futex.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <linux/fault-inject.h>
  68. #include <asm/futex.h>
  69. #include "locking/rtmutex_common.h"
  70. /*
  71. * READ this before attempting to hack on futexes!
  72. *
  73. * Basic futex operation and ordering guarantees
  74. * =============================================
  75. *
  76. * The waiter reads the futex value in user space and calls
  77. * futex_wait(). This function computes the hash bucket and acquires
  78. * the hash bucket lock. After that it reads the futex user space value
  79. * again and verifies that the data has not changed. If it has not changed
  80. * it enqueues itself into the hash bucket, releases the hash bucket lock
  81. * and schedules.
  82. *
  83. * The waker side modifies the user space value of the futex and calls
  84. * futex_wake(). This function computes the hash bucket and acquires the
  85. * hash bucket lock. Then it looks for waiters on that futex in the hash
  86. * bucket and wakes them.
  87. *
  88. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  89. * the hb spinlock can be avoided and simply return. In order for this
  90. * optimization to work, ordering guarantees must exist so that the waiter
  91. * being added to the list is acknowledged when the list is concurrently being
  92. * checked by the waker, avoiding scenarios like the following:
  93. *
  94. * CPU 0 CPU 1
  95. * val = *futex;
  96. * sys_futex(WAIT, futex, val);
  97. * futex_wait(futex, val);
  98. * uval = *futex;
  99. * *futex = newval;
  100. * sys_futex(WAKE, futex);
  101. * futex_wake(futex);
  102. * if (queue_empty())
  103. * return;
  104. * if (uval == val)
  105. * lock(hash_bucket(futex));
  106. * queue();
  107. * unlock(hash_bucket(futex));
  108. * schedule();
  109. *
  110. * This would cause the waiter on CPU 0 to wait forever because it
  111. * missed the transition of the user space value from val to newval
  112. * and the waker did not find the waiter in the hash bucket queue.
  113. *
  114. * The correct serialization ensures that a waiter either observes
  115. * the changed user space value before blocking or is woken by a
  116. * concurrent waker:
  117. *
  118. * CPU 0 CPU 1
  119. * val = *futex;
  120. * sys_futex(WAIT, futex, val);
  121. * futex_wait(futex, val);
  122. *
  123. * waiters++; (a)
  124. * smp_mb(); (A) <-- paired with -.
  125. * |
  126. * lock(hash_bucket(futex)); |
  127. * |
  128. * uval = *futex; |
  129. * | *futex = newval;
  130. * | sys_futex(WAKE, futex);
  131. * | futex_wake(futex);
  132. * |
  133. * `--------> smp_mb(); (B)
  134. * if (uval == val)
  135. * queue();
  136. * unlock(hash_bucket(futex));
  137. * schedule(); if (waiters)
  138. * lock(hash_bucket(futex));
  139. * else wake_waiters(futex);
  140. * waiters--; (b) unlock(hash_bucket(futex));
  141. *
  142. * Where (A) orders the waiters increment and the futex value read through
  143. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  144. * to futex and the waiters read -- this is done by the barriers for both
  145. * shared and private futexes in get_futex_key_refs().
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #define FLAGS_SHARED 0x01
  178. #define FLAGS_CLOCKRT 0x02
  179. #define FLAGS_HAS_TIMEOUT 0x04
  180. /*
  181. * Priority Inheritance state:
  182. */
  183. struct futex_pi_state {
  184. /*
  185. * list of 'owned' pi_state instances - these have to be
  186. * cleaned up in do_exit() if the task exits prematurely:
  187. */
  188. struct list_head list;
  189. /*
  190. * The PI object:
  191. */
  192. struct rt_mutex pi_mutex;
  193. struct task_struct *owner;
  194. atomic_t refcount;
  195. union futex_key key;
  196. };
  197. /**
  198. * struct futex_q - The hashed futex queue entry, one per waiting task
  199. * @list: priority-sorted list of tasks waiting on this futex
  200. * @task: the task waiting on the futex
  201. * @lock_ptr: the hash bucket lock
  202. * @key: the key the futex is hashed on
  203. * @pi_state: optional priority inheritance state
  204. * @rt_waiter: rt_waiter storage for use with requeue_pi
  205. * @requeue_pi_key: the requeue_pi target futex key
  206. * @bitset: bitset for the optional bitmasked wakeup
  207. *
  208. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  209. * we can wake only the relevant ones (hashed queues may be shared).
  210. *
  211. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  212. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  213. * The order of wakeup is always to make the first condition true, then
  214. * the second.
  215. *
  216. * PI futexes are typically woken before they are removed from the hash list via
  217. * the rt_mutex code. See unqueue_me_pi().
  218. */
  219. struct futex_q {
  220. struct plist_node list;
  221. struct task_struct *task;
  222. spinlock_t *lock_ptr;
  223. union futex_key key;
  224. struct futex_pi_state *pi_state;
  225. struct rt_mutex_waiter *rt_waiter;
  226. union futex_key *requeue_pi_key;
  227. u32 bitset;
  228. };
  229. static const struct futex_q futex_q_init = {
  230. /* list gets initialized in queue_me()*/
  231. .key = FUTEX_KEY_INIT,
  232. .bitset = FUTEX_BITSET_MATCH_ANY
  233. };
  234. /*
  235. * Hash buckets are shared by all the futex_keys that hash to the same
  236. * location. Each key may have multiple futex_q structures, one for each task
  237. * waiting on a futex.
  238. */
  239. struct futex_hash_bucket {
  240. atomic_t waiters;
  241. spinlock_t lock;
  242. struct plist_head chain;
  243. } ____cacheline_aligned_in_smp;
  244. /*
  245. * The base of the bucket array and its size are always used together
  246. * (after initialization only in hash_futex()), so ensure that they
  247. * reside in the same cacheline.
  248. */
  249. static struct {
  250. struct futex_hash_bucket *queues;
  251. unsigned long hashsize;
  252. } __futex_data __read_mostly __aligned(2*sizeof(long));
  253. #define futex_queues (__futex_data.queues)
  254. #define futex_hashsize (__futex_data.hashsize)
  255. /*
  256. * Fault injections for futexes.
  257. */
  258. #ifdef CONFIG_FAIL_FUTEX
  259. static struct {
  260. struct fault_attr attr;
  261. bool ignore_private;
  262. } fail_futex = {
  263. .attr = FAULT_ATTR_INITIALIZER,
  264. .ignore_private = false,
  265. };
  266. static int __init setup_fail_futex(char *str)
  267. {
  268. return setup_fault_attr(&fail_futex.attr, str);
  269. }
  270. __setup("fail_futex=", setup_fail_futex);
  271. static bool should_fail_futex(bool fshared)
  272. {
  273. if (fail_futex.ignore_private && !fshared)
  274. return false;
  275. return should_fail(&fail_futex.attr, 1);
  276. }
  277. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  278. static int __init fail_futex_debugfs(void)
  279. {
  280. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  281. struct dentry *dir;
  282. dir = fault_create_debugfs_attr("fail_futex", NULL,
  283. &fail_futex.attr);
  284. if (IS_ERR(dir))
  285. return PTR_ERR(dir);
  286. if (!debugfs_create_bool("ignore-private", mode, dir,
  287. &fail_futex.ignore_private)) {
  288. debugfs_remove_recursive(dir);
  289. return -ENOMEM;
  290. }
  291. return 0;
  292. }
  293. late_initcall(fail_futex_debugfs);
  294. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  295. #else
  296. static inline bool should_fail_futex(bool fshared)
  297. {
  298. return false;
  299. }
  300. #endif /* CONFIG_FAIL_FUTEX */
  301. static inline void futex_get_mm(union futex_key *key)
  302. {
  303. atomic_inc(&key->private.mm->mm_count);
  304. /*
  305. * Ensure futex_get_mm() implies a full barrier such that
  306. * get_futex_key() implies a full barrier. This is relied upon
  307. * as smp_mb(); (B), see the ordering comment above.
  308. */
  309. smp_mb__after_atomic();
  310. }
  311. /*
  312. * Reflects a new waiter being added to the waitqueue.
  313. */
  314. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  315. {
  316. #ifdef CONFIG_SMP
  317. atomic_inc(&hb->waiters);
  318. /*
  319. * Full barrier (A), see the ordering comment above.
  320. */
  321. smp_mb__after_atomic();
  322. #endif
  323. }
  324. /*
  325. * Reflects a waiter being removed from the waitqueue by wakeup
  326. * paths.
  327. */
  328. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  329. {
  330. #ifdef CONFIG_SMP
  331. atomic_dec(&hb->waiters);
  332. #endif
  333. }
  334. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  335. {
  336. #ifdef CONFIG_SMP
  337. return atomic_read(&hb->waiters);
  338. #else
  339. return 1;
  340. #endif
  341. }
  342. /*
  343. * We hash on the keys returned from get_futex_key (see below).
  344. */
  345. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  346. {
  347. u32 hash = jhash2((u32*)&key->both.word,
  348. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  349. key->both.offset);
  350. return &futex_queues[hash & (futex_hashsize - 1)];
  351. }
  352. /*
  353. * Return 1 if two futex_keys are equal, 0 otherwise.
  354. */
  355. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  356. {
  357. return (key1 && key2
  358. && key1->both.word == key2->both.word
  359. && key1->both.ptr == key2->both.ptr
  360. && key1->both.offset == key2->both.offset);
  361. }
  362. /*
  363. * Take a reference to the resource addressed by a key.
  364. * Can be called while holding spinlocks.
  365. *
  366. */
  367. static void get_futex_key_refs(union futex_key *key)
  368. {
  369. if (!key->both.ptr)
  370. return;
  371. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  372. case FUT_OFF_INODE:
  373. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  374. break;
  375. case FUT_OFF_MMSHARED:
  376. futex_get_mm(key); /* implies smp_mb(); (B) */
  377. break;
  378. default:
  379. /*
  380. * Private futexes do not hold reference on an inode or
  381. * mm, therefore the only purpose of calling get_futex_key_refs
  382. * is because we need the barrier for the lockless waiter check.
  383. */
  384. smp_mb(); /* explicit smp_mb(); (B) */
  385. }
  386. }
  387. /*
  388. * Drop a reference to the resource addressed by a key.
  389. * The hash bucket spinlock must not be held. This is
  390. * a no-op for private futexes, see comment in the get
  391. * counterpart.
  392. */
  393. static void drop_futex_key_refs(union futex_key *key)
  394. {
  395. if (!key->both.ptr) {
  396. /* If we're here then we tried to put a key we failed to get */
  397. WARN_ON_ONCE(1);
  398. return;
  399. }
  400. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  401. case FUT_OFF_INODE:
  402. iput(key->shared.inode);
  403. break;
  404. case FUT_OFF_MMSHARED:
  405. mmdrop(key->private.mm);
  406. break;
  407. }
  408. }
  409. /**
  410. * get_futex_key() - Get parameters which are the keys for a futex
  411. * @uaddr: virtual address of the futex
  412. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  413. * @key: address where result is stored.
  414. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  415. * VERIFY_WRITE)
  416. *
  417. * Return: a negative error code or 0
  418. *
  419. * The key words are stored in *key on success.
  420. *
  421. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  422. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  423. * We can usually work out the index without swapping in the page.
  424. *
  425. * lock_page() might sleep, the caller should not hold a spinlock.
  426. */
  427. static int
  428. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  429. {
  430. unsigned long address = (unsigned long)uaddr;
  431. struct mm_struct *mm = current->mm;
  432. struct page *page;
  433. struct address_space *mapping;
  434. int err, ro = 0;
  435. /*
  436. * The futex address must be "naturally" aligned.
  437. */
  438. key->both.offset = address % PAGE_SIZE;
  439. if (unlikely((address % sizeof(u32)) != 0))
  440. return -EINVAL;
  441. address -= key->both.offset;
  442. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  443. return -EFAULT;
  444. if (unlikely(should_fail_futex(fshared)))
  445. return -EFAULT;
  446. /*
  447. * PROCESS_PRIVATE futexes are fast.
  448. * As the mm cannot disappear under us and the 'key' only needs
  449. * virtual address, we dont even have to find the underlying vma.
