tree.c 142 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/trace_events.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. /*
  68. * In order to export the rcu_state name to the tracing tools, it
  69. * needs to be added in the __tracepoint_string section.
  70. * This requires defining a separate variable tp_<sname>_varname
  71. * that points to the string being used, and this will allow
  72. * the tracing userspace tools to be able to decipher the string
  73. * address to the matching string.
  74. */
  75. #ifdef CONFIG_TRACING
  76. # define DEFINE_RCU_TPS(sname) \
  77. static char sname##_varname[] = #sname; \
  78. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  79. # define RCU_STATE_NAME(sname) sname##_varname
  80. #else
  81. # define DEFINE_RCU_TPS(sname)
  82. # define RCU_STATE_NAME(sname) __stringify(sname)
  83. #endif
  84. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  85. DEFINE_RCU_TPS(sname) \
  86. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  87. struct rcu_state sname##_state = { \
  88. .level = { &sname##_state.node[0] }, \
  89. .rda = &sname##_data, \
  90. .call = cr, \
  91. .gp_state = RCU_GP_IDLE, \
  92. .gpnum = 0UL - 300UL, \
  93. .completed = 0UL - 300UL, \
  94. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  95. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  96. .orphan_donetail = &sname##_state.orphan_donelist, \
  97. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  98. .name = RCU_STATE_NAME(sname), \
  99. .abbr = sabbr, \
  100. }
  101. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  102. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  103. static struct rcu_state *const rcu_state_p;
  104. LIST_HEAD(rcu_struct_flavors);
  105. /* Dump rcu_node combining tree at boot to verify correct setup. */
  106. static bool dump_tree;
  107. module_param(dump_tree, bool, 0444);
  108. /* Control rcu_node-tree auto-balancing at boot time. */
  109. static bool rcu_fanout_exact;
  110. module_param(rcu_fanout_exact, bool, 0444);
  111. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  112. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  113. module_param(rcu_fanout_leaf, int, 0444);
  114. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  115. /* Number of rcu_nodes at specified level. */
  116. static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  117. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  118. /*
  119. * The rcu_scheduler_active variable transitions from zero to one just
  120. * before the first task is spawned. So when this variable is zero, RCU
  121. * can assume that there is but one task, allowing RCU to (for example)
  122. * optimize synchronize_sched() to a simple barrier(). When this variable
  123. * is one, RCU must actually do all the hard work required to detect real
  124. * grace periods. This variable is also used to suppress boot-time false
  125. * positives from lockdep-RCU error checking.
  126. */
  127. int rcu_scheduler_active __read_mostly;
  128. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  129. /*
  130. * The rcu_scheduler_fully_active variable transitions from zero to one
  131. * during the early_initcall() processing, which is after the scheduler
  132. * is capable of creating new tasks. So RCU processing (for example,
  133. * creating tasks for RCU priority boosting) must be delayed until after
  134. * rcu_scheduler_fully_active transitions from zero to one. We also
  135. * currently delay invocation of any RCU callbacks until after this point.
  136. *
  137. * It might later prove better for people registering RCU callbacks during
  138. * early boot to take responsibility for these callbacks, but one step at
  139. * a time.
  140. */
  141. static int rcu_scheduler_fully_active __read_mostly;
  142. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  143. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  144. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  145. static void invoke_rcu_core(void);
  146. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  147. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  148. struct rcu_data *rdp, bool wake);
  149. /* rcuc/rcub kthread realtime priority */
  150. #ifdef CONFIG_RCU_KTHREAD_PRIO
  151. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  152. #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
  153. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  154. #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
  155. module_param(kthread_prio, int, 0644);
  156. /* Delay in jiffies for grace-period initialization delays, debug only. */
  157. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
  158. static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
  159. module_param(gp_preinit_delay, int, 0644);
  160. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  161. static const int gp_preinit_delay;
  162. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
  163. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
  164. static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
  165. module_param(gp_init_delay, int, 0644);
  166. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  167. static const int gp_init_delay;
  168. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
  169. #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
  170. static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
  171. module_param(gp_cleanup_delay, int, 0644);
  172. #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  173. static const int gp_cleanup_delay;
  174. #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
  175. /*
  176. * Number of grace periods between delays, normalized by the duration of
  177. * the delay. The longer the the delay, the more the grace periods between
  178. * each delay. The reason for this normalization is that it means that,
  179. * for non-zero delays, the overall slowdown of grace periods is constant
  180. * regardless of the duration of the delay. This arrangement balances
  181. * the need for long delays to increase some race probabilities with the
  182. * need for fast grace periods to increase other race probabilities.
  183. */
  184. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  185. /*
  186. * Track the rcutorture test sequence number and the update version
  187. * number within a given test. The rcutorture_testseq is incremented
  188. * on every rcutorture module load and unload, so has an odd value
  189. * when a test is running. The rcutorture_vernum is set to zero
  190. * when rcutorture starts and is incremented on each rcutorture update.
  191. * These variables enable correlating rcutorture output with the
  192. * RCU tracing information.
  193. */
  194. unsigned long rcutorture_testseq;
  195. unsigned long rcutorture_vernum;
  196. /*
  197. * Compute the mask of online CPUs for the specified rcu_node structure.
  198. * This will not be stable unless the rcu_node structure's ->lock is
  199. * held, but the bit corresponding to the current CPU will be stable
  200. * in most contexts.
  201. */
  202. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  203. {
  204. return READ_ONCE(rnp->qsmaskinitnext);
  205. }
  206. /*
  207. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  208. * permit this function to be invoked without holding the root rcu_node
  209. * structure's ->lock, but of course results can be subject to change.
  210. */
  211. static int rcu_gp_in_progress(struct rcu_state *rsp)
  212. {
  213. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  214. }
  215. /*
  216. * Note a quiescent state. Because we do not need to know
  217. * how many quiescent states passed, just if there was at least
  218. * one since the start of the grace period, this just sets a flag.
  219. * The caller must have disabled preemption.
  220. */
  221. void rcu_sched_qs(void)
  222. {
  223. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
  224. return;
  225. trace_rcu_grace_period(TPS("rcu_sched"),
  226. __this_cpu_read(rcu_sched_data.gpnum),
  227. TPS("cpuqs"));
  228. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  229. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  230. return;
  231. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  232. rcu_report_exp_rdp(&rcu_sched_state,
  233. this_cpu_ptr(&rcu_sched_data), true);
  234. }
  235. void rcu_bh_qs(void)
  236. {
  237. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  238. trace_rcu_grace_period(TPS("rcu_bh"),
  239. __this_cpu_read(rcu_bh_data.gpnum),
  240. TPS("cpuqs"));
  241. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  242. }
  243. }
  244. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  245. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  246. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  247. .dynticks = ATOMIC_INIT(1),
  248. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  249. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  250. .dynticks_idle = ATOMIC_INIT(1),
  251. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  252. };
  253. DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
  254. EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
  255. /*
  256. * Let the RCU core know that this CPU has gone through the scheduler,
  257. * which is a quiescent state. This is called when the need for a
  258. * quiescent state is urgent, so we burn an atomic operation and full
  259. * memory barriers to let the RCU core know about it, regardless of what
  260. * this CPU might (or might not) do in the near future.
  261. *
  262. * We inform the RCU core by emulating a zero-duration dyntick-idle
  263. * period, which we in turn do by incrementing the ->dynticks counter
  264. * by two.
  265. *
  266. * The caller must have disabled interrupts.
  267. */
  268. static void rcu_momentary_dyntick_idle(void)
  269. {
  270. struct rcu_data *rdp;
  271. struct rcu_dynticks *rdtp;
  272. int resched_mask;
  273. struct rcu_state *rsp;
  274. /*
  275. * Yes, we can lose flag-setting operations. This is OK, because
  276. * the flag will be set again after some delay.
  277. */
  278. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  279. raw_cpu_write(rcu_sched_qs_mask, 0);
  280. /* Find the flavor that needs a quiescent state. */
  281. for_each_rcu_flavor(rsp) {
  282. rdp = raw_cpu_ptr(rsp->rda);
  283. if (!(resched_mask & rsp->flavor_mask))
  284. continue;
  285. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  286. if (READ_ONCE(rdp->mynode->completed) !=
  287. READ_ONCE(rdp->cond_resched_completed))
  288. continue;
  289. /*
  290. * Pretend to be momentarily idle for the quiescent state.
  291. * This allows the grace-period kthread to record the
  292. * quiescent state, with no need for this CPU to do anything
  293. * further.
  294. */
  295. rdtp = this_cpu_ptr(&rcu_dynticks);
  296. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  297. atomic_add(2, &rdtp->dynticks); /* QS. */
  298. smp_mb__after_atomic(); /* Later stuff after QS. */
  299. break;
  300. }
  301. }
  302. /*
  303. * Note a context switch. This is a quiescent state for RCU-sched,
  304. * and requires special handling for preemptible RCU.
  305. * The caller must have disabled interrupts.
  306. */
  307. void rcu_note_context_switch(void)
  308. {
  309. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  310. trace_rcu_utilization(TPS("Start context switch"));
  311. rcu_sched_qs();
  312. rcu_preempt_note_context_switch();
  313. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  314. rcu_momentary_dyntick_idle();
  315. trace_rcu_utilization(TPS("End context switch"));
  316. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  317. }
  318. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  319. /*
  320. * Register a quiescent state for all RCU flavors. If there is an
  321. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  322. * dyntick-idle quiescent state visible to other CPUs (but only for those
  323. * RCU flavors in desperate need of a quiescent state, which will normally
  324. * be none of them). Either way, do a lightweight quiescent state for
  325. * all RCU flavors.
  326. *
  327. * The barrier() calls are redundant in the common case when this is
  328. * called externally, but just in case this is called from within this
  329. * file.
  330. *
  331. */
  332. void rcu_all_qs(void)
  333. {
  334. unsigned long flags;
  335. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  336. if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
  337. local_irq_save(flags);
  338. rcu_momentary_dyntick_idle();
  339. local_irq_restore(flags);
  340. }
  341. this_cpu_inc(rcu_qs_ctr);
  342. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  343. }
  344. EXPORT_SYMBOL_GPL(rcu_all_qs);
  345. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  346. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  347. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  348. module_param(blimit, long, 0444);
  349. module_param(qhimark, long, 0444);
  350. module_param(qlowmark, long, 0444);
  351. static ulong jiffies_till_first_fqs = ULONG_MAX;
  352. static ulong jiffies_till_next_fqs = ULONG_MAX;
  353. module_param(jiffies_till_first_fqs, ulong, 0644);
  354. module_param(jiffies_till_next_fqs, ulong, 0644);
  355. /*
  356. * How long the grace period must be before we start recruiting
  357. * quiescent-state help from rcu_note_context_switch().
  358. */
  359. static ulong jiffies_till_sched_qs = HZ / 20;
  360. module_param(jiffies_till_sched_qs, ulong, 0644);
  361. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  362. struct rcu_data *rdp);
  363. static void force_qs_rnp(struct rcu_state *rsp,
  364. int (*f)(struct rcu_data *rsp, bool *isidle,
  365. unsigned long *maxj),
  366. bool *isidle, unsigned long *maxj);
  367. static void force_quiescent_state(struct rcu_state *rsp);
  368. static int rcu_pending(void);
  369. /*
  370. * Return the number of RCU batches started thus far for debug & stats.
  371. */
  372. unsigned long rcu_batches_started(void)
  373. {
  374. return rcu_state_p->gpnum;
  375. }
  376. EXPORT_SYMBOL_GPL(rcu_batches_started);
  377. /*
  378. * Return the number of RCU-sched batches started thus far for debug & stats.
  379. */
  380. unsigned long rcu_batches_started_sched(void)
  381. {
  382. return rcu_sched_state.gpnum;
  383. }
  384. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  385. /*
  386. * Return the number of RCU BH batches started thus far for debug & stats.
  387. */
  388. unsigned long rcu_batches_started_bh(void)
  389. {
  390. return rcu_bh_state.gpnum;
  391. }
  392. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  393. /*
  394. * Return the number of RCU batches completed thus far for debug & stats.
  395. */
  396. unsigned long rcu_batches_completed(void)
  397. {
  398. return rcu_state_p->completed;
  399. }
  400. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  401. /*
  402. * Return the number of RCU-sched batches completed thus far for debug & stats.
  403. */
  404. unsigned long rcu_batches_completed_sched(void)
  405. {
  406. return rcu_sched_state.completed;
  407. }
  408. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  409. /*
  410. * Return the number of RCU BH batches completed thus far for debug & stats.
  411. */
  412. unsigned long rcu_batches_completed_bh(void)
  413. {
  414. return rcu_bh_state.completed;
  415. }
  416. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  417. /*
  418. * Force a quiescent state.
  419. */
  420. void rcu_force_quiescent_state(void)
  421. {
  422. force_quiescent_state(rcu_state_p);
  423. }
  424. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  425. /*
  426. * Force a quiescent state for RCU BH.
  427. */
  428. void rcu_bh_force_quiescent_state(void)
  429. {
  430. force_quiescent_state(&rcu_bh_state);
  431. }
  432. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  433. /*
  434. * Force a quiescent state for RCU-sched.
  435. */
  436. void rcu_sched_force_quiescent_state(void)
  437. {
  438. force_quiescent_state(&rcu_sched_state);
  439. }
  440. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  441. /*
  442. * Show the state of the grace-period kthreads.
  443. */
  444. void show_rcu_gp_kthreads(void)
  445. {
  446. struct rcu_state *rsp;
  447. for_each_rcu_flavor(rsp) {
  448. pr_info("%s: wait state: %d ->state: %#lx\n",
  449. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  450. /* sched_show_task(rsp->gp_kthread); */
  451. }
  452. }
  453. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  454. /*
  455. * Record the number of times rcutorture tests have been initiated and
  456. * terminated. This information allows the debugfs tracing stats to be
  457. * correlated to the rcutorture messages, even when the rcutorture module
  458. * is being repeatedly loaded and unloaded. In other words, we cannot
  459. * store this state in rcutorture itself.
  460. */
  461. void rcutorture_record_test_transition(void)
  462. {
  463. rcutorture_testseq++;
  464. rcutorture_vernum = 0;
  465. }
  466. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  467. /*
  468. * Send along grace-period-related data for rcutorture diagnostics.
  469. */
  470. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  471. unsigned long *gpnum, unsigned long *completed)
  472. {
  473. struct rcu_state *rsp = NULL;
  474. switch (test_type) {
  475. case RCU_FLAVOR:
  476. rsp = rcu_state_p;
  477. break;
  478. case RCU_BH_FLAVOR:
  479. rsp = &rcu_bh_state;
  480. break;
  481. case RCU_SCHED_FLAVOR:
  482. rsp = &rcu_sched_state;
  483. break;
  484. default:
  485. break;
  486. }
  487. if (rsp != NULL) {
  488. *flags = READ_ONCE(rsp->gp_flags);
  489. *gpnum = READ_ONCE(rsp->gpnum);
  490. *completed = READ_ONCE(rsp->completed);
  491. return;
  492. }
  493. *flags = 0;
  494. *gpnum = 0;
  495. *completed = 0;
  496. }
  497. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  498. /*
  499. * Record the number of writer passes through the current rcutorture test.
  500. * This is also used to correlate debugfs tracing stats with the rcutorture
  501. * messages.
  502. */
  503. void rcutorture_record_progress(unsigned long vernum)
  504. {
  505. rcutorture_vernum++;
  506. }
  507. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  508. /*
  509. * Does the CPU have callbacks ready to be invoked?
  510. */
  511. static int
  512. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  513. {
  514. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  515. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  516. }
  517. /*
  518. * Return the root node of the specified rcu_state structure.
  519. */
  520. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  521. {
  522. return &rsp->node[0];
  523. }
  524. /*
  525. * Is there any need for future grace periods?
  526. * Interrupts must be disabled. If the caller does not hold the root
  527. * rnp_node structure's ->lock, the results are advisory only.
  528. */
  529. static int rcu_future_needs_gp(struct rcu_state *rsp)
  530. {
  531. struct rcu_node *rnp = rcu_get_root(rsp);
  532. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  533. int *fp = &rnp->need_future_gp[idx];
  534. return READ_ONCE(*fp);
  535. }
  536. /*
  537. * Does the current CPU require a not-yet-started grace period?
  538. * The caller must have disabled interrupts to prevent races with
  539. * normal callback registry.
  540. */
  541. static bool
  542. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  543. {
  544. int i;
  545. if (rcu_gp_in_progress(rsp))
  546. return false; /* No, a grace period is already in progress. */
  547. if (rcu_future_needs_gp(rsp))
  548. return true; /* Yes, a no-CBs CPU needs one. */
  549. if (!rdp->nxttail[RCU_NEXT_TAIL])
  550. return false; /* No, this is a no-CBs (or offline) CPU. */
  551. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  552. return true; /* Yes, CPU has newly registered callbacks. */
  553. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  554. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  555. ULONG_CMP_LT(READ_ONCE(rsp->completed),
  556. rdp->nxtcompleted[i]))
  557. return true; /* Yes, CBs for future grace period. */
  558. return false; /* No grace period needed. */
  559. }
  560. /*
  561. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  562. *
  563. * If the new value of the ->dynticks_nesting counter now is zero,
  564. * we really have entered idle, and must do the appropriate accounting.
  565. * The caller must have disabled interrupts.
  566. */
  567. static void rcu_eqs_enter_common(long long oldval, bool user)
  568. {
  569. struct rcu_state *rsp;
  570. struct rcu_data *rdp;
  571. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  572. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  573. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  574. !user && !is_idle_task(current)) {
  575. struct task_struct *idle __maybe_unused =
  576. idle_task(smp_processor_id());
  577. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  578. ftrace_dump(DUMP_ORIG);
  579. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  580. current->pid, current->comm,
  581. idle->pid, idle->comm); /* must be idle task! */
  582. }
  583. for_each_rcu_flavor(rsp) {
  584. rdp = this_cpu_ptr(rsp->rda);
  585. do_nocb_deferred_wakeup(rdp);
  586. }
  587. rcu_prepare_for_idle();
  588. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  589. smp_mb__before_atomic(); /* See above. */
  590. atomic_inc(&rdtp->dynticks);
  591. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  592. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  593. atomic_read(&rdtp->dynticks) & 0x1);
  594. rcu_dynticks_task_enter();
  595. /*
  596. * It is illegal to enter an extended quiescent state while
  597. * in an RCU read-side critical section.
