exit.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <linux/kcov.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/unistd.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/mmu_context.h>
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. cputime_t utime, stime;
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. }
  109. /*
  110. * Accumulate here the counters for all threads as they die. We could
  111. * skip the group leader because it is the last user of signal_struct,
  112. * but we want to avoid the race with thread_group_cputime() which can
  113. * see the empty ->thread_head list.
  114. */
  115. task_cputime(tsk, &utime, &stime);
  116. write_seqlock(&sig->stats_lock);
  117. sig->utime += utime;
  118. sig->stime += stime;
  119. sig->gtime += task_gtime(tsk);
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. write_sequnlock(&sig->stats_lock);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct *p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader)
  174. && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * Determine if a process group is "orphaned", according to the POSIX
  193. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  194. * by terminal-generated stop signals. Newly orphaned process groups are
  195. * to receive a SIGHUP and a SIGCONT.
  196. *
  197. * "I ask you, have you ever known what it is to be an orphan?"
  198. */
  199. static int will_become_orphaned_pgrp(struct pid *pgrp,
  200. struct task_struct *ignored_task)
  201. {
  202. struct task_struct *p;
  203. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  204. if ((p == ignored_task) ||
  205. (p->exit_state && thread_group_empty(p)) ||
  206. is_global_init(p->real_parent))
  207. continue;
  208. if (task_pgrp(p->real_parent) != pgrp &&
  209. task_session(p->real_parent) == task_session(p))
  210. return 0;
  211. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  212. return 1;
  213. }
  214. int is_current_pgrp_orphaned(void)
  215. {
  216. int retval;
  217. read_lock(&tasklist_lock);
  218. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  219. read_unlock(&tasklist_lock);
  220. return retval;
  221. }
  222. static bool has_stopped_jobs(struct pid *pgrp)
  223. {
  224. struct task_struct *p;
  225. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  226. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  227. return true;
  228. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  229. return false;
  230. }
  231. /*
  232. * Check to see if any process groups have become orphaned as
  233. * a result of our exiting, and if they have any stopped jobs,
  234. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  235. */
  236. static void
  237. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  238. {
  239. struct pid *pgrp = task_pgrp(tsk);
  240. struct task_struct *ignored_task = tsk;
  241. if (!parent)
  242. /* exit: our father is in a different pgrp than
  243. * we are and we were the only connection outside.
  244. */
  245. parent = tsk->real_parent;
  246. else
  247. /* reparent: our child is in a different pgrp than
  248. * we are, and it was the only connection outside.
  249. */
  250. ignored_task = NULL;
  251. if (task_pgrp(parent) != pgrp &&
  252. task_session(parent) == task_session(tsk) &&
  253. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  254. has_stopped_jobs(pgrp)) {
  255. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  256. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  257. }
  258. }
  259. #ifdef CONFIG_MEMCG
  260. /*
  261. * A task is exiting. If it owned this mm, find a new owner for the mm.
  262. */
  263. void mm_update_next_owner(struct mm_struct *mm)
  264. {
  265. struct task_struct *c, *g, *p = current;
  266. retry:
  267. /*
  268. * If the exiting or execing task is not the owner, it's
  269. * someone else's problem.
  270. */
  271. if (mm->owner != p)
  272. return;
  273. /*
  274. * The current owner is exiting/execing and there are no other
  275. * candidates. Do not leave the mm pointing to a possibly
  276. * freed task structure.
  277. */
  278. if (atomic_read(&mm->mm_users) <= 1) {
  279. mm->owner = NULL;
  280. return;
  281. }
  282. read_lock(&tasklist_lock);
  283. /*
  284. * Search in the children
  285. */
  286. list_for_each_entry(c, &p->children, sibling) {
  287. if (c->mm == mm)
  288. goto assign_new_owner;
  289. }
  290. /*
  291. * Search in the siblings
  292. */
  293. list_for_each_entry(c, &p->real_parent->children, sibling) {
  294. if (c->mm == mm)
  295. goto assign_new_owner;
  296. }
  297. /*
  298. * Search through everything else, we should not get here often.
