timekeeping.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/timekeeper_internal.h>
  11. #include <linux/module.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/percpu.h>
  14. #include <linux/init.h>
  15. #include <linux/mm.h>
  16. #include <linux/sched.h>
  17. #include <linux/syscore_ops.h>
  18. #include <linux/clocksource.h>
  19. #include <linux/jiffies.h>
  20. #include <linux/time.h>
  21. #include <linux/tick.h>
  22. #include <linux/stop_machine.h>
  23. #include <linux/pvclock_gtod.h>
  24. #include <linux/compiler.h>
  25. #include "tick-internal.h"
  26. #include "ntp_internal.h"
  27. #include "timekeeping_internal.h"
  28. #define TK_CLEAR_NTP (1 << 0)
  29. #define TK_MIRROR (1 << 1)
  30. #define TK_CLOCK_WAS_SET (1 << 2)
  31. /*
  32. * The most important data for readout fits into a single 64 byte
  33. * cache line.
  34. */
  35. static struct {
  36. seqcount_t seq;
  37. struct timekeeper timekeeper;
  38. } tk_core ____cacheline_aligned;
  39. static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  40. static struct timekeeper shadow_timekeeper;
  41. /**
  42. * struct tk_fast - NMI safe timekeeper
  43. * @seq: Sequence counter for protecting updates. The lowest bit
  44. * is the index for the tk_read_base array
  45. * @base: tk_read_base array. Access is indexed by the lowest bit of
  46. * @seq.
  47. *
  48. * See @update_fast_timekeeper() below.
  49. */
  50. struct tk_fast {
  51. seqcount_t seq;
  52. struct tk_read_base base[2];
  53. };
  54. static struct tk_fast tk_fast_mono ____cacheline_aligned;
  55. static struct tk_fast tk_fast_raw ____cacheline_aligned;
  56. /* flag for if timekeeping is suspended */
  57. int __read_mostly timekeeping_suspended;
  58. static inline void tk_normalize_xtime(struct timekeeper *tk)
  59. {
  60. while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
  61. tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  62. tk->xtime_sec++;
  63. }
  64. }
  65. static inline struct timespec64 tk_xtime(struct timekeeper *tk)
  66. {
  67. struct timespec64 ts;
  68. ts.tv_sec = tk->xtime_sec;
  69. ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  70. return ts;
  71. }
  72. static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
  73. {
  74. tk->xtime_sec = ts->tv_sec;
  75. tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
  76. }
  77. static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
  78. {
  79. tk->xtime_sec += ts->tv_sec;
  80. tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
  81. tk_normalize_xtime(tk);
  82. }
  83. static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
  84. {
  85. struct timespec64 tmp;
  86. /*
  87. * Verify consistency of: offset_real = -wall_to_monotonic
  88. * before modifying anything
  89. */
  90. set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
  91. -tk->wall_to_monotonic.tv_nsec);
  92. WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
  93. tk->wall_to_monotonic = wtm;
  94. set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
  95. tk->offs_real = timespec64_to_ktime(tmp);
  96. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
  97. }
  98. static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
  99. {
  100. tk->offs_boot = ktime_add(tk->offs_boot, delta);
  101. }
  102. #ifdef CONFIG_DEBUG_TIMEKEEPING
  103. #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
  104. static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
  105. {
  106. cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
  107. const char *name = tk->tkr_mono.clock->name;
  108. if (offset > max_cycles) {
  109. printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
  110. offset, name, max_cycles);
  111. printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
  112. } else {
  113. if (offset > (max_cycles >> 1)) {
  114. printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
  115. offset, name, max_cycles >> 1);
  116. printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
  117. }
  118. }
  119. if (tk->underflow_seen) {
  120. if (jiffies - tk->last_warning > WARNING_FREQ) {
  121. printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
  122. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  123. printk_deferred(" Your kernel is probably still fine.\n");
  124. tk->last_warning = jiffies;
  125. }
  126. tk->underflow_seen = 0;
  127. }
  128. if (tk->overflow_seen) {
  129. if (jiffies - tk->last_warning > WARNING_FREQ) {
  130. printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
  131. printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
  132. printk_deferred(" Your kernel is probably still fine.\n");
  133. tk->last_warning = jiffies;
  134. }
  135. tk->overflow_seen = 0;
  136. }
  137. }
  138. static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
  139. {
  140. struct timekeeper *tk = &tk_core.timekeeper;
  141. cycle_t now, last, mask, max, delta;
  142. unsigned int seq;
  143. /*
  144. * Since we're called holding a seqlock, the data may shift
  145. * under us while we're doing the calculation. This can cause
  146. * false positives, since we'd note a problem but throw the
  147. * results away. So nest another seqlock here to atomically
  148. * grab the points we are checking with.
  149. */
  150. do {
  151. seq = read_seqcount_begin(&tk_core.seq);
  152. now = tkr->read(tkr->clock);
  153. last = tkr->cycle_last;
  154. mask = tkr->mask;
  155. max = tkr->clock->max_cycles;
  156. } while (read_seqcount_retry(&tk_core.seq, seq));
  157. delta = clocksource_delta(now, last, mask);
  158. /*
  159. * Try to catch underflows by checking if we are seeing small
  160. * mask-relative negative values.
  161. */
  162. if (unlikely((~delta & mask) < (mask >> 3))) {
  163. tk->underflow_seen = 1;
  164. delta = 0;
  165. }
  166. /* Cap delta value to the max_cycles values to avoid mult overflows */
  167. if (unlikely(delta > max)) {
  168. tk->overflow_seen = 1;
  169. delta = tkr->clock->max_cycles;
  170. }
  171. return delta;
  172. }
  173. #else
  174. static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
  175. {
  176. }
  177. static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
  178. {
  179. cycle_t cycle_now, delta;
  180. /* read clocksource */
  181. cycle_now = tkr->read(tkr->clock);
  182. /* calculate the delta since the last update_wall_time */
  183. delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
  184. return delta;
  185. }
  186. #endif
  187. /**
  188. * tk_setup_internals - Set up internals to use clocksource clock.
  189. *
  190. * @tk: The target timekeeper to setup.
  191. * @clock: Pointer to clocksource.
  192. *
  193. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  194. * pair and interval request.
  195. *
  196. * Unless you're the timekeeping code, you should not be using this!
  197. */
  198. static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
  199. {
  200. cycle_t interval;
  201. u64 tmp, ntpinterval;
  202. struct clocksource *old_clock;
  203. ++tk->cs_was_changed_seq;
  204. old_clock = tk->tkr_mono.clock;
  205. tk->tkr_mono.clock = clock;
  206. tk->tkr_mono.read = clock->read;
  207. tk->tkr_mono.mask = clock->mask;
  208. tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
  209. tk->tkr_raw.clock = clock;
  210. tk->tkr_raw.read = clock->read;
  211. tk->tkr_raw.mask = clock->mask;
  212. tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
  213. /* Do the ns -> cycle conversion first, using original mult */
  214. tmp = NTP_INTERVAL_LENGTH;
  215. tmp <<= clock->shift;
  216. ntpinterval = tmp;
  217. tmp += clock->mult/2;
  218. do_div(tmp, clock->mult);
  219. if (tmp == 0)
  220. tmp = 1;
  221. interval = (cycle_t) tmp;
  222. tk->cycle_interval = interval;
  223. /* Go back from cycles -> shifted ns */
  224. tk->xtime_interval = (u64) interval * clock->mult;
  225. tk->xtime_remainder = ntpinterval - tk->xtime_interval;
  226. tk->raw_interval =
  227. ((u64) interval * clock->mult) >> clock->shift;
  228. /* if changing clocks, convert xtime_nsec shift units */
  229. if (old_clock) {
  230. int shift_change = clock->shift - old_clock->shift;
  231. if (shift_change < 0)
  232. tk->tkr_mono.xtime_nsec >>= -shift_change;
  233. else
  234. tk->tkr_mono.xtime_nsec <<= shift_change;
  235. }
  236. tk->tkr_raw.xtime_nsec = 0;
  237. tk->tkr_mono.shift = clock->shift;
  238. tk->tkr_raw.shift = clock->shift;
  239. tk->ntp_error = 0;
  240. tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  241. tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
  242. /*
  243. * The timekeeper keeps its own mult values for the currently
  244. * active clocksource. These value will be adjusted via NTP
  245. * to counteract clock drifting.
  246. */
  247. tk->tkr_mono.mult = clock->mult;
  248. tk->tkr_raw.mult = clock->mult;
  249. tk->ntp_err_mult = 0;
  250. }
  251. /* Timekeeper helper functions. */
  252. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  253. static u32 default_arch_gettimeoffset(void) { return 0; }
  254. u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
  255. #else
  256. static inline u32 arch_gettimeoffset(void) { return 0; }
  257. #endif
  258. static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
  259. cycle_t delta)
  260. {
  261. s64 nsec;
  262. nsec = delta * tkr->mult + tkr->xtime_nsec;
  263. nsec >>= tkr->shift;
  264. /* If arch requires, add in get_arch_timeoffset() */
  265. return nsec + arch_gettimeoffset();
  266. }
  267. static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
  268. {
  269. cycle_t delta;
  270. delta = timekeeping_get_delta(tkr);
  271. return timekeeping_delta_to_ns(tkr, delta);
  272. }
  273. static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
  274. cycle_t cycles)
  275. {
  276. cycle_t delta;
  277. /* calculate the delta since the last update_wall_time */
  278. delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
  279. return timekeeping_delta_to_ns(tkr, delta);
  280. }
  281. /**
  282. * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
  283. * @tkr: Timekeeping readout base from which we take the update
  284. *
  285. * We want to use this from any context including NMI and tracing /
  286. * instrumenting the timekeeping code itself.