  450. * Note : We do have to check 'uaddr' is a valid user address,
  451. * but access_ok() should be faster than find_vma()
  452. */
  453. if (!fshared) {
  454. key->private.mm = mm;
  455. key->private.address = address;
  456. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  457. return 0;
  458. }
  459. again:
  460. /* Ignore any VERIFY_READ mapping (futex common case) */
  461. if (unlikely(should_fail_futex(fshared)))
  462. return -EFAULT;
  463. err = get_user_pages_fast(address, 1, 1, &page);
  464. /*
  465. * If write access is not required (eg. FUTEX_WAIT), try
  466. * and get read-only access.
  467. */
  468. if (err == -EFAULT && rw == VERIFY_READ) {
  469. err = get_user_pages_fast(address, 1, 0, &page);
  470. ro = 1;
  471. }
  472. if (err < 0)
  473. return err;
  474. else
  475. err = 0;
  476. /*
  477. * The treatment of mapping from this point on is critical. The page
  478. * lock protects many things but in this context the page lock
  479. * stabilizes mapping, prevents inode freeing in the shared
  480. * file-backed region case and guards against movement to swap cache.
  481. *
  482. * Strictly speaking the page lock is not needed in all cases being
  483. * considered here and page lock forces unnecessarily serialization
  484. * From this point on, mapping will be re-verified if necessary and
  485. * page lock will be acquired only if it is unavoidable
  486. */
  487. page = compound_head(page);
  488. mapping = READ_ONCE(page->mapping);
  489. /*
  490. * If page->mapping is NULL, then it cannot be a PageAnon
  491. * page; but it might be the ZERO_PAGE or in the gate area or
  492. * in a special mapping (all cases which we are happy to fail);
  493. * or it may have been a good file page when get_user_pages_fast
  494. * found it, but truncated or holepunched or subjected to
  495. * invalidate_complete_page2 before we got the page lock (also
  496. * cases which we are happy to fail). And we hold a reference,
  497. * so refcount care in invalidate_complete_page's remove_mapping
  498. * prevents drop_caches from setting mapping to NULL beneath us.
  499. *
  500. * The case we do have to guard against is when memory pressure made
  501. * shmem_writepage move it from filecache to swapcache beneath us:
  502. * an unlikely race, but we do need to retry for page->mapping.
  503. */
  504. if (unlikely(!mapping)) {
  505. int shmem_swizzled;
  506. /*
  507. * Page lock is required to identify which special case above
  508. * applies. If this is really a shmem page then the page lock
  509. * will prevent unexpected transitions.
  510. */
  511. lock_page(page);
  512. shmem_swizzled = PageSwapCache(page) || page->mapping;
  513. unlock_page(page);
  514. put_page(page);
  515. if (shmem_swizzled)
  516. goto again;
  517. return -EFAULT;
  518. }
  519. /*
  520. * Private mappings are handled in a simple way.
  521. *
  522. * If the futex key is stored on an anonymous page, then the associated
  523. * object is the mm which is implicitly pinned by the calling process.
  524. *
  525. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  526. * it's a read-only handle, it's expected that futexes attach to
  527. * the object not the particular process.
  528. */
  529. if (PageAnon(page)) {
  530. /*
  531. * A RO anonymous page will never change and thus doesn't make
  532. * sense for futex operations.
  533. */
  534. if (unlikely(should_fail_futex(fshared)) || ro) {
  535. err = -EFAULT;
  536. goto out;
  537. }
  538. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  539. key->private.mm = mm;
  540. key->private.address = address;
  541. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  542. } else {
  543. struct inode *inode;
  544. /*
  545. * The associated futex object in this case is the inode and
  546. * the page->mapping must be traversed. Ordinarily this should
  547. * be stabilised under page lock but it's not strictly
  548. * necessary in this case as we just want to pin the inode, not
  549. * update the radix tree or anything like that.
  550. *
  551. * The RCU read lock is taken as the inode is finally freed
  552. * under RCU. If the mapping still matches expectations then the
  553. * mapping->host can be safely accessed as being a valid inode.
  554. */
  555. rcu_read_lock();
  556. if (READ_ONCE(page->mapping) != mapping) {
  557. rcu_read_unlock();
  558. put_page(page);
  559. goto again;
  560. }
  561. inode = READ_ONCE(mapping->host);
  562. if (!inode) {
  563. rcu_read_unlock();
  564. put_page(page);
  565. goto again;
  566. }
  567. /*
  568. * Take a reference unless it is about to be freed. Previously
  569. * this reference was taken by ihold under the page lock
  570. * pinning the inode in place so i_lock was unnecessary. The
  571. * only way for this check to fail is if the inode was
  572. * truncated in parallel so warn for now if this happens.
  573. *
  574. * We are not calling into get_futex_key_refs() in file-backed
  575. * cases, therefore a successful atomic_inc return below will
  576. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  577. */
  578. if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
  579. rcu_read_unlock();
  580. put_page(page);
  581. goto again;
  582. }
  583. /* Should be impossible but lets be paranoid for now */
  584. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  585. err = -EFAULT;
  586. rcu_read_unlock();
  587. iput(inode);
  588. goto out;
  589. }
  590. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  591. key->shared.inode = inode;
  592. key->shared.pgoff = basepage_index(page);
  593. rcu_read_unlock();
  594. }
  595. out:
  596. put_page(page);
  597. return err;
  598. }
  599. static inline void put_futex_key(union futex_key *key)
  600. {
  601. drop_futex_key_refs(key);
  602. }
  603. /**
  604. * fault_in_user_writeable() - Fault in user address and verify RW access
  605. * @uaddr: pointer to faulting user space address
  606. *
  607. * Slow path to fixup the fault we just took in the atomic write
  608. * access to @uaddr.
  609. *
  610. * We have no generic implementation of a non-destructive write to the
  611. * user address. We know that we faulted in the atomic pagefault
  612. * disabled section so we can as well avoid the #PF overhead by
  613. * calling get_user_pages() right away.
  614. */
  615. static int fault_in_user_writeable(u32 __user *uaddr)
  616. {
  617. struct mm_struct *mm = current->mm;
  618. int ret;
  619. down_read(&mm->mmap_sem);
  620. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  621. FAULT_FLAG_WRITE, NULL);
  622. up_read(&mm->mmap_sem);
  623. return ret < 0 ? ret : 0;
  624. }
  625. /**
  626. * futex_top_waiter() - Return the highest priority waiter on a futex
  627. * @hb: the hash bucket the futex_q's reside in
  628. * @key: the futex key (to distinguish it from other futex futex_q's)
  629. *
  630. * Must be called with the hb lock held.
  631. */
  632. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  633. union futex_key *key)
  634. {
  635. struct futex_q *this;
  636. plist_for_each_entry(this, &hb->chain, list) {
  637. if (match_futex(&this->key, key))
  638. return this;
  639. }
  640. return NULL;
  641. }
  642. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  643. u32 uval, u32 newval)
  644. {
  645. int ret;
  646. pagefault_disable();
  647. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  648. pagefault_enable();
  649. return ret;
  650. }
  651. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  652. {
  653. int ret;
  654. pagefault_disable();
  655. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  656. pagefault_enable();
  657. return ret ? -EFAULT : 0;
  658. }
  659. /*
  660. * PI code:
  661. */
  662. static int refill_pi_state_cache(void)
  663. {
  664. struct futex_pi_state *pi_state;
  665. if (likely(current->pi_state_cache))
  666. return 0;
  667. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  668. if (!pi_state)
  669. return -ENOMEM;
  670. INIT_LIST_HEAD(&pi_state->list);
  671. /* pi_mutex gets initialized later */
  672. pi_state->owner = NULL;
  673. atomic_set(&pi_state->refcount, 1);
  674. pi_state->key = FUTEX_KEY_INIT;
  675. current->pi_state_cache = pi_state;
  676. return 0;
  677. }
  678. static struct futex_pi_state * alloc_pi_state(void)
  679. {
  680. struct futex_pi_state *pi_state = current->pi_state_cache;
  681. WARN_ON(!pi_state);
  682. current->pi_state_cache = NULL;
  683. return pi_state;
  684. }
  685. /*
  686. * Drops a reference to the pi_state object and frees or caches it
  687. * when the last reference is gone.
  688. *
  689. * Must be called with the hb lock held.
  690. */
  691. static void put_pi_state(struct futex_pi_state *pi_state)
  692. {
  693. if (!pi_state)
  694. return;
  695. if (!atomic_dec_and_test(&pi_state->refcount))
  696. return;
  697. /*
  698. * If pi_state->owner is NULL, the owner is most probably dying
  699. * and has cleaned up the pi_state already
  700. */
  701. if (pi_state->owner) {
  702. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  703. list_del_init(&pi_state->list);
  704. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  705. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  706. }
  707. if (current->pi_state_cache)
  708. kfree(pi_state);
  709. else {
  710. /*
  711. * pi_state->list is already empty.
  712. * clear pi_state->owner.
  713. * refcount is at 0 - put it back to 1.
  714. */
  715. pi_state->owner = NULL;
  716. atomic_set(&pi_state->refcount, 1);
  717. current->pi_state_cache = pi_state;
  718. }
  719. }
  720. /*
  721. * Look up the task based on what TID userspace gave us.
  722. * We dont trust it.
  723. */
  724. static struct task_struct * futex_find_get_task(pid_t pid)
  725. {
  726. struct task_struct *p;
  727. rcu_read_lock();
  728. p = find_task_by_vpid(pid);
  729. if (p)
  730. get_task_struct(p);
  731. rcu_read_unlock();
  732. return p;
  733. }
  734. /*
  735. * This task is holding PI mutexes at exit time => bad.
  736. * Kernel cleans up PI-state, but userspace is likely hosed.
  737. * (Robust-futex cleanup is separate and might save the day for userspace.)
  738. */
  739. void exit_pi_state_list(struct task_struct *curr)
  740. {
  741. struct list_head *next, *head = &curr->pi_state_list;
  742. struct futex_pi_state *pi_state;
  743. struct futex_hash_bucket *hb;
  744. union futex_key key = FUTEX_KEY_INIT;
  745. if (!futex_cmpxchg_enabled)
  746. return;
  747. /*
  748. * We are a ZOMBIE and nobody can enqueue itself on
  749. * pi_state_list anymore, but we have to be careful
  750. * versus waiters unqueueing themselves:
  751. */
  752. raw_spin_lock_irq(&curr->pi_lock);
  753. while (!list_empty(head)) {
  754. next = head->next;
  755. pi_state = list_entry(next, struct futex_pi_state, list);
  756. key = pi_state->key;
  757. hb = hash_futex(&key);
  758. raw_spin_unlock_irq(&curr->pi_lock);
  759. spin_lock(&hb->lock);
  760. raw_spin_lock_irq(&curr->pi_lock);
  761. /*
  762. * We dropped the pi-lock, so re-check whether this
  763. * task still owns the PI-state:
  764. */
  765. if (head->next != next) {
  766. spin_unlock(&hb->lock);
  767. continue;
  768. }
  769. WARN_ON(pi_state->owner != curr);
  770. WARN_ON(list_empty(&pi_state->list));
  771. list_del_init(&pi_state->list);
  772. pi_state->owner = NULL;
  773. raw_spin_unlock_irq(&curr->pi_lock);
  774. rt_mutex_unlock(&pi_state->pi_mutex);
  775. spin_unlock(&hb->lock);
  776. raw_spin_lock_irq(&curr->pi_lock);
  777. }
  778. raw_spin_unlock_irq(&curr->pi_lock);
  779. }
  780. /*
  781. * We need to check the following states:
  782. *
  783. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  784. *
  785. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  786. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  787. *
  788. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  789. *
  790. * [4] Found | Found | NULL | 0 | 1 | Valid
  791. * [5] Found | Found | NULL | >0 | 1 | Invalid
  792. *
  793. * [6] Found | Found | task | 0 | 1 | Valid
  794. *
  795. * [7] Found | Found | NULL | Any | 0 | Invalid
  796. *
  797. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  798. * [9] Found | Found | task | 0 | 0 | Invalid
  799. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  800. *
  801. * [1] Indicates that the kernel can acquire the futex atomically. We
  802. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  803. *
  804. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  805. * thread is found then it indicates that the owner TID has died.