  299. */
  300. for_each_process(g) {
  301. if (g->flags & PF_KTHREAD)
  302. continue;
  303. for_each_thread(g, c) {
  304. if (c->mm == mm)
  305. goto assign_new_owner;
  306. if (c->mm)
  307. break;
  308. }
  309. }
  310. read_unlock(&tasklist_lock);
  311. /*
  312. * We found no owner yet mm_users > 1: this implies that we are
  313. * most likely racing with swapoff (try_to_unuse()) or /proc or
  314. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  315. */
  316. mm->owner = NULL;
  317. return;
  318. assign_new_owner:
  319. BUG_ON(c == p);
  320. get_task_struct(c);
  321. /*
  322. * The task_lock protects c->mm from changing.
  323. * We always want mm->owner->mm == mm
  324. */
  325. task_lock(c);
  326. /*
  327. * Delay read_unlock() till we have the task_lock()
  328. * to ensure that c does not slip away underneath us
  329. */
  330. read_unlock(&tasklist_lock);
  331. if (c->mm != mm) {
  332. task_unlock(c);
  333. put_task_struct(c);
  334. goto retry;
  335. }
  336. mm->owner = c;
  337. task_unlock(c);
  338. put_task_struct(c);
  339. }
  340. #endif /* CONFIG_MEMCG */
  341. /*
  342. * Turn us into a lazy TLB process if we
  343. * aren't already..
  344. */
  345. static void exit_mm(struct task_struct *tsk)
  346. {
  347. struct mm_struct *mm = tsk->mm;
  348. struct core_state *core_state;
  349. mm_release(tsk, mm);
  350. if (!mm)
  351. return;
  352. sync_mm_rss(mm);
  353. /*
  354. * Serialize with any possible pending coredump.
  355. * We must hold mmap_sem around checking core_state
  356. * and clearing tsk->mm. The core-inducing thread
  357. * will increment ->nr_threads for each thread in the
  358. * group with ->mm != NULL.
  359. */
  360. down_read(&mm->mmap_sem);
  361. core_state = mm->core_state;
  362. if (core_state) {
  363. struct core_thread self;
  364. up_read(&mm->mmap_sem);
  365. self.task = tsk;
  366. self.next = xchg(&core_state->dumper.next, &self);
  367. /*
  368. * Implies mb(), the result of xchg() must be visible
  369. * to core_state->dumper.
  370. */
  371. if (atomic_dec_and_test(&core_state->nr_threads))
  372. complete(&core_state->startup);
  373. for (;;) {
  374. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  375. if (!self.task) /* see coredump_finish() */
  376. break;
  377. freezable_schedule();
  378. }
  379. __set_task_state(tsk, TASK_RUNNING);
  380. down_read(&mm->mmap_sem);
  381. }
  382. atomic_inc(&mm->mm_count);
  383. BUG_ON(mm != tsk->active_mm);
  384. /* more a memory barrier than a real lock */
  385. task_lock(tsk);
  386. tsk->mm = NULL;
  387. up_read(&mm->mmap_sem);
  388. enter_lazy_tlb(mm, current);
  389. task_unlock(tsk);
  390. mm_update_next_owner(mm);
  391. mmput(mm);
  392. if (test_thread_flag(TIF_MEMDIE))
  393. exit_oom_victim(tsk);
  394. }
  395. static struct task_struct *find_alive_thread(struct task_struct *p)
  396. {
  397. struct task_struct *t;
  398. for_each_thread(p, t) {
  399. if (!(t->flags & PF_EXITING))
  400. return t;
  401. }
  402. return NULL;
  403. }
  404. static struct task_struct *find_child_reaper(struct task_struct *father)
  405. __releases(&tasklist_lock)
  406. __acquires(&tasklist_lock)
  407. {
  408. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  409. struct task_struct *reaper = pid_ns->child_reaper;
  410. if (likely(reaper != father))
  411. return reaper;
  412. reaper = find_alive_thread(father);
  413. if (reaper) {
  414. pid_ns->child_reaper = reaper;
  415. return reaper;
  416. }