  287. *
  288. * Employ the latch technique; see @raw_write_seqcount_latch.
  289. *
  290. * So if a NMI hits the update of base[0] then it will use base[1]
  291. * which is still consistent. In the worst case this can result is a
  292. * slightly wrong timestamp (a few nanoseconds). See
  293. * @ktime_get_mono_fast_ns.
  294. */
  295. static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
  296. {
  297. struct tk_read_base *base = tkf->base;
  298. /* Force readers off to base[1] */
  299. raw_write_seqcount_latch(&tkf->seq);
  300. /* Update base[0] */
  301. memcpy(base, tkr, sizeof(*base));
  302. /* Force readers back to base[0] */
  303. raw_write_seqcount_latch(&tkf->seq);
  304. /* Update base[1] */
  305. memcpy(base + 1, base, sizeof(*base));
  306. }
  307. /**
  308. * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
  309. *
  310. * This timestamp is not guaranteed to be monotonic across an update.
  311. * The timestamp is calculated by:
  312. *
  313. * now = base_mono + clock_delta * slope
  314. *
  315. * So if the update lowers the slope, readers who are forced to the
  316. * not yet updated second array are still using the old steeper slope.
  317. *
  318. * tmono
  319. * ^
  320. * | o n
  321. * | o n
  322. * | u
  323. * | o
  324. * |o
  325. * |12345678---> reader order
  326. *
  327. * o = old slope
  328. * u = update
  329. * n = new slope
  330. *
  331. * So reader 6 will observe time going backwards versus reader 5.
  332. *
  333. * While other CPUs are likely to be able observe that, the only way
  334. * for a CPU local observation is when an NMI hits in the middle of
  335. * the update. Timestamps taken from that NMI context might be ahead
  336. * of the following timestamps. Callers need to be aware of that and
  337. * deal with it.
  338. */
  339. static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
  340. {
  341. struct tk_read_base *tkr;
  342. unsigned int seq;
  343. u64 now;
  344. do {
  345. seq = raw_read_seqcount_latch(&tkf->seq);
  346. tkr = tkf->base + (seq & 0x01);
  347. now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
  348. } while (read_seqcount_retry(&tkf->seq, seq));
  349. return now;
  350. }
  351. u64 ktime_get_mono_fast_ns(void)
  352. {
  353. return __ktime_get_fast_ns(&tk_fast_mono);
  354. }
  355. EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
  356. u64 ktime_get_raw_fast_ns(void)
  357. {
  358. return __ktime_get_fast_ns(&tk_fast_raw);
  359. }
  360. EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
  361. /* Suspend-time cycles value for halted fast timekeeper. */
  362. static cycle_t cycles_at_suspend;
  363. static cycle_t dummy_clock_read(struct clocksource *cs)
  364. {
  365. return cycles_at_suspend;
  366. }
  367. /**
  368. * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
  369. * @tk: Timekeeper to snapshot.
  370. *
  371. * It generally is unsafe to access the clocksource after timekeeping has been
  372. * suspended, so take a snapshot of the readout base of @tk and use it as the
  373. * fast timekeeper's readout base while suspended. It will return the same
  374. * number of cycles every time until timekeeping is resumed at which time the
  375. * proper readout base for the fast timekeeper will be restored automatically.
  376. */
  377. static void halt_fast_timekeeper(struct timekeeper *tk)
  378. {
  379. static struct tk_read_base tkr_dummy;
  380. struct tk_read_base *tkr = &tk->tkr_mono;
  381. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  382. cycles_at_suspend = tkr->read(tkr->clock);
  383. tkr_dummy.read = dummy_clock_read;
  384. update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
  385. tkr = &tk->tkr_raw;
  386. memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
  387. tkr_dummy.read = dummy_clock_read;
  388. update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
  389. }
  390. #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
  391. static inline void update_vsyscall(struct timekeeper *tk)
  392. {
  393. struct timespec xt, wm;
  394. xt = timespec64_to_timespec(tk_xtime(tk));
  395. wm = timespec64_to_timespec(tk->wall_to_monotonic);
  396. update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
  397. tk->tkr_mono.cycle_last);
  398. }
  399. static inline void old_vsyscall_fixup(struct timekeeper *tk)
  400. {
  401. s64 remainder;
  402. /*
  403. * Store only full nanoseconds into xtime_nsec after rounding
  404. * it up and add the remainder to the error difference.
  405. * XXX - This is necessary to avoid small 1ns inconsistnecies caused
  406. * by truncating the remainder in vsyscalls. However, it causes
  407. * additional work to be done in timekeeping_adjust(). Once
  408. * the vsyscall implementations are converted to use xtime_nsec
  409. * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
  410. * users are removed, this can be killed.
  411. */
  412. remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
  413. tk->tkr_mono.xtime_nsec -= remainder;
  414. tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
  415. tk->ntp_error += remainder << tk->ntp_error_shift;
  416. tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
  417. }
  418. #else
  419. #define old_vsyscall_fixup(tk)
  420. #endif
  421. static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
  422. static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
  423. {
  424. raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
  425. }
  426. /**
  427. * pvclock_gtod_register_notifier - register a pvclock timedata update listener
  428. */
  429. int pvclock_gtod_register_notifier(struct notifier_block *nb)
  430. {
  431. struct timekeeper *tk = &tk_core.timekeeper;
  432. unsigned long flags;
  433. int ret;
  434. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  435. ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
  436. update_pvclock_gtod(tk, true);
  437. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  438. return ret;
  439. }
  440. EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
  441. /**
  442. * pvclock_gtod_unregister_notifier - unregister a pvclock
  443. * timedata update listener
  444. */
  445. int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
  446. {
  447. unsigned long flags;
  448. int ret;
  449. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  450. ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
  451. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  452. return ret;
  453. }
  454. EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
  455. /*
  456. * tk_update_leap_state - helper to update the next_leap_ktime
  457. */
  458. static inline void tk_update_leap_state(struct timekeeper *tk)
  459. {
  460. tk->next_leap_ktime = ntp_get_next_leap();
  461. if (tk->next_leap_ktime.tv64 != KTIME_MAX)
  462. /* Convert to monotonic time */
  463. tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
  464. }
  465. /*
  466. * Update the ktime_t based scalar nsec members of the timekeeper
  467. */
  468. static inline void tk_update_ktime_data(struct timekeeper *tk)
  469. {
  470. u64 seconds;
  471. u32 nsec;
  472. /*
  473. * The xtime based monotonic readout is:
  474. * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
  475. * The ktime based monotonic readout is:
  476. * nsec = base_mono + now();
  477. * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
  478. */
  479. seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
  480. nsec = (u32) tk->wall_to_monotonic.tv_nsec;
  481. tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
  482. /* Update the monotonic raw base */
  483. tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
  484. /*
  485. * The sum of the nanoseconds portions of xtime and
  486. * wall_to_monotonic can be greater/equal one second. Take
  487. * this into account before updating tk->ktime_sec.
  488. */
  489. nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
  490. if (nsec >= NSEC_PER_SEC)
  491. seconds++;
  492. tk->ktime_sec = seconds;
  493. }
  494. /* must hold timekeeper_lock */
  495. static void timekeeping_update(struct timekeeper *tk, unsigned int action)
  496. {
  497. if (action & TK_CLEAR_NTP) {
  498. tk->ntp_error = 0;
  499. ntp_clear();
  500. }
  501. tk_update_leap_state(tk);
  502. tk_update_ktime_data(tk);
  503. update_vsyscall(tk);
  504. update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
  505. update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
  506. update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
  507. if (action & TK_CLOCK_WAS_SET)
  508. tk->clock_was_set_seq++;
  509. /*
  510. * The mirroring of the data to the shadow-timekeeper needs
  511. * to happen last here to ensure we don't over-write the
  512. * timekeeper structure on the next update with stale data
  513. */
  514. if (action & TK_MIRROR)
  515. memcpy(&shadow_timekeeper, &tk_core.timekeeper,
  516. sizeof(tk_core.timekeeper));
  517. }
  518. /**
  519. * timekeeping_forward_now - update clock to the current time
  520. *
  521. * Forward the current clock to update its state since the last call to
  522. * update_wall_time(). This is useful before significant clock changes,
  523. * as it avoids having to deal with this time offset explicitly.
  524. */
  525. static void timekeeping_forward_now(struct timekeeper *tk)
  526. {
  527. struct clocksource *clock = tk->tkr_mono.clock;
  528. cycle_t cycle_now, delta;
  529. s64 nsec;
  530. cycle_now = tk->tkr_mono.read(clock);
  531. delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  532. tk->tkr_mono.cycle_last = cycle_now;
  533. tk->tkr_raw.cycle_last = cycle_now;
  534. tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
  535. /* If arch requires, add in get_arch_timeoffset() */
  536. tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
  537. tk_normalize_xtime(tk);
  538. nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
  539. timespec64_add_ns(&tk->raw_time, nsec);
  540. }
  541. /**
  542. * __getnstimeofday64 - Returns the time of day in a timespec64.
  543. * @ts: pointer to the timespec to be set
  544. *
  545. * Updates the time of day in the timespec.
  546. * Returns 0 on success, or -ve when suspended (timespec will be undefined).