  806. *
  807. * [3] Invalid. The waiter is queued on a non PI futex
  808. *
  809. * [4] Valid state after exit_robust_list(), which sets the user space
  810. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  811. *
  812. * [5] The user space value got manipulated between exit_robust_list()
  813. * and exit_pi_state_list()
  814. *
  815. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  816. * the pi_state but cannot access the user space value.
  817. *
  818. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  819. *
  820. * [8] Owner and user space value match
  821. *
  822. * [9] There is no transient state which sets the user space TID to 0
  823. * except exit_robust_list(), but this is indicated by the
  824. * FUTEX_OWNER_DIED bit. See [4]
  825. *
  826. * [10] There is no transient state which leaves owner and user space
  827. * TID out of sync.
  828. */
  829. /*
  830. * Validate that the existing waiter has a pi_state and sanity check
  831. * the pi_state against the user space value. If correct, attach to
  832. * it.
  833. */
  834. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  835. struct futex_pi_state **ps)
  836. {
  837. pid_t pid = uval & FUTEX_TID_MASK;
  838. /*
  839. * Userspace might have messed up non-PI and PI futexes [3]
  840. */
  841. if (unlikely(!pi_state))
  842. return -EINVAL;
  843. WARN_ON(!atomic_read(&pi_state->refcount));
  844. /*
  845. * Handle the owner died case:
  846. */
  847. if (uval & FUTEX_OWNER_DIED) {
  848. /*
  849. * exit_pi_state_list sets owner to NULL and wakes the
  850. * topmost waiter. The task which acquires the
  851. * pi_state->rt_mutex will fixup owner.
  852. */
  853. if (!pi_state->owner) {
  854. /*
  855. * No pi state owner, but the user space TID
  856. * is not 0. Inconsistent state. [5]
  857. */
  858. if (pid)
  859. return -EINVAL;
  860. /*
  861. * Take a ref on the state and return success. [4]
  862. */
  863. goto out_state;
  864. }
  865. /*
  866. * If TID is 0, then either the dying owner has not
  867. * yet executed exit_pi_state_list() or some waiter
  868. * acquired the rtmutex in the pi state, but did not
  869. * yet fixup the TID in user space.
  870. *
  871. * Take a ref on the state and return success. [6]
  872. */
  873. if (!pid)
  874. goto out_state;
  875. } else {
  876. /*
  877. * If the owner died bit is not set, then the pi_state
  878. * must have an owner. [7]
  879. */
  880. if (!pi_state->owner)
  881. return -EINVAL;
  882. }
  883. /*
  884. * Bail out if user space manipulated the futex value. If pi
  885. * state exists then the owner TID must be the same as the
  886. * user space TID. [9/10]
  887. */
  888. if (pid != task_pid_vnr(pi_state->owner))
  889. return -EINVAL;
  890. out_state:
  891. atomic_inc(&pi_state->refcount);
  892. *ps = pi_state;
  893. return 0;
  894. }
  895. /*
  896. * Lookup the task for the TID provided from user space and attach to
  897. * it after doing proper sanity checks.
  898. */
  899. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  900. struct futex_pi_state **ps)
  901. {
  902. pid_t pid = uval & FUTEX_TID_MASK;
  903. struct futex_pi_state *pi_state;
  904. struct task_struct *p;
  905. /*
  906. * We are the first waiter - try to look up the real owner and attach
  907. * the new pi_state to it, but bail out when TID = 0 [1]
  908. */
  909. if (!pid)
  910. return -ESRCH;
  911. p = futex_find_get_task(pid);
  912. if (!p)
  913. return -ESRCH;
  914. if (unlikely(p->flags & PF_KTHREAD)) {
  915. put_task_struct(p);
  916. return -EPERM;
  917. }
  918. /*
  919. * We need to look at the task state flags to figure out,
  920. * whether the task is exiting. To protect against the do_exit
  921. * change of the task flags, we do this protected by
  922. * p->pi_lock:
  923. */
  924. raw_spin_lock_irq(&p->pi_lock);
  925. if (unlikely(p->flags & PF_EXITING)) {
  926. /*
  927. * The task is on the way out. When PF_EXITPIDONE is
  928. * set, we know that the task has finished the
  929. * cleanup:
  930. */
  931. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  932. raw_spin_unlock_irq(&p->pi_lock);
  933. put_task_struct(p);
  934. return ret;
  935. }
  936. /*
  937. * No existing pi state. First waiter. [2]
  938. */
  939. pi_state = alloc_pi_state();
  940. /*
  941. * Initialize the pi_mutex in locked state and make @p
  942. * the owner of it:
  943. */
  944. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  945. /* Store the key for possible exit cleanups: */
  946. pi_state->key = *key;
  947. WARN_ON(!list_empty(&pi_state->list));
  948. list_add(&pi_state->list, &p->pi_state_list);
  949. pi_state->owner = p;
  950. raw_spin_unlock_irq(&p->pi_lock);
  951. put_task_struct(p);
  952. *ps = pi_state;
  953. return 0;
  954. }
  955. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  956. union futex_key *key, struct futex_pi_state **ps)
  957. {
  958. struct futex_q *match = futex_top_waiter(hb, key);
  959. /*
  960. * If there is a waiter on that futex, validate it and
  961. * attach to the pi_state when the validation succeeds.
  962. */
  963. if (match)
  964. return attach_to_pi_state(uval, match->pi_state, ps);
  965. /*
  966. * We are the first waiter - try to look up the owner based on
  967. * @uval and attach to it.
  968. */
  969. return attach_to_pi_owner(uval, key, ps);
  970. }
  971. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  972. {
  973. u32 uninitialized_var(curval);
  974. if (unlikely(should_fail_futex(true)))
  975. return -EFAULT;
  976. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  977. return -EFAULT;
  978. /*If user space value changed, let the caller retry */
  979. return curval != uval ? -EAGAIN : 0;
  980. }
  981. /**
  982. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  983. * @uaddr: the pi futex user address
  984. * @hb: the pi futex hash bucket
  985. * @key: the futex key associated with uaddr and hb
  986. * @ps: the pi_state pointer where we store the result of the
  987. * lookup
  988. * @task: the task to perform the atomic lock work for. This will
  989. * be "current" except in the case of requeue pi.
  990. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  991. *
  992. * Return:
  993. * 0 - ready to wait;
  994. * 1 - acquired the lock;
  995. * <0 - error
  996. *
  997. * The hb->lock and futex_key refs shall be held by the caller.
  998. */
  999. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1000. union futex_key *key,
  1001. struct futex_pi_state **ps,
  1002. struct task_struct *task, int set_waiters)
  1003. {
  1004. u32 uval, newval, vpid = task_pid_vnr(task);
  1005. struct futex_q *match;
  1006. int ret;
  1007. /*
  1008. * Read the user space value first so we can validate a few
  1009. * things before proceeding further.
  1010. */
  1011. if (get_futex_value_locked(&uval, uaddr))
  1012. return -EFAULT;
  1013. if (unlikely(should_fail_futex(true)))
  1014. return -EFAULT;
  1015. /*
  1016. * Detect deadlocks.
  1017. */
  1018. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1019. return -EDEADLK;
  1020. if ((unlikely(should_fail_futex(true))))
  1021. return -EDEADLK;
  1022. /*
  1023. * Lookup existing state first. If it exists, try to attach to
  1024. * its pi_state.
  1025. */
  1026. match = futex_top_waiter(hb, key);
  1027. if (match)
  1028. return attach_to_pi_state(uval, match->pi_state, ps);
  1029. /*
  1030. * No waiter and user TID is 0. We are here because the
  1031. * waiters or the owner died bit is set or called from
  1032. * requeue_cmp_pi or for whatever reason something took the
  1033. * syscall.
  1034. */
  1035. if (!(uval & FUTEX_TID_MASK)) {
  1036. /*
  1037. * We take over the futex. No other waiters and the user space
  1038. * TID is 0. We preserve the owner died bit.
  1039. */
  1040. newval = uval & FUTEX_OWNER_DIED;
  1041. newval |= vpid;
  1042. /* The futex requeue_pi code can enforce the waiters bit */
  1043. if (set_waiters)
  1044. newval |= FUTEX_WAITERS;
  1045. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1046. /* If the take over worked, return 1 */
  1047. return ret < 0 ? ret : 1;
  1048. }
  1049. /*
  1050. * First waiter. Set the waiters bit before attaching ourself to
  1051. * the owner. If owner tries to unlock, it will be forced into
  1052. * the kernel and blocked on hb->lock.
  1053. */
  1054. newval = uval | FUTEX_WAITERS;
  1055. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1056. if (ret)
  1057. return ret;
  1058. /*
  1059. * If the update of the user space value succeeded, we try to
  1060. * attach to the owner. If that fails, no harm done, we only
  1061. * set the FUTEX_WAITERS bit in the user space variable.
  1062. */
  1063. return attach_to_pi_owner(uval, key, ps);
  1064. }
  1065. /**
  1066. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1067. * @q: The futex_q to unqueue
  1068. *
  1069. * The q->lock_ptr must not be NULL and must be held by the caller.
  1070. */
  1071. static void __unqueue_futex(struct futex_q *q)
  1072. {
  1073. struct futex_hash_bucket *hb;
  1074. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1075. || WARN_ON(plist_node_empty(&q->list)))
  1076. return;
  1077. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1078. plist_del(&q->list, &hb->chain);
  1079. hb_waiters_dec(hb);
  1080. }
  1081. /*
  1082. * The hash bucket lock must be held when this is called.
  1083. * Afterwards, the futex_q must not be accessed. Callers
  1084. * must ensure to later call wake_up_q() for the actual
  1085. * wakeups to occur.
  1086. */
  1087. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1088. {
  1089. struct task_struct *p = q->task;
  1090. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1091. return;
  1092. /*
  1093. * Queue the task for later wakeup for after we've released
  1094. * the hb->lock. wake_q_add() grabs reference to p.
  1095. */
  1096. wake_q_add(wake_q, p);
  1097. __unqueue_futex(q);
  1098. /*
  1099. * The waiting task can free the futex_q as soon as
  1100. * q->lock_ptr = NULL is written, without taking any locks. A
  1101. * memory barrier is required here to prevent the following
  1102. * store to lock_ptr from getting ahead of the plist_del.
  1103. */
  1104. smp_wmb();
  1105. q->lock_ptr = NULL;
  1106. }
  1107. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
  1108. struct futex_hash_bucket *hb)
  1109. {
  1110. struct task_struct *new_owner;
  1111. struct futex_pi_state *pi_state = this->pi_state;
  1112. u32 uninitialized_var(curval), newval;
  1113. WAKE_Q(wake_q);
  1114. bool deboost;
  1115. int ret = 0;
  1116. if (!pi_state)
  1117. return -EINVAL;
  1118. /*
  1119. * If current does not own the pi_state then the futex is
  1120. * inconsistent and user space fiddled with the futex value.
  1121. */
  1122. if (pi_state->owner != current)
  1123. return -EINVAL;
  1124. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  1125. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1126. /*
  1127. * It is possible that the next waiter (the one that brought
  1128. * this owner to the kernel) timed out and is no longer
  1129. * waiting on the lock.
  1130. */
  1131. if (!new_owner)
  1132. new_owner = this->task;
  1133. /*
  1134. * We pass it to the next owner. The WAITERS bit is always
  1135. * kept enabled while there is PI state around. We cleanup the
  1136. * owner died bit, because we are the owner.