  417. write_unlock_irq(&tasklist_lock);
  418. if (unlikely(pid_ns == &init_pid_ns)) {
  419. panic("Attempted to kill init! exitcode=0x%08x\n",
  420. father->signal->group_exit_code ?: father->exit_code);
  421. }
  422. zap_pid_ns_processes(pid_ns);
  423. write_lock_irq(&tasklist_lock);
  424. return father;
  425. }
  426. /*
  427. * When we die, we re-parent all our children, and try to:
  428. * 1. give them to another thread in our thread group, if such a member exists
  429. * 2. give it to the first ancestor process which prctl'd itself as a
  430. * child_subreaper for its children (like a service manager)
  431. * 3. give it to the init process (PID 1) in our pid namespace
  432. */
  433. static struct task_struct *find_new_reaper(struct task_struct *father,
  434. struct task_struct *child_reaper)
  435. {
  436. struct task_struct *thread, *reaper;
  437. thread = find_alive_thread(father);
  438. if (thread)
  439. return thread;
  440. if (father->signal->has_child_subreaper) {
  441. /*
  442. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  443. * We start from father to ensure we can not look into another
  444. * namespace, this is safe because all its threads are dead.
  445. */
  446. for (reaper = father;
  447. !same_thread_group(reaper, child_reaper);
  448. reaper = reaper->real_parent) {
  449. /* call_usermodehelper() descendants need this check */
  450. if (reaper == &init_task)
  451. break;
  452. if (!reaper->signal->is_child_subreaper)
  453. continue;
  454. thread = find_alive_thread(reaper);
  455. if (thread)
  456. return thread;
  457. }
  458. }
  459. return child_reaper;
  460. }
  461. /*
  462. * Any that need to be release_task'd are put on the @dead list.
  463. */
  464. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  465. struct list_head *dead)
  466. {
  467. if (unlikely(p->exit_state == EXIT_DEAD))
  468. return;
  469. /* We don't want people slaying init. */
  470. p->exit_signal = SIGCHLD;
  471. /* If it has exited notify the new parent about this child's death. */
  472. if (!p->ptrace &&
  473. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  474. if (do_notify_parent(p, p->exit_signal)) {
  475. p->exit_state = EXIT_DEAD;
  476. list_add(&p->ptrace_entry, dead);
  477. }
  478. }
  479. kill_orphaned_pgrp(p, father);
  480. }
  481. /*
  482. * This does two things:
  483. *
  484. * A. Make init inherit all the child processes
  485. * B. Check to see if any process groups have become orphaned
  486. * as a result of our exiting, and if they have any stopped
  487. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  488. */
  489. static void forget_original_parent(struct task_struct *father,
  490. struct list_head *dead)
  491. {
  492. struct task_struct *p, *t, *reaper;
  493. if (unlikely(!list_empty(&father->ptraced)))
  494. exit_ptrace(father, dead);
  495. /* Can drop and reacquire tasklist_lock */
  496. reaper = find_child_reaper(father);
  497. if (list_empty(&father->children))
  498. return;
  499. reaper = find_new_reaper(father, reaper);
  500. list_for_each_entry(p, &father->children, sibling) {
  501. for_each_thread(p, t) {
  502. t->real_parent = reaper;
  503. BUG_ON((!t->ptrace) != (t->parent == father));
  504. if (likely(!t->ptrace))
  505. t->parent = t->real_parent;
  506. if (t->pdeath_signal)
  507. group_send_sig_info(t->pdeath_signal,
  508. SEND_SIG_NOINFO, t);
  509. }
  510. /*
  511. * If this is a threaded reparent there is no need to
  512. * notify anyone anything has happened.