  547. */
  548. int __getnstimeofday64(struct timespec64 *ts)
  549. {
  550. struct timekeeper *tk = &tk_core.timekeeper;
  551. unsigned long seq;
  552. s64 nsecs = 0;
  553. do {
  554. seq = read_seqcount_begin(&tk_core.seq);
  555. ts->tv_sec = tk->xtime_sec;
  556. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  557. } while (read_seqcount_retry(&tk_core.seq, seq));
  558. ts->tv_nsec = 0;
  559. timespec64_add_ns(ts, nsecs);
  560. /*
  561. * Do not bail out early, in case there were callers still using
  562. * the value, even in the face of the WARN_ON.
  563. */
  564. if (unlikely(timekeeping_suspended))
  565. return -EAGAIN;
  566. return 0;
  567. }
  568. EXPORT_SYMBOL(__getnstimeofday64);
  569. /**
  570. * getnstimeofday64 - Returns the time of day in a timespec64.
  571. * @ts: pointer to the timespec64 to be set
  572. *
  573. * Returns the time of day in a timespec64 (WARN if suspended).
  574. */
  575. void getnstimeofday64(struct timespec64 *ts)
  576. {
  577. WARN_ON(__getnstimeofday64(ts));
  578. }
  579. EXPORT_SYMBOL(getnstimeofday64);
  580. ktime_t ktime_get(void)
  581. {
  582. struct timekeeper *tk = &tk_core.timekeeper;
  583. unsigned int seq;
  584. ktime_t base;
  585. s64 nsecs;
  586. WARN_ON(timekeeping_suspended);
  587. do {
  588. seq = read_seqcount_begin(&tk_core.seq);
  589. base = tk->tkr_mono.base;
  590. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  591. } while (read_seqcount_retry(&tk_core.seq, seq));
  592. return ktime_add_ns(base, nsecs);
  593. }
  594. EXPORT_SYMBOL_GPL(ktime_get);
  595. u32 ktime_get_resolution_ns(void)
  596. {
  597. struct timekeeper *tk = &tk_core.timekeeper;
  598. unsigned int seq;
  599. u32 nsecs;
  600. WARN_ON(timekeeping_suspended);
  601. do {
  602. seq = read_seqcount_begin(&tk_core.seq);
  603. nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
  604. } while (read_seqcount_retry(&tk_core.seq, seq));
  605. return nsecs;
  606. }
  607. EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
  608. static ktime_t *offsets[TK_OFFS_MAX] = {
  609. [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
  610. [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
  611. [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
  612. };
  613. ktime_t ktime_get_with_offset(enum tk_offsets offs)
  614. {
  615. struct timekeeper *tk = &tk_core.timekeeper;
  616. unsigned int seq;
  617. ktime_t base, *offset = offsets[offs];
  618. s64 nsecs;
  619. WARN_ON(timekeeping_suspended);
  620. do {
  621. seq = read_seqcount_begin(&tk_core.seq);
  622. base = ktime_add(tk->tkr_mono.base, *offset);
  623. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  624. } while (read_seqcount_retry(&tk_core.seq, seq));
  625. return ktime_add_ns(base, nsecs);
  626. }
  627. EXPORT_SYMBOL_GPL(ktime_get_with_offset);
  628. /**
  629. * ktime_mono_to_any() - convert mononotic time to any other time
  630. * @tmono: time to convert.
  631. * @offs: which offset to use
  632. */
  633. ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
  634. {
  635. ktime_t *offset = offsets[offs];
  636. unsigned long seq;
  637. ktime_t tconv;
  638. do {
  639. seq = read_seqcount_begin(&tk_core.seq);
  640. tconv = ktime_add(tmono, *offset);
  641. } while (read_seqcount_retry(&tk_core.seq, seq));
  642. return tconv;
  643. }
  644. EXPORT_SYMBOL_GPL(ktime_mono_to_any);
  645. /**
  646. * ktime_get_raw - Returns the raw monotonic time in ktime_t format
  647. */
  648. ktime_t ktime_get_raw(void)
  649. {
  650. struct timekeeper *tk = &tk_core.timekeeper;
  651. unsigned int seq;
  652. ktime_t base;
  653. s64 nsecs;
  654. do {
  655. seq = read_seqcount_begin(&tk_core.seq);
  656. base = tk->tkr_raw.base;
  657. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  658. } while (read_seqcount_retry(&tk_core.seq, seq));
  659. return ktime_add_ns(base, nsecs);
  660. }
  661. EXPORT_SYMBOL_GPL(ktime_get_raw);
  662. /**
  663. * ktime_get_ts64 - get the monotonic clock in timespec64 format
  664. * @ts: pointer to timespec variable
  665. *
  666. * The function calculates the monotonic clock from the realtime
  667. * clock and the wall_to_monotonic offset and stores the result
  668. * in normalized timespec64 format in the variable pointed to by @ts.
  669. */
  670. void ktime_get_ts64(struct timespec64 *ts)
  671. {
  672. struct timekeeper *tk = &tk_core.timekeeper;
  673. struct timespec64 tomono;
  674. s64 nsec;
  675. unsigned int seq;
  676. WARN_ON(timekeeping_suspended);
  677. do {
  678. seq = read_seqcount_begin(&tk_core.seq);
  679. ts->tv_sec = tk->xtime_sec;
  680. nsec = timekeeping_get_ns(&tk->tkr_mono);
  681. tomono = tk->wall_to_monotonic;
  682. } while (read_seqcount_retry(&tk_core.seq, seq));
  683. ts->tv_sec += tomono.tv_sec;
  684. ts->tv_nsec = 0;
  685. timespec64_add_ns(ts, nsec + tomono.tv_nsec);
  686. }
  687. EXPORT_SYMBOL_GPL(ktime_get_ts64);
  688. /**
  689. * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
  690. *
  691. * Returns the seconds portion of CLOCK_MONOTONIC with a single non
  692. * serialized read. tk->ktime_sec is of type 'unsigned long' so this
  693. * works on both 32 and 64 bit systems. On 32 bit systems the readout
  694. * covers ~136 years of uptime which should be enough to prevent
  695. * premature wrap arounds.
  696. */
  697. time64_t ktime_get_seconds(void)
  698. {
  699. struct timekeeper *tk = &tk_core.timekeeper;
  700. WARN_ON(timekeeping_suspended);
  701. return tk->ktime_sec;
  702. }
  703. EXPORT_SYMBOL_GPL(ktime_get_seconds);
  704. /**
  705. * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
  706. *
  707. * Returns the wall clock seconds since 1970. This replaces the
  708. * get_seconds() interface which is not y2038 safe on 32bit systems.
  709. *
  710. * For 64bit systems the fast access to tk->xtime_sec is preserved. On
  711. * 32bit systems the access must be protected with the sequence
  712. * counter to provide "atomic" access to the 64bit tk->xtime_sec
  713. * value.
  714. */
  715. time64_t ktime_get_real_seconds(void)
  716. {
  717. struct timekeeper *tk = &tk_core.timekeeper;
  718. time64_t seconds;
  719. unsigned int seq;
  720. if (IS_ENABLED(CONFIG_64BIT))
  721. return tk->xtime_sec;
  722. do {
  723. seq = read_seqcount_begin(&tk_core.seq);
  724. seconds = tk->xtime_sec;
  725. } while (read_seqcount_retry(&tk_core.seq, seq));
  726. return seconds;
  727. }
  728. EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
  729. /**
  730. * __ktime_get_real_seconds - The same as ktime_get_real_seconds
  731. * but without the sequence counter protect. This internal function
  732. * is called just when timekeeping lock is already held.
  733. */
  734. time64_t __ktime_get_real_seconds(void)
  735. {
  736. struct timekeeper *tk = &tk_core.timekeeper;
  737. return tk->xtime_sec;
  738. }
  739. /**
  740. * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
  741. * @systime_snapshot: pointer to struct receiving the system time snapshot
  742. */
  743. void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
  744. {
  745. struct timekeeper *tk = &tk_core.timekeeper;
  746. unsigned long seq;
  747. ktime_t base_raw;
  748. ktime_t base_real;
  749. s64 nsec_raw;
  750. s64 nsec_real;
  751. cycle_t now;
  752. WARN_ON_ONCE(timekeeping_suspended);
  753. do {
  754. seq = read_seqcount_begin(&tk_core.seq);
  755. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  756. systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
  757. systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
  758. base_real = ktime_add(tk->tkr_mono.base,
  759. tk_core.timekeeper.offs_real);
  760. base_raw = tk->tkr_raw.base;
  761. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
  762. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
  763. } while (read_seqcount_retry(&tk_core.seq, seq));
  764. systime_snapshot->cycles = now;
  765. systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
  766. systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
  767. }
  768. EXPORT_SYMBOL_GPL(ktime_get_snapshot);
  769. /* Scale base by mult/div checking for overflow */
  770. static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
  771. {
  772. u64 tmp, rem;
  773. tmp = div64_u64_rem(*base, div, &rem);
  774. if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
  775. ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
  776. return -EOVERFLOW;
  777. tmp *= mult;
  778. rem *= mult;
  779. do_div(rem, div);
  780. *base = tmp + rem;
  781. return 0;
  782. }
  783. /**
  784. * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
  785. * @history: Snapshot representing start of history
  786. * @partial_history_cycles: Cycle offset into history (fractional part)
  787. * @total_history_cycles: Total history length in cycles
  788. * @discontinuity: True indicates clock was set on history period
  789. * @ts: Cross timestamp that should be adjusted using
  790. * partial/total ratio
  791. *
  792. * Helper function used by get_device_system_crosststamp() to correct the
  793. * crosstimestamp corresponding to the start of the current interval to the
  794. * system counter value (timestamp point) provided by the driver. The
  795. * total_history_* quantities are the total history starting at the provided
  796. * reference point and ending at the start of the current interval. The cycle
  797. * count between the driver timestamp point and the start of the current
  798. * interval is partial_history_cycles.