  598. */
  599. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  600. "Illegal idle entry in RCU read-side critical section.");
  601. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  602. "Illegal idle entry in RCU-bh read-side critical section.");
  603. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  604. "Illegal idle entry in RCU-sched read-side critical section.");
  605. }
  606. /*
  607. * Enter an RCU extended quiescent state, which can be either the
  608. * idle loop or adaptive-tickless usermode execution.
  609. */
  610. static void rcu_eqs_enter(bool user)
  611. {
  612. long long oldval;
  613. struct rcu_dynticks *rdtp;
  614. rdtp = this_cpu_ptr(&rcu_dynticks);
  615. oldval = rdtp->dynticks_nesting;
  616. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  617. (oldval & DYNTICK_TASK_NEST_MASK) == 0);
  618. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  619. rdtp->dynticks_nesting = 0;
  620. rcu_eqs_enter_common(oldval, user);
  621. } else {
  622. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  623. }
  624. }
  625. /**
  626. * rcu_idle_enter - inform RCU that current CPU is entering idle
  627. *
  628. * Enter idle mode, in other words, -leave- the mode in which RCU
  629. * read-side critical sections can occur. (Though RCU read-side
  630. * critical sections can occur in irq handlers in idle, a possibility
  631. * handled by irq_enter() and irq_exit().)
  632. *
  633. * We crowbar the ->dynticks_nesting field to zero to allow for
  634. * the possibility of usermode upcalls having messed up our count
  635. * of interrupt nesting level during the prior busy period.
  636. */
  637. void rcu_idle_enter(void)
  638. {
  639. unsigned long flags;
  640. local_irq_save(flags);
  641. rcu_eqs_enter(false);
  642. rcu_sysidle_enter(0);
  643. local_irq_restore(flags);
  644. }
  645. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  646. #ifdef CONFIG_NO_HZ_FULL
  647. /**
  648. * rcu_user_enter - inform RCU that we are resuming userspace.
  649. *
  650. * Enter RCU idle mode right before resuming userspace. No use of RCU
  651. * is permitted between this call and rcu_user_exit(). This way the
  652. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  653. * when the CPU runs in userspace.
  654. */
  655. void rcu_user_enter(void)
  656. {
  657. rcu_eqs_enter(1);
  658. }
  659. #endif /* CONFIG_NO_HZ_FULL */
  660. /**
  661. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  662. *
  663. * Exit from an interrupt handler, which might possibly result in entering
  664. * idle mode, in other words, leaving the mode in which read-side critical
  665. * sections can occur. The caller must have disabled interrupts.
  666. *
  667. * This code assumes that the idle loop never does anything that might
  668. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  669. * architecture violates this assumption, RCU will give you what you
  670. * deserve, good and hard. But very infrequently and irreproducibly.
  671. *
  672. * Use things like work queues to work around this limitation.
  673. *
  674. * You have been warned.
  675. */
  676. void rcu_irq_exit(void)
  677. {
  678. long long oldval;
  679. struct rcu_dynticks *rdtp;
  680. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
  681. rdtp = this_cpu_ptr(&rcu_dynticks);
  682. oldval = rdtp->dynticks_nesting;
  683. rdtp->dynticks_nesting--;
  684. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  685. rdtp->dynticks_nesting < 0);
  686. if (rdtp->dynticks_nesting)
  687. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  688. else
  689. rcu_eqs_enter_common(oldval, true);
  690. rcu_sysidle_enter(1);
  691. }
  692. /*
  693. * Wrapper for rcu_irq_exit() where interrupts are enabled.
  694. */
  695. void rcu_irq_exit_irqson(void)
  696. {
  697. unsigned long flags;
  698. local_irq_save(flags);
  699. rcu_irq_exit();
  700. local_irq_restore(flags);
  701. }
  702. /*
  703. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  704. *
  705. * If the new value of the ->dynticks_nesting counter was previously zero,
  706. * we really have exited idle, and must do the appropriate accounting.
  707. * The caller must have disabled interrupts.
  708. */
  709. static void rcu_eqs_exit_common(long long oldval, int user)
  710. {
  711. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  712. rcu_dynticks_task_exit();
  713. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  714. atomic_inc(&rdtp->dynticks);
  715. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  716. smp_mb__after_atomic(); /* See above. */
  717. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  718. !(atomic_read(&rdtp->dynticks) & 0x1));
  719. rcu_cleanup_after_idle();
  720. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  721. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  722. !user && !is_idle_task(current)) {
  723. struct task_struct *idle __maybe_unused =
  724. idle_task(smp_processor_id());
  725. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  726. oldval, rdtp->dynticks_nesting);
  727. ftrace_dump(DUMP_ORIG);
  728. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  729. current->pid, current->comm,
  730. idle->pid, idle->comm); /* must be idle task! */
  731. }
  732. }
  733. /*
  734. * Exit an RCU extended quiescent state, which can be either the
  735. * idle loop or adaptive-tickless usermode execution.
  736. */
  737. static void rcu_eqs_exit(bool user)
  738. {
  739. struct rcu_dynticks *rdtp;
  740. long long oldval;
  741. rdtp = this_cpu_ptr(&rcu_dynticks);
  742. oldval = rdtp->dynticks_nesting;
  743. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  744. if (oldval & DYNTICK_TASK_NEST_MASK) {
  745. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  746. } else {
  747. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  748. rcu_eqs_exit_common(oldval, user);
  749. }
  750. }
  751. /**
  752. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  753. *
  754. * Exit idle mode, in other words, -enter- the mode in which RCU
  755. * read-side critical sections can occur.
  756. *
  757. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  758. * allow for the possibility of usermode upcalls messing up our count
  759. * of interrupt nesting level during the busy period that is just
  760. * now starting.
  761. */
  762. void rcu_idle_exit(void)
  763. {
  764. unsigned long flags;
  765. local_irq_save(flags);
  766. rcu_eqs_exit(false);
  767. rcu_sysidle_exit(0);
  768. local_irq_restore(flags);
  769. }
  770. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  771. #ifdef CONFIG_NO_HZ_FULL
  772. /**
  773. * rcu_user_exit - inform RCU that we are exiting userspace.
  774. *
  775. * Exit RCU idle mode while entering the kernel because it can
  776. * run a RCU read side critical section anytime.
  777. */
  778. void rcu_user_exit(void)
  779. {
  780. rcu_eqs_exit(1);
  781. }
  782. #endif /* CONFIG_NO_HZ_FULL */
  783. /**
  784. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  785. *
  786. * Enter an interrupt handler, which might possibly result in exiting
  787. * idle mode, in other words, entering the mode in which read-side critical
  788. * sections can occur. The caller must have disabled interrupts.
  789. *
  790. * Note that the Linux kernel is fully capable of entering an interrupt
  791. * handler that it never exits, for example when doing upcalls to
  792. * user mode! This code assumes that the idle loop never does upcalls to
  793. * user mode. If your architecture does do upcalls from the idle loop (or
  794. * does anything else that results in unbalanced calls to the irq_enter()
  795. * and irq_exit() functions), RCU will give you what you deserve, good
  796. * and hard. But very infrequently and irreproducibly.
  797. *
  798. * Use things like work queues to work around this limitation.
  799. *
  800. * You have been warned.
  801. */
  802. void rcu_irq_enter(void)
  803. {
  804. struct rcu_dynticks *rdtp;
  805. long long oldval;
  806. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
  807. rdtp = this_cpu_ptr(&rcu_dynticks);
  808. oldval = rdtp->dynticks_nesting;
  809. rdtp->dynticks_nesting++;
  810. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  811. rdtp->dynticks_nesting == 0);
  812. if (oldval)
  813. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  814. else
  815. rcu_eqs_exit_common(oldval, true);
  816. rcu_sysidle_exit(1);
  817. }
  818. /*
  819. * Wrapper for rcu_irq_enter() where interrupts are enabled.
  820. */
  821. void rcu_irq_enter_irqson(void)
  822. {
  823. unsigned long flags;
  824. local_irq_save(flags);
  825. rcu_irq_enter();
  826. local_irq_restore(flags);
  827. }
  828. /**
  829. * rcu_nmi_enter - inform RCU of entry to NMI context
  830. *
  831. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  832. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  833. * that the CPU is active. This implementation permits nested NMIs, as
  834. * long as the nesting level does not overflow an int. (You will probably
  835. * run out of stack space first.)
  836. */
  837. void rcu_nmi_enter(void)
  838. {
  839. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  840. int incby = 2;
  841. /* Complain about underflow. */
  842. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  843. /*
  844. * If idle from RCU viewpoint, atomically increment ->dynticks
  845. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  846. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  847. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  848. * to be in the outermost NMI handler that interrupted an RCU-idle
  849. * period (observation due to Andy Lutomirski).
  850. */
  851. if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
  852. smp_mb__before_atomic(); /* Force delay from prior write. */
  853. atomic_inc(&rdtp->dynticks);
  854. /* atomic_inc() before later RCU read-side crit sects */
  855. smp_mb__after_atomic(); /* See above. */
  856. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  857. incby = 1;
  858. }
  859. rdtp->dynticks_nmi_nesting += incby;
  860. barrier();
  861. }
  862. /**
  863. * rcu_nmi_exit - inform RCU of exit from NMI context
  864. *
  865. * If we are returning from the outermost NMI handler that interrupted an
  866. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  867. * to let the RCU grace-period handling know that the CPU is back to
  868. * being RCU-idle.
  869. */
  870. void rcu_nmi_exit(void)
  871. {
  872. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  873. /*
  874. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  875. * (We are exiting an NMI handler, so RCU better be paying attention
  876. * to us!)
  877. */
  878. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  879. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  880. /*
  881. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  882. * leave it in non-RCU-idle state.
  883. */
  884. if (rdtp->dynticks_nmi_nesting != 1) {
  885. rdtp->dynticks_nmi_nesting -= 2;
  886. return;
  887. }
  888. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  889. rdtp->dynticks_nmi_nesting = 0;
  890. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  891. smp_mb__before_atomic(); /* See above. */
  892. atomic_inc(&rdtp->dynticks);
  893. smp_mb__after_atomic(); /* Force delay to next write. */
  894. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  895. }
  896. /**
  897. * __rcu_is_watching - are RCU read-side critical sections safe?
  898. *
  899. * Return true if RCU is watching the running CPU, which means that
  900. * this CPU can safely enter RCU read-side critical sections. Unlike
  901. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  902. * least disabled preemption.
  903. */
  904. bool notrace __rcu_is_watching(void)
  905. {
  906. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  907. }
  908. /**
  909. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  910. *
  911. * If the current CPU is in its idle loop and is neither in an interrupt
  912. * or NMI handler, return true.
  913. */
  914. bool notrace rcu_is_watching(void)
  915. {
  916. bool ret;
  917. preempt_disable_notrace();
  918. ret = __rcu_is_watching();
  919. preempt_enable_notrace();
  920. return ret;
  921. }
  922. EXPORT_SYMBOL_GPL(rcu_is_watching);
  923. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  924. /*
  925. * Is the current CPU online? Disable preemption to avoid false positives
  926. * that could otherwise happen due to the current CPU number being sampled,
  927. * this task being preempted, its old CPU being taken offline, resuming
  928. * on some other CPU, then determining that its old CPU is now offline.
  929. * It is OK to use RCU on an offline processor during initial boot, hence
  930. * the check for rcu_scheduler_fully_active. Note also that it is OK
  931. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  932. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  933. * offline to continue to use RCU for one jiffy after marking itself
  934. * offline in the cpu_online_mask. This leniency is necessary given the
  935. * non-atomic nature of the online and offline processing, for example,
  936. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  937. * notifiers.
  938. *
  939. * This is also why RCU internally marks CPUs online during the
  940. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  941. *
  942. * Disable checking if in an NMI handler because we cannot safely report
  943. * errors from NMI handlers anyway.
  944. */
  945. bool rcu_lockdep_current_cpu_online(void)
  946. {
  947. struct rcu_data *rdp;
  948. struct rcu_node *rnp;
  949. bool ret;
  950. if (in_nmi())
  951. return true;
  952. preempt_disable();
  953. rdp = this_cpu_ptr(&rcu_sched_data);
  954. rnp = rdp->mynode;
  955. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  956. !rcu_scheduler_fully_active;
  957. preempt_enable();
  958. return ret;
  959. }
  960. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  961. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  962. /**
  963. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  964. *
  965. * If the current CPU is idle or running at a first-level (not nested)
  966. * interrupt from idle, return true. The caller must have at least
  967. * disabled preemption.
  968. */
  969. static int rcu_is_cpu_rrupt_from_idle(void)
  970. {
  971. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  972. }
  973. /*
  974. * Snapshot the specified CPU's dynticks counter so that we can later
  975. * credit them with an implicit quiescent state. Return 1 if this CPU
  976. * is in dynticks idle mode, which is an extended quiescent state.
  977. */
  978. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  979. bool *isidle, unsigned long *maxj)
  980. {
  981. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  982. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  983. if ((rdp->dynticks_snap & 0x1) == 0) {
  984. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  985. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
  986. rdp->mynode->gpnum))
  987. WRITE_ONCE(rdp->gpwrap, true);
  988. return 1;
  989. }
  990. return 0;
  991. }
  992. /*
  993. * Return true if the specified CPU has passed through a quiescent
  994. * state by virtue of being in or having passed through an dynticks
  995. * idle state since the last call to dyntick_save_progress_counter()
  996. * for this same CPU, or by virtue of having been offline.
  997. */
  998. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  999. bool *isidle, unsigned long *maxj)
  1000. {
  1001. unsigned int curr;
  1002. int *rcrmp;
  1003. unsigned int snap;
  1004. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  1005. snap = (unsigned int)rdp->dynticks_snap;
  1006. /*
  1007. * If the CPU passed through or entered a dynticks idle phase with
  1008. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1009. * already acknowledged the request to pass through a quiescent
  1010. * state. Either way, that CPU cannot possibly be in an RCU
  1011. * read-side critical section that started before the beginning
  1012. * of the current RCU grace period.
  1013. */
  1014. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  1015. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1016. rdp->dynticks_fqs++;
  1017. return 1;
  1018. }
  1019. /*
  1020. * Check for the CPU being offline, but only if the grace period
  1021. * is old enough. We don't need to worry about the CPU changing
  1022. * state: If we see it offline even once, it has been through a
  1023. * quiescent state.
  1024. *
  1025. * The reason for insisting that the grace period be at least
  1026. * one jiffy old is that CPUs that are not quite online and that
  1027. * have just gone offline can still execute RCU read-side critical
  1028. * sections.
  1029. */
  1030. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  1031. return 0; /* Grace period is not old enough. */
  1032. barrier();
  1033. if (cpu_is_offline(rdp->cpu)) {
  1034. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1035. rdp->offline_fqs++;
  1036. return 1;
  1037. }
  1038. /*
  1039. * A CPU running for an extended time within the kernel can
  1040. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1041. * even context-switching back and forth between a pair of
  1042. * in-kernel CPU-bound tasks cannot advance grace periods.
  1043. * So if the grace period is old enough, make the CPU pay attention.
  1044. * Note that the unsynchronized assignments to the per-CPU
  1045. * rcu_sched_qs_mask variable are safe. Yes, setting of
  1046. * bits can be lost, but they will be set again on the next
  1047. * force-quiescent-state pass. So lost bit sets do not result
  1048. * in incorrect behavior, merely in a grace period lasting
  1049. * a few jiffies longer than it might otherwise. Because
  1050. * there are at most four threads involved, and because the
  1051. * updates are only once every few jiffies, the probability of
  1052. * lossage (and thus of slight grace-period extension) is
  1053. * quite low.
  1054. *
  1055. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  1056. * is set too high, we override with half of the RCU CPU stall
  1057. * warning delay.
  1058. */
  1059. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  1060. if (ULONG_CMP_GE(jiffies,
  1061. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  1062. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  1063. if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  1064. WRITE_ONCE(rdp->cond_resched_completed,
  1065. READ_ONCE(rdp->mynode->completed));
  1066. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  1067. WRITE_ONCE(*rcrmp,
  1068. READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
  1069. }
  1070. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  1071. }
  1072. /* And if it has been a really long time, kick the CPU as well. */
  1073. if (ULONG_CMP_GE(jiffies,
  1074. rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
  1075. ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
  1076. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  1077. return 0;
  1078. }
  1079. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1080. {
  1081. unsigned long j = jiffies;
  1082. unsigned long j1;
  1083. rsp->gp_start = j;
  1084. smp_wmb(); /* Record start time before stall time. */
  1085. j1 = rcu_jiffies_till_stall_check();
  1086. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1087. rsp->jiffies_resched = j + j1 / 2;
  1088. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1089. }
  1090. /*
  1091. * Convert a ->gp_state value to a character string.
  1092. */
  1093. static const char *gp_state_getname(short gs)
  1094. {
  1095. if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
  1096. return "???";
  1097. return gp_state_names[gs];
  1098. }
  1099. /*
  1100. * Complain about starvation of grace-period kthread.
  1101. */
  1102. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1103. {
  1104. unsigned long gpa;
  1105. unsigned long j;
  1106. j = jiffies;
  1107. gpa = READ_ONCE(rsp->gp_activity);
  1108. if (j - gpa > 2 * HZ) {
  1109. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
  1110. rsp->name, j - gpa,
  1111. rsp->gpnum, rsp->completed,
  1112. rsp->gp_flags,
  1113. gp_state_getname(rsp->gp_state), rsp->gp_state,
  1114. rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
  1115. if (rsp->gp_kthread)
  1116. sched_show_task(rsp->gp_kthread);
  1117. }
  1118. }
  1119. /*
  1120. * Dump stacks of all tasks running on stalled CPUs.