  513. */
  514. if (!same_thread_group(reaper, father))
  515. reparent_leader(father, p, dead);
  516. }
  517. list_splice_tail_init(&father->children, &reaper->children);
  518. }
  519. /*
  520. * Send signals to all our closest relatives so that they know
  521. * to properly mourn us..
  522. */
  523. static void exit_notify(struct task_struct *tsk, int group_dead)
  524. {
  525. bool autoreap;
  526. struct task_struct *p, *n;
  527. LIST_HEAD(dead);
  528. write_lock_irq(&tasklist_lock);
  529. forget_original_parent(tsk, &dead);
  530. if (group_dead)
  531. kill_orphaned_pgrp(tsk->group_leader, NULL);
  532. if (unlikely(tsk->ptrace)) {
  533. int sig = thread_group_leader(tsk) &&
  534. thread_group_empty(tsk) &&
  535. !ptrace_reparented(tsk) ?
  536. tsk->exit_signal : SIGCHLD;
  537. autoreap = do_notify_parent(tsk, sig);
  538. } else if (thread_group_leader(tsk)) {
  539. autoreap = thread_group_empty(tsk) &&
  540. do_notify_parent(tsk, tsk->exit_signal);
  541. } else {
  542. autoreap = true;
  543. }
  544. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  545. if (tsk->exit_state == EXIT_DEAD)
  546. list_add(&tsk->ptrace_entry, &dead);
  547. /* mt-exec, de_thread() is waiting for group leader */
  548. if (unlikely(tsk->signal->notify_count < 0))
  549. wake_up_process(tsk->signal->group_exit_task);
  550. write_unlock_irq(&tasklist_lock);
  551. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  552. list_del_init(&p->ptrace_entry);
  553. release_task(p);
  554. }
  555. }
  556. #ifdef CONFIG_DEBUG_STACK_USAGE
  557. static void check_stack_usage(void)
  558. {
  559. static DEFINE_SPINLOCK(low_water_lock);
  560. static int lowest_to_date = THREAD_SIZE;
  561. unsigned long free;
  562. free = stack_not_used(current);
  563. if (free >= lowest_to_date)
  564. return;
  565. spin_lock(&low_water_lock);
  566. if (free < lowest_to_date) {
  567. pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
  568. current->comm, task_pid_nr(current), free);
  569. lowest_to_date = free;
  570. }
  571. spin_unlock(&low_water_lock);
  572. }
  573. #else
  574. static inline void check_stack_usage(void) {}
  575. #endif
  576. void do_exit(long code)
  577. {
  578. struct task_struct *tsk = current;
  579. int group_dead;
  580. TASKS_RCU(int tasks_rcu_i);
  581. profile_task_exit(tsk);
  582. kcov_task_exit(tsk);
  583. WARN_ON(blk_needs_flush_plug(tsk));
  584. if (unlikely(in_interrupt()))
  585. panic("Aiee, killing interrupt handler!");
  586. if (unlikely(!tsk->pid))
  587. panic("Attempted to kill the idle task!");
  588. /*
  589. * If do_exit is called because this processes oopsed, it's possible
  590. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  591. * continuing. Amongst other possible reasons, this is to prevent
  592. * mm_release()->clear_child_tid() from writing to a user-controlled
  593. * kernel address.
  594. */
  595. set_fs(USER_DS);
  596. ptrace_event(PTRACE_EVENT_EXIT, code);
  597. validate_creds_for_do_exit(tsk);
  598. /*
  599. * We're taking recursive faults here in do_exit. Safest is to just
  600. * leave this task alone and wait for reboot.