  799. */
  800. static int adjust_historical_crosststamp(struct system_time_snapshot *history,
  801. cycle_t partial_history_cycles,
  802. cycle_t total_history_cycles,
  803. bool discontinuity,
  804. struct system_device_crosststamp *ts)
  805. {
  806. struct timekeeper *tk = &tk_core.timekeeper;
  807. u64 corr_raw, corr_real;
  808. bool interp_forward;
  809. int ret;
  810. if (total_history_cycles == 0 || partial_history_cycles == 0)
  811. return 0;
  812. /* Interpolate shortest distance from beginning or end of history */
  813. interp_forward = partial_history_cycles > total_history_cycles/2 ?
  814. true : false;
  815. partial_history_cycles = interp_forward ?
  816. total_history_cycles - partial_history_cycles :
  817. partial_history_cycles;
  818. /*
  819. * Scale the monotonic raw time delta by:
  820. * partial_history_cycles / total_history_cycles
  821. */
  822. corr_raw = (u64)ktime_to_ns(
  823. ktime_sub(ts->sys_monoraw, history->raw));
  824. ret = scale64_check_overflow(partial_history_cycles,
  825. total_history_cycles, &corr_raw);
  826. if (ret)
  827. return ret;
  828. /*
  829. * If there is a discontinuity in the history, scale monotonic raw
  830. * correction by:
  831. * mult(real)/mult(raw) yielding the realtime correction
  832. * Otherwise, calculate the realtime correction similar to monotonic
  833. * raw calculation
  834. */
  835. if (discontinuity) {
  836. corr_real = mul_u64_u32_div
  837. (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
  838. } else {
  839. corr_real = (u64)ktime_to_ns(
  840. ktime_sub(ts->sys_realtime, history->real));
  841. ret = scale64_check_overflow(partial_history_cycles,
  842. total_history_cycles, &corr_real);
  843. if (ret)
  844. return ret;
  845. }
  846. /* Fixup monotonic raw and real time time values */
  847. if (interp_forward) {
  848. ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
  849. ts->sys_realtime = ktime_add_ns(history->real, corr_real);
  850. } else {
  851. ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
  852. ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
  853. }
  854. return 0;
  855. }
  856. /*
  857. * cycle_between - true if test occurs chronologically between before and after
  858. */
  859. static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
  860. {
  861. if (test > before && test < after)
  862. return true;
  863. if (test < before && before > after)
  864. return true;
  865. return false;
  866. }
  867. /**
  868. * get_device_system_crosststamp - Synchronously capture system/device timestamp
  869. * @get_time_fn: Callback to get simultaneous device time and
  870. * system counter from the device driver
  871. * @ctx: Context passed to get_time_fn()
  872. * @history_begin: Historical reference point used to interpolate system
  873. * time when counter provided by the driver is before the current interval
  874. * @xtstamp: Receives simultaneously captured system and device time
  875. *
  876. * Reads a timestamp from a device and correlates it to system time
  877. */
  878. int get_device_system_crosststamp(int (*get_time_fn)
  879. (ktime_t *device_time,
  880. struct system_counterval_t *sys_counterval,
  881. void *ctx),
  882. void *ctx,
  883. struct system_time_snapshot *history_begin,
  884. struct system_device_crosststamp *xtstamp)
  885. {
  886. struct system_counterval_t system_counterval;
  887. struct timekeeper *tk = &tk_core.timekeeper;
  888. cycle_t cycles, now, interval_start;
  889. unsigned int clock_was_set_seq = 0;
  890. ktime_t base_real, base_raw;
  891. s64 nsec_real, nsec_raw;
  892. u8 cs_was_changed_seq;
  893. unsigned long seq;
  894. bool do_interp;
  895. int ret;
  896. do {
  897. seq = read_seqcount_begin(&tk_core.seq);
  898. /*
  899. * Try to synchronously capture device time and a system
  900. * counter value calling back into the device driver
  901. */
  902. ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
  903. if (ret)
  904. return ret;
  905. /*
  906. * Verify that the clocksource associated with the captured
  907. * system counter value is the same as the currently installed
  908. * timekeeper clocksource
  909. */
  910. if (tk->tkr_mono.clock != system_counterval.cs)
  911. return -ENODEV;
  912. cycles = system_counterval.cycles;
  913. /*
  914. * Check whether the system counter value provided by the
  915. * device driver is on the current timekeeping interval.
  916. */
  917. now = tk->tkr_mono.read(tk->tkr_mono.clock);
  918. interval_start = tk->tkr_mono.cycle_last;
  919. if (!cycle_between(interval_start, cycles, now)) {
  920. clock_was_set_seq = tk->clock_was_set_seq;
  921. cs_was_changed_seq = tk->cs_was_changed_seq;
  922. cycles = interval_start;
  923. do_interp = true;
  924. } else {
  925. do_interp = false;
  926. }
  927. base_real = ktime_add(tk->tkr_mono.base,
  928. tk_core.timekeeper.offs_real);
  929. base_raw = tk->tkr_raw.base;
  930. nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
  931. system_counterval.cycles);
  932. nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
  933. system_counterval.cycles);
  934. } while (read_seqcount_retry(&tk_core.seq, seq));
  935. xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
  936. xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
  937. /*
  938. * Interpolate if necessary, adjusting back from the start of the
  939. * current interval
  940. */
  941. if (do_interp) {
  942. cycle_t partial_history_cycles, total_history_cycles;
  943. bool discontinuity;
  944. /*
  945. * Check that the counter value occurs after the provided
  946. * history reference and that the history doesn't cross a
  947. * clocksource change
  948. */
  949. if (!history_begin ||
  950. !cycle_between(history_begin->cycles,
  951. system_counterval.cycles, cycles) ||
  952. history_begin->cs_was_changed_seq != cs_was_changed_seq)
  953. return -EINVAL;
  954. partial_history_cycles = cycles - system_counterval.cycles;
  955. total_history_cycles = cycles - history_begin->cycles;
  956. discontinuity =
  957. history_begin->clock_was_set_seq != clock_was_set_seq;
  958. ret = adjust_historical_crosststamp(history_begin,
  959. partial_history_cycles,
  960. total_history_cycles,
  961. discontinuity, xtstamp);
  962. if (ret)
  963. return ret;
  964. }
  965. return 0;
  966. }
  967. EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
  968. /**
  969. * do_gettimeofday - Returns the time of day in a timeval
  970. * @tv: pointer to the timeval to be set
  971. *
  972. * NOTE: Users should be converted to using getnstimeofday()
  973. */
  974. void do_gettimeofday(struct timeval *tv)
  975. {
  976. struct timespec64 now;
  977. getnstimeofday64(&now);
  978. tv->tv_sec = now.tv_sec;
  979. tv->tv_usec = now.tv_nsec/1000;
  980. }
  981. EXPORT_SYMBOL(do_gettimeofday);
  982. /**
  983. * do_settimeofday64 - Sets the time of day.
  984. * @ts: pointer to the timespec64 variable containing the new time
  985. *
  986. * Sets the time of day to the new time and update NTP and notify hrtimers
  987. */
  988. int do_settimeofday64(const struct timespec64 *ts)
  989. {
  990. struct timekeeper *tk = &tk_core.timekeeper;
  991. struct timespec64 ts_delta, xt;
  992. unsigned long flags;
  993. int ret = 0;
  994. if (!timespec64_valid_strict(ts))
  995. return -EINVAL;
  996. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  997. write_seqcount_begin(&tk_core.seq);
  998. timekeeping_forward_now(tk);
  999. xt = tk_xtime(tk);
  1000. ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
  1001. ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
  1002. if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
  1003. ret = -EINVAL;
  1004. goto out;
  1005. }
  1006. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
  1007. tk_set_xtime(tk, ts);
  1008. out:
  1009. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1010. write_seqcount_end(&tk_core.seq);
  1011. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1012. /* signal hrtimers about time change */
  1013. clock_was_set();
  1014. return ret;
  1015. }
  1016. EXPORT_SYMBOL(do_settimeofday64);
  1017. /**
  1018. * timekeeping_inject_offset - Adds or subtracts from the current time.
  1019. * @tv: pointer to the timespec variable containing the offset
  1020. *
  1021. * Adds or subtracts an offset value from the current time.