  1121. */
  1122. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1123. {
  1124. int cpu;
  1125. unsigned long flags;
  1126. struct rcu_node *rnp;
  1127. rcu_for_each_leaf_node(rsp, rnp) {
  1128. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1129. if (rnp->qsmask != 0) {
  1130. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1131. if (rnp->qsmask & (1UL << cpu))
  1132. dump_cpu_task(rnp->grplo + cpu);
  1133. }
  1134. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1135. }
  1136. }
  1137. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1138. {
  1139. int cpu;
  1140. long delta;
  1141. unsigned long flags;
  1142. unsigned long gpa;
  1143. unsigned long j;
  1144. int ndetected = 0;
  1145. struct rcu_node *rnp = rcu_get_root(rsp);
  1146. long totqlen = 0;
  1147. /* Only let one CPU complain about others per time interval. */
  1148. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1149. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1150. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1151. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1152. return;
  1153. }
  1154. WRITE_ONCE(rsp->jiffies_stall,
  1155. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1156. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1157. /*
  1158. * OK, time to rat on our buddy...
  1159. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1160. * RCU CPU stall warnings.
  1161. */
  1162. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1163. rsp->name);
  1164. print_cpu_stall_info_begin();
  1165. rcu_for_each_leaf_node(rsp, rnp) {
  1166. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1167. ndetected += rcu_print_task_stall(rnp);
  1168. if (rnp->qsmask != 0) {
  1169. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  1170. if (rnp->qsmask & (1UL << cpu)) {
  1171. print_cpu_stall_info(rsp,
  1172. rnp->grplo + cpu);
  1173. ndetected++;
  1174. }
  1175. }
  1176. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1177. }
  1178. print_cpu_stall_info_end();
  1179. for_each_possible_cpu(cpu)
  1180. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1181. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1182. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1183. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1184. if (ndetected) {
  1185. rcu_dump_cpu_stacks(rsp);
  1186. } else {
  1187. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1188. READ_ONCE(rsp->completed) == gpnum) {
  1189. pr_err("INFO: Stall ended before state dump start\n");
  1190. } else {
  1191. j = jiffies;
  1192. gpa = READ_ONCE(rsp->gp_activity);
  1193. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1194. rsp->name, j - gpa, j, gpa,
  1195. jiffies_till_next_fqs,
  1196. rcu_get_root(rsp)->qsmask);
  1197. /* In this case, the current CPU might be at fault. */
  1198. sched_show_task(current);
  1199. }
  1200. }
  1201. /* Complain about tasks blocking the grace period. */
  1202. rcu_print_detail_task_stall(rsp);
  1203. rcu_check_gp_kthread_starvation(rsp);
  1204. force_quiescent_state(rsp); /* Kick them all. */
  1205. }
  1206. static void print_cpu_stall(struct rcu_state *rsp)
  1207. {
  1208. int cpu;
  1209. unsigned long flags;
  1210. struct rcu_node *rnp = rcu_get_root(rsp);
  1211. long totqlen = 0;
  1212. /*
  1213. * OK, time to rat on ourselves...
  1214. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1215. * RCU CPU stall warnings.
  1216. */
  1217. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1218. print_cpu_stall_info_begin();
  1219. print_cpu_stall_info(rsp, smp_processor_id());
  1220. print_cpu_stall_info_end();
  1221. for_each_possible_cpu(cpu)
  1222. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1223. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1224. jiffies - rsp->gp_start,
  1225. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1226. rcu_check_gp_kthread_starvation(rsp);
  1227. rcu_dump_cpu_stacks(rsp);
  1228. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1229. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1230. WRITE_ONCE(rsp->jiffies_stall,
  1231. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1232. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1233. /*
  1234. * Attempt to revive the RCU machinery by forcing a context switch.
  1235. *
  1236. * A context switch would normally allow the RCU state machine to make
  1237. * progress and it could be we're stuck in kernel space without context
  1238. * switches for an entirely unreasonable amount of time.
  1239. */
  1240. resched_cpu(smp_processor_id());
  1241. }
  1242. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1243. {
  1244. unsigned long completed;
  1245. unsigned long gpnum;
  1246. unsigned long gps;
  1247. unsigned long j;
  1248. unsigned long js;
  1249. struct rcu_node *rnp;
  1250. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1251. return;
  1252. j = jiffies;
  1253. /*
  1254. * Lots of memory barriers to reject false positives.
  1255. *
  1256. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1257. * then rsp->gp_start, and finally rsp->completed. These values
  1258. * are updated in the opposite order with memory barriers (or
  1259. * equivalent) during grace-period initialization and cleanup.
  1260. * Now, a false positive can occur if we get an new value of
  1261. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1262. * the memory barriers, the only way that this can happen is if one
  1263. * grace period ends and another starts between these two fetches.
  1264. * Detect this by comparing rsp->completed with the previous fetch
  1265. * from rsp->gpnum.
  1266. *
  1267. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1268. * and rsp->gp_start suffice to forestall false positives.
  1269. */
  1270. gpnum = READ_ONCE(rsp->gpnum);
  1271. smp_rmb(); /* Pick up ->gpnum first... */
  1272. js = READ_ONCE(rsp->jiffies_stall);
  1273. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1274. gps = READ_ONCE(rsp->gp_start);
  1275. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1276. completed = READ_ONCE(rsp->completed);
  1277. if (ULONG_CMP_GE(completed, gpnum) ||
  1278. ULONG_CMP_LT(j, js) ||
  1279. ULONG_CMP_GE(gps, js))
  1280. return; /* No stall or GP completed since entering function. */
  1281. rnp = rdp->mynode;
  1282. if (rcu_gp_in_progress(rsp) &&
  1283. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1284. /* We haven't checked in, so go dump stack. */
  1285. print_cpu_stall(rsp);
  1286. } else if (rcu_gp_in_progress(rsp) &&
  1287. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1288. /* They had a few time units to dump stack, so complain. */
  1289. print_other_cpu_stall(rsp, gpnum);
  1290. }
  1291. }
  1292. /**
  1293. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1294. *
  1295. * Set the stall-warning timeout way off into the future, thus preventing
  1296. * any RCU CPU stall-warning messages from appearing in the current set of
  1297. * RCU grace periods.
  1298. *
  1299. * The caller must disable hard irqs.
  1300. */
  1301. void rcu_cpu_stall_reset(void)
  1302. {
  1303. struct rcu_state *rsp;
  1304. for_each_rcu_flavor(rsp)
  1305. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1306. }
  1307. /*
  1308. * Initialize the specified rcu_data structure's default callback list
  1309. * to empty. The default callback list is the one that is not used by
  1310. * no-callbacks CPUs.
  1311. */
  1312. static void init_default_callback_list(struct rcu_data *rdp)
  1313. {
  1314. int i;
  1315. rdp->nxtlist = NULL;
  1316. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1317. rdp->nxttail[i] = &rdp->nxtlist;
  1318. }
  1319. /*
  1320. * Initialize the specified rcu_data structure's callback list to empty.
  1321. */
  1322. static void init_callback_list(struct rcu_data *rdp)
  1323. {
  1324. if (init_nocb_callback_list(rdp))
  1325. return;
  1326. init_default_callback_list(rdp);
  1327. }
  1328. /*
  1329. * Determine the value that ->completed will have at the end of the
  1330. * next subsequent grace period. This is used to tag callbacks so that
  1331. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1332. * been dyntick-idle for an extended period with callbacks under the
  1333. * influence of RCU_FAST_NO_HZ.
  1334. *
  1335. * The caller must hold rnp->lock with interrupts disabled.
  1336. */
  1337. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1338. struct rcu_node *rnp)
  1339. {
  1340. /*
  1341. * If RCU is idle, we just wait for the next grace period.
  1342. * But we can only be sure that RCU is idle if we are looking
  1343. * at the root rcu_node structure -- otherwise, a new grace
  1344. * period might have started, but just not yet gotten around
  1345. * to initializing the current non-root rcu_node structure.
  1346. */
  1347. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1348. return rnp->completed + 1;
  1349. /*
  1350. * Otherwise, wait for a possible partial grace period and
  1351. * then the subsequent full grace period.
  1352. */
  1353. return rnp->completed + 2;
  1354. }
  1355. /*
  1356. * Trace-event helper function for rcu_start_future_gp() and
  1357. * rcu_nocb_wait_gp().
  1358. */
  1359. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1360. unsigned long c, const char *s)
  1361. {
  1362. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1363. rnp->completed, c, rnp->level,
  1364. rnp->grplo, rnp->grphi, s);
  1365. }
  1366. /*
  1367. * Start some future grace period, as needed to handle newly arrived
  1368. * callbacks. The required future grace periods are recorded in each
  1369. * rcu_node structure's ->need_future_gp field. Returns true if there
  1370. * is reason to awaken the grace-period kthread.
  1371. *
  1372. * The caller must hold the specified rcu_node structure's ->lock.
  1373. */
  1374. static bool __maybe_unused
  1375. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1376. unsigned long *c_out)
  1377. {
  1378. unsigned long c;
  1379. int i;
  1380. bool ret = false;
  1381. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1382. /*
  1383. * Pick up grace-period number for new callbacks. If this
  1384. * grace period is already marked as needed, return to the caller.
  1385. */
  1386. c = rcu_cbs_completed(rdp->rsp, rnp);
  1387. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1388. if (rnp->need_future_gp[c & 0x1]) {
  1389. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1390. goto out;
  1391. }
  1392. /*
  1393. * If either this rcu_node structure or the root rcu_node structure
  1394. * believe that a grace period is in progress, then we must wait
  1395. * for the one following, which is in "c". Because our request
  1396. * will be noticed at the end of the current grace period, we don't
  1397. * need to explicitly start one. We only do the lockless check
  1398. * of rnp_root's fields if the current rcu_node structure thinks
  1399. * there is no grace period in flight, and because we hold rnp->lock,
  1400. * the only possible change is when rnp_root's two fields are
  1401. * equal, in which case rnp_root->gpnum might be concurrently
  1402. * incremented. But that is OK, as it will just result in our
  1403. * doing some extra useless work.
  1404. */
  1405. if (rnp->gpnum != rnp->completed ||
  1406. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1407. rnp->need_future_gp[c & 0x1]++;
  1408. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1409. goto out;
  1410. }
  1411. /*
  1412. * There might be no grace period in progress. If we don't already
  1413. * hold it, acquire the root rcu_node structure's lock in order to
  1414. * start one (if needed).
  1415. */
  1416. if (rnp != rnp_root)
  1417. raw_spin_lock_rcu_node(rnp_root);
  1418. /*
  1419. * Get a new grace-period number. If there really is no grace
  1420. * period in progress, it will be smaller than the one we obtained
  1421. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1422. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1423. */
  1424. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1425. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1426. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1427. rdp->nxtcompleted[i] = c;
  1428. /*
  1429. * If the needed for the required grace period is already
  1430. * recorded, trace and leave.
  1431. */
  1432. if (rnp_root->need_future_gp[c & 0x1]) {
  1433. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1434. goto unlock_out;
  1435. }
  1436. /* Record the need for the future grace period. */
  1437. rnp_root->need_future_gp[c & 0x1]++;
  1438. /* If a grace period is not already in progress, start one. */
  1439. if (rnp_root->gpnum != rnp_root->completed) {
  1440. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1441. } else {
  1442. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1443. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1444. }
  1445. unlock_out:
  1446. if (rnp != rnp_root)
  1447. raw_spin_unlock_rcu_node(rnp_root);
  1448. out:
  1449. if (c_out != NULL)
  1450. *c_out = c;
  1451. return ret;
  1452. }
  1453. /*
  1454. * Clean up any old requests for the just-ended grace period. Also return
  1455. * whether any additional grace periods have been requested. Also invoke
  1456. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1457. * waiting for this grace period to complete.
  1458. */
  1459. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1460. {
  1461. int c = rnp->completed;
  1462. int needmore;
  1463. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1464. rnp->need_future_gp[c & 0x1] = 0;
  1465. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1466. trace_rcu_future_gp(rnp, rdp, c,
  1467. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1468. return needmore;
  1469. }
  1470. /*
  1471. * Awaken the grace-period kthread for the specified flavor of RCU.
  1472. * Don't do a self-awaken, and don't bother awakening when there is
  1473. * nothing for the grace-period kthread to do (as in several CPUs
  1474. * raced to awaken, and we lost), and finally don't try to awaken
  1475. * a kthread that has not yet been created.
  1476. */
  1477. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1478. {
  1479. if (current == rsp->gp_kthread ||
  1480. !READ_ONCE(rsp->gp_flags) ||
  1481. !rsp->gp_kthread)
  1482. return;
  1483. swake_up(&rsp->gp_wq);
  1484. }
  1485. /*
  1486. * If there is room, assign a ->completed number to any callbacks on
  1487. * this CPU that have not already been assigned. Also accelerate any
  1488. * callbacks that were previously assigned a ->completed number that has
  1489. * since proven to be too conservative, which can happen if callbacks get
  1490. * assigned a ->completed number while RCU is idle, but with reference to
  1491. * a non-root rcu_node structure. This function is idempotent, so it does
  1492. * not hurt to call it repeatedly. Returns an flag saying that we should
  1493. * awaken the RCU grace-period kthread.
  1494. *
  1495. * The caller must hold rnp->lock with interrupts disabled.
  1496. */
  1497. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1498. struct rcu_data *rdp)
  1499. {
  1500. unsigned long c;
  1501. int i;
  1502. bool ret;
  1503. /* If the CPU has no callbacks, nothing to do. */
  1504. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1505. return false;
  1506. /*
  1507. * Starting from the sublist containing the callbacks most
  1508. * recently assigned a ->completed number and working down, find the
  1509. * first sublist that is not assignable to an upcoming grace period.
  1510. * Such a sublist has something in it (first two tests) and has
  1511. * a ->completed number assigned that will complete sooner than
  1512. * the ->completed number for newly arrived callbacks (last test).
  1513. *
  1514. * The key point is that any later sublist can be assigned the
  1515. * same ->completed number as the newly arrived callbacks, which
  1516. * means that the callbacks in any of these later sublist can be
  1517. * grouped into a single sublist, whether or not they have already
  1518. * been assigned a ->completed number.
  1519. */
  1520. c = rcu_cbs_completed(rsp, rnp);
  1521. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1522. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1523. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1524. break;
  1525. /*
  1526. * If there are no sublist for unassigned callbacks, leave.
  1527. * At the same time, advance "i" one sublist, so that "i" will
  1528. * index into the sublist where all the remaining callbacks should
  1529. * be grouped into.
  1530. */
  1531. if (++i >= RCU_NEXT_TAIL)
  1532. return false;
  1533. /*
  1534. * Assign all subsequent callbacks' ->completed number to the next
  1535. * full grace period and group them all in the sublist initially
  1536. * indexed by "i".
  1537. */
  1538. for (; i <= RCU_NEXT_TAIL; i++) {
  1539. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1540. rdp->nxtcompleted[i] = c;
  1541. }
  1542. /* Record any needed additional grace periods. */
  1543. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1544. /* Trace depending on how much we were able to accelerate. */
  1545. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1546. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1547. else
  1548. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1549. return ret;
  1550. }
  1551. /*
  1552. * Move any callbacks whose grace period has completed to the
  1553. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1554. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1555. * sublist. This function is idempotent, so it does not hurt to
  1556. * invoke it repeatedly. As long as it is not invoked -too- often...
  1557. * Returns true if the RCU grace-period kthread needs to be awakened.
  1558. *
  1559. * The caller must hold rnp->lock with interrupts disabled.
  1560. */
  1561. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1562. struct rcu_data *rdp)
  1563. {
  1564. int i, j;
  1565. /* If the CPU has no callbacks, nothing to do. */
  1566. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1567. return false;
  1568. /*
  1569. * Find all callbacks whose ->completed numbers indicate that they
  1570. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1571. */
  1572. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1573. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1574. break;
  1575. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1576. }
  1577. /* Clean up any sublist tail pointers that were misordered above. */
  1578. for (j = RCU_WAIT_TAIL; j < i; j++)
  1579. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1580. /* Copy down callbacks to fill in empty sublists. */
  1581. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1582. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1583. break;
  1584. rdp->nxttail[j] = rdp->nxttail[i];
  1585. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1586. }
  1587. /* Classify any remaining callbacks. */
  1588. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1589. }
  1590. /*
  1591. * Update CPU-local rcu_data state to record the beginnings and ends of
  1592. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1593. * structure corresponding to the current CPU, and must have irqs disabled.
  1594. * Returns true if the grace-period kthread needs to be awakened.
  1595. */
  1596. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1597. struct rcu_data *rdp)
  1598. {
  1599. bool ret;
  1600. /* Handle the ends of any preceding grace periods first. */
  1601. if (rdp->completed == rnp->completed &&
  1602. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1603. /* No grace period end, so just accelerate recent callbacks. */
  1604. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1605. } else {
  1606. /* Advance callbacks. */
  1607. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1608. /* Remember that we saw this grace-period completion. */
  1609. rdp->completed = rnp->completed;
  1610. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1611. }
  1612. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1613. /*
  1614. * If the current grace period is waiting for this CPU,
  1615. * set up to detect a quiescent state, otherwise don't
  1616. * go looking for one.
  1617. */
  1618. rdp->gpnum = rnp->gpnum;
  1619. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1620. rdp->cpu_no_qs.b.norm = true;
  1621. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  1622. rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
  1623. zero_cpu_stall_ticks(rdp);
  1624. WRITE_ONCE(rdp->gpwrap, false);
  1625. }
  1626. return ret;
  1627. }
  1628. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1629. {
  1630. unsigned long flags;
  1631. bool needwake;
  1632. struct rcu_node *rnp;
  1633. local_irq_save(flags);
  1634. rnp = rdp->mynode;
  1635. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1636. rdp->completed == READ_ONCE(rnp->completed) &&
  1637. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1638. !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
  1639. local_irq_restore(flags);
  1640. return;
  1641. }
  1642. needwake = __note_gp_changes(rsp, rnp, rdp);
  1643. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1644. if (needwake)
  1645. rcu_gp_kthread_wake(rsp);
  1646. }
  1647. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1648. {
  1649. if (delay > 0 &&
  1650. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1651. schedule_timeout_uninterruptible(delay);
  1652. }
  1653. /*
  1654. * Initialize a new grace period. Return false if no grace period required.
  1655. */
  1656. static bool rcu_gp_init(struct rcu_state *rsp)
  1657. {
  1658. unsigned long oldmask;
  1659. struct rcu_data *rdp;
  1660. struct rcu_node *rnp = rcu_get_root(rsp);
  1661. WRITE_ONCE(rsp->gp_activity, jiffies);
  1662. raw_spin_lock_irq_rcu_node(rnp);
  1663. if (!READ_ONCE(rsp->gp_flags)) {
  1664. /* Spurious wakeup, tell caller to go back to sleep. */
  1665. raw_spin_unlock_irq_rcu_node(rnp);
  1666. return false;
  1667. }
  1668. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1669. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1670. /*
  1671. * Grace period already in progress, don't start another.
