  1448. }
  1449. if (PageDirty(page))
  1450. ClearPageDirty(page);
  1451. unlock_page(page);
  1452. if (PageActive(page))
  1453. deactivate_page(page);
  1454. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1455. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1456. tlb->fullmm);
  1457. orig_pmd = pmd_mkold(orig_pmd);
  1458. orig_pmd = pmd_mkclean(orig_pmd);
  1459. set_pmd_at(mm, addr, pmd, orig_pmd);
  1460. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1461. }
  1462. ret = 1;
  1463. out:
  1464. spin_unlock(ptl);
  1465. out_unlocked:
  1466. return ret;
  1467. }
  1468. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1469. pmd_t *pmd, unsigned long addr)
  1470. {
  1471. pmd_t orig_pmd;
  1472. spinlock_t *ptl;
  1473. ptl = __pmd_trans_huge_lock(pmd, vma);
  1474. if (!ptl)
  1475. return 0;
  1476. /*
  1477. * For architectures like ppc64 we look at deposited pgtable
  1478. * when calling pmdp_huge_get_and_clear. So do the
  1479. * pgtable_trans_huge_withdraw after finishing pmdp related
  1480. * operations.
  1481. */
  1482. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1483. tlb->fullmm);
  1484. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1485. if (vma_is_dax(vma)) {
  1486. spin_unlock(ptl);
  1487. if (is_huge_zero_pmd(orig_pmd))
  1488. put_huge_zero_page();
  1489. } else if (is_huge_zero_pmd(orig_pmd)) {
  1490. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1491. atomic_long_dec(&tlb->mm->nr_ptes);
  1492. spin_unlock(ptl);
  1493. put_huge_zero_page();
  1494. } else {
  1495. struct page *page = pmd_page(orig_pmd);
  1496. page_remove_rmap(page, true);
  1497. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1498. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1499. VM_BUG_ON_PAGE(!PageHead(page), page);
  1500. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1501. atomic_long_dec(&tlb->mm->nr_ptes);
  1502. spin_unlock(ptl);
  1503. tlb_remove_page(tlb, page);
  1504. }
  1505. return 1;
  1506. }
  1507. bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1508. unsigned long old_addr,
  1509. unsigned long new_addr, unsigned long old_end,
  1510. pmd_t *old_pmd, pmd_t *new_pmd)
  1511. {
  1512. spinlock_t *old_ptl, *new_ptl;
  1513. pmd_t pmd;
  1514. struct mm_struct *mm = vma->vm_mm;
  1515. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1516. (new_addr & ~HPAGE_PMD_MASK) ||
  1517. old_end - old_addr < HPAGE_PMD_SIZE ||
  1518. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1519. return false;
  1520. /*
  1521. * The destination pmd shouldn't be established, free_pgtables()
  1522. * should have release it.
  1523. */
  1524. if (WARN_ON(!pmd_none(*new_pmd))) {
  1525. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1526. return false;
  1527. }
  1528. /*
  1529. * We don't have to worry about the ordering of src and dst
  1530. * ptlocks because exclusive mmap_sem prevents deadlock.
  1531. */
  1532. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1533. if (old_ptl) {
  1534. new_ptl = pmd_lockptr(mm, new_pmd);
  1535. if (new_ptl != old_ptl)
  1536. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1537. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1538. VM_BUG_ON(!pmd_none(*new_pmd));
  1539. if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
  1540. vma_is_anonymous(vma)) {
  1541. pgtable_t pgtable;
  1542. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1543. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1544. }
  1545. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1546. if (new_ptl != old_ptl)
  1547. spin_unlock(new_ptl);
  1548. spin_unlock(old_ptl);
  1549. return true;
  1550. }
  1551. return false;
  1552. }
  1553. /*
  1554. * Returns
  1555. * - 0 if PMD could not be locked
  1556. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1557. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1558. */
  1559. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1560. unsigned long addr, pgprot_t newprot, int prot_numa)
  1561. {
  1562. struct mm_struct *mm = vma->vm_mm;
  1563. spinlock_t *ptl;
  1564. int ret = 0;
  1565. ptl = __pmd_trans_huge_lock(pmd, vma);
  1566. if (ptl) {
  1567. pmd_t entry;
  1568. bool preserve_write = prot_numa && pmd_write(*pmd);
  1569. ret = 1;
  1570. /*
  1571. * Avoid trapping faults against the zero page. The read-only
  1572. * data is likely to be read-cached on the local CPU and
  1573. * local/remote hits to the zero page are not interesting.
  1574. */
  1575. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1576. spin_unlock(ptl);
  1577. return ret;
  1578. }
  1579. if (!prot_numa || !pmd_protnone(*pmd)) {
  1580. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1581. entry = pmd_modify(entry, newprot);
  1582. if (preserve_write)
  1583. entry = pmd_mkwrite(entry);
  1584. ret = HPAGE_PMD_NR;
  1585. set_pmd_at(mm, addr, pmd, entry);
  1586. BUG_ON(!preserve_write && pmd_write(entry));
  1587. }
  1588. spin_unlock(ptl);
  1589. }
  1590. return ret;
  1591. }
  1592. /*
  1593. * Returns true if a given pmd maps a thp, false otherwise.
  1594. *
  1595. * Note that if it returns true, this routine returns without unlocking page
  1596. * table lock. So callers must unlock it.
  1597. */
  1598. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1599. {
  1600. spinlock_t *ptl;
  1601. ptl = pmd_lock(vma->vm_mm, pmd);
  1602. if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
  1603. return ptl;
  1604. spin_unlock(ptl);
  1605. return NULL;
  1606. }
  1607. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1608. int hugepage_madvise(struct vm_area_struct *vma,
  1609. unsigned long *vm_flags, int advice)
  1610. {
  1611. switch (advice) {
  1612. case MADV_HUGEPAGE:
  1613. #ifdef CONFIG_S390
  1614. /*
  1615. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1616. * can't handle this properly after s390_enable_sie, so we simply
  1617. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1618. */
  1619. if (mm_has_pgste(vma->vm_mm))
  1620. return 0;
  1621. #endif
  1622. /*
  1623. * Be somewhat over-protective like KSM for now!
  1624. */
  1625. if (*vm_flags & VM_NO_THP)
  1626. return -EINVAL;
  1627. *vm_flags &= ~VM_NOHUGEPAGE;
  1628. *vm_flags |= VM_HUGEPAGE;
  1629. /*
  1630. * If the vma become good for khugepaged to scan,
  1631. * register it here without waiting a page fault that
  1632. * may not happen any time soon.
  1633. */
  1634. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1635. return -ENOMEM;
  1636. break;
  1637. case MADV_NOHUGEPAGE:
  1638. /*
  1639. * Be somewhat over-protective like KSM for now!
  1640. */
  1641. if (*vm_flags & VM_NO_THP)
  1642. return -EINVAL;
  1643. *vm_flags &= ~VM_HUGEPAGE;
  1644. *vm_flags |= VM_NOHUGEPAGE;
  1645. /*
  1646. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1647. * this vma even if we leave the mm registered in khugepaged if
  1648. * it got registered before VM_NOHUGEPAGE was set.