  1137. */
  1138. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1139. if (unlikely(should_fail_futex(true)))
  1140. ret = -EFAULT;
  1141. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1142. ret = -EFAULT;
  1143. else if (curval != uval)
  1144. ret = -EINVAL;
  1145. if (ret) {
  1146. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1147. return ret;
  1148. }
  1149. raw_spin_lock(&pi_state->owner->pi_lock);
  1150. WARN_ON(list_empty(&pi_state->list));
  1151. list_del_init(&pi_state->list);
  1152. raw_spin_unlock(&pi_state->owner->pi_lock);
  1153. raw_spin_lock(&new_owner->pi_lock);
  1154. WARN_ON(!list_empty(&pi_state->list));
  1155. list_add(&pi_state->list, &new_owner->pi_state_list);
  1156. pi_state->owner = new_owner;
  1157. raw_spin_unlock(&new_owner->pi_lock);
  1158. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1159. deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1160. /*
  1161. * First unlock HB so the waiter does not spin on it once he got woken
  1162. * up. Second wake up the waiter before the priority is adjusted. If we
  1163. * deboost first (and lose our higher priority), then the task might get
  1164. * scheduled away before the wake up can take place.
  1165. */
  1166. spin_unlock(&hb->lock);
  1167. wake_up_q(&wake_q);
  1168. if (deboost)
  1169. rt_mutex_adjust_prio(current);
  1170. return 0;
  1171. }
  1172. /*
  1173. * Express the locking dependencies for lockdep:
  1174. */
  1175. static inline void
  1176. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1177. {
  1178. if (hb1 <= hb2) {
  1179. spin_lock(&hb1->lock);
  1180. if (hb1 < hb2)
  1181. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1182. } else { /* hb1 > hb2 */
  1183. spin_lock(&hb2->lock);
  1184. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1185. }
  1186. }
  1187. static inline void
  1188. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1189. {
  1190. spin_unlock(&hb1->lock);
  1191. if (hb1 != hb2)
  1192. spin_unlock(&hb2->lock);
  1193. }
  1194. /*
  1195. * Wake up waiters matching bitset queued on this futex (uaddr).
  1196. */
  1197. static int
  1198. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1199. {
  1200. struct futex_hash_bucket *hb;
  1201. struct futex_q *this, *next;
  1202. union futex_key key = FUTEX_KEY_INIT;
  1203. int ret;
  1204. WAKE_Q(wake_q);
  1205. if (!bitset)
  1206. return -EINVAL;
  1207. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1208. if (unlikely(ret != 0))
  1209. goto out;
  1210. hb = hash_futex(&key);
  1211. /* Make sure we really have tasks to wakeup */
  1212. if (!hb_waiters_pending(hb))
  1213. goto out_put_key;
  1214. spin_lock(&hb->lock);
  1215. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1216. if (match_futex (&this->key, &key)) {
  1217. if (this->pi_state || this->rt_waiter) {
  1218. ret = -EINVAL;
  1219. break;
  1220. }
  1221. /* Check if one of the bits is set in both bitsets */
  1222. if (!(this->bitset & bitset))
  1223. continue;
  1224. mark_wake_futex(&wake_q, this);
  1225. if (++ret >= nr_wake)
  1226. break;
  1227. }
  1228. }
  1229. spin_unlock(&hb->lock);
  1230. wake_up_q(&wake_q);
  1231. out_put_key:
  1232. put_futex_key(&key);
  1233. out:
  1234. return ret;
  1235. }
  1236. /*
  1237. * Wake up all waiters hashed on the physical page that is mapped
  1238. * to this virtual address:
  1239. */
  1240. static int
  1241. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1242. int nr_wake, int nr_wake2, int op)
  1243. {
  1244. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1245. struct futex_hash_bucket *hb1, *hb2;
  1246. struct futex_q *this, *next;
  1247. int ret, op_ret;
  1248. WAKE_Q(wake_q);
  1249. retry:
  1250. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1251. if (unlikely(ret != 0))
  1252. goto out;
  1253. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1254. if (unlikely(ret != 0))
  1255. goto out_put_key1;
  1256. hb1 = hash_futex(&key1);
  1257. hb2 = hash_futex(&key2);
  1258. retry_private:
  1259. double_lock_hb(hb1, hb2);
  1260. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1261. if (unlikely(op_ret < 0)) {
  1262. double_unlock_hb(hb1, hb2);
  1263. #ifndef CONFIG_MMU
  1264. /*
  1265. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1266. * but we might get them from range checking
  1267. */
  1268. ret = op_ret;
  1269. goto out_put_keys;
  1270. #endif
  1271. if (unlikely(op_ret != -EFAULT)) {
  1272. ret = op_ret;
  1273. goto out_put_keys;
  1274. }
  1275. ret = fault_in_user_writeable(uaddr2);
  1276. if (ret)
  1277. goto out_put_keys;
  1278. if (!(flags & FLAGS_SHARED))
  1279. goto retry_private;
  1280. put_futex_key(&key2);
  1281. put_futex_key(&key1);
  1282. goto retry;
  1283. }
  1284. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1285. if (match_futex (&this->key, &key1)) {
  1286. if (this->pi_state || this->rt_waiter) {
  1287. ret = -EINVAL;
  1288. goto out_unlock;
  1289. }
  1290. mark_wake_futex(&wake_q, this);
  1291. if (++ret >= nr_wake)
  1292. break;
  1293. }
  1294. }
  1295. if (op_ret > 0) {
  1296. op_ret = 0;
  1297. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1298. if (match_futex (&this->key, &key2)) {
  1299. if (this->pi_state || this->rt_waiter) {
  1300. ret = -EINVAL;
  1301. goto out_unlock;
  1302. }
  1303. mark_wake_futex(&wake_q, this);
  1304. if (++op_ret >= nr_wake2)
  1305. break;
  1306. }
  1307. }
  1308. ret += op_ret;
  1309. }
  1310. out_unlock:
  1311. double_unlock_hb(hb1, hb2);
  1312. wake_up_q(&wake_q);
  1313. out_put_keys:
  1314. put_futex_key(&key2);
  1315. out_put_key1:
  1316. put_futex_key(&key1);
  1317. out:
  1318. return ret;
  1319. }
  1320. /**
  1321. * requeue_futex() - Requeue a futex_q from one hb to another
  1322. * @q: the futex_q to requeue
  1323. * @hb1: the source hash_bucket
  1324. * @hb2: the target hash_bucket
  1325. * @key2: the new key for the requeued futex_q
  1326. */
  1327. static inline
  1328. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1329. struct futex_hash_bucket *hb2, union futex_key *key2)
  1330. {
  1331. /*
  1332. * If key1 and key2 hash to the same bucket, no need to
  1333. * requeue.
  1334. */
  1335. if (likely(&hb1->chain != &hb2->chain)) {
  1336. plist_del(&q->list, &hb1->chain);
  1337. hb_waiters_dec(hb1);
  1338. plist_add(&q->list, &hb2->chain);
  1339. hb_waiters_inc(hb2);
  1340. q->lock_ptr = &hb2->lock;
  1341. }
  1342. get_futex_key_refs(key2);
  1343. q->key = *key2;
  1344. }
  1345. /**
  1346. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1347. * @q: the futex_q
  1348. * @key: the key of the requeue target futex
  1349. * @hb: the hash_bucket of the requeue target futex
  1350. *
  1351. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1352. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1353. * to the requeue target futex so the waiter can detect the wakeup on the right
  1354. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1355. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1356. * to protect access to the pi_state to fixup the owner later. Must be called
  1357. * with both q->lock_ptr and hb->lock held.
  1358. */
  1359. static inline
  1360. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1361. struct futex_hash_bucket *hb)
  1362. {
  1363. get_futex_key_refs(key);
  1364. q->key = *key;
  1365. __unqueue_futex(q);
  1366. WARN_ON(!q->rt_waiter);
  1367. q->rt_waiter = NULL;
  1368. q->lock_ptr = &hb->lock;
  1369. wake_up_state(q->task, TASK_NORMAL);
  1370. }
  1371. /**
  1372. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1373. * @pifutex: the user address of the to futex
  1374. * @hb1: the from futex hash bucket, must be locked by the caller
  1375. * @hb2: the to futex hash bucket, must be locked by the caller
  1376. * @key1: the from futex key
  1377. * @key2: the to futex key
  1378. * @ps: address to store the pi_state pointer
  1379. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1380. *
  1381. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1382. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1383. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1384. * hb1 and hb2 must be held by the caller.
  1385. *
  1386. * Return:
  1387. * 0 - failed to acquire the lock atomically;
  1388. * >0 - acquired the lock, return value is vpid of the top_waiter
  1389. * <0 - error
  1390. */
  1391. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1392. struct futex_hash_bucket *hb1,
  1393. struct futex_hash_bucket *hb2,
  1394. union futex_key *key1, union futex_key *key2,
  1395. struct futex_pi_state **ps, int set_waiters)
  1396. {
  1397. struct futex_q *top_waiter = NULL;
  1398. u32 curval;
  1399. int ret, vpid;
  1400. if (get_futex_value_locked(&curval, pifutex))
  1401. return -EFAULT;
  1402. if (unlikely(should_fail_futex(true)))
  1403. return -EFAULT;
  1404. /*
  1405. * Find the top_waiter and determine if there are additional waiters.
  1406. * If the caller intends to requeue more than 1 waiter to pifutex,
  1407. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1408. * as we have means to handle the possible fault. If not, don't set
  1409. * the bit unecessarily as it will force the subsequent unlock to enter
  1410. * the kernel.
  1411. */
  1412. top_waiter = futex_top_waiter(hb1, key1);
  1413. /* There are no waiters, nothing for us to do. */
  1414. if (!top_waiter)
  1415. return 0;
  1416. /* Ensure we requeue to the expected futex. */
  1417. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1418. return -EINVAL;
  1419. /*
  1420. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1421. * the contended case or if set_waiters is 1. The pi_state is returned
  1422. * in ps in contended cases.
  1423. */
  1424. vpid = task_pid_vnr(top_waiter->task);
  1425. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1426. set_waiters);
  1427. if (ret == 1) {
  1428. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1429. return vpid;
  1430. }
  1431. return ret;
  1432. }
  1433. /**
  1434. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1435. * @uaddr1: source futex user address
  1436. * @flags: futex flags (FLAGS_SHARED, etc.)
  1437. * @uaddr2: target futex user address
  1438. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1439. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1440. * @cmpval: @uaddr1 expected value (or %NULL)
  1441. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1442. * pi futex (pi to pi requeue is not supported)
  1443. *
  1444. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1445. * uaddr2 atomically on behalf of the top waiter.
  1446. *
  1447. * Return:
  1448. * >=0 - on success, the number of tasks requeued or woken;
  1449. * <0 - on error
  1450. */
  1451. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1452. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1453. u32 *cmpval, int requeue_pi)
  1454. {
  1455. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1456. int drop_count = 0, task_count = 0, ret;
  1457. struct futex_pi_state *pi_state = NULL;
  1458. struct futex_hash_bucket *hb1, *hb2;
  1459. struct futex_q *this, *next;
  1460. WAKE_Q(wake_q);
  1461. if (requeue_pi) {
  1462. /*
  1463. * Requeue PI only works on two distinct uaddrs. This
  1464. * check is only valid for private futexes. See below.
  1465. */
  1466. if (uaddr1 == uaddr2)
  1467. return -EINVAL;
  1468. /*
  1469. * requeue_pi requires a pi_state, try to allocate it now
  1470. * without any locks in case it fails.
  1471. */
  1472. if (refill_pi_state_cache())
  1473. return -ENOMEM;
  1474. /*
  1475. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1476. * + nr_requeue, since it acquires the rt_mutex prior to
  1477. * returning to userspace, so as to not leave the rt_mutex with
  1478. * waiters and no owner. However, second and third wake-ups
  1479. * cannot be predicted as they involve race conditions with the
  1480. * first wake and a fault while looking up the pi_state. Both
  1481. * pthread_cond_signal() and pthread_cond_broadcast() should
  1482. * use nr_wake=1.