  1672. * Not supposed to be able to happen.
  1673. */
  1674. raw_spin_unlock_irq_rcu_node(rnp);
  1675. return false;
  1676. }
  1677. /* Advance to a new grace period and initialize state. */
  1678. record_gp_stall_check_time(rsp);
  1679. /* Record GP times before starting GP, hence smp_store_release(). */
  1680. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1681. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1682. raw_spin_unlock_irq_rcu_node(rnp);
  1683. /*
  1684. * Apply per-leaf buffered online and offline operations to the
  1685. * rcu_node tree. Note that this new grace period need not wait
  1686. * for subsequent online CPUs, and that quiescent-state forcing
  1687. * will handle subsequent offline CPUs.
  1688. */
  1689. rcu_for_each_leaf_node(rsp, rnp) {
  1690. rcu_gp_slow(rsp, gp_preinit_delay);
  1691. raw_spin_lock_irq_rcu_node(rnp);
  1692. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1693. !rnp->wait_blkd_tasks) {
  1694. /* Nothing to do on this leaf rcu_node structure. */
  1695. raw_spin_unlock_irq_rcu_node(rnp);
  1696. continue;
  1697. }
  1698. /* Record old state, apply changes to ->qsmaskinit field. */
  1699. oldmask = rnp->qsmaskinit;
  1700. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1701. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1702. if (!oldmask != !rnp->qsmaskinit) {
  1703. if (!oldmask) /* First online CPU for this rcu_node. */
  1704. rcu_init_new_rnp(rnp);
  1705. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1706. rnp->wait_blkd_tasks = true;
  1707. else /* Last offline CPU and can propagate. */
  1708. rcu_cleanup_dead_rnp(rnp);
  1709. }
  1710. /*
  1711. * If all waited-on tasks from prior grace period are
  1712. * done, and if all this rcu_node structure's CPUs are
  1713. * still offline, propagate up the rcu_node tree and
  1714. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1715. * rcu_node structure's CPUs has since come back online,
  1716. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1717. * checks for this, so just call it unconditionally).
  1718. */
  1719. if (rnp->wait_blkd_tasks &&
  1720. (!rcu_preempt_has_tasks(rnp) ||
  1721. rnp->qsmaskinit)) {
  1722. rnp->wait_blkd_tasks = false;
  1723. rcu_cleanup_dead_rnp(rnp);
  1724. }
  1725. raw_spin_unlock_irq_rcu_node(rnp);
  1726. }
  1727. /*
  1728. * Set the quiescent-state-needed bits in all the rcu_node
  1729. * structures for all currently online CPUs in breadth-first order,
  1730. * starting from the root rcu_node structure, relying on the layout
  1731. * of the tree within the rsp->node[] array. Note that other CPUs
  1732. * will access only the leaves of the hierarchy, thus seeing that no
  1733. * grace period is in progress, at least until the corresponding
  1734. * leaf node has been initialized. In addition, we have excluded
  1735. * CPU-hotplug operations.
  1736. *
  1737. * The grace period cannot complete until the initialization
  1738. * process finishes, because this kthread handles both.
  1739. */
  1740. rcu_for_each_node_breadth_first(rsp, rnp) {
  1741. rcu_gp_slow(rsp, gp_init_delay);
  1742. raw_spin_lock_irq_rcu_node(rnp);
  1743. rdp = this_cpu_ptr(rsp->rda);
  1744. rcu_preempt_check_blocked_tasks(rnp);
  1745. rnp->qsmask = rnp->qsmaskinit;
  1746. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1747. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1748. WRITE_ONCE(rnp->completed, rsp->completed);
  1749. if (rnp == rdp->mynode)
  1750. (void)__note_gp_changes(rsp, rnp, rdp);
  1751. rcu_preempt_boost_start_gp(rnp);
  1752. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1753. rnp->level, rnp->grplo,
  1754. rnp->grphi, rnp->qsmask);
  1755. raw_spin_unlock_irq_rcu_node(rnp);
  1756. cond_resched_rcu_qs();
  1757. WRITE_ONCE(rsp->gp_activity, jiffies);
  1758. }
  1759. return true;
  1760. }
  1761. /*
  1762. * Helper function for wait_event_interruptible_timeout() wakeup
  1763. * at force-quiescent-state time.
  1764. */
  1765. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1766. {
  1767. struct rcu_node *rnp = rcu_get_root(rsp);
  1768. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1769. *gfp = READ_ONCE(rsp->gp_flags);
  1770. if (*gfp & RCU_GP_FLAG_FQS)
  1771. return true;
  1772. /* The current grace period has completed. */
  1773. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1774. return true;
  1775. return false;
  1776. }
  1777. /*
  1778. * Do one round of quiescent-state forcing.
  1779. */
  1780. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1781. {
  1782. bool isidle = false;
  1783. unsigned long maxj;
  1784. struct rcu_node *rnp = rcu_get_root(rsp);
  1785. WRITE_ONCE(rsp->gp_activity, jiffies);
  1786. rsp->n_force_qs++;
  1787. if (first_time) {
  1788. /* Collect dyntick-idle snapshots. */
  1789. if (is_sysidle_rcu_state(rsp)) {
  1790. isidle = true;
  1791. maxj = jiffies - ULONG_MAX / 4;
  1792. }
  1793. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1794. &isidle, &maxj);
  1795. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1796. } else {
  1797. /* Handle dyntick-idle and offline CPUs. */
  1798. isidle = true;
  1799. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1800. }
  1801. /* Clear flag to prevent immediate re-entry. */
  1802. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1803. raw_spin_lock_irq_rcu_node(rnp);
  1804. WRITE_ONCE(rsp->gp_flags,
  1805. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1806. raw_spin_unlock_irq_rcu_node(rnp);
  1807. }
  1808. }
  1809. /*
  1810. * Clean up after the old grace period.
  1811. */
  1812. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1813. {
  1814. unsigned long gp_duration;
  1815. bool needgp = false;
  1816. int nocb = 0;
  1817. struct rcu_data *rdp;
  1818. struct rcu_node *rnp = rcu_get_root(rsp);
  1819. struct swait_queue_head *sq;
  1820. WRITE_ONCE(rsp->gp_activity, jiffies);
  1821. raw_spin_lock_irq_rcu_node(rnp);
  1822. gp_duration = jiffies - rsp->gp_start;
  1823. if (gp_duration > rsp->gp_max)
  1824. rsp->gp_max = gp_duration;
  1825. /*
  1826. * We know the grace period is complete, but to everyone else
  1827. * it appears to still be ongoing. But it is also the case
  1828. * that to everyone else it looks like there is nothing that
  1829. * they can do to advance the grace period. It is therefore
  1830. * safe for us to drop the lock in order to mark the grace
  1831. * period as completed in all of the rcu_node structures.
  1832. */
  1833. raw_spin_unlock_irq_rcu_node(rnp);
  1834. /*
  1835. * Propagate new ->completed value to rcu_node structures so
  1836. * that other CPUs don't have to wait until the start of the next
  1837. * grace period to process their callbacks. This also avoids
  1838. * some nasty RCU grace-period initialization races by forcing
  1839. * the end of the current grace period to be completely recorded in
  1840. * all of the rcu_node structures before the beginning of the next
  1841. * grace period is recorded in any of the rcu_node structures.
  1842. */
  1843. rcu_for_each_node_breadth_first(rsp, rnp) {
  1844. raw_spin_lock_irq_rcu_node(rnp);
  1845. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1846. WARN_ON_ONCE(rnp->qsmask);
  1847. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1848. rdp = this_cpu_ptr(rsp->rda);
  1849. if (rnp == rdp->mynode)
  1850. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1851. /* smp_mb() provided by prior unlock-lock pair. */
  1852. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1853. sq = rcu_nocb_gp_get(rnp);
  1854. raw_spin_unlock_irq_rcu_node(rnp);
  1855. rcu_nocb_gp_cleanup(sq);
  1856. cond_resched_rcu_qs();
  1857. WRITE_ONCE(rsp->gp_activity, jiffies);
  1858. rcu_gp_slow(rsp, gp_cleanup_delay);
  1859. }
  1860. rnp = rcu_get_root(rsp);
  1861. raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
  1862. rcu_nocb_gp_set(rnp, nocb);
  1863. /* Declare grace period done. */
  1864. WRITE_ONCE(rsp->completed, rsp->gpnum);
  1865. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1866. rsp->gp_state = RCU_GP_IDLE;
  1867. rdp = this_cpu_ptr(rsp->rda);
  1868. /* Advance CBs to reduce false positives below. */
  1869. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1870. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1871. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1872. trace_rcu_grace_period(rsp->name,
  1873. READ_ONCE(rsp->gpnum),
  1874. TPS("newreq"));
  1875. }
  1876. raw_spin_unlock_irq_rcu_node(rnp);
  1877. }
  1878. /*
  1879. * Body of kthread that handles grace periods.
  1880. */
  1881. static int __noreturn rcu_gp_kthread(void *arg)
  1882. {
  1883. bool first_gp_fqs;
  1884. int gf;
  1885. unsigned long j;
  1886. int ret;
  1887. struct rcu_state *rsp = arg;
  1888. struct rcu_node *rnp = rcu_get_root(rsp);
  1889. rcu_bind_gp_kthread();
  1890. for (;;) {
  1891. /* Handle grace-period start. */
  1892. for (;;) {
  1893. trace_rcu_grace_period(rsp->name,
  1894. READ_ONCE(rsp->gpnum),
  1895. TPS("reqwait"));
  1896. rsp->gp_state = RCU_GP_WAIT_GPS;
  1897. swait_event_interruptible(rsp->gp_wq,
  1898. READ_ONCE(rsp->gp_flags) &
  1899. RCU_GP_FLAG_INIT);
  1900. rsp->gp_state = RCU_GP_DONE_GPS;
  1901. /* Locking provides needed memory barrier. */
  1902. if (rcu_gp_init(rsp))
  1903. break;
  1904. cond_resched_rcu_qs();
  1905. WRITE_ONCE(rsp->gp_activity, jiffies);
  1906. WARN_ON(signal_pending(current));
  1907. trace_rcu_grace_period(rsp->name,
  1908. READ_ONCE(rsp->gpnum),
  1909. TPS("reqwaitsig"));
  1910. }
  1911. /* Handle quiescent-state forcing. */
  1912. first_gp_fqs = true;
  1913. j = jiffies_till_first_fqs;
  1914. if (j > HZ) {
  1915. j = HZ;
  1916. jiffies_till_first_fqs = HZ;
  1917. }
  1918. ret = 0;
  1919. for (;;) {
  1920. if (!ret)
  1921. rsp->jiffies_force_qs = jiffies + j;
  1922. trace_rcu_grace_period(rsp->name,
  1923. READ_ONCE(rsp->gpnum),
  1924. TPS("fqswait"));
  1925. rsp->gp_state = RCU_GP_WAIT_FQS;
  1926. ret = swait_event_interruptible_timeout(rsp->gp_wq,
  1927. rcu_gp_fqs_check_wake(rsp, &gf), j);
  1928. rsp->gp_state = RCU_GP_DOING_FQS;
  1929. /* Locking provides needed memory barriers. */
  1930. /* If grace period done, leave loop. */
  1931. if (!READ_ONCE(rnp->qsmask) &&
  1932. !rcu_preempt_blocked_readers_cgp(rnp))
  1933. break;
  1934. /* If time for quiescent-state forcing, do it. */
  1935. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1936. (gf & RCU_GP_FLAG_FQS)) {
  1937. trace_rcu_grace_period(rsp->name,
  1938. READ_ONCE(rsp->gpnum),
  1939. TPS("fqsstart"));
  1940. rcu_gp_fqs(rsp, first_gp_fqs);
  1941. first_gp_fqs = false;
  1942. trace_rcu_grace_period(rsp->name,
  1943. READ_ONCE(rsp->gpnum),
  1944. TPS("fqsend"));
  1945. cond_resched_rcu_qs();
  1946. WRITE_ONCE(rsp->gp_activity, jiffies);
  1947. } else {
  1948. /* Deal with stray signal. */
  1949. cond_resched_rcu_qs();
  1950. WRITE_ONCE(rsp->gp_activity, jiffies);
  1951. WARN_ON(signal_pending(current));
  1952. trace_rcu_grace_period(rsp->name,
  1953. READ_ONCE(rsp->gpnum),
  1954. TPS("fqswaitsig"));
  1955. }
  1956. j = jiffies_till_next_fqs;
  1957. if (j > HZ) {
  1958. j = HZ;
  1959. jiffies_till_next_fqs = HZ;
  1960. } else if (j < 1) {
  1961. j = 1;
  1962. jiffies_till_next_fqs = 1;
  1963. }
  1964. }
  1965. /* Handle grace-period end. */
  1966. rsp->gp_state = RCU_GP_CLEANUP;
  1967. rcu_gp_cleanup(rsp);
  1968. rsp->gp_state = RCU_GP_CLEANED;
  1969. }
  1970. }
  1971. /*
  1972. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1973. * in preparation for detecting the next grace period. The caller must hold
  1974. * the root node's ->lock and hard irqs must be disabled.
  1975. *
  1976. * Note that it is legal for a dying CPU (which is marked as offline) to
  1977. * invoke this function. This can happen when the dying CPU reports its
  1978. * quiescent state.
  1979. *
  1980. * Returns true if the grace-period kthread must be awakened.
  1981. */
  1982. static bool
  1983. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1984. struct rcu_data *rdp)
  1985. {
  1986. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1987. /*
  1988. * Either we have not yet spawned the grace-period
  1989. * task, this CPU does not need another grace period,
  1990. * or a grace period is already in progress.
  1991. * Either way, don't start a new grace period.
  1992. */
  1993. return false;
  1994. }
  1995. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  1996. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  1997. TPS("newreq"));
  1998. /*
  1999. * We can't do wakeups while holding the rnp->lock, as that
  2000. * could cause possible deadlocks with the rq->lock. Defer
  2001. * the wakeup to our caller.
  2002. */
  2003. return true;
  2004. }
  2005. /*
  2006. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  2007. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  2008. * is invoked indirectly from rcu_advance_cbs(), which would result in
  2009. * endless recursion -- or would do so if it wasn't for the self-deadlock
  2010. * that is encountered beforehand.
  2011. *
  2012. * Returns true if the grace-period kthread needs to be awakened.
  2013. */
  2014. static bool rcu_start_gp(struct rcu_state *rsp)
  2015. {
  2016. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2017. struct rcu_node *rnp = rcu_get_root(rsp);
  2018. bool ret = false;
  2019. /*
  2020. * If there is no grace period in progress right now, any
  2021. * callbacks we have up to this point will be satisfied by the
  2022. * next grace period. Also, advancing the callbacks reduces the
  2023. * probability of false positives from cpu_needs_another_gp()
  2024. * resulting in pointless grace periods. So, advance callbacks
  2025. * then start the grace period!
  2026. */
  2027. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2028. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2029. return ret;
  2030. }
  2031. /*
  2032. * Report a full set of quiescent states to the specified rcu_state data
  2033. * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
  2034. * kthread if another grace period is required. Whether we wake
  2035. * the grace-period kthread or it awakens itself for the next round
  2036. * of quiescent-state forcing, that kthread will clean up after the
  2037. * just-completed grace period. Note that the caller must hold rnp->lock,
  2038. * which is released before return.
  2039. */
  2040. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2041. __releases(rcu_get_root(rsp)->lock)
  2042. {
  2043. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2044. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2045. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2046. swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
  2047. }
  2048. /*
  2049. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2050. * Allows quiescent states for a group of CPUs to be reported at one go
  2051. * to the specified rcu_node structure, though all the CPUs in the group
  2052. * must be represented by the same rcu_node structure (which need not be a
  2053. * leaf rcu_node structure, though it often will be). The gps parameter
  2054. * is the grace-period snapshot, which means that the quiescent states
  2055. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2056. * must be held upon entry, and it is released before return.
  2057. */
  2058. static void
  2059. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2060. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2061. __releases(rnp->lock)
  2062. {
  2063. unsigned long oldmask = 0;
  2064. struct rcu_node *rnp_c;
  2065. /* Walk up the rcu_node hierarchy. */
  2066. for (;;) {
  2067. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2068. /*
  2069. * Our bit has already been cleared, or the
  2070. * relevant grace period is already over, so done.
  2071. */
  2072. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2073. return;
  2074. }
  2075. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2076. rnp->qsmask &= ~mask;
  2077. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2078. mask, rnp->qsmask, rnp->level,
  2079. rnp->grplo, rnp->grphi,
  2080. !!rnp->gp_tasks);
  2081. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2082. /* Other bits still set at this level, so done. */
  2083. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2084. return;
  2085. }
  2086. mask = rnp->grpmask;
  2087. if (rnp->parent == NULL) {
  2088. /* No more levels. Exit loop holding root lock. */
  2089. break;
  2090. }
  2091. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2092. rnp_c = rnp;
  2093. rnp = rnp->parent;
  2094. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2095. oldmask = rnp_c->qsmask;
  2096. }
  2097. /*
  2098. * Get here if we are the last CPU to pass through a quiescent
  2099. * state for this grace period. Invoke rcu_report_qs_rsp()
  2100. * to clean up and start the next grace period if one is needed.
  2101. */
  2102. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2103. }
  2104. /*
  2105. * Record a quiescent state for all tasks that were previously queued
  2106. * on the specified rcu_node structure and that were blocking the current
  2107. * RCU grace period. The caller must hold the specified rnp->lock with
  2108. * irqs disabled, and this lock is released upon return, but irqs remain
  2109. * disabled.
  2110. */
  2111. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2112. struct rcu_node *rnp, unsigned long flags)
  2113. __releases(rnp->lock)
  2114. {
  2115. unsigned long gps;
  2116. unsigned long mask;
  2117. struct rcu_node *rnp_p;
  2118. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2119. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2120. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2121. return; /* Still need more quiescent states! */
  2122. }
  2123. rnp_p = rnp->parent;
  2124. if (rnp_p == NULL) {
  2125. /*
  2126. * Only one rcu_node structure in the tree, so don't
  2127. * try to report up to its nonexistent parent!