  1022. */
  1023. int timekeeping_inject_offset(struct timespec *ts)
  1024. {
  1025. struct timekeeper *tk = &tk_core.timekeeper;
  1026. unsigned long flags;
  1027. struct timespec64 ts64, tmp;
  1028. int ret = 0;
  1029. if (!timespec_inject_offset_valid(ts))
  1030. return -EINVAL;
  1031. ts64 = timespec_to_timespec64(*ts);
  1032. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1033. write_seqcount_begin(&tk_core.seq);
  1034. timekeeping_forward_now(tk);
  1035. /* Make sure the proposed value is valid */
  1036. tmp = timespec64_add(tk_xtime(tk), ts64);
  1037. if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
  1038. !timespec64_valid_strict(&tmp)) {
  1039. ret = -EINVAL;
  1040. goto error;
  1041. }
  1042. tk_xtime_add(tk, &ts64);
  1043. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
  1044. error: /* even if we error out, we forwarded the time, so call update */
  1045. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1046. write_seqcount_end(&tk_core.seq);
  1047. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1048. /* signal hrtimers about time change */
  1049. clock_was_set();
  1050. return ret;
  1051. }
  1052. EXPORT_SYMBOL(timekeeping_inject_offset);
  1053. /**
  1054. * timekeeping_get_tai_offset - Returns current TAI offset from UTC
  1055. *
  1056. */
  1057. s32 timekeeping_get_tai_offset(void)
  1058. {
  1059. struct timekeeper *tk = &tk_core.timekeeper;
  1060. unsigned int seq;
  1061. s32 ret;
  1062. do {
  1063. seq = read_seqcount_begin(&tk_core.seq);
  1064. ret = tk->tai_offset;
  1065. } while (read_seqcount_retry(&tk_core.seq, seq));
  1066. return ret;
  1067. }
  1068. /**
  1069. * __timekeeping_set_tai_offset - Lock free worker function
  1070. *
  1071. */
  1072. static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
  1073. {
  1074. tk->tai_offset = tai_offset;
  1075. tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
  1076. }
  1077. /**
  1078. * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
  1079. *
  1080. */
  1081. void timekeeping_set_tai_offset(s32 tai_offset)
  1082. {
  1083. struct timekeeper *tk = &tk_core.timekeeper;
  1084. unsigned long flags;
  1085. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1086. write_seqcount_begin(&tk_core.seq);
  1087. __timekeeping_set_tai_offset(tk, tai_offset);
  1088. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1089. write_seqcount_end(&tk_core.seq);
  1090. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1091. clock_was_set();
  1092. }
  1093. /**
  1094. * change_clocksource - Swaps clocksources if a new one is available
  1095. *
  1096. * Accumulates current time interval and initializes new clocksource
  1097. */
  1098. static int change_clocksource(void *data)
  1099. {
  1100. struct timekeeper *tk = &tk_core.timekeeper;
  1101. struct clocksource *new, *old;
  1102. unsigned long flags;
  1103. new = (struct clocksource *) data;
  1104. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1105. write_seqcount_begin(&tk_core.seq);
  1106. timekeeping_forward_now(tk);
  1107. /*
  1108. * If the cs is in module, get a module reference. Succeeds
  1109. * for built-in code (owner == NULL) as well.
  1110. */
  1111. if (try_module_get(new->owner)) {
  1112. if (!new->enable || new->enable(new) == 0) {
  1113. old = tk->tkr_mono.clock;
  1114. tk_setup_internals(tk, new);
  1115. if (old->disable)
  1116. old->disable(old);
  1117. module_put(old->owner);
  1118. } else {
  1119. module_put(new->owner);
  1120. }
  1121. }
  1122. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1123. write_seqcount_end(&tk_core.seq);
  1124. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1125. return 0;
  1126. }
  1127. /**
  1128. * timekeeping_notify - Install a new clock source
  1129. * @clock: pointer to the clock source
  1130. *
  1131. * This function is called from clocksource.c after a new, better clock
  1132. * source has been registered. The caller holds the clocksource_mutex.
  1133. */
  1134. int timekeeping_notify(struct clocksource *clock)
  1135. {
  1136. struct timekeeper *tk = &tk_core.timekeeper;
  1137. if (tk->tkr_mono.clock == clock)
  1138. return 0;
  1139. stop_machine(change_clocksource, clock, NULL);
  1140. tick_clock_notify();
  1141. return tk->tkr_mono.clock == clock ? 0 : -1;
  1142. }
  1143. /**
  1144. * getrawmonotonic64 - Returns the raw monotonic time in a timespec
  1145. * @ts: pointer to the timespec64 to be set
  1146. *
  1147. * Returns the raw monotonic time (completely un-modified by ntp)
  1148. */
  1149. void getrawmonotonic64(struct timespec64 *ts)
  1150. {
  1151. struct timekeeper *tk = &tk_core.timekeeper;
  1152. struct timespec64 ts64;
  1153. unsigned long seq;
  1154. s64 nsecs;
  1155. do {
  1156. seq = read_seqcount_begin(&tk_core.seq);
  1157. nsecs = timekeeping_get_ns(&tk->tkr_raw);
  1158. ts64 = tk->raw_time;
  1159. } while (read_seqcount_retry(&tk_core.seq, seq));
  1160. timespec64_add_ns(&ts64, nsecs);
  1161. *ts = ts64;
  1162. }
  1163. EXPORT_SYMBOL(getrawmonotonic64);
  1164. /**
  1165. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  1166. */
  1167. int timekeeping_valid_for_hres(void)
  1168. {
  1169. struct timekeeper *tk = &tk_core.timekeeper;
  1170. unsigned long seq;
  1171. int ret;
  1172. do {
  1173. seq = read_seqcount_begin(&tk_core.seq);
  1174. ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  1175. } while (read_seqcount_retry(&tk_core.seq, seq));
  1176. return ret;
  1177. }
  1178. /**
  1179. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  1180. */
  1181. u64 timekeeping_max_deferment(void)
  1182. {
  1183. struct timekeeper *tk = &tk_core.timekeeper;
  1184. unsigned long seq;
  1185. u64 ret;
  1186. do {
  1187. seq = read_seqcount_begin(&tk_core.seq);
  1188. ret = tk->tkr_mono.clock->max_idle_ns;
  1189. } while (read_seqcount_retry(&tk_core.seq, seq));
  1190. return ret;
  1191. }
  1192. /**
  1193. * read_persistent_clock - Return time from the persistent clock.
  1194. *
  1195. * Weak dummy function for arches that do not yet support it.
  1196. * Reads the time from the battery backed persistent clock.
  1197. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  1198. *
  1199. * XXX - Do be sure to remove it once all arches implement it.
  1200. */
  1201. void __weak read_persistent_clock(struct timespec *ts)
  1202. {
  1203. ts->tv_sec = 0;
  1204. ts->tv_nsec = 0;
  1205. }
  1206. void __weak read_persistent_clock64(struct timespec64 *ts64)
  1207. {
  1208. struct timespec ts;
  1209. read_persistent_clock(&ts);
  1210. *ts64 = timespec_to_timespec64(ts);
  1211. }
  1212. /**
  1213. * read_boot_clock64 - Return time of the system start.
  1214. *
  1215. * Weak dummy function for arches that do not yet support it.
  1216. * Function to read the exact time the system has been started.
  1217. * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
  1218. *
  1219. * XXX - Do be sure to remove it once all arches implement it.
  1220. */
  1221. void __weak read_boot_clock64(struct timespec64 *ts)
  1222. {
  1223. ts->tv_sec = 0;
  1224. ts->tv_nsec = 0;
  1225. }
  1226. /* Flag for if timekeeping_resume() has injected sleeptime */
  1227. static bool sleeptime_injected;
  1228. /* Flag for if there is a persistent clock on this platform */
  1229. static bool persistent_clock_exists;
  1230. /*
  1231. * timekeeping_init - Initializes the clocksource and common timekeeping values
  1232. */
  1233. void __init timekeeping_init(void)
  1234. {
  1235. struct timekeeper *tk = &tk_core.timekeeper;
  1236. struct clocksource *clock;
  1237. unsigned long flags;
  1238. struct timespec64 now, boot, tmp;
  1239. read_persistent_clock64(&now);
  1240. if (!timespec64_valid_strict(&now)) {
  1241. pr_warn("WARNING: Persistent clock returned invalid value!\n"
  1242. " Check your CMOS/BIOS settings.\n");
  1243. now.tv_sec = 0;
  1244. now.tv_nsec = 0;
  1245. } else if (now.tv_sec || now.tv_nsec)
  1246. persistent_clock_exists = true;
  1247. read_boot_clock64(&boot);
  1248. if (!timespec64_valid_strict(&boot)) {
  1249. pr_warn("WARNING: Boot clock returned invalid value!\n"
  1250. " Check your CMOS/BIOS settings.\n");
  1251. boot.tv_sec = 0;
  1252. boot.tv_nsec = 0;
  1253. }
  1254. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1255. write_seqcount_begin(&tk_core.seq);
  1256. ntp_init();
  1257. clock = clocksource_default_clock();
  1258. if (clock->enable)
  1259. clock->enable(clock);
  1260. tk_setup_internals(tk, clock);
  1261. tk_set_xtime(tk, &now);
  1262. tk->raw_time.tv_sec = 0;
  1263. tk->raw_time.tv_nsec = 0;
  1264. if (boot.tv_sec == 0 && boot.tv_nsec == 0)
  1265. boot = tk_xtime(tk);
  1266. set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
  1267. tk_set_wall_to_mono(tk, tmp);
  1268. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1269. write_seqcount_end(&tk_core.seq);
  1270. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1271. }
  1272. /* time in seconds when suspend began for persistent clock */
  1273. static struct timespec64 timekeeping_suspend_time;
  1274. /**
  1275. * __timekeeping_inject_sleeptime - Internal function to add sleep interval
  1276. * @delta: pointer to a timespec delta value
  1277. *
  1278. * Takes a timespec offset measuring a suspend interval and properly
  1279. * adds the sleep offset to the timekeeping variables.