  601. */
  602. if (unlikely(tsk->flags & PF_EXITING)) {
  603. pr_alert("Fixing recursive fault but reboot is needed!\n");
  604. /*
  605. * We can do this unlocked here. The futex code uses
  606. * this flag just to verify whether the pi state
  607. * cleanup has been done or not. In the worst case it
  608. * loops once more. We pretend that the cleanup was
  609. * done as there is no way to return. Either the
  610. * OWNER_DIED bit is set by now or we push the blocked
  611. * task into the wait for ever nirwana as well.
  612. */
  613. tsk->flags |= PF_EXITPIDONE;
  614. set_current_state(TASK_UNINTERRUPTIBLE);
  615. schedule();
  616. }
  617. exit_signals(tsk); /* sets PF_EXITING */
  618. /*
  619. * tsk->flags are checked in the futex code to protect against
  620. * an exiting task cleaning up the robust pi futexes.
  621. */
  622. smp_mb();
  623. raw_spin_unlock_wait(&tsk->pi_lock);
  624. if (unlikely(in_atomic())) {
  625. pr_info("note: %s[%d] exited with preempt_count %d\n",
  626. current->comm, task_pid_nr(current),
  627. preempt_count());
  628. preempt_count_set(PREEMPT_ENABLED);
  629. }
  630. /* sync mm's RSS info before statistics gathering */
  631. if (tsk->mm)
  632. sync_mm_rss(tsk->mm);
  633. acct_update_integrals(tsk);
  634. group_dead = atomic_dec_and_test(&tsk->signal->live);
  635. if (group_dead) {
  636. hrtimer_cancel(&tsk->signal->real_timer);
  637. exit_itimers(tsk->signal);
  638. if (tsk->mm)
  639. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  640. }
  641. acct_collect(code, group_dead);
  642. if (group_dead)
  643. tty_audit_exit();
  644. audit_free(tsk);
  645. tsk->exit_code = code;
  646. taskstats_exit(tsk, group_dead);
  647. exit_mm(tsk);
  648. if (group_dead)
  649. acct_process();
  650. trace_sched_process_exit(tsk);
  651. exit_sem(tsk);
  652. exit_shm(tsk);
  653. exit_files(tsk);
  654. exit_fs(tsk);
  655. if (group_dead)
  656. disassociate_ctty(1);
  657. exit_task_namespaces(tsk);
  658. exit_task_work(tsk);
  659. exit_thread();
  660. /*
  661. * Flush inherited counters to the parent - before the parent
  662. * gets woken up by child-exit notifications.
  663. *
  664. * because of cgroup mode, must be called before cgroup_exit()
  665. */
  666. perf_event_exit_task(tsk);
  667. cgroup_exit(tsk);
  668. /*
  669. * FIXME: do that only when needed, using sched_exit tracepoint
  670. */
  671. flush_ptrace_hw_breakpoint(tsk);
  672. TASKS_RCU(preempt_disable());
  673. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  674. TASKS_RCU(preempt_enable());
  675. exit_notify(tsk, group_dead);
  676. proc_exit_connector(tsk);
  677. #ifdef CONFIG_NUMA
  678. task_lock(tsk);
  679. mpol_put(tsk->mempolicy);
  680. tsk->mempolicy = NULL;
  681. task_unlock(tsk);
  682. #endif
  683. #ifdef CONFIG_FUTEX
  684. if (unlikely(current->pi_state_cache))
  685. kfree(current->pi_state_cache);
  686. #endif
  687. /*
  688. * Make sure we are holding no locks:
  689. */
  690. debug_check_no_locks_held();
  691. /*
  692. * We can do this unlocked here. The futex code uses this flag
  693. * just to verify whether the pi state cleanup has been done
  694. * or not. In the worst case it loops once more.
  695. */
  696. tsk->flags |= PF_EXITPIDONE;
  697. if (tsk->io_context)
  698. exit_io_context(tsk);
  699. if (tsk->splice_pipe)
  700. free_pipe_info(tsk->splice_pipe);
  701. if (tsk->task_frag.page)
  702. put_page(tsk->task_frag.page);
  703. validate_creds_for_do_exit(tsk);
  704. check_stack_usage();
  705. preempt_disable();
  706. if (tsk->nr_dirtied)
  707. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  708. exit_rcu();
  709. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  710. /*
  711. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  712. * when the following two conditions become true.