  1649. */
  1650. break;
  1651. }
  1652. return 0;
  1653. }
  1654. static int __init khugepaged_slab_init(void)
  1655. {
  1656. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1657. sizeof(struct mm_slot),
  1658. __alignof__(struct mm_slot), 0, NULL);
  1659. if (!mm_slot_cache)
  1660. return -ENOMEM;
  1661. return 0;
  1662. }
  1663. static void __init khugepaged_slab_exit(void)
  1664. {
  1665. kmem_cache_destroy(mm_slot_cache);
  1666. }
  1667. static inline struct mm_slot *alloc_mm_slot(void)
  1668. {
  1669. if (!mm_slot_cache) /* initialization failed */
  1670. return NULL;
  1671. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1672. }
  1673. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1674. {
  1675. kmem_cache_free(mm_slot_cache, mm_slot);
  1676. }
  1677. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1678. {
  1679. struct mm_slot *mm_slot;
  1680. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1681. if (mm == mm_slot->mm)
  1682. return mm_slot;
  1683. return NULL;
  1684. }
  1685. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1686. struct mm_slot *mm_slot)
  1687. {
  1688. mm_slot->mm = mm;
  1689. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1690. }
  1691. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1692. {
  1693. return atomic_read(&mm->mm_users) == 0;
  1694. }
  1695. int __khugepaged_enter(struct mm_struct *mm)
  1696. {
  1697. struct mm_slot *mm_slot;
  1698. int wakeup;
  1699. mm_slot = alloc_mm_slot();
  1700. if (!mm_slot)
  1701. return -ENOMEM;
  1702. /* __khugepaged_exit() must not run from under us */
  1703. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1704. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1705. free_mm_slot(mm_slot);
  1706. return 0;
  1707. }
  1708. spin_lock(&khugepaged_mm_lock);
  1709. insert_to_mm_slots_hash(mm, mm_slot);
  1710. /*
  1711. * Insert just behind the scanning cursor, to let the area settle
  1712. * down a little.
  1713. */
  1714. wakeup = list_empty(&khugepaged_scan.mm_head);
  1715. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1716. spin_unlock(&khugepaged_mm_lock);
  1717. atomic_inc(&mm->mm_count);
  1718. if (wakeup)
  1719. wake_up_interruptible(&khugepaged_wait);
  1720. return 0;
  1721. }
  1722. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1723. unsigned long vm_flags)
  1724. {
  1725. unsigned long hstart, hend;
  1726. if (!vma->anon_vma)
  1727. /*
  1728. * Not yet faulted in so we will register later in the
  1729. * page fault if needed.
  1730. */
  1731. return 0;
  1732. if (vma->vm_ops)
  1733. /* khugepaged not yet working on file or special mappings */
  1734. return 0;
  1735. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1736. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1737. hend = vma->vm_end & HPAGE_PMD_MASK;
  1738. if (hstart < hend)
  1739. return khugepaged_enter(vma, vm_flags);
  1740. return 0;
  1741. }
  1742. void __khugepaged_exit(struct mm_struct *mm)
  1743. {
  1744. struct mm_slot *mm_slot;
  1745. int free = 0;
  1746. spin_lock(&khugepaged_mm_lock);
  1747. mm_slot = get_mm_slot(mm);
  1748. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1749. hash_del(&mm_slot->hash);
  1750. list_del(&mm_slot->mm_node);
  1751. free = 1;
  1752. }
  1753. spin_unlock(&khugepaged_mm_lock);
  1754. if (free) {
  1755. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1756. free_mm_slot(mm_slot);
  1757. mmdrop(mm);
  1758. } else if (mm_slot) {
  1759. /*
  1760. * This is required to serialize against
  1761. * khugepaged_test_exit() (which is guaranteed to run
  1762. * under mmap sem read mode). Stop here (after we
  1763. * return all pagetables will be destroyed) until
  1764. * khugepaged has finished working on the pagetables
  1765. * under the mmap_sem.
  1766. */
  1767. down_write(&mm->mmap_sem);
  1768. up_write(&mm->mmap_sem);
  1769. }
  1770. }
  1771. static void release_pte_page(struct page *page)
  1772. {
  1773. /* 0 stands for page_is_file_cache(page) == false */
  1774. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1775. unlock_page(page);
  1776. putback_lru_page(page);
  1777. }
  1778. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1779. {
  1780. while (--_pte >= pte) {
  1781. pte_t pteval = *_pte;
  1782. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1783. release_pte_page(pte_page(pteval));
  1784. }
  1785. }
  1786. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1787. unsigned long address,
  1788. pte_t *pte)
  1789. {
  1790. struct page *page = NULL;
  1791. pte_t *_pte;
  1792. int none_or_zero = 0, result = 0;
  1793. bool referenced = false, writable = false;
  1794. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1795. _pte++, address += PAGE_SIZE) {
  1796. pte_t pteval = *_pte;
  1797. if (pte_none(pteval) || (pte_present(pteval) &&
  1798. is_zero_pfn(pte_pfn(pteval)))) {
  1799. if (!userfaultfd_armed(vma) &&
  1800. ++none_or_zero <= khugepaged_max_ptes_none) {
  1801. continue;
  1802. } else {
  1803. result = SCAN_EXCEED_NONE_PTE;
  1804. goto out;
  1805. }
  1806. }
  1807. if (!pte_present(pteval)) {
  1808. result = SCAN_PTE_NON_PRESENT;
  1809. goto out;
  1810. }
  1811. page = vm_normal_page(vma, address, pteval);
  1812. if (unlikely(!page)) {
  1813. result = SCAN_PAGE_NULL;
  1814. goto out;
  1815. }
  1816. VM_BUG_ON_PAGE(PageCompound(page), page);
  1817. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1818. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1819. /*
  1820. * We can do it before isolate_lru_page because the
  1821. * page can't be freed from under us. NOTE: PG_lock
  1822. * is needed to serialize against split_huge_page
  1823. * when invoked from the VM.
  1824. */
  1825. if (!trylock_page(page)) {
  1826. result = SCAN_PAGE_LOCK;
  1827. goto out;
  1828. }
  1829. /*
  1830. * cannot use mapcount: can't collapse if there's a gup pin.
  1831. * The page must only be referenced by the scanned process
  1832. * and page swap cache.
  1833. */
  1834. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1835. unlock_page(page);
  1836. result = SCAN_PAGE_COUNT;
  1837. goto out;
  1838. }
  1839. if (pte_write(pteval)) {
  1840. writable = true;
  1841. } else {
  1842. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1843. unlock_page(page);
  1844. result = SCAN_SWAP_CACHE_PAGE;
  1845. goto out;
  1846. }
  1847. /*
  1848. * Page is not in the swap cache. It can be collapsed
  1849. * into a THP.
  1850. */
  1851. }
  1852. /*
  1853. * Isolate the page to avoid collapsing an hugepage
  1854. * currently in use by the VM.