  1280. */
  1281. static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
  1282. struct timespec64 *delta)
  1283. {
  1284. if (!timespec64_valid_strict(delta)) {
  1285. printk_deferred(KERN_WARNING
  1286. "__timekeeping_inject_sleeptime: Invalid "
  1287. "sleep delta value!\n");
  1288. return;
  1289. }
  1290. tk_xtime_add(tk, delta);
  1291. tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
  1292. tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
  1293. tk_debug_account_sleep_time(delta);
  1294. }
  1295. #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
  1296. /**
  1297. * We have three kinds of time sources to use for sleep time
  1298. * injection, the preference order is:
  1299. * 1) non-stop clocksource
  1300. * 2) persistent clock (ie: RTC accessible when irqs are off)
  1301. * 3) RTC
  1302. *
  1303. * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
  1304. * If system has neither 1) nor 2), 3) will be used finally.
  1305. *
  1306. *
  1307. * If timekeeping has injected sleeptime via either 1) or 2),
  1308. * 3) becomes needless, so in this case we don't need to call
  1309. * rtc_resume(), and this is what timekeeping_rtc_skipresume()
  1310. * means.
  1311. */
  1312. bool timekeeping_rtc_skipresume(void)
  1313. {
  1314. return sleeptime_injected;
  1315. }
  1316. /**
  1317. * 1) can be determined whether to use or not only when doing
  1318. * timekeeping_resume() which is invoked after rtc_suspend(),
  1319. * so we can't skip rtc_suspend() surely if system has 1).
  1320. *
  1321. * But if system has 2), 2) will definitely be used, so in this
  1322. * case we don't need to call rtc_suspend(), and this is what
  1323. * timekeeping_rtc_skipsuspend() means.
  1324. */
  1325. bool timekeeping_rtc_skipsuspend(void)
  1326. {
  1327. return persistent_clock_exists;
  1328. }
  1329. /**
  1330. * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
  1331. * @delta: pointer to a timespec64 delta value
  1332. *
  1333. * This hook is for architectures that cannot support read_persistent_clock64
  1334. * because their RTC/persistent clock is only accessible when irqs are enabled.
  1335. * and also don't have an effective nonstop clocksource.
  1336. *
  1337. * This function should only be called by rtc_resume(), and allows
  1338. * a suspend offset to be injected into the timekeeping values.
  1339. */
  1340. void timekeeping_inject_sleeptime64(struct timespec64 *delta)
  1341. {
  1342. struct timekeeper *tk = &tk_core.timekeeper;
  1343. unsigned long flags;
  1344. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1345. write_seqcount_begin(&tk_core.seq);
  1346. timekeeping_forward_now(tk);
  1347. __timekeeping_inject_sleeptime(tk, delta);
  1348. timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
  1349. write_seqcount_end(&tk_core.seq);
  1350. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1351. /* signal hrtimers about time change */
  1352. clock_was_set();
  1353. }
  1354. #endif
  1355. /**
  1356. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  1357. */
  1358. void timekeeping_resume(void)
  1359. {
  1360. struct timekeeper *tk = &tk_core.timekeeper;
  1361. struct clocksource *clock = tk->tkr_mono.clock;
  1362. unsigned long flags;
  1363. struct timespec64 ts_new, ts_delta;
  1364. cycle_t cycle_now, cycle_delta;
  1365. sleeptime_injected = false;
  1366. read_persistent_clock64(&ts_new);
  1367. clockevents_resume();
  1368. clocksource_resume();
  1369. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1370. write_seqcount_begin(&tk_core.seq);
  1371. /*
  1372. * After system resumes, we need to calculate the suspended time and
  1373. * compensate it for the OS time. There are 3 sources that could be
  1374. * used: Nonstop clocksource during suspend, persistent clock and rtc
  1375. * device.
  1376. *
  1377. * One specific platform may have 1 or 2 or all of them, and the
  1378. * preference will be:
  1379. * suspend-nonstop clocksource -> persistent clock -> rtc
  1380. * The less preferred source will only be tried if there is no better
  1381. * usable source. The rtc part is handled separately in rtc core code.
  1382. */
  1383. cycle_now = tk->tkr_mono.read(clock);
  1384. if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
  1385. cycle_now > tk->tkr_mono.cycle_last) {
  1386. u64 num, max = ULLONG_MAX;
  1387. u32 mult = clock->mult;
  1388. u32 shift = clock->shift;
  1389. s64 nsec = 0;
  1390. cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
  1391. tk->tkr_mono.mask);
  1392. /*
  1393. * "cycle_delta * mutl" may cause 64 bits overflow, if the
  1394. * suspended time is too long. In that case we need do the
  1395. * 64 bits math carefully
  1396. */
  1397. do_div(max, mult);
  1398. if (cycle_delta > max) {
  1399. num = div64_u64(cycle_delta, max);
  1400. nsec = (((u64) max * mult) >> shift) * num;
  1401. cycle_delta -= num * max;
  1402. }
  1403. nsec += ((u64) cycle_delta * mult) >> shift;
  1404. ts_delta = ns_to_timespec64(nsec);
  1405. sleeptime_injected = true;
  1406. } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
  1407. ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
  1408. sleeptime_injected = true;
  1409. }
  1410. if (sleeptime_injected)
  1411. __timekeeping_inject_sleeptime(tk, &ts_delta);
  1412. /* Re-base the last cycle value */
  1413. tk->tkr_mono.cycle_last = cycle_now;
  1414. tk->tkr_raw.cycle_last = cycle_now;
  1415. tk->ntp_error = 0;
  1416. timekeeping_suspended = 0;
  1417. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1418. write_seqcount_end(&tk_core.seq);
  1419. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1420. touch_softlockup_watchdog();
  1421. tick_resume();
  1422. hrtimers_resume();
  1423. }
  1424. int timekeeping_suspend(void)
  1425. {
  1426. struct timekeeper *tk = &tk_core.timekeeper;
  1427. unsigned long flags;
  1428. struct timespec64 delta, delta_delta;
  1429. static struct timespec64 old_delta;
  1430. read_persistent_clock64(&timekeeping_suspend_time);
  1431. /*
  1432. * On some systems the persistent_clock can not be detected at
  1433. * timekeeping_init by its return value, so if we see a valid
  1434. * value returned, update the persistent_clock_exists flag.
  1435. */
  1436. if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
  1437. persistent_clock_exists = true;
  1438. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1439. write_seqcount_begin(&tk_core.seq);
  1440. timekeeping_forward_now(tk);
  1441. timekeeping_suspended = 1;
  1442. if (persistent_clock_exists) {
  1443. /*
  1444. * To avoid drift caused by repeated suspend/resumes,
  1445. * which each can add ~1 second drift error,
  1446. * try to compensate so the difference in system time
  1447. * and persistent_clock time stays close to constant.
  1448. */
  1449. delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
  1450. delta_delta = timespec64_sub(delta, old_delta);
  1451. if (abs(delta_delta.tv_sec) >= 2) {
  1452. /*
  1453. * if delta_delta is too large, assume time correction
  1454. * has occurred and set old_delta to the current delta.
  1455. */
  1456. old_delta = delta;
  1457. } else {
  1458. /* Otherwise try to adjust old_system to compensate */
  1459. timekeeping_suspend_time =
  1460. timespec64_add(timekeeping_suspend_time, delta_delta);
  1461. }
  1462. }
  1463. timekeeping_update(tk, TK_MIRROR);
  1464. halt_fast_timekeeper(tk);
  1465. write_seqcount_end(&tk_core.seq);
  1466. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1467. tick_suspend();
  1468. clocksource_suspend();
  1469. clockevents_suspend();
  1470. return 0;
  1471. }
  1472. /* sysfs resume/suspend bits for timekeeping */
  1473. static struct syscore_ops timekeeping_syscore_ops = {
  1474. .resume = timekeeping_resume,
  1475. .suspend = timekeeping_suspend,
  1476. };
  1477. static int __init timekeeping_init_ops(void)
  1478. {
  1479. register_syscore_ops(&timekeeping_syscore_ops);
  1480. return 0;
  1481. }
  1482. device_initcall(timekeeping_init_ops);
  1483. /*
  1484. * Apply a multiplier adjustment to the timekeeper
  1485. */
  1486. static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
  1487. s64 offset,
  1488. bool negative,
  1489. int adj_scale)
  1490. {
  1491. s64 interval = tk->cycle_interval;
  1492. s32 mult_adj = 1;
  1493. if (negative) {
  1494. mult_adj = -mult_adj;
  1495. interval = -interval;
  1496. offset = -offset;
  1497. }
  1498. mult_adj <<= adj_scale;
  1499. interval <<= adj_scale;
  1500. offset <<= adj_scale;
  1501. /*
  1502. * So the following can be confusing.
  1503. *
  1504. * To keep things simple, lets assume mult_adj == 1 for now.
  1505. *
  1506. * When mult_adj != 1, remember that the interval and offset values
  1507. * have been appropriately scaled so the math is the same.
  1508. *
  1509. * The basic idea here is that we're increasing the multiplier
  1510. * by one, this causes the xtime_interval to be incremented by
  1511. * one cycle_interval. This is because:
  1512. * xtime_interval = cycle_interval * mult
  1513. * So if mult is being incremented by one:
  1514. * xtime_interval = cycle_interval * (mult + 1)
  1515. * Its the same as:
  1516. * xtime_interval = (cycle_interval * mult) + cycle_interval
  1517. * Which can be shortened to:
  1518. * xtime_interval += cycle_interval
  1519. *
  1520. * So offset stores the non-accumulated cycles. Thus the current
  1521. * time (in shifted nanoseconds) is:
  1522. * now = (offset * adj) + xtime_nsec
  1523. * Now, even though we're adjusting the clock frequency, we have
  1524. * to keep time consistent. In other words, we can't jump back
  1525. * in time, and we also want to avoid jumping forward in time.