  2128. */
  2129. rcu_report_qs_rsp(rsp, flags);
  2130. return;
  2131. }
  2132. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2133. gps = rnp->gpnum;
  2134. mask = rnp->grpmask;
  2135. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2136. raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
  2137. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2138. }
  2139. /*
  2140. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2141. * structure. This must be called from the specified CPU.
  2142. */
  2143. static void
  2144. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2145. {
  2146. unsigned long flags;
  2147. unsigned long mask;
  2148. bool needwake;
  2149. struct rcu_node *rnp;
  2150. rnp = rdp->mynode;
  2151. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2152. if ((rdp->cpu_no_qs.b.norm &&
  2153. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
  2154. rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
  2155. rdp->gpwrap) {
  2156. /*
  2157. * The grace period in which this quiescent state was
  2158. * recorded has ended, so don't report it upwards.
  2159. * We will instead need a new quiescent state that lies
  2160. * within the current grace period.
  2161. */
  2162. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2163. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
  2164. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2165. return;
  2166. }
  2167. mask = rdp->grpmask;
  2168. if ((rnp->qsmask & mask) == 0) {
  2169. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2170. } else {
  2171. rdp->core_needs_qs = false;
  2172. /*
  2173. * This GP can't end until cpu checks in, so all of our
  2174. * callbacks can be processed during the next GP.
  2175. */
  2176. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2177. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2178. /* ^^^ Released rnp->lock */
  2179. if (needwake)
  2180. rcu_gp_kthread_wake(rsp);
  2181. }
  2182. }
  2183. /*
  2184. * Check to see if there is a new grace period of which this CPU
  2185. * is not yet aware, and if so, set up local rcu_data state for it.
  2186. * Otherwise, see if this CPU has just passed through its first
  2187. * quiescent state for this grace period, and record that fact if so.
  2188. */
  2189. static void
  2190. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2191. {
  2192. /* Check for grace-period ends and beginnings. */
  2193. note_gp_changes(rsp, rdp);
  2194. /*
  2195. * Does this CPU still need to do its part for current grace period?
  2196. * If no, return and let the other CPUs do their part as well.
  2197. */
  2198. if (!rdp->core_needs_qs)
  2199. return;
  2200. /*
  2201. * Was there a quiescent state since the beginning of the grace
  2202. * period? If no, then exit and wait for the next call.
  2203. */
  2204. if (rdp->cpu_no_qs.b.norm &&
  2205. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
  2206. return;
  2207. /*
  2208. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2209. * judge of that).
  2210. */
  2211. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2212. }
  2213. /*
  2214. * Send the specified CPU's RCU callbacks to the orphanage. The
  2215. * specified CPU must be offline, and the caller must hold the
  2216. * ->orphan_lock.
  2217. */
  2218. static void
  2219. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  2220. struct rcu_node *rnp, struct rcu_data *rdp)
  2221. {
  2222. /* No-CBs CPUs do not have orphanable callbacks. */
  2223. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
  2224. return;
  2225. /*
  2226. * Orphan the callbacks. First adjust the counts. This is safe
  2227. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  2228. * cannot be running now. Thus no memory barrier is required.
  2229. */
  2230. if (rdp->nxtlist != NULL) {
  2231. rsp->qlen_lazy += rdp->qlen_lazy;
  2232. rsp->qlen += rdp->qlen;
  2233. rdp->n_cbs_orphaned += rdp->qlen;
  2234. rdp->qlen_lazy = 0;
  2235. WRITE_ONCE(rdp->qlen, 0);
  2236. }
  2237. /*
  2238. * Next, move those callbacks still needing a grace period to
  2239. * the orphanage, where some other CPU will pick them up.
  2240. * Some of the callbacks might have gone partway through a grace
  2241. * period, but that is too bad. They get to start over because we
  2242. * cannot assume that grace periods are synchronized across CPUs.
  2243. * We don't bother updating the ->nxttail[] array yet, instead
  2244. * we just reset the whole thing later on.
  2245. */
  2246. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  2247. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  2248. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  2249. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2250. }
  2251. /*
  2252. * Then move the ready-to-invoke callbacks to the orphanage,
  2253. * where some other CPU will pick them up. These will not be
  2254. * required to pass though another grace period: They are done.
  2255. */
  2256. if (rdp->nxtlist != NULL) {
  2257. *rsp->orphan_donetail = rdp->nxtlist;
  2258. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  2259. }
  2260. /*
  2261. * Finally, initialize the rcu_data structure's list to empty and
  2262. * disallow further callbacks on this CPU.
  2263. */
  2264. init_callback_list(rdp);
  2265. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2266. }
  2267. /*
  2268. * Adopt the RCU callbacks from the specified rcu_state structure's
  2269. * orphanage. The caller must hold the ->orphan_lock.
  2270. */
  2271. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  2272. {
  2273. int i;
  2274. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2275. /* No-CBs CPUs are handled specially. */
  2276. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2277. rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  2278. return;
  2279. /* Do the accounting first. */
  2280. rdp->qlen_lazy += rsp->qlen_lazy;
  2281. rdp->qlen += rsp->qlen;
  2282. rdp->n_cbs_adopted += rsp->qlen;
  2283. if (rsp->qlen_lazy != rsp->qlen)
  2284. rcu_idle_count_callbacks_posted();
  2285. rsp->qlen_lazy = 0;
  2286. rsp->qlen = 0;
  2287. /*
  2288. * We do not need a memory barrier here because the only way we
  2289. * can get here if there is an rcu_barrier() in flight is if
  2290. * we are the task doing the rcu_barrier().
  2291. */
  2292. /* First adopt the ready-to-invoke callbacks. */
  2293. if (rsp->orphan_donelist != NULL) {
  2294. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  2295. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  2296. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  2297. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2298. rdp->nxttail[i] = rsp->orphan_donetail;
  2299. rsp->orphan_donelist = NULL;
  2300. rsp->orphan_donetail = &rsp->orphan_donelist;
  2301. }
  2302. /* And then adopt the callbacks that still need a grace period. */
  2303. if (rsp->orphan_nxtlist != NULL) {
  2304. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  2305. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  2306. rsp->orphan_nxtlist = NULL;
  2307. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  2308. }
  2309. }
  2310. /*
  2311. * Trace the fact that this CPU is going offline.
  2312. */
  2313. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2314. {
  2315. RCU_TRACE(unsigned long mask);
  2316. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  2317. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  2318. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2319. return;
  2320. RCU_TRACE(mask = rdp->grpmask);
  2321. trace_rcu_grace_period(rsp->name,
  2322. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2323. TPS("cpuofl"));
  2324. }
  2325. /*
  2326. * All CPUs for the specified rcu_node structure have gone offline,
  2327. * and all tasks that were preempted within an RCU read-side critical
  2328. * section while running on one of those CPUs have since exited their RCU
  2329. * read-side critical section. Some other CPU is reporting this fact with
  2330. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2331. * This function therefore goes up the tree of rcu_node structures,
  2332. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2333. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2334. * updated
  2335. *
  2336. * This function does check that the specified rcu_node structure has
  2337. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2338. * prematurely. That said, invoking it after the fact will cost you
  2339. * a needless lock acquisition. So once it has done its work, don't
  2340. * invoke it again.
  2341. */
  2342. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2343. {
  2344. long mask;
  2345. struct rcu_node *rnp = rnp_leaf;
  2346. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2347. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2348. return;
  2349. for (;;) {
  2350. mask = rnp->grpmask;
  2351. rnp = rnp->parent;
  2352. if (!rnp)
  2353. break;
  2354. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  2355. rnp->qsmaskinit &= ~mask;
  2356. rnp->qsmask &= ~mask;
  2357. if (rnp->qsmaskinit) {
  2358. raw_spin_unlock_rcu_node(rnp);
  2359. /* irqs remain disabled. */
  2360. return;
  2361. }
  2362. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2363. }
  2364. }
  2365. /*
  2366. * The CPU has been completely removed, and some other CPU is reporting
  2367. * this fact from process context. Do the remainder of the cleanup,
  2368. * including orphaning the outgoing CPU's RCU callbacks, and also
  2369. * adopting them. There can only be one CPU hotplug operation at a time,
  2370. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  2371. */
  2372. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2373. {
  2374. unsigned long flags;
  2375. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2376. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2377. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2378. return;
  2379. /* Adjust any no-longer-needed kthreads. */
  2380. rcu_boost_kthread_setaffinity(rnp, -1);
  2381. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2382. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2383. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2384. rcu_adopt_orphan_cbs(rsp, flags);
  2385. raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
  2386. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2387. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2388. cpu, rdp->qlen, rdp->nxtlist);
  2389. }
  2390. /*
  2391. * Invoke any RCU callbacks that have made it to the end of their grace
  2392. * period. Thottle as specified by rdp->blimit.
  2393. */
  2394. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2395. {
  2396. unsigned long flags;
  2397. struct rcu_head *next, *list, **tail;
  2398. long bl, count, count_lazy;
  2399. int i;
  2400. /* If no callbacks are ready, just return. */
  2401. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2402. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2403. trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
  2404. need_resched(), is_idle_task(current),
  2405. rcu_is_callbacks_kthread());
  2406. return;
  2407. }
  2408. /*
  2409. * Extract the list of ready callbacks, disabling to prevent
  2410. * races with call_rcu() from interrupt handlers.
  2411. */
  2412. local_irq_save(flags);
  2413. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2414. bl = rdp->blimit;
  2415. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2416. list = rdp->nxtlist;
  2417. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2418. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2419. tail = rdp->nxttail[RCU_DONE_TAIL];
  2420. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2421. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2422. rdp->nxttail[i] = &rdp->nxtlist;
  2423. local_irq_restore(flags);
  2424. /* Invoke callbacks. */
  2425. count = count_lazy = 0;
  2426. while (list) {
  2427. next = list->next;
  2428. prefetch(next);
  2429. debug_rcu_head_unqueue(list);
  2430. if (__rcu_reclaim(rsp->name, list))
  2431. count_lazy++;
  2432. list = next;
  2433. /* Stop only if limit reached and CPU has something to do. */
  2434. if (++count >= bl &&
  2435. (need_resched() ||
  2436. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2437. break;
  2438. }
  2439. local_irq_save(flags);
  2440. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2441. is_idle_task(current),
  2442. rcu_is_callbacks_kthread());
  2443. /* Update count, and requeue any remaining callbacks. */
  2444. if (list != NULL) {
  2445. *tail = rdp->nxtlist;
  2446. rdp->nxtlist = list;
  2447. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2448. if (&rdp->nxtlist == rdp->nxttail[i])
  2449. rdp->nxttail[i] = tail;
  2450. else
  2451. break;
  2452. }
  2453. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2454. rdp->qlen_lazy -= count_lazy;
  2455. WRITE_ONCE(rdp->qlen, rdp->qlen - count);
  2456. rdp->n_cbs_invoked += count;
  2457. /* Reinstate batch limit if we have worked down the excess. */
  2458. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2459. rdp->blimit = blimit;
  2460. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2461. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2462. rdp->qlen_last_fqs_check = 0;
  2463. rdp->n_force_qs_snap = rsp->n_force_qs;
  2464. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2465. rdp->qlen_last_fqs_check = rdp->qlen;
  2466. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2467. local_irq_restore(flags);
  2468. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2469. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2470. invoke_rcu_core();
  2471. }
  2472. /*
  2473. * Check to see if this CPU is in a non-context-switch quiescent state
  2474. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2475. * Also schedule RCU core processing.
  2476. *
  2477. * This function must be called from hardirq context. It is normally
  2478. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2479. * false, there is no point in invoking rcu_check_callbacks().
  2480. */
  2481. void rcu_check_callbacks(int user)
  2482. {
  2483. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2484. increment_cpu_stall_ticks();
  2485. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2486. /*
  2487. * Get here if this CPU took its interrupt from user
  2488. * mode or from the idle loop, and if this is not a
  2489. * nested interrupt. In this case, the CPU is in
  2490. * a quiescent state, so note it.
  2491. *
  2492. * No memory barrier is required here because both
  2493. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2494. * variables that other CPUs neither access nor modify,
  2495. * at least not while the corresponding CPU is online.
  2496. */
  2497. rcu_sched_qs();
  2498. rcu_bh_qs();
  2499. } else if (!in_softirq()) {
  2500. /*
  2501. * Get here if this CPU did not take its interrupt from
  2502. * softirq, in other words, if it is not interrupting
  2503. * a rcu_bh read-side critical section. This is an _bh
  2504. * critical section, so note it.
  2505. */
  2506. rcu_bh_qs();
  2507. }
  2508. rcu_preempt_check_callbacks();
  2509. if (rcu_pending())
  2510. invoke_rcu_core();
  2511. if (user)
  2512. rcu_note_voluntary_context_switch(current);
  2513. trace_rcu_utilization(TPS("End scheduler-tick"));
  2514. }
  2515. /*
  2516. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2517. * have not yet encountered a quiescent state, using the function specified.
  2518. * Also initiate boosting for any threads blocked on the root rcu_node.
  2519. *
  2520. * The caller must have suppressed start of new grace periods.
  2521. */
  2522. static void force_qs_rnp(struct rcu_state *rsp,
  2523. int (*f)(struct rcu_data *rsp, bool *isidle,
  2524. unsigned long *maxj),
  2525. bool *isidle, unsigned long *maxj)
  2526. {
  2527. unsigned long bit;
  2528. int cpu;
  2529. unsigned long flags;
  2530. unsigned long mask;
  2531. struct rcu_node *rnp;
  2532. rcu_for_each_leaf_node(rsp, rnp) {
  2533. cond_resched_rcu_qs();
  2534. mask = 0;
  2535. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2536. if (rnp->qsmask == 0) {
  2537. if (rcu_state_p == &rcu_sched_state ||
  2538. rsp != rcu_state_p ||
  2539. rcu_preempt_blocked_readers_cgp(rnp)) {
  2540. /*
  2541. * No point in scanning bits because they
  2542. * are all zero. But we might need to
  2543. * priority-boost blocked readers.
  2544. */
  2545. rcu_initiate_boost(rnp, flags);
  2546. /* rcu_initiate_boost() releases rnp->lock */
  2547. continue;
  2548. }
  2549. if (rnp->parent &&
  2550. (rnp->parent->qsmask & rnp->grpmask)) {
  2551. /*
  2552. * Race between grace-period
  2553. * initialization and task exiting RCU
  2554. * read-side critical section: Report.
  2555. */
  2556. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2557. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2558. continue;
  2559. }
  2560. }
  2561. cpu = rnp->grplo;
  2562. bit = 1;
  2563. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2564. if ((rnp->qsmask & bit) != 0) {
  2565. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2566. mask |= bit;
  2567. }
  2568. }
  2569. if (mask != 0) {
  2570. /* Idle/offline CPUs, report (releases rnp->lock. */
  2571. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2572. } else {
  2573. /* Nothing to do here, so just drop the lock. */
  2574. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2575. }
  2576. }
  2577. }
  2578. /*
  2579. * Force quiescent states on reluctant CPUs, and also detect which
  2580. * CPUs are in dyntick-idle mode.
  2581. */
  2582. static void force_quiescent_state(struct rcu_state *rsp)
  2583. {
  2584. unsigned long flags;
  2585. bool ret;
  2586. struct rcu_node *rnp;
  2587. struct rcu_node *rnp_old = NULL;
  2588. /* Funnel through hierarchy to reduce memory contention. */
  2589. rnp = __this_cpu_read(rsp->rda->mynode);
  2590. for (; rnp != NULL; rnp = rnp->parent) {
  2591. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2592. !raw_spin_trylock(&rnp->fqslock);
  2593. if (rnp_old != NULL)
  2594. raw_spin_unlock(&rnp_old->fqslock);
  2595. if (ret) {
  2596. rsp->n_force_qs_lh++;
  2597. return;
  2598. }
  2599. rnp_old = rnp;
  2600. }
  2601. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2602. /* Reached the root of the rcu_node tree, acquire lock. */
  2603. raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
  2604. raw_spin_unlock(&rnp_old->fqslock);
  2605. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2606. rsp->n_force_qs_lh++;
  2607. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2608. return; /* Someone beat us to it. */
  2609. }
  2610. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2611. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2612. swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
  2613. }
  2614. /*
  2615. * This does the RCU core processing work for the specified rcu_state
  2616. * and rcu_data structures. This may be called only from the CPU to
  2617. * whom the rdp belongs.
  2618. */
  2619. static void
  2620. __rcu_process_callbacks(struct rcu_state *rsp)
  2621. {
  2622. unsigned long flags;
  2623. bool needwake;
  2624. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2625. WARN_ON_ONCE(rdp->beenonline == 0);
  2626. /* Update RCU state based on any recent quiescent states. */
  2627. rcu_check_quiescent_state(rsp, rdp);
  2628. /* Does this CPU require a not-yet-started grace period? */
  2629. local_irq_save(flags);
  2630. if (cpu_needs_another_gp(rsp, rdp)) {
  2631. raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
  2632. needwake = rcu_start_gp(rsp);
  2633. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2634. if (needwake)
  2635. rcu_gp_kthread_wake(rsp);
  2636. } else {
  2637. local_irq_restore(flags);
  2638. }
  2639. /* If there are callbacks ready, invoke them. */
  2640. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2641. invoke_rcu_callbacks(rsp, rdp);
  2642. /* Do any needed deferred wakeups of rcuo kthreads. */
  2643. do_nocb_deferred_wakeup(rdp);
  2644. }
  2645. /*
  2646. * Do RCU core processing for the current CPU.
  2647. */
  2648. static void rcu_process_callbacks(struct softirq_action *unused)
  2649. {
  2650. struct rcu_state *rsp;
  2651. if (cpu_is_offline(smp_processor_id()))
  2652. return;
  2653. trace_rcu_utilization(TPS("Start RCU core"));
  2654. for_each_rcu_flavor(rsp)
  2655. __rcu_process_callbacks(rsp);
  2656. trace_rcu_utilization(TPS("End RCU core"));
  2657. }
  2658. /*
  2659. * Schedule RCU callback invocation. If the specified type of RCU
  2660. * does not support RCU priority boosting, just do a direct call,
  2661. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2662. * are running on the current CPU with softirqs disabled, the
  2663. * rcu_cpu_kthread_task cannot disappear out from under us.