  1855. */
  1856. if (isolate_lru_page(page)) {
  1857. unlock_page(page);
  1858. result = SCAN_DEL_PAGE_LRU;
  1859. goto out;
  1860. }
  1861. /* 0 stands for page_is_file_cache(page) == false */
  1862. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1863. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1864. VM_BUG_ON_PAGE(PageLRU(page), page);
  1865. /* If there is no mapped pte young don't collapse the page */
  1866. if (pte_young(pteval) ||
  1867. page_is_young(page) || PageReferenced(page) ||
  1868. mmu_notifier_test_young(vma->vm_mm, address))
  1869. referenced = true;
  1870. }
  1871. if (likely(writable)) {
  1872. if (likely(referenced)) {
  1873. result = SCAN_SUCCEED;
  1874. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1875. referenced, writable, result);
  1876. return 1;
  1877. }
  1878. } else {
  1879. result = SCAN_PAGE_RO;
  1880. }
  1881. out:
  1882. release_pte_pages(pte, _pte);
  1883. trace_mm_collapse_huge_page_isolate(page, none_or_zero,
  1884. referenced, writable, result);
  1885. return 0;
  1886. }
  1887. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1888. struct vm_area_struct *vma,
  1889. unsigned long address,
  1890. spinlock_t *ptl)
  1891. {
  1892. pte_t *_pte;
  1893. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1894. pte_t pteval = *_pte;
  1895. struct page *src_page;
  1896. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1897. clear_user_highpage(page, address);
  1898. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1899. if (is_zero_pfn(pte_pfn(pteval))) {
  1900. /*
  1901. * ptl mostly unnecessary.
  1902. */
  1903. spin_lock(ptl);
  1904. /*
  1905. * paravirt calls inside pte_clear here are
  1906. * superfluous.
  1907. */
  1908. pte_clear(vma->vm_mm, address, _pte);
  1909. spin_unlock(ptl);
  1910. }
  1911. } else {
  1912. src_page = pte_page(pteval);
  1913. copy_user_highpage(page, src_page, address, vma);
  1914. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1915. release_pte_page(src_page);
  1916. /*
  1917. * ptl mostly unnecessary, but preempt has to
  1918. * be disabled to update the per-cpu stats
  1919. * inside page_remove_rmap().
  1920. */
  1921. spin_lock(ptl);
  1922. /*
  1923. * paravirt calls inside pte_clear here are
  1924. * superfluous.
  1925. */
  1926. pte_clear(vma->vm_mm, address, _pte);
  1927. page_remove_rmap(src_page, false);
  1928. spin_unlock(ptl);
  1929. free_page_and_swap_cache(src_page);
  1930. }
  1931. address += PAGE_SIZE;
  1932. page++;
  1933. }
  1934. }
  1935. static void khugepaged_alloc_sleep(void)
  1936. {
  1937. DEFINE_WAIT(wait);
  1938. add_wait_queue(&khugepaged_wait, &wait);
  1939. freezable_schedule_timeout_interruptible(
  1940. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1941. remove_wait_queue(&khugepaged_wait, &wait);
  1942. }
  1943. static int khugepaged_node_load[MAX_NUMNODES];
  1944. static bool khugepaged_scan_abort(int nid)
  1945. {
  1946. int i;
  1947. /*
  1948. * If zone_reclaim_mode is disabled, then no extra effort is made to
  1949. * allocate memory locally.
  1950. */
  1951. if (!zone_reclaim_mode)
  1952. return false;
  1953. /* If there is a count for this node already, it must be acceptable */
  1954. if (khugepaged_node_load[nid])
  1955. return false;
  1956. for (i = 0; i < MAX_NUMNODES; i++) {
  1957. if (!khugepaged_node_load[i])
  1958. continue;
  1959. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  1960. return true;
  1961. }
  1962. return false;
  1963. }
  1964. #ifdef CONFIG_NUMA
  1965. static int khugepaged_find_target_node(void)
  1966. {
  1967. static int last_khugepaged_target_node = NUMA_NO_NODE;
  1968. int nid, target_node = 0, max_value = 0;
  1969. /* find first node with max normal pages hit */
  1970. for (nid = 0; nid < MAX_NUMNODES; nid++)
  1971. if (khugepaged_node_load[nid] > max_value) {
  1972. max_value = khugepaged_node_load[nid];
  1973. target_node = nid;
  1974. }
  1975. /* do some balance if several nodes have the same hit record */
  1976. if (target_node <= last_khugepaged_target_node)
  1977. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  1978. nid++)
  1979. if (max_value == khugepaged_node_load[nid]) {
  1980. target_node = nid;
  1981. break;
  1982. }
  1983. last_khugepaged_target_node = target_node;
  1984. return target_node;
  1985. }
  1986. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1987. {
  1988. if (IS_ERR(*hpage)) {
  1989. if (!*wait)
  1990. return false;
  1991. *wait = false;
  1992. *hpage = NULL;
  1993. khugepaged_alloc_sleep();
  1994. } else if (*hpage) {
  1995. put_page(*hpage);
  1996. *hpage = NULL;
  1997. }
  1998. return true;
  1999. }
  2000. static struct page *
  2001. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2002. unsigned long address, int node)
  2003. {
  2004. VM_BUG_ON_PAGE(*hpage, *hpage);
  2005. /*
  2006. * Before allocating the hugepage, release the mmap_sem read lock.
  2007. * The allocation can take potentially a long time if it involves
  2008. * sync compaction, and we do not need to hold the mmap_sem during
  2009. * that. We will recheck the vma after taking it again in write mode.
  2010. */
  2011. up_read(&mm->mmap_sem);
  2012. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2013. if (unlikely(!*hpage)) {
  2014. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2015. *hpage = ERR_PTR(-ENOMEM);
  2016. return NULL;
  2017. }
  2018. prep_transhuge_page(*hpage);
  2019. count_vm_event(THP_COLLAPSE_ALLOC);
  2020. return *hpage;
  2021. }
  2022. #else
  2023. static int khugepaged_find_target_node(void)
  2024. {
  2025. return 0;
  2026. }
  2027. static inline struct page *alloc_khugepaged_hugepage(void)
  2028. {
  2029. struct page *page;
  2030. page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
  2031. HPAGE_PMD_ORDER);
  2032. if (page)
  2033. prep_transhuge_page(page);
  2034. return page;
  2035. }
  2036. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2037. {
  2038. struct page *hpage;
  2039. do {
  2040. hpage = alloc_khugepaged_hugepage();
  2041. if (!hpage) {
  2042. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2043. if (!*wait)
  2044. return NULL;
  2045. *wait = false;
  2046. khugepaged_alloc_sleep();
  2047. } else
  2048. count_vm_event(THP_COLLAPSE_ALLOC);
  2049. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2050. return hpage;
  2051. }
  2052. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2053. {
  2054. if (!*hpage)
  2055. *hpage = khugepaged_alloc_hugepage(wait);
  2056. if (unlikely(!*hpage))
  2057. return false;
  2058. return true;
  2059. }
  2060. static struct page *
  2061. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2062. unsigned long address, int node)
  2063. {
  2064. up_read(&mm->mmap_sem);
  2065. VM_BUG_ON(!*hpage);
  2066. return *hpage;
  2067. }
  2068. #endif
  2069. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2070. {
  2071. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2072. (vma->vm_flags & VM_NOHUGEPAGE))
  2073. return false;
  2074. if (!vma->anon_vma || vma->vm_ops)
  2075. return false;
  2076. if (is_vma_temporary_stack(vma))
  2077. return false;
  2078. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2079. return true;
  2080. }
  2081. static void collapse_huge_page(struct mm_struct *mm,
  2082. unsigned long address,
  2083. struct page **hpage,
  2084. struct vm_area_struct *vma,
  2085. int node)
  2086. {
  2087. pmd_t *pmd, _pmd;
  2088. pte_t *pte;
  2089. pgtable_t pgtable;
  2090. struct page *new_page;
  2091. spinlock_t *pmd_ptl, *pte_ptl;
  2092. int isolated = 0, result = 0;
  2093. unsigned long hstart, hend;
  2094. struct mem_cgroup *memcg;
  2095. unsigned long mmun_start; /* For mmu_notifiers */
  2096. unsigned long mmun_end; /* For mmu_notifiers */
  2097. gfp_t gfp;
  2098. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2099. /* Only allocate from the target node */
  2100. gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
  2101. /* release the mmap_sem read lock. */
  2102. new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
  2103. if (!new_page) {
  2104. result = SCAN_ALLOC_HUGE_PAGE_FAIL;
  2105. goto out_nolock;
  2106. }
  2107. if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
  2108. result = SCAN_CGROUP_CHARGE_FAIL;
  2109. goto out_nolock;
  2110. }
  2111. /*
  2112. * Prevent all access to pagetables with the exception of
  2113. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2114. * handled by the anon_vma lock + PG_lock.