  1526. *
  1527. * So given the same offset value, we need the time to be the same
  1528. * both before and after the freq adjustment.
  1529. * now = (offset * adj_1) + xtime_nsec_1
  1530. * now = (offset * adj_2) + xtime_nsec_2
  1531. * So:
  1532. * (offset * adj_1) + xtime_nsec_1 =
  1533. * (offset * adj_2) + xtime_nsec_2
  1534. * And we know:
  1535. * adj_2 = adj_1 + 1
  1536. * So:
  1537. * (offset * adj_1) + xtime_nsec_1 =
  1538. * (offset * (adj_1+1)) + xtime_nsec_2
  1539. * (offset * adj_1) + xtime_nsec_1 =
  1540. * (offset * adj_1) + offset + xtime_nsec_2
  1541. * Canceling the sides:
  1542. * xtime_nsec_1 = offset + xtime_nsec_2
  1543. * Which gives us:
  1544. * xtime_nsec_2 = xtime_nsec_1 - offset
  1545. * Which simplfies to:
  1546. * xtime_nsec -= offset
  1547. *
  1548. * XXX - TODO: Doc ntp_error calculation.
  1549. */
  1550. if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
  1551. /* NTP adjustment caused clocksource mult overflow */
  1552. WARN_ON_ONCE(1);
  1553. return;
  1554. }
  1555. tk->tkr_mono.mult += mult_adj;
  1556. tk->xtime_interval += interval;
  1557. tk->tkr_mono.xtime_nsec -= offset;
  1558. tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
  1559. }
  1560. /*
  1561. * Calculate the multiplier adjustment needed to match the frequency
  1562. * specified by NTP
  1563. */
  1564. static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
  1565. s64 offset)
  1566. {
  1567. s64 interval = tk->cycle_interval;
  1568. s64 xinterval = tk->xtime_interval;
  1569. u32 base = tk->tkr_mono.clock->mult;
  1570. u32 max = tk->tkr_mono.clock->maxadj;
  1571. u32 cur_adj = tk->tkr_mono.mult;
  1572. s64 tick_error;
  1573. bool negative;
  1574. u32 adj_scale;
  1575. /* Remove any current error adj from freq calculation */
  1576. if (tk->ntp_err_mult)
  1577. xinterval -= tk->cycle_interval;
  1578. tk->ntp_tick = ntp_tick_length();
  1579. /* Calculate current error per tick */
  1580. tick_error = ntp_tick_length() >> tk->ntp_error_shift;
  1581. tick_error -= (xinterval + tk->xtime_remainder);
  1582. /* Don't worry about correcting it if its small */
  1583. if (likely((tick_error >= 0) && (tick_error <= interval)))
  1584. return;
  1585. /* preserve the direction of correction */
  1586. negative = (tick_error < 0);
  1587. /* If any adjustment would pass the max, just return */
  1588. if (negative && (cur_adj - 1) <= (base - max))
  1589. return;
  1590. if (!negative && (cur_adj + 1) >= (base + max))
  1591. return;
  1592. /*
  1593. * Sort out the magnitude of the correction, but
  1594. * avoid making so large a correction that we go
  1595. * over the max adjustment.
  1596. */
  1597. adj_scale = 0;
  1598. tick_error = abs(tick_error);
  1599. while (tick_error > interval) {
  1600. u32 adj = 1 << (adj_scale + 1);
  1601. /* Check if adjustment gets us within 1 unit from the max */
  1602. if (negative && (cur_adj - adj) <= (base - max))
  1603. break;
  1604. if (!negative && (cur_adj + adj) >= (base + max))
  1605. break;
  1606. adj_scale++;
  1607. tick_error >>= 1;
  1608. }
  1609. /* scale the corrections */
  1610. timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
  1611. }
  1612. /*
  1613. * Adjust the timekeeper's multiplier to the correct frequency
  1614. * and also to reduce the accumulated error value.
  1615. */
  1616. static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
  1617. {
  1618. /* Correct for the current frequency error */
  1619. timekeeping_freqadjust(tk, offset);
  1620. /* Next make a small adjustment to fix any cumulative error */
  1621. if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
  1622. tk->ntp_err_mult = 1;
  1623. timekeeping_apply_adjustment(tk, offset, 0, 0);
  1624. } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
  1625. /* Undo any existing error adjustment */
  1626. timekeeping_apply_adjustment(tk, offset, 1, 0);
  1627. tk->ntp_err_mult = 0;
  1628. }
  1629. if (unlikely(tk->tkr_mono.clock->maxadj &&
  1630. (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
  1631. > tk->tkr_mono.clock->maxadj))) {
  1632. printk_once(KERN_WARNING
  1633. "Adjusting %s more than 11%% (%ld vs %ld)\n",
  1634. tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
  1635. (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
  1636. }
  1637. /*
  1638. * It may be possible that when we entered this function, xtime_nsec
  1639. * was very small. Further, if we're slightly speeding the clocksource
  1640. * in the code above, its possible the required corrective factor to
  1641. * xtime_nsec could cause it to underflow.
  1642. *
  1643. * Now, since we already accumulated the second, cannot simply roll
  1644. * the accumulated second back, since the NTP subsystem has been
  1645. * notified via second_overflow. So instead we push xtime_nsec forward
  1646. * by the amount we underflowed, and add that amount into the error.
  1647. *
  1648. * We'll correct this error next time through this function, when
  1649. * xtime_nsec is not as small.
  1650. */
  1651. if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
  1652. s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
  1653. tk->tkr_mono.xtime_nsec = 0;
  1654. tk->ntp_error += neg << tk->ntp_error_shift;
  1655. }
  1656. }
  1657. /**
  1658. * accumulate_nsecs_to_secs - Accumulates nsecs into secs
  1659. *
  1660. * Helper function that accumulates the nsecs greater than a second
  1661. * from the xtime_nsec field to the xtime_secs field.
  1662. * It also calls into the NTP code to handle leapsecond processing.
  1663. *
  1664. */
  1665. static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
  1666. {
  1667. u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
  1668. unsigned int clock_set = 0;
  1669. while (tk->tkr_mono.xtime_nsec >= nsecps) {
  1670. int leap;
  1671. tk->tkr_mono.xtime_nsec -= nsecps;
  1672. tk->xtime_sec++;
  1673. /* Figure out if its a leap sec and apply if needed */
  1674. leap = second_overflow(tk->xtime_sec);
  1675. if (unlikely(leap)) {
  1676. struct timespec64 ts;
  1677. tk->xtime_sec += leap;
  1678. ts.tv_sec = leap;
  1679. ts.tv_nsec = 0;
  1680. tk_set_wall_to_mono(tk,
  1681. timespec64_sub(tk->wall_to_monotonic, ts));
  1682. __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
  1683. clock_set = TK_CLOCK_WAS_SET;
  1684. }
  1685. }
  1686. return clock_set;
  1687. }
  1688. /**
  1689. * logarithmic_accumulation - shifted accumulation of cycles
  1690. *
  1691. * This functions accumulates a shifted interval of cycles into
  1692. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  1693. * loop.
  1694. *
  1695. * Returns the unconsumed cycles.
  1696. */
  1697. static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
  1698. u32 shift,
  1699. unsigned int *clock_set)
  1700. {
  1701. cycle_t interval = tk->cycle_interval << shift;
  1702. u64 raw_nsecs;
  1703. /* If the offset is smaller than a shifted interval, do nothing */
  1704. if (offset < interval)
  1705. return offset;
  1706. /* Accumulate one shifted interval */
  1707. offset -= interval;
  1708. tk->tkr_mono.cycle_last += interval;
  1709. tk->tkr_raw.cycle_last += interval;
  1710. tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
  1711. *clock_set |= accumulate_nsecs_to_secs(tk);
  1712. /* Accumulate raw time */
  1713. raw_nsecs = (u64)tk->raw_interval << shift;
  1714. raw_nsecs += tk->raw_time.tv_nsec;
  1715. if (raw_nsecs >= NSEC_PER_SEC) {
  1716. u64 raw_secs = raw_nsecs;
  1717. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  1718. tk->raw_time.tv_sec += raw_secs;
  1719. }
  1720. tk->raw_time.tv_nsec = raw_nsecs;
  1721. /* Accumulate error between NTP and clock interval */
  1722. tk->ntp_error += tk->ntp_tick << shift;
  1723. tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
  1724. (tk->ntp_error_shift + shift);
  1725. return offset;
  1726. }
  1727. /**
  1728. * update_wall_time - Uses the current clocksource to increment the wall time
  1729. *
  1730. */
  1731. void update_wall_time(void)
  1732. {
  1733. struct timekeeper *real_tk = &tk_core.timekeeper;
  1734. struct timekeeper *tk = &shadow_timekeeper;
  1735. cycle_t offset;
  1736. int shift = 0, maxshift;
  1737. unsigned int clock_set = 0;
  1738. unsigned long flags;
  1739. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1740. /* Make sure we're fully resumed: */
  1741. if (unlikely(timekeeping_suspended))
  1742. goto out;
  1743. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  1744. offset = real_tk->cycle_interval;
  1745. #else
  1746. offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
  1747. tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
  1748. #endif
  1749. /* Check if there's really nothing to do */
  1750. if (offset < real_tk->cycle_interval)
  1751. goto out;
  1752. /* Do some additional sanity checking */
  1753. timekeeping_check_update(real_tk, offset);
  1754. /*
  1755. * With NO_HZ we may have to accumulate many cycle_intervals
  1756. * (think "ticks") worth of time at once. To do this efficiently,
  1757. * we calculate the largest doubling multiple of cycle_intervals
  1758. * that is smaller than the offset. We then accumulate that
  1759. * chunk in one go, and then try to consume the next smaller
  1760. * doubled multiple.