  2664. */
  2665. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2666. {
  2667. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2668. return;
  2669. if (likely(!rsp->boost)) {
  2670. rcu_do_batch(rsp, rdp);
  2671. return;
  2672. }
  2673. invoke_rcu_callbacks_kthread();
  2674. }
  2675. static void invoke_rcu_core(void)
  2676. {
  2677. if (cpu_online(smp_processor_id()))
  2678. raise_softirq(RCU_SOFTIRQ);
  2679. }
  2680. /*
  2681. * Handle any core-RCU processing required by a call_rcu() invocation.
  2682. */
  2683. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2684. struct rcu_head *head, unsigned long flags)
  2685. {
  2686. bool needwake;
  2687. /*
  2688. * If called from an extended quiescent state, invoke the RCU
  2689. * core in order to force a re-evaluation of RCU's idleness.
  2690. */
  2691. if (!rcu_is_watching())
  2692. invoke_rcu_core();
  2693. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2694. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2695. return;
  2696. /*
  2697. * Force the grace period if too many callbacks or too long waiting.
  2698. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2699. * if some other CPU has recently done so. Also, don't bother
  2700. * invoking force_quiescent_state() if the newly enqueued callback
  2701. * is the only one waiting for a grace period to complete.
  2702. */
  2703. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2704. /* Are we ignoring a completed grace period? */
  2705. note_gp_changes(rsp, rdp);
  2706. /* Start a new grace period if one not already started. */
  2707. if (!rcu_gp_in_progress(rsp)) {
  2708. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2709. raw_spin_lock_rcu_node(rnp_root);
  2710. needwake = rcu_start_gp(rsp);
  2711. raw_spin_unlock_rcu_node(rnp_root);
  2712. if (needwake)
  2713. rcu_gp_kthread_wake(rsp);
  2714. } else {
  2715. /* Give the grace period a kick. */
  2716. rdp->blimit = LONG_MAX;
  2717. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2718. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2719. force_quiescent_state(rsp);
  2720. rdp->n_force_qs_snap = rsp->n_force_qs;
  2721. rdp->qlen_last_fqs_check = rdp->qlen;
  2722. }
  2723. }
  2724. }
  2725. /*
  2726. * RCU callback function to leak a callback.
  2727. */
  2728. static void rcu_leak_callback(struct rcu_head *rhp)
  2729. {
  2730. }
  2731. /*
  2732. * Helper function for call_rcu() and friends. The cpu argument will
  2733. * normally be -1, indicating "currently running CPU". It may specify
  2734. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2735. * is expected to specify a CPU.
  2736. */
  2737. static void
  2738. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2739. struct rcu_state *rsp, int cpu, bool lazy)
  2740. {
  2741. unsigned long flags;
  2742. struct rcu_data *rdp;
  2743. WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
  2744. if (debug_rcu_head_queue(head)) {
  2745. /* Probable double call_rcu(), so leak the callback. */
  2746. WRITE_ONCE(head->func, rcu_leak_callback);
  2747. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2748. return;
  2749. }
  2750. head->func = func;
  2751. head->next = NULL;
  2752. /*
  2753. * Opportunistically note grace-period endings and beginnings.
  2754. * Note that we might see a beginning right after we see an
  2755. * end, but never vice versa, since this CPU has to pass through
  2756. * a quiescent state betweentimes.
  2757. */
  2758. local_irq_save(flags);
  2759. rdp = this_cpu_ptr(rsp->rda);
  2760. /* Add the callback to our list. */
  2761. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2762. int offline;
  2763. if (cpu != -1)
  2764. rdp = per_cpu_ptr(rsp->rda, cpu);
  2765. if (likely(rdp->mynode)) {
  2766. /* Post-boot, so this should be for a no-CBs CPU. */
  2767. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2768. WARN_ON_ONCE(offline);
  2769. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2770. local_irq_restore(flags);
  2771. return;
  2772. }
  2773. /*
  2774. * Very early boot, before rcu_init(). Initialize if needed
  2775. * and then drop through to queue the callback.
  2776. */
  2777. BUG_ON(cpu != -1);
  2778. WARN_ON_ONCE(!rcu_is_watching());
  2779. if (!likely(rdp->nxtlist))
  2780. init_default_callback_list(rdp);
  2781. }
  2782. WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
  2783. if (lazy)
  2784. rdp->qlen_lazy++;
  2785. else
  2786. rcu_idle_count_callbacks_posted();
  2787. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2788. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2789. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2790. if (__is_kfree_rcu_offset((unsigned long)func))
  2791. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2792. rdp->qlen_lazy, rdp->qlen);
  2793. else
  2794. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2795. /* Go handle any RCU core processing required. */
  2796. __call_rcu_core(rsp, rdp, head, flags);
  2797. local_irq_restore(flags);
  2798. }
  2799. /*
  2800. * Queue an RCU-sched callback for invocation after a grace period.
  2801. */
  2802. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2803. {
  2804. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2805. }
  2806. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2807. /*
  2808. * Queue an RCU callback for invocation after a quicker grace period.
  2809. */
  2810. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2811. {
  2812. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2813. }
  2814. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2815. /*
  2816. * Queue an RCU callback for lazy invocation after a grace period.
  2817. * This will likely be later named something like "call_rcu_lazy()",
  2818. * but this change will require some way of tagging the lazy RCU
  2819. * callbacks in the list of pending callbacks. Until then, this
  2820. * function may only be called from __kfree_rcu().
  2821. */
  2822. void kfree_call_rcu(struct rcu_head *head,
  2823. rcu_callback_t func)
  2824. {
  2825. __call_rcu(head, func, rcu_state_p, -1, 1);
  2826. }
  2827. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2828. /*
  2829. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2830. * any blocking grace-period wait automatically implies a grace period
  2831. * if there is only one CPU online at any point time during execution
  2832. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2833. * occasionally incorrectly indicate that there are multiple CPUs online
  2834. * when there was in fact only one the whole time, as this just adds
  2835. * some overhead: RCU still operates correctly.
  2836. */
  2837. static inline int rcu_blocking_is_gp(void)
  2838. {
  2839. int ret;
  2840. might_sleep(); /* Check for RCU read-side critical section. */
  2841. preempt_disable();
  2842. ret = num_online_cpus() <= 1;
  2843. preempt_enable();
  2844. return ret;
  2845. }
  2846. /**
  2847. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2848. *
  2849. * Control will return to the caller some time after a full rcu-sched
  2850. * grace period has elapsed, in other words after all currently executing
  2851. * rcu-sched read-side critical sections have completed. These read-side
  2852. * critical sections are delimited by rcu_read_lock_sched() and
  2853. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2854. * local_irq_disable(), and so on may be used in place of
  2855. * rcu_read_lock_sched().
  2856. *
  2857. * This means that all preempt_disable code sequences, including NMI and
  2858. * non-threaded hardware-interrupt handlers, in progress on entry will
  2859. * have completed before this primitive returns. However, this does not
  2860. * guarantee that softirq handlers will have completed, since in some
  2861. * kernels, these handlers can run in process context, and can block.
  2862. *
  2863. * Note that this guarantee implies further memory-ordering guarantees.
  2864. * On systems with more than one CPU, when synchronize_sched() returns,
  2865. * each CPU is guaranteed to have executed a full memory barrier since the
  2866. * end of its last RCU-sched read-side critical section whose beginning
  2867. * preceded the call to synchronize_sched(). In addition, each CPU having
  2868. * an RCU read-side critical section that extends beyond the return from
  2869. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2870. * after the beginning of synchronize_sched() and before the beginning of
  2871. * that RCU read-side critical section. Note that these guarantees include
  2872. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2873. * that are executing in the kernel.
  2874. *
  2875. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2876. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2877. * to have executed a full memory barrier during the execution of
  2878. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2879. * again only if the system has more than one CPU).
  2880. *
  2881. * This primitive provides the guarantees made by the (now removed)
  2882. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2883. * guarantees that rcu_read_lock() sections will have completed.
  2884. * In "classic RCU", these two guarantees happen to be one and
  2885. * the same, but can differ in realtime RCU implementations.
  2886. */
  2887. void synchronize_sched(void)
  2888. {
  2889. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2890. lock_is_held(&rcu_lock_map) ||
  2891. lock_is_held(&rcu_sched_lock_map),
  2892. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2893. if (rcu_blocking_is_gp())
  2894. return;
  2895. if (rcu_gp_is_expedited())
  2896. synchronize_sched_expedited();
  2897. else
  2898. wait_rcu_gp(call_rcu_sched);
  2899. }
  2900. EXPORT_SYMBOL_GPL(synchronize_sched);
  2901. /**
  2902. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2903. *
  2904. * Control will return to the caller some time after a full rcu_bh grace
  2905. * period has elapsed, in other words after all currently executing rcu_bh
  2906. * read-side critical sections have completed. RCU read-side critical
  2907. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2908. * and may be nested.
  2909. *
  2910. * See the description of synchronize_sched() for more detailed information
  2911. * on memory ordering guarantees.
  2912. */
  2913. void synchronize_rcu_bh(void)
  2914. {
  2915. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2916. lock_is_held(&rcu_lock_map) ||
  2917. lock_is_held(&rcu_sched_lock_map),
  2918. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2919. if (rcu_blocking_is_gp())
  2920. return;
  2921. if (rcu_gp_is_expedited())
  2922. synchronize_rcu_bh_expedited();
  2923. else
  2924. wait_rcu_gp(call_rcu_bh);
  2925. }
  2926. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2927. /**
  2928. * get_state_synchronize_rcu - Snapshot current RCU state
  2929. *
  2930. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2931. * to determine whether or not a full grace period has elapsed in the
  2932. * meantime.
  2933. */
  2934. unsigned long get_state_synchronize_rcu(void)
  2935. {
  2936. /*
  2937. * Any prior manipulation of RCU-protected data must happen
  2938. * before the load from ->gpnum.
  2939. */
  2940. smp_mb(); /* ^^^ */
  2941. /*
  2942. * Make sure this load happens before the purportedly
  2943. * time-consuming work between get_state_synchronize_rcu()
  2944. * and cond_synchronize_rcu().
  2945. */
  2946. return smp_load_acquire(&rcu_state_p->gpnum);
  2947. }
  2948. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2949. /**
  2950. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2951. *
  2952. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2953. *
  2954. * If a full RCU grace period has elapsed since the earlier call to
  2955. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2956. * synchronize_rcu() to wait for a full grace period.
  2957. *
  2958. * Yes, this function does not take counter wrap into account. But
  2959. * counter wrap is harmless. If the counter wraps, we have waited for
  2960. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2961. * so waiting for one additional grace period should be just fine.
  2962. */
  2963. void cond_synchronize_rcu(unsigned long oldstate)
  2964. {
  2965. unsigned long newstate;
  2966. /*
  2967. * Ensure that this load happens before any RCU-destructive
  2968. * actions the caller might carry out after we return.
  2969. */
  2970. newstate = smp_load_acquire(&rcu_state_p->completed);
  2971. if (ULONG_CMP_GE(oldstate, newstate))
  2972. synchronize_rcu();
  2973. }
  2974. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2975. /**
  2976. * get_state_synchronize_sched - Snapshot current RCU-sched state
  2977. *
  2978. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  2979. * to determine whether or not a full grace period has elapsed in the
  2980. * meantime.
  2981. */
  2982. unsigned long get_state_synchronize_sched(void)
  2983. {
  2984. /*
  2985. * Any prior manipulation of RCU-protected data must happen
  2986. * before the load from ->gpnum.
  2987. */
  2988. smp_mb(); /* ^^^ */
  2989. /*
  2990. * Make sure this load happens before the purportedly
  2991. * time-consuming work between get_state_synchronize_sched()
  2992. * and cond_synchronize_sched().
  2993. */
  2994. return smp_load_acquire(&rcu_sched_state.gpnum);
  2995. }
  2996. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  2997. /**
  2998. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  2999. *
  3000. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3001. *
  3002. * If a full RCU-sched grace period has elapsed since the earlier call to
  3003. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3004. * synchronize_sched() to wait for a full grace period.
  3005. *
  3006. * Yes, this function does not take counter wrap into account. But
  3007. * counter wrap is harmless. If the counter wraps, we have waited for
  3008. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3009. * so waiting for one additional grace period should be just fine.
  3010. */
  3011. void cond_synchronize_sched(unsigned long oldstate)
  3012. {
  3013. unsigned long newstate;
  3014. /*
  3015. * Ensure that this load happens before any RCU-destructive
  3016. * actions the caller might carry out after we return.
  3017. */
  3018. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3019. if (ULONG_CMP_GE(oldstate, newstate))
  3020. synchronize_sched();
  3021. }
  3022. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3023. /* Adjust sequence number for start of update-side operation. */
  3024. static void rcu_seq_start(unsigned long *sp)
  3025. {
  3026. WRITE_ONCE(*sp, *sp + 1);
  3027. smp_mb(); /* Ensure update-side operation after counter increment. */
  3028. WARN_ON_ONCE(!(*sp & 0x1));
  3029. }
  3030. /* Adjust sequence number for end of update-side operation. */
  3031. static void rcu_seq_end(unsigned long *sp)
  3032. {
  3033. smp_mb(); /* Ensure update-side operation before counter increment. */
  3034. WRITE_ONCE(*sp, *sp + 1);
  3035. WARN_ON_ONCE(*sp & 0x1);
  3036. }
  3037. /* Take a snapshot of the update side's sequence number. */
  3038. static unsigned long rcu_seq_snap(unsigned long *sp)
  3039. {
  3040. unsigned long s;
  3041. s = (READ_ONCE(*sp) + 3) & ~0x1;
  3042. smp_mb(); /* Above access must not bleed into critical section. */
  3043. return s;
  3044. }
  3045. /*
  3046. * Given a snapshot from rcu_seq_snap(), determine whether or not a
  3047. * full update-side operation has occurred.
  3048. */
  3049. static bool rcu_seq_done(unsigned long *sp, unsigned long s)
  3050. {
  3051. return ULONG_CMP_GE(READ_ONCE(*sp), s);
  3052. }
  3053. /* Wrapper functions for expedited grace periods. */
  3054. static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
  3055. {
  3056. rcu_seq_start(&rsp->expedited_sequence);
  3057. }
  3058. static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
  3059. {
  3060. rcu_seq_end(&rsp->expedited_sequence);
  3061. smp_mb(); /* Ensure that consecutive grace periods serialize. */
  3062. }
  3063. static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
  3064. {
  3065. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  3066. return rcu_seq_snap(&rsp->expedited_sequence);
  3067. }
  3068. static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
  3069. {
  3070. return rcu_seq_done(&rsp->expedited_sequence, s);
  3071. }
  3072. /*
  3073. * Reset the ->expmaskinit values in the rcu_node tree to reflect any
  3074. * recent CPU-online activity. Note that these masks are not cleared
  3075. * when CPUs go offline, so they reflect the union of all CPUs that have
  3076. * ever been online. This means that this function normally takes its
  3077. * no-work-to-do fastpath.
  3078. */
  3079. static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
  3080. {
  3081. bool done;
  3082. unsigned long flags;
  3083. unsigned long mask;
  3084. unsigned long oldmask;
  3085. int ncpus = READ_ONCE(rsp->ncpus);
  3086. struct rcu_node *rnp;
  3087. struct rcu_node *rnp_up;
  3088. /* If no new CPUs onlined since last time, nothing to do. */
  3089. if (likely(ncpus == rsp->ncpus_snap))
  3090. return;
  3091. rsp->ncpus_snap = ncpus;
  3092. /*
  3093. * Each pass through the following loop propagates newly onlined
  3094. * CPUs for the current rcu_node structure up the rcu_node tree.
  3095. */
  3096. rcu_for_each_leaf_node(rsp, rnp) {
  3097. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3098. if (rnp->expmaskinit == rnp->expmaskinitnext) {
  3099. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3100. continue; /* No new CPUs, nothing to do. */
  3101. }
  3102. /* Update this node's mask, track old value for propagation. */
  3103. oldmask = rnp->expmaskinit;
  3104. rnp->expmaskinit = rnp->expmaskinitnext;
  3105. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3106. /* If was already nonzero, nothing to propagate. */
  3107. if (oldmask)
  3108. continue;
  3109. /* Propagate the new CPU up the tree. */
  3110. mask = rnp->grpmask;
  3111. rnp_up = rnp->parent;
  3112. done = false;
  3113. while (rnp_up) {
  3114. raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
  3115. if (rnp_up->expmaskinit)
  3116. done = true;
  3117. rnp_up->expmaskinit |= mask;
  3118. raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
  3119. if (done)
  3120. break;
  3121. mask = rnp_up->grpmask;
  3122. rnp_up = rnp_up->parent;
  3123. }
  3124. }
  3125. }
  3126. /*
  3127. * Reset the ->expmask values in the rcu_node tree in preparation for
  3128. * a new expedited grace period.
  3129. */
  3130. static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
  3131. {
  3132. unsigned long flags;
  3133. struct rcu_node *rnp;
  3134. sync_exp_reset_tree_hotplug(rsp);
  3135. rcu_for_each_node_breadth_first(rsp, rnp) {
  3136. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3137. WARN_ON_ONCE(rnp->expmask);
  3138. rnp->expmask = rnp->expmaskinit;
  3139. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3140. }
  3141. }
  3142. /*
  3143. * Return non-zero if there is no RCU expedited grace period in progress
  3144. * for the specified rcu_node structure, in other words, if all CPUs and
  3145. * tasks covered by the specified rcu_node structure have done their bit
  3146. * for the current expedited grace period. Works only for preemptible
  3147. * RCU -- other RCU implementation use other means.
  3148. *
  3149. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3150. */
  3151. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  3152. {
  3153. return rnp->exp_tasks == NULL &&
  3154. READ_ONCE(rnp->expmask) == 0;
  3155. }
  3156. /*
  3157. * Report the exit from RCU read-side critical section for the last task
  3158. * that queued itself during or before the current expedited preemptible-RCU
  3159. * grace period. This event is reported either to the rcu_node structure on
  3160. * which the task was queued or to one of that rcu_node structure's ancestors,
  3161. * recursively up the tree. (Calm down, calm down, we do the recursion
  3162. * iteratively!)