  2115. */
  2116. down_write(&mm->mmap_sem);
  2117. if (unlikely(khugepaged_test_exit(mm))) {
  2118. result = SCAN_ANY_PROCESS;
  2119. goto out;
  2120. }
  2121. vma = find_vma(mm, address);
  2122. if (!vma) {
  2123. result = SCAN_VMA_NULL;
  2124. goto out;
  2125. }
  2126. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2127. hend = vma->vm_end & HPAGE_PMD_MASK;
  2128. if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
  2129. result = SCAN_ADDRESS_RANGE;
  2130. goto out;
  2131. }
  2132. if (!hugepage_vma_check(vma)) {
  2133. result = SCAN_VMA_CHECK;
  2134. goto out;
  2135. }
  2136. pmd = mm_find_pmd(mm, address);
  2137. if (!pmd) {
  2138. result = SCAN_PMD_NULL;
  2139. goto out;
  2140. }
  2141. anon_vma_lock_write(vma->anon_vma);
  2142. pte = pte_offset_map(pmd, address);
  2143. pte_ptl = pte_lockptr(mm, pmd);
  2144. mmun_start = address;
  2145. mmun_end = address + HPAGE_PMD_SIZE;
  2146. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2147. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2148. /*
  2149. * After this gup_fast can't run anymore. This also removes
  2150. * any huge TLB entry from the CPU so we won't allow
  2151. * huge and small TLB entries for the same virtual address
  2152. * to avoid the risk of CPU bugs in that area.
  2153. */
  2154. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2155. spin_unlock(pmd_ptl);
  2156. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2157. spin_lock(pte_ptl);
  2158. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2159. spin_unlock(pte_ptl);
  2160. if (unlikely(!isolated)) {
  2161. pte_unmap(pte);
  2162. spin_lock(pmd_ptl);
  2163. BUG_ON(!pmd_none(*pmd));
  2164. /*
  2165. * We can only use set_pmd_at when establishing
  2166. * hugepmds and never for establishing regular pmds that
  2167. * points to regular pagetables. Use pmd_populate for that
  2168. */
  2169. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2170. spin_unlock(pmd_ptl);
  2171. anon_vma_unlock_write(vma->anon_vma);
  2172. result = SCAN_FAIL;
  2173. goto out;
  2174. }
  2175. /*
  2176. * All pages are isolated and locked so anon_vma rmap
  2177. * can't run anymore.
  2178. */
  2179. anon_vma_unlock_write(vma->anon_vma);
  2180. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2181. pte_unmap(pte);
  2182. __SetPageUptodate(new_page);
  2183. pgtable = pmd_pgtable(_pmd);
  2184. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2185. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2186. /*
  2187. * spin_lock() below is not the equivalent of smp_wmb(), so
  2188. * this is needed to avoid the copy_huge_page writes to become
  2189. * visible after the set_pmd_at() write.
  2190. */
  2191. smp_wmb();
  2192. spin_lock(pmd_ptl);
  2193. BUG_ON(!pmd_none(*pmd));
  2194. page_add_new_anon_rmap(new_page, vma, address, true);
  2195. mem_cgroup_commit_charge(new_page, memcg, false, true);
  2196. lru_cache_add_active_or_unevictable(new_page, vma);
  2197. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2198. set_pmd_at(mm, address, pmd, _pmd);
  2199. update_mmu_cache_pmd(vma, address, pmd);
  2200. spin_unlock(pmd_ptl);
  2201. *hpage = NULL;
  2202. khugepaged_pages_collapsed++;
  2203. result = SCAN_SUCCEED;
  2204. out_up_write:
  2205. up_write(&mm->mmap_sem);
  2206. trace_mm_collapse_huge_page(mm, isolated, result);
  2207. return;
  2208. out_nolock:
  2209. trace_mm_collapse_huge_page(mm, isolated, result);
  2210. return;
  2211. out:
  2212. mem_cgroup_cancel_charge(new_page, memcg, true);
  2213. goto out_up_write;
  2214. }
  2215. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2216. struct vm_area_struct *vma,
  2217. unsigned long address,
  2218. struct page **hpage)
  2219. {
  2220. pmd_t *pmd;
  2221. pte_t *pte, *_pte;
  2222. int ret = 0, none_or_zero = 0, result = 0;
  2223. struct page *page = NULL;
  2224. unsigned long _address;
  2225. spinlock_t *ptl;
  2226. int node = NUMA_NO_NODE;
  2227. bool writable = false, referenced = false;
  2228. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2229. pmd = mm_find_pmd(mm, address);
  2230. if (!pmd) {
  2231. result = SCAN_PMD_NULL;
  2232. goto out;
  2233. }
  2234. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2235. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2236. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2237. _pte++, _address += PAGE_SIZE) {
  2238. pte_t pteval = *_pte;
  2239. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2240. if (!userfaultfd_armed(vma) &&
  2241. ++none_or_zero <= khugepaged_max_ptes_none) {
  2242. continue;
  2243. } else {
  2244. result = SCAN_EXCEED_NONE_PTE;
  2245. goto out_unmap;
  2246. }
  2247. }
  2248. if (!pte_present(pteval)) {
  2249. result = SCAN_PTE_NON_PRESENT;
  2250. goto out_unmap;
  2251. }
  2252. if (pte_write(pteval))
  2253. writable = true;
  2254. page = vm_normal_page(vma, _address, pteval);
  2255. if (unlikely(!page)) {
  2256. result = SCAN_PAGE_NULL;
  2257. goto out_unmap;
  2258. }
  2259. /* TODO: teach khugepaged to collapse THP mapped with pte */
  2260. if (PageCompound(page)) {
  2261. result = SCAN_PAGE_COMPOUND;
  2262. goto out_unmap;
  2263. }
  2264. /*
  2265. * Record which node the original page is from and save this
  2266. * information to khugepaged_node_load[].
  2267. * Khupaged will allocate hugepage from the node has the max
  2268. * hit record.