  1483. */
  1484. if (nr_wake != 1)
  1485. return -EINVAL;
  1486. }
  1487. retry:
  1488. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1489. if (unlikely(ret != 0))
  1490. goto out;
  1491. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1492. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1493. if (unlikely(ret != 0))
  1494. goto out_put_key1;
  1495. /*
  1496. * The check above which compares uaddrs is not sufficient for
  1497. * shared futexes. We need to compare the keys:
  1498. */
  1499. if (requeue_pi && match_futex(&key1, &key2)) {
  1500. ret = -EINVAL;
  1501. goto out_put_keys;
  1502. }
  1503. hb1 = hash_futex(&key1);
  1504. hb2 = hash_futex(&key2);
  1505. retry_private:
  1506. hb_waiters_inc(hb2);
  1507. double_lock_hb(hb1, hb2);
  1508. if (likely(cmpval != NULL)) {
  1509. u32 curval;
  1510. ret = get_futex_value_locked(&curval, uaddr1);
  1511. if (unlikely(ret)) {
  1512. double_unlock_hb(hb1, hb2);
  1513. hb_waiters_dec(hb2);
  1514. ret = get_user(curval, uaddr1);
  1515. if (ret)
  1516. goto out_put_keys;
  1517. if (!(flags & FLAGS_SHARED))
  1518. goto retry_private;
  1519. put_futex_key(&key2);
  1520. put_futex_key(&key1);
  1521. goto retry;
  1522. }
  1523. if (curval != *cmpval) {
  1524. ret = -EAGAIN;
  1525. goto out_unlock;
  1526. }
  1527. }
  1528. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1529. /*
  1530. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1531. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1532. * bit. We force this here where we are able to easily handle
  1533. * faults rather in the requeue loop below.
  1534. */
  1535. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1536. &key2, &pi_state, nr_requeue);
  1537. /*
  1538. * At this point the top_waiter has either taken uaddr2 or is
  1539. * waiting on it. If the former, then the pi_state will not
  1540. * exist yet, look it up one more time to ensure we have a
  1541. * reference to it. If the lock was taken, ret contains the
  1542. * vpid of the top waiter task.
  1543. * If the lock was not taken, we have pi_state and an initial
  1544. * refcount on it. In case of an error we have nothing.
  1545. */
  1546. if (ret > 0) {
  1547. WARN_ON(pi_state);
  1548. drop_count++;
  1549. task_count++;
  1550. /*
  1551. * If we acquired the lock, then the user space value
  1552. * of uaddr2 should be vpid. It cannot be changed by
  1553. * the top waiter as it is blocked on hb2 lock if it
  1554. * tries to do so. If something fiddled with it behind
  1555. * our back the pi state lookup might unearth it. So
  1556. * we rather use the known value than rereading and
  1557. * handing potential crap to lookup_pi_state.
  1558. *
  1559. * If that call succeeds then we have pi_state and an
  1560. * initial refcount on it.
  1561. */
  1562. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1563. }
  1564. switch (ret) {
  1565. case 0:
  1566. /* We hold a reference on the pi state. */
  1567. break;
  1568. /* If the above failed, then pi_state is NULL */
  1569. case -EFAULT:
  1570. double_unlock_hb(hb1, hb2);
  1571. hb_waiters_dec(hb2);
  1572. put_futex_key(&key2);
  1573. put_futex_key(&key1);
  1574. ret = fault_in_user_writeable(uaddr2);
  1575. if (!ret)
  1576. goto retry;
  1577. goto out;
  1578. case -EAGAIN:
  1579. /*
  1580. * Two reasons for this:
  1581. * - Owner is exiting and we just wait for the
  1582. * exit to complete.
  1583. * - The user space value changed.
  1584. */
  1585. double_unlock_hb(hb1, hb2);
  1586. hb_waiters_dec(hb2);
  1587. put_futex_key(&key2);
  1588. put_futex_key(&key1);
  1589. cond_resched();
  1590. goto retry;
  1591. default:
  1592. goto out_unlock;
  1593. }
  1594. }
  1595. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1596. if (task_count - nr_wake >= nr_requeue)
  1597. break;
  1598. if (!match_futex(&this->key, &key1))
  1599. continue;
  1600. /*
  1601. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1602. * be paired with each other and no other futex ops.
  1603. *
  1604. * We should never be requeueing a futex_q with a pi_state,
  1605. * which is awaiting a futex_unlock_pi().
  1606. */
  1607. if ((requeue_pi && !this->rt_waiter) ||
  1608. (!requeue_pi && this->rt_waiter) ||
  1609. this->pi_state) {
  1610. ret = -EINVAL;
  1611. break;
  1612. }
  1613. /*
  1614. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1615. * lock, we already woke the top_waiter. If not, it will be
  1616. * woken by futex_unlock_pi().
  1617. */
  1618. if (++task_count <= nr_wake && !requeue_pi) {
  1619. mark_wake_futex(&wake_q, this);
  1620. continue;
  1621. }
  1622. /* Ensure we requeue to the expected futex for requeue_pi. */
  1623. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1624. ret = -EINVAL;
  1625. break;
  1626. }
  1627. /*
  1628. * Requeue nr_requeue waiters and possibly one more in the case
  1629. * of requeue_pi if we couldn't acquire the lock atomically.
  1630. */
  1631. if (requeue_pi) {
  1632. /*
  1633. * Prepare the waiter to take the rt_mutex. Take a
  1634. * refcount on the pi_state and store the pointer in
  1635. * the futex_q object of the waiter.
  1636. */
  1637. atomic_inc(&pi_state->refcount);
  1638. this->pi_state = pi_state;
  1639. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1640. this->rt_waiter,
  1641. this->task);
  1642. if (ret == 1) {
  1643. /*
  1644. * We got the lock. We do neither drop the
  1645. * refcount on pi_state nor clear
  1646. * this->pi_state because the waiter needs the
  1647. * pi_state for cleaning up the user space
  1648. * value. It will drop the refcount after
  1649. * doing so.
  1650. */
  1651. requeue_pi_wake_futex(this, &key2, hb2);
  1652. drop_count++;
  1653. continue;
  1654. } else if (ret) {
  1655. /*
  1656. * rt_mutex_start_proxy_lock() detected a
  1657. * potential deadlock when we tried to queue
  1658. * that waiter. Drop the pi_state reference
  1659. * which we took above and remove the pointer
  1660. * to the state from the waiters futex_q
  1661. * object.
  1662. */
  1663. this->pi_state = NULL;
  1664. put_pi_state(pi_state);
  1665. /*
  1666. * We stop queueing more waiters and let user
  1667. * space deal with the mess.
  1668. */
  1669. break;
  1670. }
  1671. }
  1672. requeue_futex(this, hb1, hb2, &key2);
  1673. drop_count++;
  1674. }
  1675. /*
  1676. * We took an extra initial reference to the pi_state either
  1677. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1678. * need to drop it here again.
  1679. */
  1680. put_pi_state(pi_state);
  1681. out_unlock:
  1682. double_unlock_hb(hb1, hb2);
  1683. wake_up_q(&wake_q);
  1684. hb_waiters_dec(hb2);
  1685. /*
  1686. * drop_futex_key_refs() must be called outside the spinlocks. During
  1687. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1688. * one at key2 and updated their key pointer. We no longer need to
  1689. * hold the references to key1.
  1690. */
  1691. while (--drop_count >= 0)
  1692. drop_futex_key_refs(&key1);
  1693. out_put_keys:
  1694. put_futex_key(&key2);
  1695. out_put_key1:
  1696. put_futex_key(&key1);
  1697. out:
  1698. return ret ? ret : task_count;
  1699. }
  1700. /* The key must be already stored in q->key. */
  1701. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1702. __acquires(&hb->lock)
  1703. {
  1704. struct futex_hash_bucket *hb;
  1705. hb = hash_futex(&q->key);
  1706. /*
  1707. * Increment the counter before taking the lock so that
  1708. * a potential waker won't miss a to-be-slept task that is
  1709. * waiting for the spinlock. This is safe as all queue_lock()
  1710. * users end up calling queue_me(). Similarly, for housekeeping,
  1711. * decrement the counter at queue_unlock() when some error has
  1712. * occurred and we don't end up adding the task to the list.
  1713. */
  1714. hb_waiters_inc(hb);
  1715. q->lock_ptr = &hb->lock;
  1716. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1717. return hb;
  1718. }
  1719. static inline void
  1720. queue_unlock(struct futex_hash_bucket *hb)
  1721. __releases(&hb->lock)
  1722. {
  1723. spin_unlock(&hb->lock);
  1724. hb_waiters_dec(hb);
  1725. }
  1726. /**
  1727. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1728. * @q: The futex_q to enqueue
  1729. * @hb: The destination hash bucket
  1730. *
  1731. * The hb->lock must be held by the caller, and is released here. A call to
  1732. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1733. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1734. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1735. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1736. * an example).
  1737. */
  1738. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1739. __releases(&hb->lock)
  1740. {
  1741. int prio;
  1742. /*
  1743. * The priority used to register this element is
  1744. * - either the real thread-priority for the real-time threads
  1745. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1746. * - or MAX_RT_PRIO for non-RT threads.
  1747. * Thus, all RT-threads are woken first in priority order, and
  1748. * the others are woken last, in FIFO order.
  1749. */
  1750. prio = min(current->normal_prio, MAX_RT_PRIO);
  1751. plist_node_init(&q->list, prio);
  1752. plist_add(&q->list, &hb->chain);
  1753. q->task = current;
  1754. spin_unlock(&hb->lock);
  1755. }
  1756. /**
  1757. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1758. * @q: The futex_q to unqueue
  1759. *
  1760. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1761. * be paired with exactly one earlier call to queue_me().
  1762. *
  1763. * Return:
  1764. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1765. * 0 - if the futex_q was already removed by the waking thread
  1766. */
  1767. static int unqueue_me(struct futex_q *q)
  1768. {
  1769. spinlock_t *lock_ptr;
  1770. int ret = 0;
  1771. /* In the common case we don't take the spinlock, which is nice. */
  1772. retry:
  1773. /*
  1774. * q->lock_ptr can change between this read and the following spin_lock.
  1775. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1776. * optimizing lock_ptr out of the logic below.
  1777. */
  1778. lock_ptr = READ_ONCE(q->lock_ptr);
  1779. if (lock_ptr != NULL) {
  1780. spin_lock(lock_ptr);
  1781. /*
  1782. * q->lock_ptr can change between reading it and
  1783. * spin_lock(), causing us to take the wrong lock. This
  1784. * corrects the race condition.
  1785. *
  1786. * Reasoning goes like this: if we have the wrong lock,
  1787. * q->lock_ptr must have changed (maybe several times)
  1788. * between reading it and the spin_lock(). It can
  1789. * change again after the spin_lock() but only if it was
  1790. * already changed before the spin_lock(). It cannot,
  1791. * however, change back to the original value. Therefore
  1792. * we can detect whether we acquired the correct lock.
  1793. */
  1794. if (unlikely(lock_ptr != q->lock_ptr)) {
  1795. spin_unlock(lock_ptr);
  1796. goto retry;
  1797. }
  1798. __unqueue_futex(q);
  1799. BUG_ON(q->pi_state);
  1800. spin_unlock(lock_ptr);
  1801. ret = 1;
  1802. }
  1803. drop_futex_key_refs(&q->key);
  1804. return ret;
  1805. }
  1806. /*
  1807. * PI futexes can not be requeued and must remove themself from the
  1808. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1809. * and dropped here.
  1810. */
  1811. static void unqueue_me_pi(struct futex_q *q)
  1812. __releases(q->lock_ptr)
  1813. {
  1814. __unqueue_futex(q);
  1815. BUG_ON(!q->pi_state);
  1816. put_pi_state(q->pi_state);
  1817. q->pi_state = NULL;
  1818. spin_unlock(q->lock_ptr);
  1819. }
  1820. /*
  1821. * Fixup the pi_state owner with the new owner.
  1822. *
  1823. * Must be called with hash bucket lock held and mm->sem held for non
  1824. * private futexes.
  1825. */
  1826. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1827. struct task_struct *newowner)
  1828. {
  1829. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1830. struct futex_pi_state *pi_state = q->pi_state;
  1831. struct task_struct *oldowner = pi_state->owner;
  1832. u32 uval, uninitialized_var(curval), newval;
  1833. int ret;
  1834. /* Owner died? */
  1835. if (!pi_state->owner)
  1836. newtid |= FUTEX_OWNER_DIED;
  1837. /*
  1838. * We are here either because we stole the rtmutex from the
  1839. * previous highest priority waiter or we are the highest priority
  1840. * waiter but failed to get the rtmutex the first time.