  3163. *
  3164. * Caller must hold the root rcu_node's exp_funnel_mutex and the
  3165. * specified rcu_node structure's ->lock.
  3166. */
  3167. static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  3168. bool wake, unsigned long flags)
  3169. __releases(rnp->lock)
  3170. {
  3171. unsigned long mask;
  3172. for (;;) {
  3173. if (!sync_rcu_preempt_exp_done(rnp)) {
  3174. if (!rnp->expmask)
  3175. rcu_initiate_boost(rnp, flags);
  3176. else
  3177. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3178. break;
  3179. }
  3180. if (rnp->parent == NULL) {
  3181. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3182. if (wake) {
  3183. smp_mb(); /* EGP done before wake_up(). */
  3184. swake_up(&rsp->expedited_wq);
  3185. }
  3186. break;
  3187. }
  3188. mask = rnp->grpmask;
  3189. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
  3190. rnp = rnp->parent;
  3191. raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
  3192. WARN_ON_ONCE(!(rnp->expmask & mask));
  3193. rnp->expmask &= ~mask;
  3194. }
  3195. }
  3196. /*
  3197. * Report expedited quiescent state for specified node. This is a
  3198. * lock-acquisition wrapper function for __rcu_report_exp_rnp().
  3199. *
  3200. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3201. */
  3202. static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
  3203. struct rcu_node *rnp, bool wake)
  3204. {
  3205. unsigned long flags;
  3206. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3207. __rcu_report_exp_rnp(rsp, rnp, wake, flags);
  3208. }
  3209. /*
  3210. * Report expedited quiescent state for multiple CPUs, all covered by the
  3211. * specified leaf rcu_node structure. Caller must hold the root
  3212. * rcu_node's exp_funnel_mutex.
  3213. */
  3214. static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
  3215. unsigned long mask, bool wake)
  3216. {
  3217. unsigned long flags;
  3218. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3219. if (!(rnp->expmask & mask)) {
  3220. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3221. return;
  3222. }
  3223. rnp->expmask &= ~mask;
  3224. __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
  3225. }
  3226. /*
  3227. * Report expedited quiescent state for specified rcu_data (CPU).
  3228. * Caller must hold the root rcu_node's exp_funnel_mutex.
  3229. */
  3230. static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
  3231. bool wake)
  3232. {
  3233. rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
  3234. }
  3235. /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
  3236. static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
  3237. struct rcu_data *rdp,
  3238. atomic_long_t *stat, unsigned long s)
  3239. {
  3240. if (rcu_exp_gp_seq_done(rsp, s)) {
  3241. if (rnp)
  3242. mutex_unlock(&rnp->exp_funnel_mutex);
  3243. else if (rdp)
  3244. mutex_unlock(&rdp->exp_funnel_mutex);
  3245. /* Ensure test happens before caller kfree(). */
  3246. smp_mb__before_atomic(); /* ^^^ */
  3247. atomic_long_inc(stat);
  3248. return true;
  3249. }
  3250. return false;
  3251. }
  3252. /*
  3253. * Funnel-lock acquisition for expedited grace periods. Returns a
  3254. * pointer to the root rcu_node structure, or NULL if some other
  3255. * task did the expedited grace period for us.
  3256. */
  3257. static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
  3258. {
  3259. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
  3260. struct rcu_node *rnp0;
  3261. struct rcu_node *rnp1 = NULL;
  3262. /*
  3263. * First try directly acquiring the root lock in order to reduce
  3264. * latency in the common case where expedited grace periods are
  3265. * rare. We check mutex_is_locked() to avoid pathological levels of
  3266. * memory contention on ->exp_funnel_mutex in the heavy-load case.
  3267. */
  3268. rnp0 = rcu_get_root(rsp);
  3269. if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
  3270. if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
  3271. if (sync_exp_work_done(rsp, rnp0, NULL,
  3272. &rdp->expedited_workdone0, s))
  3273. return NULL;
  3274. return rnp0;
  3275. }
  3276. }
  3277. /*
  3278. * Each pass through the following loop works its way
  3279. * up the rcu_node tree, returning if others have done the
  3280. * work or otherwise falls through holding the root rnp's
  3281. * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
  3282. * can be inexact, as it is just promoting locality and is not
  3283. * strictly needed for correctness.
  3284. */
  3285. if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
  3286. return NULL;
  3287. mutex_lock(&rdp->exp_funnel_mutex);
  3288. rnp0 = rdp->mynode;
  3289. for (; rnp0 != NULL; rnp0 = rnp0->parent) {
  3290. if (sync_exp_work_done(rsp, rnp1, rdp,
  3291. &rdp->expedited_workdone2, s))
  3292. return NULL;
  3293. mutex_lock(&rnp0->exp_funnel_mutex);
  3294. if (rnp1)
  3295. mutex_unlock(&rnp1->exp_funnel_mutex);
  3296. else
  3297. mutex_unlock(&rdp->exp_funnel_mutex);
  3298. rnp1 = rnp0;
  3299. }
  3300. if (sync_exp_work_done(rsp, rnp1, rdp,
  3301. &rdp->expedited_workdone3, s))
  3302. return NULL;
  3303. return rnp1;
  3304. }
  3305. /* Invoked on each online non-idle CPU for expedited quiescent state. */
  3306. static void sync_sched_exp_handler(void *data)
  3307. {
  3308. struct rcu_data *rdp;
  3309. struct rcu_node *rnp;
  3310. struct rcu_state *rsp = data;
  3311. rdp = this_cpu_ptr(rsp->rda);
  3312. rnp = rdp->mynode;
  3313. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
  3314. __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  3315. return;
  3316. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
  3317. resched_cpu(smp_processor_id());
  3318. }
  3319. /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
  3320. static void sync_sched_exp_online_cleanup(int cpu)
  3321. {
  3322. struct rcu_data *rdp;
  3323. int ret;
  3324. struct rcu_node *rnp;
  3325. struct rcu_state *rsp = &rcu_sched_state;
  3326. rdp = per_cpu_ptr(rsp->rda, cpu);
  3327. rnp = rdp->mynode;
  3328. if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
  3329. return;
  3330. ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
  3331. WARN_ON_ONCE(ret);
  3332. }
  3333. /*
  3334. * Select the nodes that the upcoming expedited grace period needs
  3335. * to wait for.
  3336. */
  3337. static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
  3338. smp_call_func_t func)
  3339. {
  3340. int cpu;
  3341. unsigned long flags;
  3342. unsigned long mask;
  3343. unsigned long mask_ofl_test;
  3344. unsigned long mask_ofl_ipi;
  3345. int ret;
  3346. struct rcu_node *rnp;
  3347. sync_exp_reset_tree(rsp);
  3348. rcu_for_each_leaf_node(rsp, rnp) {
  3349. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3350. /* Each pass checks a CPU for identity, offline, and idle. */
  3351. mask_ofl_test = 0;
  3352. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
  3353. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3354. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  3355. if (raw_smp_processor_id() == cpu ||
  3356. !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
  3357. mask_ofl_test |= rdp->grpmask;
  3358. }
  3359. mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
  3360. /*
  3361. * Need to wait for any blocked tasks as well. Note that
  3362. * additional blocking tasks will also block the expedited
  3363. * GP until such time as the ->expmask bits are cleared.
  3364. */
  3365. if (rcu_preempt_has_tasks(rnp))
  3366. rnp->exp_tasks = rnp->blkd_tasks.next;
  3367. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3368. /* IPI the remaining CPUs for expedited quiescent state. */
  3369. mask = 1;
  3370. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3371. if (!(mask_ofl_ipi & mask))
  3372. continue;
  3373. retry_ipi:
  3374. ret = smp_call_function_single(cpu, func, rsp, 0);
  3375. if (!ret) {
  3376. mask_ofl_ipi &= ~mask;
  3377. continue;
  3378. }
  3379. /* Failed, raced with offline. */
  3380. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3381. if (cpu_online(cpu) &&
  3382. (rnp->expmask & mask)) {
  3383. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3384. schedule_timeout_uninterruptible(1);
  3385. if (cpu_online(cpu) &&
  3386. (rnp->expmask & mask))
  3387. goto retry_ipi;
  3388. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3389. }
  3390. if (!(rnp->expmask & mask))
  3391. mask_ofl_ipi &= ~mask;
  3392. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3393. }
  3394. /* Report quiescent states for those that went offline. */
  3395. mask_ofl_test |= mask_ofl_ipi;
  3396. if (mask_ofl_test)
  3397. rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
  3398. }
  3399. }
  3400. static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
  3401. {
  3402. int cpu;
  3403. unsigned long jiffies_stall;
  3404. unsigned long jiffies_start;
  3405. unsigned long mask;
  3406. int ndetected;
  3407. struct rcu_node *rnp;
  3408. struct rcu_node *rnp_root = rcu_get_root(rsp);
  3409. int ret;
  3410. jiffies_stall = rcu_jiffies_till_stall_check();
  3411. jiffies_start = jiffies;
  3412. for (;;) {
  3413. ret = swait_event_timeout(
  3414. rsp->expedited_wq,
  3415. sync_rcu_preempt_exp_done(rnp_root),
  3416. jiffies_stall);
  3417. if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
  3418. return;
  3419. if (ret < 0) {
  3420. /* Hit a signal, disable CPU stall warnings. */
  3421. swait_event(rsp->expedited_wq,
  3422. sync_rcu_preempt_exp_done(rnp_root));
  3423. return;
  3424. }
  3425. pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
  3426. rsp->name);
  3427. ndetected = 0;
  3428. rcu_for_each_leaf_node(rsp, rnp) {
  3429. ndetected = rcu_print_task_exp_stall(rnp);
  3430. mask = 1;
  3431. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3432. struct rcu_data *rdp;
  3433. if (!(rnp->expmask & mask))
  3434. continue;
  3435. ndetected++;
  3436. rdp = per_cpu_ptr(rsp->rda, cpu);
  3437. pr_cont(" %d-%c%c%c", cpu,
  3438. "O."[cpu_online(cpu)],
  3439. "o."[!!(rdp->grpmask & rnp->expmaskinit)],
  3440. "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
  3441. }
  3442. mask <<= 1;
  3443. }
  3444. pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
  3445. jiffies - jiffies_start, rsp->expedited_sequence,
  3446. rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
  3447. if (!ndetected) {
  3448. pr_err("blocking rcu_node structures:");
  3449. rcu_for_each_node_breadth_first(rsp, rnp) {
  3450. if (rnp == rnp_root)
  3451. continue; /* printed unconditionally */
  3452. if (sync_rcu_preempt_exp_done(rnp))
  3453. continue;
  3454. pr_cont(" l=%u:%d-%d:%#lx/%c",
  3455. rnp->level, rnp->grplo, rnp->grphi,
  3456. rnp->expmask,
  3457. ".T"[!!rnp->exp_tasks]);
  3458. }
  3459. pr_cont("\n");
  3460. }
  3461. rcu_for_each_leaf_node(rsp, rnp) {
  3462. mask = 1;
  3463. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
  3464. if (!(rnp->expmask & mask))
  3465. continue;
  3466. dump_cpu_task(cpu);
  3467. }
  3468. }
  3469. jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
  3470. }
  3471. }
  3472. /**
  3473. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  3474. *
  3475. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  3476. * approach to force the grace period to end quickly. This consumes
  3477. * significant time on all CPUs and is unfriendly to real-time workloads,
  3478. * so is thus not recommended for any sort of common-case code. In fact,
  3479. * if you are using synchronize_sched_expedited() in a loop, please
  3480. * restructure your code to batch your updates, and then use a single
  3481. * synchronize_sched() instead.
  3482. *
  3483. * This implementation can be thought of as an application of sequence
  3484. * locking to expedited grace periods, but using the sequence counter to
  3485. * determine when someone else has already done the work instead of for
  3486. * retrying readers.
  3487. */
  3488. void synchronize_sched_expedited(void)
  3489. {
  3490. unsigned long s;
  3491. struct rcu_node *rnp;
  3492. struct rcu_state *rsp = &rcu_sched_state;
  3493. /* If only one CPU, this is automatically a grace period. */
  3494. if (rcu_blocking_is_gp())
  3495. return;
  3496. /* If expedited grace periods are prohibited, fall back to normal. */
  3497. if (rcu_gp_is_normal()) {
  3498. wait_rcu_gp(call_rcu_sched);
  3499. return;
  3500. }
  3501. /* Take a snapshot of the sequence number. */
  3502. s = rcu_exp_gp_seq_snap(rsp);
  3503. rnp = exp_funnel_lock(rsp, s);
  3504. if (rnp == NULL)
  3505. return; /* Someone else did our work for us. */
  3506. rcu_exp_gp_seq_start(rsp);
  3507. sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
  3508. synchronize_sched_expedited_wait(rsp);
  3509. rcu_exp_gp_seq_end(rsp);
  3510. mutex_unlock(&rnp->exp_funnel_mutex);
  3511. }
  3512. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  3513. /*
  3514. * Check to see if there is any immediate RCU-related work to be done
  3515. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3516. * The checks are in order of increasing expense: checks that can be
  3517. * carried out against CPU-local state are performed first. However,
  3518. * we must check for CPU stalls first, else we might not get a chance.
  3519. */
  3520. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3521. {
  3522. struct rcu_node *rnp = rdp->mynode;
  3523. rdp->n_rcu_pending++;
  3524. /* Check for CPU stalls, if enabled. */
  3525. check_cpu_stall(rsp, rdp);
  3526. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3527. if (rcu_nohz_full_cpu(rsp))
  3528. return 0;
  3529. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3530. if (rcu_scheduler_fully_active &&
  3531. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3532. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
  3533. rdp->n_rp_core_needs_qs++;
  3534. } else if (rdp->core_needs_qs &&
  3535. (!rdp->cpu_no_qs.b.norm ||
  3536. rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
  3537. rdp->n_rp_report_qs++;
  3538. return 1;
  3539. }
  3540. /* Does this CPU have callbacks ready to invoke? */
  3541. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  3542. rdp->n_rp_cb_ready++;
  3543. return 1;
  3544. }
  3545. /* Has RCU gone idle with this CPU needing another grace period? */
  3546. if (cpu_needs_another_gp(rsp, rdp)) {
  3547. rdp->n_rp_cpu_needs_gp++;
  3548. return 1;
  3549. }
  3550. /* Has another RCU grace period completed? */
  3551. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3552. rdp->n_rp_gp_completed++;
  3553. return 1;
  3554. }
  3555. /* Has a new RCU grace period started? */
  3556. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3557. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3558. rdp->n_rp_gp_started++;
  3559. return 1;
  3560. }
  3561. /* Does this CPU need a deferred NOCB wakeup? */
  3562. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3563. rdp->n_rp_nocb_defer_wakeup++;
  3564. return 1;
  3565. }
  3566. /* nothing to do */
  3567. rdp->n_rp_need_nothing++;
  3568. return 0;
  3569. }
  3570. /*
  3571. * Check to see if there is any immediate RCU-related work to be done
  3572. * by the current CPU, returning 1 if so. This function is part of the
  3573. * RCU implementation; it is -not- an exported member of the RCU API.
  3574. */
  3575. static int rcu_pending(void)
  3576. {
  3577. struct rcu_state *rsp;
  3578. for_each_rcu_flavor(rsp)
  3579. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3580. return 1;
  3581. return 0;
  3582. }
  3583. /*
  3584. * Return true if the specified CPU has any callback. If all_lazy is
  3585. * non-NULL, store an indication of whether all callbacks are lazy.
  3586. * (If there are no callbacks, all of them are deemed to be lazy.)
  3587. */
  3588. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3589. {
  3590. bool al = true;
  3591. bool hc = false;
  3592. struct rcu_data *rdp;
  3593. struct rcu_state *rsp;
  3594. for_each_rcu_flavor(rsp) {
  3595. rdp = this_cpu_ptr(rsp->rda);
  3596. if (!rdp->nxtlist)
  3597. continue;
  3598. hc = true;
  3599. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  3600. al = false;
  3601. break;
  3602. }
  3603. }
  3604. if (all_lazy)
  3605. *all_lazy = al;
  3606. return hc;
  3607. }
  3608. /*
  3609. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3610. * the compiler is expected to optimize this away.
  3611. */
  3612. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3613. int cpu, unsigned long done)
  3614. {
  3615. trace_rcu_barrier(rsp->name, s, cpu,
  3616. atomic_read(&rsp->barrier_cpu_count), done);
  3617. }
  3618. /*
  3619. * RCU callback function for _rcu_barrier(). If we are last, wake
  3620. * up the task executing _rcu_barrier().
  3621. */
  3622. static void rcu_barrier_callback(struct rcu_head *rhp)
  3623. {
  3624. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3625. struct rcu_state *rsp = rdp->rsp;
  3626. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3627. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
  3628. complete(&rsp->barrier_completion);
  3629. } else {
  3630. _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
  3631. }
  3632. }
  3633. /*
  3634. * Called with preemption disabled, and from cross-cpu IRQ context.
  3635. */
  3636. static void rcu_barrier_func(void *type)
  3637. {
  3638. struct rcu_state *rsp = type;
  3639. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3640. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
  3641. atomic_inc(&rsp->barrier_cpu_count);
  3642. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  3643. }
  3644. /*
  3645. * Orchestrate the specified type of RCU barrier, waiting for all
  3646. * RCU callbacks of the specified type to complete.
  3647. */
  3648. static void _rcu_barrier(struct rcu_state *rsp)
  3649. {
  3650. int cpu;
  3651. struct rcu_data *rdp;
  3652. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3653. _rcu_barrier_trace(rsp, "Begin", -1, s);
  3654. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3655. mutex_lock(&rsp->barrier_mutex);
  3656. /* Did someone else do our work for us? */
  3657. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3658. _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
  3659. smp_mb(); /* caller's subsequent code after above check. */
  3660. mutex_unlock(&rsp->barrier_mutex);
  3661. return;
  3662. }
  3663. /* Mark the start of the barrier operation. */
  3664. rcu_seq_start(&rsp->barrier_sequence);
  3665. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
  3666. /*
  3667. * Initialize the count to one rather than to zero in order to
  3668. * avoid a too-soon return to zero in case of a short grace period
  3669. * (or preemption of this task). Exclude CPU-hotplug operations
  3670. * to ensure that no offline CPU has callbacks queued.