  2269. */
  2270. node = page_to_nid(page);
  2271. if (khugepaged_scan_abort(node)) {
  2272. result = SCAN_SCAN_ABORT;
  2273. goto out_unmap;
  2274. }
  2275. khugepaged_node_load[node]++;
  2276. if (!PageLRU(page)) {
  2277. result = SCAN_PAGE_LRU;
  2278. goto out_unmap;
  2279. }
  2280. if (PageLocked(page)) {
  2281. result = SCAN_PAGE_LOCK;
  2282. goto out_unmap;
  2283. }
  2284. if (!PageAnon(page)) {
  2285. result = SCAN_PAGE_ANON;
  2286. goto out_unmap;
  2287. }
  2288. /*
  2289. * cannot use mapcount: can't collapse if there's a gup pin.
  2290. * The page must only be referenced by the scanned process
  2291. * and page swap cache.
  2292. */
  2293. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  2294. result = SCAN_PAGE_COUNT;
  2295. goto out_unmap;
  2296. }
  2297. if (pte_young(pteval) ||
  2298. page_is_young(page) || PageReferenced(page) ||
  2299. mmu_notifier_test_young(vma->vm_mm, address))
  2300. referenced = true;
  2301. }
  2302. if (writable) {
  2303. if (referenced) {
  2304. result = SCAN_SUCCEED;
  2305. ret = 1;
  2306. } else {
  2307. result = SCAN_NO_REFERENCED_PAGE;
  2308. }
  2309. } else {
  2310. result = SCAN_PAGE_RO;
  2311. }
  2312. out_unmap:
  2313. pte_unmap_unlock(pte, ptl);
  2314. if (ret) {
  2315. node = khugepaged_find_target_node();
  2316. /* collapse_huge_page will return with the mmap_sem released */
  2317. collapse_huge_page(mm, address, hpage, vma, node);
  2318. }
  2319. out:
  2320. trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
  2321. none_or_zero, result);
  2322. return ret;
  2323. }
  2324. static void collect_mm_slot(struct mm_slot *mm_slot)
  2325. {
  2326. struct mm_struct *mm = mm_slot->mm;
  2327. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2328. if (khugepaged_test_exit(mm)) {
  2329. /* free mm_slot */
  2330. hash_del(&mm_slot->hash);
  2331. list_del(&mm_slot->mm_node);
  2332. /*
  2333. * Not strictly needed because the mm exited already.
  2334. *
  2335. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2336. */
  2337. /* khugepaged_mm_lock actually not necessary for the below */
  2338. free_mm_slot(mm_slot);
  2339. mmdrop(mm);
  2340. }
  2341. }
  2342. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2343. struct page **hpage)
  2344. __releases(&khugepaged_mm_lock)
  2345. __acquires(&khugepaged_mm_lock)
  2346. {
  2347. struct mm_slot *mm_slot;
  2348. struct mm_struct *mm;
  2349. struct vm_area_struct *vma;
  2350. int progress = 0;
  2351. VM_BUG_ON(!pages);
  2352. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2353. if (khugepaged_scan.mm_slot)
  2354. mm_slot = khugepaged_scan.mm_slot;
  2355. else {
  2356. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2357. struct mm_slot, mm_node);
  2358. khugepaged_scan.address = 0;
  2359. khugepaged_scan.mm_slot = mm_slot;
  2360. }
  2361. spin_unlock(&khugepaged_mm_lock);
  2362. mm = mm_slot->mm;
  2363. down_read(&mm->mmap_sem);
  2364. if (unlikely(khugepaged_test_exit(mm)))
  2365. vma = NULL;
  2366. else
  2367. vma = find_vma(mm, khugepaged_scan.address);
  2368. progress++;
  2369. for (; vma; vma = vma->vm_next) {
  2370. unsigned long hstart, hend;
  2371. cond_resched();
  2372. if (unlikely(khugepaged_test_exit(mm))) {
  2373. progress++;
  2374. break;
  2375. }
  2376. if (!hugepage_vma_check(vma)) {
  2377. skip:
  2378. progress++;
  2379. continue;
  2380. }
  2381. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2382. hend = vma->vm_end & HPAGE_PMD_MASK;
  2383. if (hstart >= hend)
  2384. goto skip;
  2385. if (khugepaged_scan.address > hend)
  2386. goto skip;
  2387. if (khugepaged_scan.address < hstart)
  2388. khugepaged_scan.address = hstart;
  2389. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2390. while (khugepaged_scan.address < hend) {
  2391. int ret;
  2392. cond_resched();
  2393. if (unlikely(khugepaged_test_exit(mm)))
  2394. goto breakouterloop;
  2395. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2396. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2397. hend);
  2398. ret = khugepaged_scan_pmd(mm, vma,
  2399. khugepaged_scan.address,
  2400. hpage);
  2401. /* move to next address */
  2402. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2403. progress += HPAGE_PMD_NR;
  2404. if (ret)
  2405. /* we released mmap_sem so break loop */
  2406. goto breakouterloop_mmap_sem;
  2407. if (progress >= pages)
  2408. goto breakouterloop;
  2409. }
  2410. }
  2411. breakouterloop:
  2412. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2413. breakouterloop_mmap_sem:
  2414. spin_lock(&khugepaged_mm_lock);
  2415. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2416. /*
  2417. * Release the current mm_slot if this mm is about to die, or
  2418. * if we scanned all vmas of this mm.
  2419. */
  2420. if (khugepaged_test_exit(mm) || !vma) {
  2421. /*
  2422. * Make sure that if mm_users is reaching zero while
  2423. * khugepaged runs here, khugepaged_exit will find
  2424. * mm_slot not pointing to the exiting mm.