  1841. * We have to replace the newowner TID in the user space variable.
  1842. * This must be atomic as we have to preserve the owner died bit here.
  1843. *
  1844. * Note: We write the user space value _before_ changing the pi_state
  1845. * because we can fault here. Imagine swapped out pages or a fork
  1846. * that marked all the anonymous memory readonly for cow.
  1847. *
  1848. * Modifying pi_state _before_ the user space value would
  1849. * leave the pi_state in an inconsistent state when we fault
  1850. * here, because we need to drop the hash bucket lock to
  1851. * handle the fault. This might be observed in the PID check
  1852. * in lookup_pi_state.
  1853. */
  1854. retry:
  1855. if (get_futex_value_locked(&uval, uaddr))
  1856. goto handle_fault;
  1857. while (1) {
  1858. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1859. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1860. goto handle_fault;
  1861. if (curval == uval)
  1862. break;
  1863. uval = curval;
  1864. }
  1865. /*
  1866. * We fixed up user space. Now we need to fix the pi_state
  1867. * itself.
  1868. */
  1869. if (pi_state->owner != NULL) {
  1870. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1871. WARN_ON(list_empty(&pi_state->list));
  1872. list_del_init(&pi_state->list);
  1873. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1874. }
  1875. pi_state->owner = newowner;
  1876. raw_spin_lock_irq(&newowner->pi_lock);
  1877. WARN_ON(!list_empty(&pi_state->list));
  1878. list_add(&pi_state->list, &newowner->pi_state_list);
  1879. raw_spin_unlock_irq(&newowner->pi_lock);
  1880. return 0;
  1881. /*
  1882. * To handle the page fault we need to drop the hash bucket
  1883. * lock here. That gives the other task (either the highest priority
  1884. * waiter itself or the task which stole the rtmutex) the
  1885. * chance to try the fixup of the pi_state. So once we are
  1886. * back from handling the fault we need to check the pi_state
  1887. * after reacquiring the hash bucket lock and before trying to
  1888. * do another fixup. When the fixup has been done already we
  1889. * simply return.
  1890. */
  1891. handle_fault:
  1892. spin_unlock(q->lock_ptr);
  1893. ret = fault_in_user_writeable(uaddr);
  1894. spin_lock(q->lock_ptr);
  1895. /*
  1896. * Check if someone else fixed it for us:
  1897. */
  1898. if (pi_state->owner != oldowner)
  1899. return 0;
  1900. if (ret)
  1901. return ret;
  1902. goto retry;
  1903. }
  1904. static long futex_wait_restart(struct restart_block *restart);
  1905. /**
  1906. * fixup_owner() - Post lock pi_state and corner case management
  1907. * @uaddr: user address of the futex
  1908. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1909. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1910. *
  1911. * After attempting to lock an rt_mutex, this function is called to cleanup
  1912. * the pi_state owner as well as handle race conditions that may allow us to
  1913. * acquire the lock. Must be called with the hb lock held.
  1914. *
  1915. * Return:
  1916. * 1 - success, lock taken;
  1917. * 0 - success, lock not taken;
  1918. * <0 - on error (-EFAULT)
  1919. */
  1920. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1921. {
  1922. struct task_struct *owner;
  1923. int ret = 0;
  1924. if (locked) {
  1925. /*
  1926. * Got the lock. We might not be the anticipated owner if we
  1927. * did a lock-steal - fix up the PI-state in that case:
  1928. */
  1929. if (q->pi_state->owner != current)
  1930. ret = fixup_pi_state_owner(uaddr, q, current);
  1931. goto out;
  1932. }
  1933. /*
  1934. * Catch the rare case, where the lock was released when we were on the
  1935. * way back before we locked the hash bucket.
  1936. */
  1937. if (q->pi_state->owner == current) {
  1938. /*
  1939. * Try to get the rt_mutex now. This might fail as some other
  1940. * task acquired the rt_mutex after we removed ourself from the
  1941. * rt_mutex waiters list.
  1942. */
  1943. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1944. locked = 1;
  1945. goto out;
  1946. }
  1947. /*
  1948. * pi_state is incorrect, some other task did a lock steal and
  1949. * we returned due to timeout or signal without taking the
  1950. * rt_mutex. Too late.
  1951. */
  1952. raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
  1953. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1954. if (!owner)
  1955. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1956. raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
  1957. ret = fixup_pi_state_owner(uaddr, q, owner);
  1958. goto out;
  1959. }
  1960. /*
  1961. * Paranoia check. If we did not take the lock, then we should not be
  1962. * the owner of the rt_mutex.
  1963. */
  1964. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1965. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1966. "pi-state %p\n", ret,
  1967. q->pi_state->pi_mutex.owner,
  1968. q->pi_state->owner);
  1969. out:
  1970. return ret ? ret : locked;
  1971. }
  1972. /**
  1973. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1974. * @hb: the futex hash bucket, must be locked by the caller
  1975. * @q: the futex_q to queue up on
  1976. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1977. */
  1978. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1979. struct hrtimer_sleeper *timeout)
  1980. {
  1981. /*
  1982. * The task state is guaranteed to be set before another task can
  1983. * wake it. set_current_state() is implemented using smp_store_mb() and
  1984. * queue_me() calls spin_unlock() upon completion, both serializing
  1985. * access to the hash list and forcing another memory barrier.
  1986. */
  1987. set_current_state(TASK_INTERRUPTIBLE);
  1988. queue_me(q, hb);
  1989. /* Arm the timer */
  1990. if (timeout)
  1991. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1992. /*
  1993. * If we have been removed from the hash list, then another task
  1994. * has tried to wake us, and we can skip the call to schedule().
  1995. */
  1996. if (likely(!plist_node_empty(&q->list))) {
  1997. /*
  1998. * If the timer has already expired, current will already be
  1999. * flagged for rescheduling. Only call schedule if there
  2000. * is no timeout, or if it has yet to expire.
  2001. */
  2002. if (!timeout || timeout->task)
  2003. freezable_schedule();
  2004. }
  2005. __set_current_state(TASK_RUNNING);
  2006. }
  2007. /**
  2008. * futex_wait_setup() - Prepare to wait on a futex
  2009. * @uaddr: the futex userspace address
  2010. * @val: the expected value
  2011. * @flags: futex flags (FLAGS_SHARED, etc.)
  2012. * @q: the associated futex_q
  2013. * @hb: storage for hash_bucket pointer to be returned to caller
  2014. *
  2015. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2016. * compare it with the expected value. Handle atomic faults internally.
  2017. * Return with the hb lock held and a q.key reference on success, and unlocked
  2018. * with no q.key reference on failure.
  2019. *
  2020. * Return:
  2021. * 0 - uaddr contains val and hb has been locked;
  2022. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2023. */
  2024. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2025. struct futex_q *q, struct futex_hash_bucket **hb)
  2026. {
  2027. u32 uval;
  2028. int ret;
  2029. /*
  2030. * Access the page AFTER the hash-bucket is locked.
  2031. * Order is important:
  2032. *
  2033. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2034. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2035. *
  2036. * The basic logical guarantee of a futex is that it blocks ONLY
  2037. * if cond(var) is known to be true at the time of blocking, for
  2038. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2039. * would open a race condition where we could block indefinitely with
  2040. * cond(var) false, which would violate the guarantee.
  2041. *
  2042. * On the other hand, we insert q and release the hash-bucket only
  2043. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2044. * absorb a wakeup if *uaddr does not match the desired values
  2045. * while the syscall executes.
  2046. */
  2047. retry:
  2048. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2049. if (unlikely(ret != 0))
  2050. return ret;
  2051. retry_private:
  2052. *hb = queue_lock(q);
  2053. ret = get_futex_value_locked(&uval, uaddr);
  2054. if (ret) {
  2055. queue_unlock(*hb);
  2056. ret = get_user(uval, uaddr);
  2057. if (ret)
  2058. goto out;
  2059. if (!(flags & FLAGS_SHARED))
  2060. goto retry_private;
  2061. put_futex_key(&q->key);
  2062. goto retry;
  2063. }
  2064. if (uval != val) {
  2065. queue_unlock(*hb);
  2066. ret = -EWOULDBLOCK;
  2067. }
  2068. out:
  2069. if (ret)
  2070. put_futex_key(&q->key);
  2071. return ret;
  2072. }
  2073. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2074. ktime_t *abs_time, u32 bitset)
  2075. {
  2076. struct hrtimer_sleeper timeout, *to = NULL;
  2077. struct restart_block *restart;
  2078. struct futex_hash_bucket *hb;
  2079. struct futex_q q = futex_q_init;
  2080. int ret;
  2081. if (!bitset)
  2082. return -EINVAL;
  2083. q.bitset = bitset;
  2084. if (abs_time) {
  2085. to = &timeout;
  2086. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2087. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2088. HRTIMER_MODE_ABS);
  2089. hrtimer_init_sleeper(to, current);
  2090. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2091. current->timer_slack_ns);
  2092. }
  2093. retry:
  2094. /*
  2095. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2096. * q.key refs.
  2097. */
  2098. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2099. if (ret)
  2100. goto out;
  2101. /* queue_me and wait for wakeup, timeout, or a signal. */
  2102. futex_wait_queue_me(hb, &q, to);
  2103. /* If we were woken (and unqueued), we succeeded, whatever. */
  2104. ret = 0;
  2105. /* unqueue_me() drops q.key ref */
  2106. if (!unqueue_me(&q))
  2107. goto out;
  2108. ret = -ETIMEDOUT;
  2109. if (to && !to->task)
  2110. goto out;
  2111. /*
  2112. * We expect signal_pending(current), but we might be the
  2113. * victim of a spurious wakeup as well.
  2114. */
  2115. if (!signal_pending(current))
  2116. goto retry;
  2117. ret = -ERESTARTSYS;
  2118. if (!abs_time)
  2119. goto out;
  2120. restart = &current->restart_block;
  2121. restart->fn = futex_wait_restart;
  2122. restart->futex.uaddr = uaddr;
  2123. restart->futex.val = val;
  2124. restart->futex.time = abs_time->tv64;
  2125. restart->futex.bitset = bitset;
  2126. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2127. ret = -ERESTART_RESTARTBLOCK;
  2128. out:
  2129. if (to) {
  2130. hrtimer_cancel(&to->timer);
  2131. destroy_hrtimer_on_stack(&to->timer);
  2132. }
  2133. return ret;
  2134. }
  2135. static long futex_wait_restart(struct restart_block *restart)
  2136. {
  2137. u32 __user *uaddr = restart->futex.uaddr;
  2138. ktime_t t, *tp = NULL;
  2139. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2140. t.tv64 = restart->futex.time;
  2141. tp = &t;
  2142. }
  2143. restart->fn = do_no_restart_syscall;
  2144. return (long)futex_wait(uaddr, restart->futex.flags,
  2145. restart->futex.val, tp, restart->futex.bitset);
  2146. }
  2147. /*
  2148. * Userspace tried a 0 -> TID atomic transition of the futex value
  2149. * and failed. The kernel side here does the whole locking operation:
  2150. * if there are waiters then it will block as a consequence of relying
  2151. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2152. * a 0 value of the futex too.).
  2153. *
  2154. * Also serves as futex trylock_pi()'ing, and due semantics.
  2155. */
  2156. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2157. ktime_t *time, int trylock)
  2158. {
  2159. struct hrtimer_sleeper timeout, *to = NULL;
  2160. struct futex_hash_bucket *hb;
  2161. struct futex_q q = futex_q_init;
  2162. int res, ret;
  2163. if (refill_pi_state_cache())
  2164. return -ENOMEM;
  2165. if (time) {
  2166. to = &timeout;
  2167. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2168. HRTIMER_MODE_ABS);
  2169. hrtimer_init_sleeper(to, current);
  2170. hrtimer_set_expires(&to->timer, *time);
  2171. }
  2172. retry:
  2173. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2174. if (unlikely(ret != 0))
  2175. goto out;
  2176. retry_private:
  2177. hb = queue_lock(&q);
  2178. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2179. if (unlikely(ret)) {
  2180. /*
  2181. * Atomic work succeeded and we got the lock,
  2182. * or failed. Either way, we do _not_ block.