  3671. */
  3672. init_completion(&rsp->barrier_completion);
  3673. atomic_set(&rsp->barrier_cpu_count, 1);
  3674. get_online_cpus();
  3675. /*
  3676. * Force each CPU with callbacks to register a new callback.
  3677. * When that callback is invoked, we will know that all of the
  3678. * corresponding CPU's preceding callbacks have been invoked.
  3679. */
  3680. for_each_possible_cpu(cpu) {
  3681. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3682. continue;
  3683. rdp = per_cpu_ptr(rsp->rda, cpu);
  3684. if (rcu_is_nocb_cpu(cpu)) {
  3685. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3686. _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
  3687. rsp->barrier_sequence);
  3688. } else {
  3689. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  3690. rsp->barrier_sequence);
  3691. smp_mb__before_atomic();
  3692. atomic_inc(&rsp->barrier_cpu_count);
  3693. __call_rcu(&rdp->barrier_head,
  3694. rcu_barrier_callback, rsp, cpu, 0);
  3695. }
  3696. } else if (READ_ONCE(rdp->qlen)) {
  3697. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  3698. rsp->barrier_sequence);
  3699. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3700. } else {
  3701. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  3702. rsp->barrier_sequence);
  3703. }
  3704. }
  3705. put_online_cpus();
  3706. /*
  3707. * Now that we have an rcu_barrier_callback() callback on each
  3708. * CPU, and thus each counted, remove the initial count.
  3709. */
  3710. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3711. complete(&rsp->barrier_completion);
  3712. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3713. wait_for_completion(&rsp->barrier_completion);
  3714. /* Mark the end of the barrier operation. */
  3715. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
  3716. rcu_seq_end(&rsp->barrier_sequence);
  3717. /* Other rcu_barrier() invocations can now safely proceed. */
  3718. mutex_unlock(&rsp->barrier_mutex);
  3719. }
  3720. /**
  3721. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3722. */
  3723. void rcu_barrier_bh(void)
  3724. {
  3725. _rcu_barrier(&rcu_bh_state);
  3726. }
  3727. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3728. /**
  3729. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3730. */
  3731. void rcu_barrier_sched(void)
  3732. {
  3733. _rcu_barrier(&rcu_sched_state);
  3734. }
  3735. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3736. /*
  3737. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3738. * first CPU in a given leaf rcu_node structure coming online. The caller
  3739. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3740. * disabled.
  3741. */
  3742. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3743. {
  3744. long mask;
  3745. struct rcu_node *rnp = rnp_leaf;
  3746. for (;;) {
  3747. mask = rnp->grpmask;
  3748. rnp = rnp->parent;
  3749. if (rnp == NULL)
  3750. return;
  3751. raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
  3752. rnp->qsmaskinit |= mask;
  3753. raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
  3754. }
  3755. }
  3756. /*
  3757. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3758. */
  3759. static void __init
  3760. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3761. {
  3762. unsigned long flags;
  3763. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3764. struct rcu_node *rnp = rcu_get_root(rsp);
  3765. /* Set up local state, ensuring consistent view of global state. */
  3766. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3767. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3768. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3769. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3770. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3771. rdp->cpu = cpu;
  3772. rdp->rsp = rsp;
  3773. mutex_init(&rdp->exp_funnel_mutex);
  3774. rcu_boot_init_nocb_percpu_data(rdp);
  3775. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3776. }
  3777. /*
  3778. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3779. * offline event can be happening at a given time. Note also that we
  3780. * can accept some slop in the rsp->completed access due to the fact
  3781. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3782. */
  3783. static void
  3784. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3785. {
  3786. unsigned long flags;
  3787. unsigned long mask;
  3788. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3789. struct rcu_node *rnp = rcu_get_root(rsp);
  3790. /* Set up local state, ensuring consistent view of global state. */
  3791. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3792. rdp->qlen_last_fqs_check = 0;
  3793. rdp->n_force_qs_snap = rsp->n_force_qs;
  3794. rdp->blimit = blimit;
  3795. if (!rdp->nxtlist)
  3796. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3797. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3798. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3799. atomic_set(&rdp->dynticks->dynticks,
  3800. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3801. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  3802. /*
  3803. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3804. * propagation up the rcu_node tree will happen at the beginning
  3805. * of the next grace period.
  3806. */
  3807. rnp = rdp->mynode;
  3808. mask = rdp->grpmask;
  3809. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  3810. rnp->qsmaskinitnext |= mask;
  3811. rnp->expmaskinitnext |= mask;
  3812. if (!rdp->beenonline)
  3813. WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
  3814. rdp->beenonline = true; /* We have now been online. */
  3815. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3816. rdp->completed = rnp->completed;
  3817. rdp->cpu_no_qs.b.norm = true;
  3818. rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
  3819. rdp->core_needs_qs = false;
  3820. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3821. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3822. }
  3823. static void rcu_prepare_cpu(int cpu)
  3824. {
  3825. struct rcu_state *rsp;
  3826. for_each_rcu_flavor(rsp)
  3827. rcu_init_percpu_data(cpu, rsp);
  3828. }
  3829. #ifdef CONFIG_HOTPLUG_CPU
  3830. /*
  3831. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  3832. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  3833. * bit masks.
  3834. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  3835. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  3836. * bit masks.
  3837. */
  3838. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  3839. {
  3840. unsigned long flags;
  3841. unsigned long mask;
  3842. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3843. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  3844. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  3845. return;
  3846. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  3847. mask = rdp->grpmask;
  3848. raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
  3849. rnp->qsmaskinitnext &= ~mask;
  3850. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3851. }
  3852. void rcu_report_dead(unsigned int cpu)
  3853. {
  3854. struct rcu_state *rsp;
  3855. /* QS for any half-done expedited RCU-sched GP. */
  3856. preempt_disable();
  3857. rcu_report_exp_rdp(&rcu_sched_state,
  3858. this_cpu_ptr(rcu_sched_state.rda), true);
  3859. preempt_enable();
  3860. for_each_rcu_flavor(rsp)
  3861. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3862. }
  3863. #endif
  3864. /*
  3865. * Handle CPU online/offline notification events.
  3866. */
  3867. int rcu_cpu_notify(struct notifier_block *self,
  3868. unsigned long action, void *hcpu)
  3869. {
  3870. long cpu = (long)hcpu;
  3871. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3872. struct rcu_node *rnp = rdp->mynode;
  3873. struct rcu_state *rsp;
  3874. switch (action) {
  3875. case CPU_UP_PREPARE:
  3876. case CPU_UP_PREPARE_FROZEN:
  3877. rcu_prepare_cpu(cpu);
  3878. rcu_prepare_kthreads(cpu);
  3879. rcu_spawn_all_nocb_kthreads(cpu);
  3880. break;
  3881. case CPU_ONLINE:
  3882. case CPU_DOWN_FAILED:
  3883. sync_sched_exp_online_cleanup(cpu);
  3884. rcu_boost_kthread_setaffinity(rnp, -1);
  3885. break;
  3886. case CPU_DOWN_PREPARE:
  3887. rcu_boost_kthread_setaffinity(rnp, cpu);
  3888. break;
  3889. case CPU_DYING:
  3890. case CPU_DYING_FROZEN:
  3891. for_each_rcu_flavor(rsp)
  3892. rcu_cleanup_dying_cpu(rsp);
  3893. break;
  3894. case CPU_DEAD:
  3895. case CPU_DEAD_FROZEN:
  3896. case CPU_UP_CANCELED:
  3897. case CPU_UP_CANCELED_FROZEN:
  3898. for_each_rcu_flavor(rsp) {
  3899. rcu_cleanup_dead_cpu(cpu, rsp);
  3900. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3901. }
  3902. break;
  3903. default:
  3904. break;
  3905. }
  3906. return NOTIFY_OK;
  3907. }
  3908. static int rcu_pm_notify(struct notifier_block *self,
  3909. unsigned long action, void *hcpu)
  3910. {
  3911. switch (action) {
  3912. case PM_HIBERNATION_PREPARE:
  3913. case PM_SUSPEND_PREPARE:
  3914. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3915. rcu_expedite_gp();
  3916. break;
  3917. case PM_POST_HIBERNATION:
  3918. case PM_POST_SUSPEND:
  3919. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3920. rcu_unexpedite_gp();
  3921. break;
  3922. default:
  3923. break;
  3924. }
  3925. return NOTIFY_OK;
  3926. }
  3927. /*
  3928. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3929. */
  3930. static int __init rcu_spawn_gp_kthread(void)
  3931. {
  3932. unsigned long flags;
  3933. int kthread_prio_in = kthread_prio;
  3934. struct rcu_node *rnp;
  3935. struct rcu_state *rsp;
  3936. struct sched_param sp;
  3937. struct task_struct *t;
  3938. /* Force priority into range. */
  3939. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3940. kthread_prio = 1;
  3941. else if (kthread_prio < 0)
  3942. kthread_prio = 0;
  3943. else if (kthread_prio > 99)
  3944. kthread_prio = 99;
  3945. if (kthread_prio != kthread_prio_in)
  3946. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3947. kthread_prio, kthread_prio_in);
  3948. rcu_scheduler_fully_active = 1;
  3949. for_each_rcu_flavor(rsp) {
  3950. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3951. BUG_ON(IS_ERR(t));
  3952. rnp = rcu_get_root(rsp);
  3953. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3954. rsp->gp_kthread = t;
  3955. if (kthread_prio) {
  3956. sp.sched_priority = kthread_prio;
  3957. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3958. }
  3959. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3960. wake_up_process(t);
  3961. }
  3962. rcu_spawn_nocb_kthreads();
  3963. rcu_spawn_boost_kthreads();
  3964. return 0;
  3965. }
  3966. early_initcall(rcu_spawn_gp_kthread);
  3967. /*
  3968. * This function is invoked towards the end of the scheduler's initialization
  3969. * process. Before this is called, the idle task might contain
  3970. * RCU read-side critical sections (during which time, this idle
  3971. * task is booting the system). After this function is called, the
  3972. * idle tasks are prohibited from containing RCU read-side critical
  3973. * sections. This function also enables RCU lockdep checking.
  3974. */
  3975. void rcu_scheduler_starting(void)
  3976. {
  3977. WARN_ON(num_online_cpus() != 1);
  3978. WARN_ON(nr_context_switches() > 0);
  3979. rcu_scheduler_active = 1;
  3980. }
  3981. /*
  3982. * Compute the per-level fanout, either using the exact fanout specified
  3983. * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
  3984. */
  3985. static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
  3986. {
  3987. int i;
  3988. if (rcu_fanout_exact) {
  3989. levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3990. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3991. levelspread[i] = RCU_FANOUT;
  3992. } else {
  3993. int ccur;
  3994. int cprv;
  3995. cprv = nr_cpu_ids;
  3996. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3997. ccur = levelcnt[i];
  3998. levelspread[i] = (cprv + ccur - 1) / ccur;
  3999. cprv = ccur;
  4000. }
  4001. }
  4002. }
  4003. /*
  4004. * Helper function for rcu_init() that initializes one rcu_state structure.
  4005. */
  4006. static void __init rcu_init_one(struct rcu_state *rsp)
  4007. {
  4008. static const char * const buf[] = RCU_NODE_NAME_INIT;
  4009. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  4010. static const char * const exp[] = RCU_EXP_NAME_INIT;
  4011. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  4012. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  4013. static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
  4014. static u8 fl_mask = 0x1;
  4015. int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
  4016. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  4017. int cpustride = 1;
  4018. int i;
  4019. int j;
  4020. struct rcu_node *rnp;
  4021. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  4022. /* Silence gcc 4.8 false positive about array index out of range. */
  4023. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  4024. panic("rcu_init_one: rcu_num_lvls out of range");
  4025. /* Initialize the level-tracking arrays. */
  4026. for (i = 0; i < rcu_num_lvls; i++)
  4027. levelcnt[i] = num_rcu_lvl[i];
  4028. for (i = 1; i < rcu_num_lvls; i++)
  4029. rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
  4030. rcu_init_levelspread(levelspread, levelcnt);
  4031. rsp->flavor_mask = fl_mask;
  4032. fl_mask <<= 1;
  4033. /* Initialize the elements themselves, starting from the leaves. */
  4034. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  4035. cpustride *= levelspread[i];
  4036. rnp = rsp->level[i];
  4037. for (j = 0; j < levelcnt[i]; j++, rnp++) {
  4038. raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
  4039. lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
  4040. &rcu_node_class[i], buf[i]);
  4041. raw_spin_lock_init(&rnp->fqslock);
  4042. lockdep_set_class_and_name(&rnp->fqslock,
  4043. &rcu_fqs_class[i], fqs[i]);
  4044. rnp->gpnum = rsp->gpnum;
  4045. rnp->completed = rsp->completed;
  4046. rnp->qsmask = 0;
  4047. rnp->qsmaskinit = 0;
  4048. rnp->grplo = j * cpustride;
  4049. rnp->grphi = (j + 1) * cpustride - 1;
  4050. if (rnp->grphi >= nr_cpu_ids)
  4051. rnp->grphi = nr_cpu_ids - 1;
  4052. if (i == 0) {
  4053. rnp->grpnum = 0;
  4054. rnp->grpmask = 0;
  4055. rnp->parent = NULL;
  4056. } else {
  4057. rnp->grpnum = j % levelspread[i - 1];
  4058. rnp->grpmask = 1UL << rnp->grpnum;
  4059. rnp->parent = rsp->level[i - 1] +
  4060. j / levelspread[i - 1];
  4061. }
  4062. rnp->level = i;
  4063. INIT_LIST_HEAD(&rnp->blkd_tasks);
  4064. rcu_init_one_nocb(rnp);
  4065. mutex_init(&rnp->exp_funnel_mutex);
  4066. lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
  4067. &rcu_exp_class[i], exp[i]);
  4068. }
  4069. }
  4070. init_swait_queue_head(&rsp->gp_wq);
  4071. init_swait_queue_head(&rsp->expedited_wq);
  4072. rnp = rsp->level[rcu_num_lvls - 1];
  4073. for_each_possible_cpu(i) {
  4074. while (i > rnp->grphi)
  4075. rnp++;
  4076. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  4077. rcu_boot_init_percpu_data(i, rsp);
  4078. }
  4079. list_add(&rsp->flavors, &rcu_struct_flavors);
  4080. }
  4081. /*
  4082. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  4083. * replace the definitions in tree.h because those are needed to size
  4084. * the ->node array in the rcu_state structure.
  4085. */
  4086. static void __init rcu_init_geometry(void)
  4087. {
  4088. ulong d;
  4089. int i;
  4090. int rcu_capacity[RCU_NUM_LVLS];
  4091. /*
  4092. * Initialize any unspecified boot parameters.
  4093. * The default values of jiffies_till_first_fqs and
  4094. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  4095. * value, which is a function of HZ, then adding one for each
  4096. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  4097. */
  4098. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  4099. if (jiffies_till_first_fqs == ULONG_MAX)
  4100. jiffies_till_first_fqs = d;
  4101. if (jiffies_till_next_fqs == ULONG_MAX)
  4102. jiffies_till_next_fqs = d;
  4103. /* If the compile-time values are accurate, just leave. */
  4104. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  4105. nr_cpu_ids == NR_CPUS)
  4106. return;
  4107. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  4108. rcu_fanout_leaf, nr_cpu_ids);
  4109. /*
  4110. * The boot-time rcu_fanout_leaf parameter must be at least two
  4111. * and cannot exceed the number of bits in the rcu_node masks.
  4112. * Complain and fall back to the compile-time values if this
  4113. * limit is exceeded.
  4114. */
  4115. if (rcu_fanout_leaf < 2 ||
  4116. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  4117. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4118. WARN_ON(1);
  4119. return;
  4120. }
  4121. /*
  4122. * Compute number of nodes that can be handled an rcu_node tree
  4123. * with the given number of levels.
  4124. */
  4125. rcu_capacity[0] = rcu_fanout_leaf;
  4126. for (i = 1; i < RCU_NUM_LVLS; i++)
  4127. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  4128. /*
  4129. * The tree must be able to accommodate the configured number of CPUs.
  4130. * If this limit is exceeded, fall back to the compile-time values.
  4131. */
  4132. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  4133. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  4134. WARN_ON(1);
  4135. return;
  4136. }
  4137. /* Calculate the number of levels in the tree. */
  4138. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  4139. }
  4140. rcu_num_lvls = i + 1;
  4141. /* Calculate the number of rcu_nodes at each level of the tree. */
  4142. for (i = 0; i < rcu_num_lvls; i++) {
  4143. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  4144. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  4145. }
  4146. /* Calculate the total number of rcu_node structures. */
  4147. rcu_num_nodes = 0;
  4148. for (i = 0; i < rcu_num_lvls; i++)
  4149. rcu_num_nodes += num_rcu_lvl[i];
  4150. }
  4151. /*
  4152. * Dump out the structure of the rcu_node combining tree associated
  4153. * with the rcu_state structure referenced by rsp.
  4154. */
  4155. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  4156. {
  4157. int level = 0;
  4158. struct rcu_node *rnp;
  4159. pr_info("rcu_node tree layout dump\n");
  4160. pr_info(" ");
  4161. rcu_for_each_node_breadth_first(rsp, rnp) {
  4162. if (rnp->level != level) {
  4163. pr_cont("\n");
  4164. pr_info(" ");
  4165. level = rnp->level;
  4166. }
  4167. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  4168. }
  4169. pr_cont("\n");
  4170. }
  4171. void __init rcu_init(void)
  4172. {
  4173. int cpu;
  4174. rcu_early_boot_tests();
  4175. rcu_bootup_announce();
  4176. rcu_init_geometry();
  4177. rcu_init_one(&rcu_bh_state);
  4178. rcu_init_one(&rcu_sched_state);
  4179. if (dump_tree)
  4180. rcu_dump_rcu_node_tree(&rcu_sched_state);
  4181. __rcu_init_preempt();
  4182. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  4183. /*
  4184. * We don't need protection against CPU-hotplug here because
  4185. * this is called early in boot, before either interrupts
  4186. * or the scheduler are operational.
  4187. */
  4188. cpu_notifier(rcu_cpu_notify, 0);
  4189. pm_notifier(rcu_pm_notify, 0);
  4190. for_each_online_cpu(cpu)
  4191. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  4192. }
  4193. #include "tree_plugin.h"