  2425. */
  2426. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2427. khugepaged_scan.mm_slot = list_entry(
  2428. mm_slot->mm_node.next,
  2429. struct mm_slot, mm_node);
  2430. khugepaged_scan.address = 0;
  2431. } else {
  2432. khugepaged_scan.mm_slot = NULL;
  2433. khugepaged_full_scans++;
  2434. }
  2435. collect_mm_slot(mm_slot);
  2436. }
  2437. return progress;
  2438. }
  2439. static int khugepaged_has_work(void)
  2440. {
  2441. return !list_empty(&khugepaged_scan.mm_head) &&
  2442. khugepaged_enabled();
  2443. }
  2444. static int khugepaged_wait_event(void)
  2445. {
  2446. return !list_empty(&khugepaged_scan.mm_head) ||
  2447. kthread_should_stop();
  2448. }
  2449. static void khugepaged_do_scan(void)
  2450. {
  2451. struct page *hpage = NULL;
  2452. unsigned int progress = 0, pass_through_head = 0;
  2453. unsigned int pages = khugepaged_pages_to_scan;
  2454. bool wait = true;
  2455. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2456. while (progress < pages) {
  2457. if (!khugepaged_prealloc_page(&hpage, &wait))
  2458. break;
  2459. cond_resched();
  2460. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2461. break;
  2462. spin_lock(&khugepaged_mm_lock);
  2463. if (!khugepaged_scan.mm_slot)
  2464. pass_through_head++;
  2465. if (khugepaged_has_work() &&
  2466. pass_through_head < 2)
  2467. progress += khugepaged_scan_mm_slot(pages - progress,
  2468. &hpage);
  2469. else
  2470. progress = pages;
  2471. spin_unlock(&khugepaged_mm_lock);
  2472. }
  2473. if (!IS_ERR_OR_NULL(hpage))
  2474. put_page(hpage);
  2475. }
  2476. static void khugepaged_wait_work(void)
  2477. {
  2478. if (khugepaged_has_work()) {
  2479. if (!khugepaged_scan_sleep_millisecs)
  2480. return;
  2481. wait_event_freezable_timeout(khugepaged_wait,
  2482. kthread_should_stop(),
  2483. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2484. return;
  2485. }
  2486. if (khugepaged_enabled())
  2487. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2488. }
  2489. static int khugepaged(void *none)
  2490. {
  2491. struct mm_slot *mm_slot;
  2492. set_freezable();
  2493. set_user_nice(current, MAX_NICE);
  2494. while (!kthread_should_stop()) {
  2495. khugepaged_do_scan();
  2496. khugepaged_wait_work();
  2497. }
  2498. spin_lock(&khugepaged_mm_lock);
  2499. mm_slot = khugepaged_scan.mm_slot;
  2500. khugepaged_scan.mm_slot = NULL;
  2501. if (mm_slot)
  2502. collect_mm_slot(mm_slot);
  2503. spin_unlock(&khugepaged_mm_lock);
  2504. return 0;
  2505. }
  2506. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2507. unsigned long haddr, pmd_t *pmd)
  2508. {
  2509. struct mm_struct *mm = vma->vm_mm;
  2510. pgtable_t pgtable;
  2511. pmd_t _pmd;
  2512. int i;
  2513. /* leave pmd empty until pte is filled */
  2514. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2515. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2516. pmd_populate(mm, &_pmd, pgtable);
  2517. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2518. pte_t *pte, entry;
  2519. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2520. entry = pte_mkspecial(entry);
  2521. pte = pte_offset_map(&_pmd, haddr);
  2522. VM_BUG_ON(!pte_none(*pte));
  2523. set_pte_at(mm, haddr, pte, entry);
  2524. pte_unmap(pte);
  2525. }
  2526. smp_wmb(); /* make pte visible before pmd */
  2527. pmd_populate(mm, pmd, pgtable);
  2528. put_huge_zero_page();
  2529. }
  2530. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  2531. unsigned long haddr, bool freeze)
  2532. {
  2533. struct mm_struct *mm = vma->vm_mm;
  2534. struct page *page;
  2535. pgtable_t pgtable;
  2536. pmd_t _pmd;
  2537. bool young, write, dirty;
  2538. unsigned long addr;
  2539. int i;
  2540. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  2541. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  2542. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  2543. VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
  2544. count_vm_event(THP_SPLIT_PMD);
  2545. if (vma_is_dax(vma)) {
  2546. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2547. if (is_huge_zero_pmd(_pmd))
  2548. put_huge_zero_page();
  2549. return;
  2550. } else if (is_huge_zero_pmd(*pmd)) {
  2551. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  2552. }
  2553. page = pmd_page(*pmd);
  2554. VM_BUG_ON_PAGE(!page_count(page), page);
  2555. page_ref_add(page, HPAGE_PMD_NR - 1);
  2556. write = pmd_write(*pmd);
  2557. young = pmd_young(*pmd);
  2558. dirty = pmd_dirty(*pmd);
  2559. pmdp_huge_split_prepare(vma, haddr, pmd);
  2560. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2561. pmd_populate(mm, &_pmd, pgtable);
  2562. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  2563. pte_t entry, *pte;
  2564. /*
  2565. * Note that NUMA hinting access restrictions are not
  2566. * transferred to avoid any possibility of altering
  2567. * permissions across VMAs.
  2568. */
  2569. if (freeze) {
  2570. swp_entry_t swp_entry;
  2571. swp_entry = make_migration_entry(page + i, write);
  2572. entry = swp_entry_to_pte(swp_entry);
  2573. } else {
  2574. entry = mk_pte(page + i, vma->vm_page_prot);
  2575. entry = maybe_mkwrite(entry, vma);
  2576. if (!write)
  2577. entry = pte_wrprotect(entry);
  2578. if (!young)
  2579. entry = pte_mkold(entry);
  2580. }
  2581. if (dirty)
  2582. SetPageDirty(page + i);
  2583. pte = pte_offset_map(&_pmd, addr);
  2584. BUG_ON(!pte_none(*pte));
  2585. set_pte_at(mm, addr, pte, entry);
  2586. atomic_inc(&page[i]._mapcount);
  2587. pte_unmap(pte);
  2588. }
  2589. /*
  2590. * Set PG_double_map before dropping compound_mapcount to avoid
  2591. * false-negative page_mapped().
  2592. */
  2593. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  2594. for (i = 0; i < HPAGE_PMD_NR; i++)
  2595. atomic_inc(&page[i]._mapcount);
  2596. }
  2597. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  2598. /* Last compound_mapcount is gone. */
  2599. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  2600. if (TestClearPageDoubleMap(page)) {
  2601. /* No need in mapcount reference anymore */
  2602. for (i = 0; i < HPAGE_PMD_NR; i++)
  2603. atomic_dec(&page[i]._mapcount);
  2604. }
  2605. }
  2606. smp_wmb(); /* make pte visible before pmd */
  2607. /*
  2608. * Up to this point the pmd is present and huge and userland has the
  2609. * whole access to the hugepage during the split (which happens in
  2610. * place). If we overwrite the pmd with the not-huge version pointing
  2611. * to the pte here (which of course we could if all CPUs were bug
  2612. * free), userland could trigger a small page size TLB miss on the
  2613. * small sized TLB while the hugepage TLB entry is still established in
  2614. * the huge TLB. Some CPU doesn't like that.
  2615. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  2616. * 383 on page 93. Intel should be safe but is also warns that it's
  2617. * only safe if the permission and cache attributes of the two entries
  2618. * loaded in the two TLB is identical (which should be the case here).
  2619. * But it is generally safer to never allow small and huge TLB entries
  2620. * for the same virtual address to be loaded simultaneously. So instead
  2621. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  2622. * current pmd notpresent (atomically because here the pmd_trans_huge
  2623. * and pmd_trans_splitting must remain set at all times on the pmd
  2624. * until the split is complete for this pmd), then we flush the SMP TLB
  2625. * and finally we write the non-huge version of the pmd entry with
  2626. * pmd_populate.