  2183. */
  2184. switch (ret) {
  2185. case 1:
  2186. /* We got the lock. */
  2187. ret = 0;
  2188. goto out_unlock_put_key;
  2189. case -EFAULT:
  2190. goto uaddr_faulted;
  2191. case -EAGAIN:
  2192. /*
  2193. * Two reasons for this:
  2194. * - Task is exiting and we just wait for the
  2195. * exit to complete.
  2196. * - The user space value changed.
  2197. */
  2198. queue_unlock(hb);
  2199. put_futex_key(&q.key);
  2200. cond_resched();
  2201. goto retry;
  2202. default:
  2203. goto out_unlock_put_key;
  2204. }
  2205. }
  2206. /*
  2207. * Only actually queue now that the atomic ops are done:
  2208. */
  2209. queue_me(&q, hb);
  2210. WARN_ON(!q.pi_state);
  2211. /*
  2212. * Block on the PI mutex:
  2213. */
  2214. if (!trylock) {
  2215. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2216. } else {
  2217. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2218. /* Fixup the trylock return value: */
  2219. ret = ret ? 0 : -EWOULDBLOCK;
  2220. }
  2221. spin_lock(q.lock_ptr);
  2222. /*
  2223. * Fixup the pi_state owner and possibly acquire the lock if we
  2224. * haven't already.
  2225. */
  2226. res = fixup_owner(uaddr, &q, !ret);
  2227. /*
  2228. * If fixup_owner() returned an error, proprogate that. If it acquired
  2229. * the lock, clear our -ETIMEDOUT or -EINTR.
  2230. */
  2231. if (res)
  2232. ret = (res < 0) ? res : 0;
  2233. /*
  2234. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2235. * it and return the fault to userspace.
  2236. */
  2237. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2238. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2239. /* Unqueue and drop the lock */
  2240. unqueue_me_pi(&q);
  2241. goto out_put_key;
  2242. out_unlock_put_key:
  2243. queue_unlock(hb);
  2244. out_put_key:
  2245. put_futex_key(&q.key);
  2246. out:
  2247. if (to)
  2248. destroy_hrtimer_on_stack(&to->timer);
  2249. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2250. uaddr_faulted:
  2251. queue_unlock(hb);
  2252. ret = fault_in_user_writeable(uaddr);
  2253. if (ret)
  2254. goto out_put_key;
  2255. if (!(flags & FLAGS_SHARED))
  2256. goto retry_private;
  2257. put_futex_key(&q.key);
  2258. goto retry;
  2259. }
  2260. /*
  2261. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2262. * This is the in-kernel slowpath: we look up the PI state (if any),
  2263. * and do the rt-mutex unlock.
  2264. */
  2265. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2266. {
  2267. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2268. union futex_key key = FUTEX_KEY_INIT;
  2269. struct futex_hash_bucket *hb;
  2270. struct futex_q *match;
  2271. int ret;
  2272. retry:
  2273. if (get_user(uval, uaddr))
  2274. return -EFAULT;
  2275. /*
  2276. * We release only a lock we actually own:
  2277. */
  2278. if ((uval & FUTEX_TID_MASK) != vpid)
  2279. return -EPERM;
  2280. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2281. if (ret)
  2282. return ret;
  2283. hb = hash_futex(&key);
  2284. spin_lock(&hb->lock);
  2285. /*
  2286. * Check waiters first. We do not trust user space values at
  2287. * all and we at least want to know if user space fiddled
  2288. * with the futex value instead of blindly unlocking.
  2289. */
  2290. match = futex_top_waiter(hb, &key);
  2291. if (match) {
  2292. ret = wake_futex_pi(uaddr, uval, match, hb);
  2293. /*
  2294. * In case of success wake_futex_pi dropped the hash
  2295. * bucket lock.
  2296. */
  2297. if (!ret)
  2298. goto out_putkey;
  2299. /*
  2300. * The atomic access to the futex value generated a
  2301. * pagefault, so retry the user-access and the wakeup:
  2302. */
  2303. if (ret == -EFAULT)
  2304. goto pi_faulted;
  2305. /*
  2306. * wake_futex_pi has detected invalid state. Tell user
  2307. * space.
  2308. */
  2309. goto out_unlock;
  2310. }
  2311. /*
  2312. * We have no kernel internal state, i.e. no waiters in the
  2313. * kernel. Waiters which are about to queue themselves are stuck
  2314. * on hb->lock. So we can safely ignore them. We do neither
  2315. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2316. * owner.
  2317. */
  2318. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2319. goto pi_faulted;
  2320. /*
  2321. * If uval has changed, let user space handle it.
  2322. */
  2323. ret = (curval == uval) ? 0 : -EAGAIN;
  2324. out_unlock:
  2325. spin_unlock(&hb->lock);
  2326. out_putkey:
  2327. put_futex_key(&key);
  2328. return ret;
  2329. pi_faulted:
  2330. spin_unlock(&hb->lock);
  2331. put_futex_key(&key);
  2332. ret = fault_in_user_writeable(uaddr);
  2333. if (!ret)
  2334. goto retry;
  2335. return ret;
  2336. }
  2337. /**
  2338. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2339. * @hb: the hash_bucket futex_q was original enqueued on
  2340. * @q: the futex_q woken while waiting to be requeued
  2341. * @key2: the futex_key of the requeue target futex
  2342. * @timeout: the timeout associated with the wait (NULL if none)
  2343. *
  2344. * Detect if the task was woken on the initial futex as opposed to the requeue
  2345. * target futex. If so, determine if it was a timeout or a signal that caused
  2346. * the wakeup and return the appropriate error code to the caller. Must be
  2347. * called with the hb lock held.
  2348. *
  2349. * Return:
  2350. * 0 = no early wakeup detected;
  2351. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2352. */
  2353. static inline
  2354. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2355. struct futex_q *q, union futex_key *key2,
  2356. struct hrtimer_sleeper *timeout)
  2357. {
  2358. int ret = 0;
  2359. /*
  2360. * With the hb lock held, we avoid races while we process the wakeup.
  2361. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2362. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2363. * It can't be requeued from uaddr2 to something else since we don't
  2364. * support a PI aware source futex for requeue.
  2365. */
  2366. if (!match_futex(&q->key, key2)) {
  2367. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2368. /*
  2369. * We were woken prior to requeue by a timeout or a signal.
  2370. * Unqueue the futex_q and determine which it was.
  2371. */
  2372. plist_del(&q->list, &hb->chain);
  2373. hb_waiters_dec(hb);
  2374. /* Handle spurious wakeups gracefully */
  2375. ret = -EWOULDBLOCK;
  2376. if (timeout && !timeout->task)
  2377. ret = -ETIMEDOUT;
  2378. else if (signal_pending(current))
  2379. ret = -ERESTARTNOINTR;
  2380. }
  2381. return ret;
  2382. }
  2383. /**
  2384. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2385. * @uaddr: the futex we initially wait on (non-pi)
  2386. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2387. * the same type, no requeueing from private to shared, etc.
  2388. * @val: the expected value of uaddr
  2389. * @abs_time: absolute timeout
  2390. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2391. * @uaddr2: the pi futex we will take prior to returning to user-space
  2392. *
  2393. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2394. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2395. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2396. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2397. * without one, the pi logic would not know which task to boost/deboost, if
  2398. * there was a need to.
  2399. *
  2400. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2401. * via the following--
  2402. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2403. * 2) wakeup on uaddr2 after a requeue
  2404. * 3) signal
  2405. * 4) timeout
  2406. *
  2407. * If 3, cleanup and return -ERESTARTNOINTR.
  2408. *
  2409. * If 2, we may then block on trying to take the rt_mutex and return via:
  2410. * 5) successful lock
  2411. * 6) signal
  2412. * 7) timeout
  2413. * 8) other lock acquisition failure
  2414. *
  2415. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2416. *
  2417. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2418. *
  2419. * Return:
  2420. * 0 - On success;
  2421. * <0 - On error
  2422. */
  2423. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2424. u32 val, ktime_t *abs_time, u32 bitset,
  2425. u32 __user *uaddr2)
  2426. {
  2427. struct hrtimer_sleeper timeout, *to = NULL;
  2428. struct rt_mutex_waiter rt_waiter;
  2429. struct rt_mutex *pi_mutex = NULL;
  2430. struct futex_hash_bucket *hb;
  2431. union futex_key key2 = FUTEX_KEY_INIT;
  2432. struct futex_q q = futex_q_init;
  2433. int res, ret;
  2434. if (uaddr == uaddr2)
  2435. return -EINVAL;
  2436. if (!bitset)
  2437. return -EINVAL;
  2438. if (abs_time) {
  2439. to = &timeout;
  2440. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2441. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2442. HRTIMER_MODE_ABS);
  2443. hrtimer_init_sleeper(to, current);
  2444. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2445. current->timer_slack_ns);
  2446. }
  2447. /*
  2448. * The waiter is allocated on our stack, manipulated by the requeue
  2449. * code while we sleep on uaddr.
  2450. */
  2451. debug_rt_mutex_init_waiter(&rt_waiter);
  2452. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2453. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2454. rt_waiter.task = NULL;
  2455. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2456. if (unlikely(ret != 0))
  2457. goto out;
  2458. q.bitset = bitset;
  2459. q.rt_waiter = &rt_waiter;
  2460. q.requeue_pi_key = &key2;
  2461. /*
  2462. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2463. * count.
  2464. */
  2465. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2466. if (ret)
  2467. goto out_key2;
  2468. /*
  2469. * The check above which compares uaddrs is not sufficient for
  2470. * shared futexes. We need to compare the keys:
  2471. */
  2472. if (match_futex(&q.key, &key2)) {
  2473. queue_unlock(hb);
  2474. ret = -EINVAL;
  2475. goto out_put_keys;
  2476. }
  2477. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2478. futex_wait_queue_me(hb, &q, to);
  2479. spin_lock(&hb->lock);
  2480. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2481. spin_unlock(&hb->lock);
  2482. if (ret)
  2483. goto out_put_keys;
  2484. /*
  2485. * In order for us to be here, we know our q.key == key2, and since
  2486. * we took the hb->lock above, we also know that futex_requeue() has
  2487. * completed and we no longer have to concern ourselves with a wakeup
  2488. * race with the atomic proxy lock acquisition by the requeue code. The
  2489. * futex_requeue dropped our key1 reference and incremented our key2
  2490. * reference count.
  2491. */
  2492. /* Check if the requeue code acquired the second futex for us. */
  2493. if (!q.rt_waiter) {
  2494. /*
  2495. * Got the lock. We might not be the anticipated owner if we
  2496. * did a lock-steal - fix up the PI-state in that case.
  2497. */
  2498. if (q.pi_state && (q.pi_state->owner != current)) {
  2499. spin_lock(q.lock_ptr);
  2500. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2501. /*
  2502. * Drop the reference to the pi state which
  2503. * the requeue_pi() code acquired for us.
  2504. */
  2505. put_pi_state(q.pi_state);
  2506. spin_unlock(q.lock_ptr);
  2507. }
  2508. } else {
  2509. /*
  2510. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2511. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2512. * the pi_state.
  2513. */
  2514. WARN_ON(!q.pi_state);
  2515. pi_mutex = &q.pi_state->pi_mutex;
  2516. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2517. debug_rt_mutex_free_waiter(&rt_waiter);
  2518. spin_lock(q.lock_ptr);
  2519. /*
  2520. * Fixup the pi_state owner and possibly acquire the lock if we
  2521. * haven't already.
  2522. */
  2523. res = fixup_owner(uaddr2, &q, !ret);
  2524. /*
  2525. * If fixup_owner() returned an error, proprogate that. If it
  2526. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2527. */
  2528. if (res)
  2529. ret = (res < 0) ? res : 0;
  2530. /* Unqueue and drop the lock. */
  2531. unqueue_me_pi(&q);
  2532. }
  2533. /*
  2534. * If fixup_pi_state_owner() faulted and was unable to handle the
  2535. * fault, unlock the rt_mutex and return the fault to userspace.