  1761. */
  1762. shift = ilog2(offset) - ilog2(tk->cycle_interval);
  1763. shift = max(0, shift);
  1764. /* Bound shift to one less than what overflows tick_length */
  1765. maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
  1766. shift = min(shift, maxshift);
  1767. while (offset >= tk->cycle_interval) {
  1768. offset = logarithmic_accumulation(tk, offset, shift,
  1769. &clock_set);
  1770. if (offset < tk->cycle_interval<<shift)
  1771. shift--;
  1772. }
  1773. /* correct the clock when NTP error is too big */
  1774. timekeeping_adjust(tk, offset);
  1775. /*
  1776. * XXX This can be killed once everyone converts
  1777. * to the new update_vsyscall.
  1778. */
  1779. old_vsyscall_fixup(tk);
  1780. /*
  1781. * Finally, make sure that after the rounding
  1782. * xtime_nsec isn't larger than NSEC_PER_SEC
  1783. */
  1784. clock_set |= accumulate_nsecs_to_secs(tk);
  1785. write_seqcount_begin(&tk_core.seq);
  1786. /*
  1787. * Update the real timekeeper.
  1788. *
  1789. * We could avoid this memcpy by switching pointers, but that
  1790. * requires changes to all other timekeeper usage sites as
  1791. * well, i.e. move the timekeeper pointer getter into the
  1792. * spinlocked/seqcount protected sections. And we trade this
  1793. * memcpy under the tk_core.seq against one before we start
  1794. * updating.
  1795. */
  1796. timekeeping_update(tk, clock_set);
  1797. memcpy(real_tk, tk, sizeof(*tk));
  1798. /* The memcpy must come last. Do not put anything here! */
  1799. write_seqcount_end(&tk_core.seq);
  1800. out:
  1801. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1802. if (clock_set)
  1803. /* Have to call _delayed version, since in irq context*/
  1804. clock_was_set_delayed();
  1805. }
  1806. /**
  1807. * getboottime64 - Return the real time of system boot.
  1808. * @ts: pointer to the timespec64 to be set
  1809. *
  1810. * Returns the wall-time of boot in a timespec64.
  1811. *
  1812. * This is based on the wall_to_monotonic offset and the total suspend
  1813. * time. Calls to settimeofday will affect the value returned (which
  1814. * basically means that however wrong your real time clock is at boot time,
  1815. * you get the right time here).
  1816. */
  1817. void getboottime64(struct timespec64 *ts)
  1818. {
  1819. struct timekeeper *tk = &tk_core.timekeeper;
  1820. ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
  1821. *ts = ktime_to_timespec64(t);
  1822. }
  1823. EXPORT_SYMBOL_GPL(getboottime64);
  1824. unsigned long get_seconds(void)
  1825. {
  1826. struct timekeeper *tk = &tk_core.timekeeper;
  1827. return tk->xtime_sec;
  1828. }
  1829. EXPORT_SYMBOL(get_seconds);
  1830. struct timespec __current_kernel_time(void)
  1831. {
  1832. struct timekeeper *tk = &tk_core.timekeeper;
  1833. return timespec64_to_timespec(tk_xtime(tk));
  1834. }
  1835. struct timespec64 current_kernel_time64(void)
  1836. {
  1837. struct timekeeper *tk = &tk_core.timekeeper;
  1838. struct timespec64 now;
  1839. unsigned long seq;
  1840. do {
  1841. seq = read_seqcount_begin(&tk_core.seq);
  1842. now = tk_xtime(tk);
  1843. } while (read_seqcount_retry(&tk_core.seq, seq));
  1844. return now;
  1845. }
  1846. EXPORT_SYMBOL(current_kernel_time64);
  1847. struct timespec64 get_monotonic_coarse64(void)
  1848. {
  1849. struct timekeeper *tk = &tk_core.timekeeper;
  1850. struct timespec64 now, mono;
  1851. unsigned long seq;
  1852. do {
  1853. seq = read_seqcount_begin(&tk_core.seq);
  1854. now = tk_xtime(tk);
  1855. mono = tk->wall_to_monotonic;
  1856. } while (read_seqcount_retry(&tk_core.seq, seq));
  1857. set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
  1858. now.tv_nsec + mono.tv_nsec);
  1859. return now;
  1860. }
  1861. /*
  1862. * Must hold jiffies_lock
  1863. */
  1864. void do_timer(unsigned long ticks)
  1865. {
  1866. jiffies_64 += ticks;
  1867. calc_global_load(ticks);
  1868. }
  1869. /**
  1870. * ktime_get_update_offsets_now - hrtimer helper
  1871. * @cwsseq: pointer to check and store the clock was set sequence number
  1872. * @offs_real: pointer to storage for monotonic -> realtime offset
  1873. * @offs_boot: pointer to storage for monotonic -> boottime offset
  1874. * @offs_tai: pointer to storage for monotonic -> clock tai offset
  1875. *
  1876. * Returns current monotonic time and updates the offsets if the
  1877. * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
  1878. * different.
  1879. *
  1880. * Called from hrtimer_interrupt() or retrigger_next_event()
  1881. */
  1882. ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
  1883. ktime_t *offs_boot, ktime_t *offs_tai)
  1884. {
  1885. struct timekeeper *tk = &tk_core.timekeeper;
  1886. unsigned int seq;
  1887. ktime_t base;
  1888. u64 nsecs;
  1889. do {
  1890. seq = read_seqcount_begin(&tk_core.seq);
  1891. base = tk->tkr_mono.base;
  1892. nsecs = timekeeping_get_ns(&tk->tkr_mono);
  1893. base = ktime_add_ns(base, nsecs);
  1894. if (*cwsseq != tk->clock_was_set_seq) {
  1895. *cwsseq = tk->clock_was_set_seq;
  1896. *offs_real = tk->offs_real;
  1897. *offs_boot = tk->offs_boot;
  1898. *offs_tai = tk->offs_tai;
  1899. }
  1900. /* Handle leapsecond insertion adjustments */
  1901. if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
  1902. *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
  1903. } while (read_seqcount_retry(&tk_core.seq, seq));
  1904. return base;
  1905. }
  1906. /**
  1907. * do_adjtimex() - Accessor function to NTP __do_adjtimex function
  1908. */
  1909. int do_adjtimex(struct timex *txc)
  1910. {
  1911. struct timekeeper *tk = &tk_core.timekeeper;
  1912. unsigned long flags;
  1913. struct timespec64 ts;
  1914. s32 orig_tai, tai;
  1915. int ret;
  1916. /* Validate the data before disabling interrupts */
  1917. ret = ntp_validate_timex(txc);
  1918. if (ret)
  1919. return ret;
  1920. if (txc->modes & ADJ_SETOFFSET) {
  1921. struct timespec delta;
  1922. delta.tv_sec = txc->time.tv_sec;
  1923. delta.tv_nsec = txc->time.tv_usec;
  1924. if (!(txc->modes & ADJ_NANO))
  1925. delta.tv_nsec *= 1000;
  1926. ret = timekeeping_inject_offset(&delta);
  1927. if (ret)
  1928. return ret;
  1929. }
  1930. getnstimeofday64(&ts);
  1931. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1932. write_seqcount_begin(&tk_core.seq);
  1933. orig_tai = tai = tk->tai_offset;
  1934. ret = __do_adjtimex(txc, &ts, &tai);
  1935. if (tai != orig_tai) {
  1936. __timekeeping_set_tai_offset(tk, tai);
  1937. timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
  1938. }
  1939. tk_update_leap_state(tk);
  1940. write_seqcount_end(&tk_core.seq);
  1941. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1942. if (tai != orig_tai)
  1943. clock_was_set();
  1944. ntp_notify_cmos_timer();
  1945. return ret;
  1946. }
  1947. #ifdef CONFIG_NTP_PPS
  1948. /**
  1949. * hardpps() - Accessor function to NTP __hardpps function
  1950. */
  1951. void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
  1952. {
  1953. unsigned long flags;
  1954. raw_spin_lock_irqsave(&timekeeper_lock, flags);
  1955. write_seqcount_begin(&tk_core.seq);
  1956. __hardpps(phase_ts, raw_ts);
  1957. write_seqcount_end(&tk_core.seq);
  1958. raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
  1959. }
  1960. EXPORT_SYMBOL(hardpps);
  1961. #endif
  1962. /**
  1963. * xtime_update() - advances the timekeeping infrastructure
  1964. * @ticks: number of ticks, that have elapsed since the last call.
  1965. *
  1966. * Must be called with interrupts disabled.
  1967. */
  1968. void xtime_update(unsigned long ticks)
  1969. {
  1970. write_seqlock(&jiffies_lock);
  1971. do_timer(ticks);
  1972. write_sequnlock(&jiffies_lock);
  1973. update_wall_time();
  1974. }