  2627. */
  2628. pmdp_invalidate(vma, haddr, pmd);
  2629. pmd_populate(mm, pmd, pgtable);
  2630. if (freeze) {
  2631. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2632. page_remove_rmap(page + i, false);
  2633. put_page(page + i);
  2634. }
  2635. }
  2636. }
  2637. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  2638. unsigned long address, bool freeze)
  2639. {
  2640. spinlock_t *ptl;
  2641. struct mm_struct *mm = vma->vm_mm;
  2642. unsigned long haddr = address & HPAGE_PMD_MASK;
  2643. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2644. ptl = pmd_lock(mm, pmd);
  2645. if (pmd_trans_huge(*pmd)) {
  2646. struct page *page = pmd_page(*pmd);
  2647. if (PageMlocked(page))
  2648. clear_page_mlock(page);
  2649. } else if (!pmd_devmap(*pmd))
  2650. goto out;
  2651. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  2652. out:
  2653. spin_unlock(ptl);
  2654. mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
  2655. }
  2656. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  2657. bool freeze, struct page *page)
  2658. {
  2659. pgd_t *pgd;
  2660. pud_t *pud;
  2661. pmd_t *pmd;
  2662. pgd = pgd_offset(vma->vm_mm, address);
  2663. if (!pgd_present(*pgd))
  2664. return;
  2665. pud = pud_offset(pgd, address);
  2666. if (!pud_present(*pud))
  2667. return;
  2668. pmd = pmd_offset(pud, address);
  2669. if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
  2670. return;
  2671. /*
  2672. * If caller asks to setup a migration entries, we need a page to check
  2673. * pmd against. Otherwise we can end up replacing wrong page.
  2674. */
  2675. VM_BUG_ON(freeze && !page);
  2676. if (page && page != pmd_page(*pmd))
  2677. return;
  2678. /*
  2679. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2680. * materialize from under us.
  2681. */
  2682. __split_huge_pmd(vma, pmd, address, freeze);
  2683. }
  2684. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2685. unsigned long start,
  2686. unsigned long end,
  2687. long adjust_next)
  2688. {
  2689. /*
  2690. * If the new start address isn't hpage aligned and it could
  2691. * previously contain an hugepage: check if we need to split
  2692. * an huge pmd.
  2693. */
  2694. if (start & ~HPAGE_PMD_MASK &&
  2695. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2696. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2697. split_huge_pmd_address(vma, start, false, NULL);
  2698. /*
  2699. * If the new end address isn't hpage aligned and it could
  2700. * previously contain an hugepage: check if we need to split
  2701. * an huge pmd.
  2702. */
  2703. if (end & ~HPAGE_PMD_MASK &&
  2704. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2705. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2706. split_huge_pmd_address(vma, end, false, NULL);
  2707. /*
  2708. * If we're also updating the vma->vm_next->vm_start, if the new
  2709. * vm_next->vm_start isn't page aligned and it could previously
  2710. * contain an hugepage: check if we need to split an huge pmd.
  2711. */
  2712. if (adjust_next > 0) {
  2713. struct vm_area_struct *next = vma->vm_next;
  2714. unsigned long nstart = next->vm_start;
  2715. nstart += adjust_next << PAGE_SHIFT;
  2716. if (nstart & ~HPAGE_PMD_MASK &&
  2717. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2718. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2719. split_huge_pmd_address(next, nstart, false, NULL);
  2720. }
  2721. }
  2722. static void freeze_page(struct page *page)
  2723. {
  2724. enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
  2725. TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
  2726. int i, ret;
  2727. VM_BUG_ON_PAGE(!PageHead(page), page);
  2728. /* We only need TTU_SPLIT_HUGE_PMD once */
  2729. ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
  2730. for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
  2731. /* Cut short if the page is unmapped */
  2732. if (page_count(page) == 1)
  2733. return;
  2734. ret = try_to_unmap(page + i, ttu_flags);
  2735. }
  2736. VM_BUG_ON(ret);
  2737. }
  2738. static void unfreeze_page(struct page *page)
  2739. {
  2740. int i;
  2741. for (i = 0; i < HPAGE_PMD_NR; i++)
  2742. remove_migration_ptes(page + i, page + i, true);
  2743. }
  2744. static void __split_huge_page_tail(struct page *head, int tail,
  2745. struct lruvec *lruvec, struct list_head *list)
  2746. {
  2747. struct page *page_tail = head + tail;
  2748. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2749. VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
  2750. /*
  2751. * tail_page->_count is zero and not changing from under us. But
  2752. * get_page_unless_zero() may be running from under us on the
  2753. * tail_page. If we used atomic_set() below instead of atomic_inc(), we
  2754. * would then run atomic_set() concurrently with
  2755. * get_page_unless_zero(), and atomic_set() is implemented in C not
  2756. * using locked ops. spin_unlock on x86 sometime uses locked ops
  2757. * because of PPro errata 66, 92, so unless somebody can guarantee
  2758. * atomic_set() here would be safe on all archs (and not only on x86),
  2759. * it's safer to use atomic_inc().
  2760. */
  2761. page_ref_inc(page_tail);
  2762. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2763. page_tail->flags |= (head->flags &
  2764. ((1L << PG_referenced) |
  2765. (1L << PG_swapbacked) |
  2766. (1L << PG_mlocked) |
  2767. (1L << PG_uptodate) |
  2768. (1L << PG_active) |
  2769. (1L << PG_locked) |
  2770. (1L << PG_unevictable) |
  2771. (1L << PG_dirty)));
  2772. /*
  2773. * After clearing PageTail the gup refcount can be released.
  2774. * Page flags also must be visible before we make the page non-compound.
  2775. */
  2776. smp_wmb();
  2777. clear_compound_head(page_tail);
  2778. if (page_is_young(head))
  2779. set_page_young(page_tail);
  2780. if (page_is_idle(head))
  2781. set_page_idle(page_tail);
  2782. /* ->mapping in first tail page is compound_mapcount */
  2783. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2784. page_tail);
  2785. page_tail->mapping = head->mapping;
  2786. page_tail->index = head->index + tail;
  2787. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2788. lru_add_page_tail(head, page_tail, lruvec, list);
  2789. }
  2790. static void __split_huge_page(struct page *page, struct list_head *list)
  2791. {
  2792. struct page *head = compound_head(page);
  2793. struct zone *zone = page_zone(head);
  2794. struct lruvec *lruvec;
  2795. int i;
  2796. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2797. spin_lock_irq(&zone->lru_lock);
  2798. lruvec = mem_cgroup_page_lruvec(head, zone);
  2799. /* complete memcg works before add pages to LRU */
  2800. mem_cgroup_split_huge_fixup(head);
  2801. for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
  2802. __split_huge_page_tail(head, i, lruvec, list);
  2803. ClearPageCompound(head);
  2804. spin_unlock_irq(&zone->lru_lock);
  2805. unfreeze_page(head);
  2806. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2807. struct page *subpage = head + i;
  2808. if (subpage == page)
  2809. continue;
  2810. unlock_page(subpage);
  2811. /*
  2812. * Subpages may be freed if there wasn't any mapping
  2813. * like if add_to_swap() is running on a lru page that
  2814. * had its mapping zapped. And freeing these pages
  2815. * requires taking the lru_lock so we do the put_page
  2816. * of the tail pages after the split is complete.
  2817. */
  2818. put_page(subpage);
  2819. }
  2820. }
  2821. int total_mapcount(struct page *page)
  2822. {
  2823. int i, ret;
  2824. VM_BUG_ON_PAGE(PageTail(page), page);
  2825. if (likely(!PageCompound(page)))
  2826. return atomic_read(&page->_mapcount) + 1;
  2827. ret = compound_mapcount(page);
  2828. if (PageHuge(page))
  2829. return ret;
  2830. for (i = 0; i < HPAGE_PMD_NR; i++)
  2831. ret += atomic_read(&page[i]._mapcount) + 1;
  2832. if (PageDoubleMap(page))
  2833. ret -= HPAGE_PMD_NR;
  2834. return ret;
  2835. }
  2836. /*
  2837. * This function splits huge page into normal pages. @page can point to any
  2838. * subpage of huge page to split. Split doesn't change the position of @page.