  2536. */
  2537. if (ret == -EFAULT) {
  2538. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2539. rt_mutex_unlock(pi_mutex);
  2540. } else if (ret == -EINTR) {
  2541. /*
  2542. * We've already been requeued, but cannot restart by calling
  2543. * futex_lock_pi() directly. We could restart this syscall, but
  2544. * it would detect that the user space "val" changed and return
  2545. * -EWOULDBLOCK. Save the overhead of the restart and return
  2546. * -EWOULDBLOCK directly.
  2547. */
  2548. ret = -EWOULDBLOCK;
  2549. }
  2550. out_put_keys:
  2551. put_futex_key(&q.key);
  2552. out_key2:
  2553. put_futex_key(&key2);
  2554. out:
  2555. if (to) {
  2556. hrtimer_cancel(&to->timer);
  2557. destroy_hrtimer_on_stack(&to->timer);
  2558. }
  2559. return ret;
  2560. }
  2561. /*
  2562. * Support for robust futexes: the kernel cleans up held futexes at
  2563. * thread exit time.
  2564. *
  2565. * Implementation: user-space maintains a per-thread list of locks it
  2566. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2567. * and marks all locks that are owned by this thread with the
  2568. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2569. * always manipulated with the lock held, so the list is private and
  2570. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2571. * field, to allow the kernel to clean up if the thread dies after
  2572. * acquiring the lock, but just before it could have added itself to
  2573. * the list. There can only be one such pending lock.
  2574. */
  2575. /**
  2576. * sys_set_robust_list() - Set the robust-futex list head of a task
  2577. * @head: pointer to the list-head
  2578. * @len: length of the list-head, as userspace expects
  2579. */
  2580. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2581. size_t, len)
  2582. {
  2583. if (!futex_cmpxchg_enabled)
  2584. return -ENOSYS;
  2585. /*
  2586. * The kernel knows only one size for now:
  2587. */
  2588. if (unlikely(len != sizeof(*head)))
  2589. return -EINVAL;
  2590. current->robust_list = head;
  2591. return 0;
  2592. }
  2593. /**
  2594. * sys_get_robust_list() - Get the robust-futex list head of a task
  2595. * @pid: pid of the process [zero for current task]
  2596. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2597. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2598. */
  2599. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2600. struct robust_list_head __user * __user *, head_ptr,
  2601. size_t __user *, len_ptr)
  2602. {
  2603. struct robust_list_head __user *head;
  2604. unsigned long ret;
  2605. struct task_struct *p;
  2606. if (!futex_cmpxchg_enabled)
  2607. return -ENOSYS;
  2608. rcu_read_lock();
  2609. ret = -ESRCH;
  2610. if (!pid)
  2611. p = current;
  2612. else {
  2613. p = find_task_by_vpid(pid);
  2614. if (!p)
  2615. goto err_unlock;
  2616. }
  2617. ret = -EPERM;
  2618. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2619. goto err_unlock;
  2620. head = p->robust_list;
  2621. rcu_read_unlock();
  2622. if (put_user(sizeof(*head), len_ptr))
  2623. return -EFAULT;
  2624. return put_user(head, head_ptr);
  2625. err_unlock:
  2626. rcu_read_unlock();
  2627. return ret;
  2628. }
  2629. /*
  2630. * Process a futex-list entry, check whether it's owned by the
  2631. * dying task, and do notification if so:
  2632. */
  2633. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2634. {
  2635. u32 uval, uninitialized_var(nval), mval;
  2636. retry:
  2637. if (get_user(uval, uaddr))
  2638. return -1;
  2639. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2640. /*
  2641. * Ok, this dying thread is truly holding a futex
  2642. * of interest. Set the OWNER_DIED bit atomically
  2643. * via cmpxchg, and if the value had FUTEX_WAITERS
  2644. * set, wake up a waiter (if any). (We have to do a
  2645. * futex_wake() even if OWNER_DIED is already set -
  2646. * to handle the rare but possible case of recursive
  2647. * thread-death.) The rest of the cleanup is done in
  2648. * userspace.
  2649. */
  2650. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2651. /*
  2652. * We are not holding a lock here, but we want to have
  2653. * the pagefault_disable/enable() protection because
  2654. * we want to handle the fault gracefully. If the
  2655. * access fails we try to fault in the futex with R/W
  2656. * verification via get_user_pages. get_user() above
  2657. * does not guarantee R/W access. If that fails we
  2658. * give up and leave the futex locked.
  2659. */
  2660. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2661. if (fault_in_user_writeable(uaddr))
  2662. return -1;
  2663. goto retry;
  2664. }
  2665. if (nval != uval)
  2666. goto retry;
  2667. /*
  2668. * Wake robust non-PI futexes here. The wakeup of
  2669. * PI futexes happens in exit_pi_state():
  2670. */
  2671. if (!pi && (uval & FUTEX_WAITERS))
  2672. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2673. }
  2674. return 0;
  2675. }
  2676. /*
  2677. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2678. */
  2679. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2680. struct robust_list __user * __user *head,
  2681. unsigned int *pi)
  2682. {
  2683. unsigned long uentry;
  2684. if (get_user(uentry, (unsigned long __user *)head))
  2685. return -EFAULT;
  2686. *entry = (void __user *)(uentry & ~1UL);
  2687. *pi = uentry & 1;
  2688. return 0;
  2689. }
  2690. /*
  2691. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2692. * and mark any locks found there dead, and notify any waiters.
  2693. *
  2694. * We silently return on any sign of list-walking problem.
  2695. */
  2696. void exit_robust_list(struct task_struct *curr)
  2697. {
  2698. struct robust_list_head __user *head = curr->robust_list;
  2699. struct robust_list __user *entry, *next_entry, *pending;
  2700. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2701. unsigned int uninitialized_var(next_pi);
  2702. unsigned long futex_offset;
  2703. int rc;
  2704. if (!futex_cmpxchg_enabled)
  2705. return;
  2706. /*
  2707. * Fetch the list head (which was registered earlier, via
  2708. * sys_set_robust_list()):
  2709. */
  2710. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2711. return;
  2712. /*
  2713. * Fetch the relative futex offset:
  2714. */
  2715. if (get_user(futex_offset, &head->futex_offset))
  2716. return;
  2717. /*
  2718. * Fetch any possibly pending lock-add first, and handle it
  2719. * if it exists:
  2720. */
  2721. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2722. return;
  2723. next_entry = NULL; /* avoid warning with gcc */
  2724. while (entry != &head->list) {
  2725. /*
  2726. * Fetch the next entry in the list before calling
  2727. * handle_futex_death:
  2728. */
  2729. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2730. /*
  2731. * A pending lock might already be on the list, so
  2732. * don't process it twice:
  2733. */
  2734. if (entry != pending)
  2735. if (handle_futex_death((void __user *)entry + futex_offset,
  2736. curr, pi))
  2737. return;
  2738. if (rc)
  2739. return;
  2740. entry = next_entry;
  2741. pi = next_pi;
  2742. /*
  2743. * Avoid excessively long or circular lists:
  2744. */
  2745. if (!--limit)
  2746. break;
  2747. cond_resched();
  2748. }
  2749. if (pending)
  2750. handle_futex_death((void __user *)pending + futex_offset,
  2751. curr, pip);
  2752. }
  2753. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2754. u32 __user *uaddr2, u32 val2, u32 val3)
  2755. {
  2756. int cmd = op & FUTEX_CMD_MASK;
  2757. unsigned int flags = 0;
  2758. if (!(op & FUTEX_PRIVATE_FLAG))
  2759. flags |= FLAGS_SHARED;
  2760. if (op & FUTEX_CLOCK_REALTIME) {
  2761. flags |= FLAGS_CLOCKRT;
  2762. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  2763. cmd != FUTEX_WAIT_REQUEUE_PI)
  2764. return -ENOSYS;
  2765. }
  2766. switch (cmd) {
  2767. case FUTEX_LOCK_PI:
  2768. case FUTEX_UNLOCK_PI:
  2769. case FUTEX_TRYLOCK_PI:
  2770. case FUTEX_WAIT_REQUEUE_PI:
  2771. case FUTEX_CMP_REQUEUE_PI:
  2772. if (!futex_cmpxchg_enabled)
  2773. return -ENOSYS;
  2774. }
  2775. switch (cmd) {
  2776. case FUTEX_WAIT:
  2777. val3 = FUTEX_BITSET_MATCH_ANY;
  2778. case FUTEX_WAIT_BITSET:
  2779. return futex_wait(uaddr, flags, val, timeout, val3);
  2780. case FUTEX_WAKE:
  2781. val3 = FUTEX_BITSET_MATCH_ANY;
  2782. case FUTEX_WAKE_BITSET:
  2783. return futex_wake(uaddr, flags, val, val3);
  2784. case FUTEX_REQUEUE:
  2785. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2786. case FUTEX_CMP_REQUEUE:
  2787. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2788. case FUTEX_WAKE_OP:
  2789. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2790. case FUTEX_LOCK_PI:
  2791. return futex_lock_pi(uaddr, flags, timeout, 0);
  2792. case FUTEX_UNLOCK_PI:
  2793. return futex_unlock_pi(uaddr, flags);
  2794. case FUTEX_TRYLOCK_PI:
  2795. return futex_lock_pi(uaddr, flags, NULL, 1);
  2796. case FUTEX_WAIT_REQUEUE_PI:
  2797. val3 = FUTEX_BITSET_MATCH_ANY;
  2798. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2799. uaddr2);
  2800. case FUTEX_CMP_REQUEUE_PI:
  2801. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2802. }
  2803. return -ENOSYS;
  2804. }
  2805. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2806. struct timespec __user *, utime, u32 __user *, uaddr2,
  2807. u32, val3)
  2808. {
  2809. struct timespec ts;
  2810. ktime_t t, *tp = NULL;
  2811. u32 val2 = 0;
  2812. int cmd = op & FUTEX_CMD_MASK;
  2813. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2814. cmd == FUTEX_WAIT_BITSET ||
  2815. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2816. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  2817. return -EFAULT;
  2818. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2819. return -EFAULT;
  2820. if (!timespec_valid(&ts))
  2821. return -EINVAL;
  2822. t = timespec_to_ktime(ts);
  2823. if (cmd == FUTEX_WAIT)
  2824. t = ktime_add_safe(ktime_get(), t);
  2825. tp = &t;
  2826. }
  2827. /*
  2828. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2829. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2830. */
  2831. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2832. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2833. val2 = (u32) (unsigned long) utime;
  2834. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2835. }
  2836. static void __init futex_detect_cmpxchg(void)
  2837. {
  2838. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2839. u32 curval;
  2840. /*
  2841. * This will fail and we want it. Some arch implementations do
  2842. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2843. * functionality. We want to know that before we call in any
  2844. * of the complex code paths. Also we want to prevent
  2845. * registration of robust lists in that case. NULL is
  2846. * guaranteed to fault and we get -EFAULT on functional
  2847. * implementation, the non-functional ones will return
  2848. * -ENOSYS.
  2849. */
  2850. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2851. futex_cmpxchg_enabled = 1;
  2852. #endif
  2853. }
  2854. static int __init futex_init(void)
  2855. {
  2856. unsigned int futex_shift;
  2857. unsigned long i;
  2858. #if CONFIG_BASE_SMALL
  2859. futex_hashsize = 16;
  2860. #else
  2861. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2862. #endif
  2863. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2864. futex_hashsize, 0,
  2865. futex_hashsize < 256 ? HASH_SMALL : 0,
  2866. &futex_shift, NULL,
  2867. futex_hashsize, futex_hashsize);
  2868. futex_hashsize = 1UL << futex_shift;
  2869. futex_detect_cmpxchg();
  2870. for (i = 0; i < futex_hashsize; i++) {
  2871. atomic_set(&futex_queues[i].waiters, 0);
  2872. plist_head_init(&futex_queues[i].chain);
  2873. spin_lock_init(&futex_queues[i].lock);
  2874. }
  2875. return 0;
  2876. }
  2877. __initcall(futex_init);