  2839. *
  2840. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2841. * The huge page must be locked.
  2842. *
  2843. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2844. *
  2845. * Both head page and tail pages will inherit mapping, flags, and so on from
  2846. * the hugepage.
  2847. *
  2848. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2849. * they are not mapped.
  2850. *
  2851. * Returns 0 if the hugepage is split successfully.
  2852. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2853. * us.
  2854. */
  2855. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2856. {
  2857. struct page *head = compound_head(page);
  2858. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2859. struct anon_vma *anon_vma;
  2860. int count, mapcount, ret;
  2861. bool mlocked;
  2862. unsigned long flags;
  2863. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2864. VM_BUG_ON_PAGE(!PageAnon(page), page);
  2865. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2866. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  2867. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2868. /*
  2869. * The caller does not necessarily hold an mmap_sem that would prevent
  2870. * the anon_vma disappearing so we first we take a reference to it
  2871. * and then lock the anon_vma for write. This is similar to
  2872. * page_lock_anon_vma_read except the write lock is taken to serialise
  2873. * against parallel split or collapse operations.
  2874. */
  2875. anon_vma = page_get_anon_vma(head);
  2876. if (!anon_vma) {
  2877. ret = -EBUSY;
  2878. goto out;
  2879. }
  2880. anon_vma_lock_write(anon_vma);
  2881. /*
  2882. * Racy check if we can split the page, before freeze_page() will
  2883. * split PMDs
  2884. */
  2885. if (total_mapcount(head) != page_count(head) - 1) {
  2886. ret = -EBUSY;
  2887. goto out_unlock;
  2888. }
  2889. mlocked = PageMlocked(page);
  2890. freeze_page(head);
  2891. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2892. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2893. if (mlocked)
  2894. lru_add_drain();
  2895. /* Prevent deferred_split_scan() touching ->_count */
  2896. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2897. count = page_count(head);
  2898. mapcount = total_mapcount(head);
  2899. if (!mapcount && count == 1) {
  2900. if (!list_empty(page_deferred_list(head))) {
  2901. pgdata->split_queue_len--;
  2902. list_del(page_deferred_list(head));
  2903. }
  2904. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2905. __split_huge_page(page, list);
  2906. ret = 0;
  2907. } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2908. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2909. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2910. mapcount, count);
  2911. if (PageTail(page))
  2912. dump_page(head, NULL);
  2913. dump_page(page, "total_mapcount(head) > 0");
  2914. BUG();
  2915. } else {
  2916. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2917. unfreeze_page(head);
  2918. ret = -EBUSY;
  2919. }
  2920. out_unlock:
  2921. anon_vma_unlock_write(anon_vma);
  2922. put_anon_vma(anon_vma);
  2923. out:
  2924. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2925. return ret;
  2926. }
  2927. void free_transhuge_page(struct page *page)
  2928. {
  2929. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2930. unsigned long flags;
  2931. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2932. if (!list_empty(page_deferred_list(page))) {
  2933. pgdata->split_queue_len--;
  2934. list_del(page_deferred_list(page));
  2935. }
  2936. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2937. free_compound_page(page);
  2938. }
  2939. void deferred_split_huge_page(struct page *page)
  2940. {
  2941. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2942. unsigned long flags;
  2943. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2944. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2945. if (list_empty(page_deferred_list(page))) {
  2946. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2947. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2948. pgdata->split_queue_len++;
  2949. }
  2950. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2951. }
  2952. static unsigned long deferred_split_count(struct shrinker *shrink,
  2953. struct shrink_control *sc)
  2954. {
  2955. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2956. return ACCESS_ONCE(pgdata->split_queue_len);
  2957. }
  2958. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2959. struct shrink_control *sc)
  2960. {
  2961. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2962. unsigned long flags;
  2963. LIST_HEAD(list), *pos, *next;
  2964. struct page *page;
  2965. int split = 0;
  2966. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2967. /* Take pin on all head pages to avoid freeing them under us */
  2968. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2969. page = list_entry((void *)pos, struct page, mapping);
  2970. page = compound_head(page);
  2971. if (get_page_unless_zero(page)) {
  2972. list_move(page_deferred_list(page), &list);
  2973. } else {
  2974. /* We lost race with put_compound_page() */
  2975. list_del_init(page_deferred_list(page));
  2976. pgdata->split_queue_len--;
  2977. }
  2978. if (!--sc->nr_to_scan)
  2979. break;
  2980. }
  2981. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2982. list_for_each_safe(pos, next, &list) {
  2983. page = list_entry((void *)pos, struct page, mapping);
  2984. lock_page(page);
  2985. /* split_huge_page() removes page from list on success */
  2986. if (!split_huge_page(page))
  2987. split++;
  2988. unlock_page(page);
  2989. put_page(page);
  2990. }
  2991. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2992. list_splice_tail(&list, &pgdata->split_queue);
  2993. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2994. /*
  2995. * Stop shrinker if we didn't split any page, but the queue is empty.
  2996. * This can happen if pages were freed under us.
  2997. */
  2998. if (!split && list_empty(&pgdata->split_queue))
  2999. return SHRINK_STOP;
  3000. return split;
  3001. }
  3002. static struct shrinker deferred_split_shrinker = {
  3003. .count_objects = deferred_split_count,
  3004. .scan_objects = deferred_split_scan,
  3005. .seeks = DEFAULT_SEEKS,
  3006. .flags = SHRINKER_NUMA_AWARE,
  3007. };
  3008. #ifdef CONFIG_DEBUG_FS
  3009. static int split_huge_pages_set(void *data, u64 val)
  3010. {
  3011. struct zone *zone;
  3012. struct page *page;
  3013. unsigned long pfn, max_zone_pfn;
  3014. unsigned long total = 0, split = 0;
  3015. if (val != 1)
  3016. return -EINVAL;
  3017. for_each_populated_zone(zone) {
  3018. max_zone_pfn = zone_end_pfn(zone);
  3019. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  3020. if (!pfn_valid(pfn))
  3021. continue;
  3022. page = pfn_to_page(pfn);
  3023. if (!get_page_unless_zero(page))
  3024. continue;
  3025. if (zone != page_zone(page))
  3026. goto next;
  3027. if (!PageHead(page) || !PageAnon(page) ||
  3028. PageHuge(page))
  3029. goto next;
  3030. total++;
  3031. lock_page(page);
  3032. if (!split_huge_page(page))
  3033. split++;
  3034. unlock_page(page);
  3035. next:
  3036. put_page(page);
  3037. }
  3038. }
  3039. pr_info("%lu of %lu THP split", split, total);
  3040. return 0;
  3041. }
  3042. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  3043. "%llu\n");
  3044. static int __init split_huge_pages_debugfs(void)
  3045. {
  3046. void *ret;
  3047. ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
  3048. &split_huge_pages_fops);
  3049. if (!ret)
  3050. pr_warn("Failed to create split_huge_pages in debugfs");
  3051. return 0;
  3052. }
  3053. late_initcall(split_huge_pages_debugfs);
  3054. #endif