  713. * - There is race condition of mmap_sem (It is acquired by
  714. * exit_mm()), and
  715. * - SMI occurs before setting TASK_RUNINNG.
  716. * (or hypervisor of virtual machine switches to other guest)
  717. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  718. *
  719. * To avoid it, we have to wait for releasing tsk->pi_lock which
  720. * is held by try_to_wake_up()
  721. */
  722. smp_mb();
  723. raw_spin_unlock_wait(&tsk->pi_lock);
  724. /* causes final put_task_struct in finish_task_switch(). */
  725. tsk->state = TASK_DEAD;
  726. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  727. schedule();
  728. BUG();
  729. /* Avoid "noreturn function does return". */
  730. for (;;)
  731. cpu_relax(); /* For when BUG is null */
  732. }
  733. EXPORT_SYMBOL_GPL(do_exit);
  734. void complete_and_exit(struct completion *comp, long code)
  735. {
  736. if (comp)
  737. complete(comp);
  738. do_exit(code);
  739. }
  740. EXPORT_SYMBOL(complete_and_exit);
  741. SYSCALL_DEFINE1(exit, int, error_code)
  742. {
  743. do_exit((error_code&0xff)<<8);
  744. }
  745. /*
  746. * Take down every thread in the group. This is called by fatal signals
  747. * as well as by sys_exit_group (below).
  748. */
  749. void
  750. do_group_exit(int exit_code)
  751. {
  752. struct signal_struct *sig = current->signal;
  753. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  754. if (signal_group_exit(sig))
  755. exit_code = sig->group_exit_code;
  756. else if (!thread_group_empty(current)) {
  757. struct sighand_struct *const sighand = current->sighand;
  758. spin_lock_irq(&sighand->siglock);
  759. if (signal_group_exit(sig))
  760. /* Another thread got here before we took the lock. */
  761. exit_code = sig->group_exit_code;
  762. else {
  763. sig->group_exit_code = exit_code;
  764. sig->flags = SIGNAL_GROUP_EXIT;
  765. zap_other_threads(current);
  766. }
  767. spin_unlock_irq(&sighand->siglock);
  768. }
  769. do_exit(exit_code);
  770. /* NOTREACHED */
  771. }
  772. /*
  773. * this kills every thread in the thread group. Note that any externally
  774. * wait4()-ing process will get the correct exit code - even if this
  775. * thread is not the thread group leader.
  776. */
  777. SYSCALL_DEFINE1(exit_group, int, error_code)
  778. {
  779. do_group_exit((error_code & 0xff) << 8);
  780. /* NOTREACHED */
  781. return 0;
  782. }
  783. struct wait_opts {
  784. enum pid_type wo_type;
  785. int wo_flags;
  786. struct pid *wo_pid;
  787. struct siginfo __user *wo_info;
  788. int __user *wo_stat;
  789. struct rusage __user *wo_rusage;
  790. wait_queue_t child_wait;
  791. int notask_error;
  792. };
  793. static inline
  794. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  795. {
  796. if (type != PIDTYPE_PID)
  797. task = task->group_leader;
  798. return task->pids[type].pid;
  799. }
  800. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  801. {
  802. return wo->wo_type == PIDTYPE_MAX ||
  803. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  804. }
  805. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  806. {
  807. if (!eligible_pid(wo, p))
  808. return 0;
  809. /* Wait for all children (clone and not) if __WALL is set;
  810. * otherwise, wait for clone children *only* if __WCLONE is
  811. * set; otherwise, wait for non-clone children *only*. (Note:
  812. * A "clone" child here is one that reports to its parent
  813. * using a signal other than SIGCHLD.) */
  814. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  815. && !(wo->wo_flags & __WALL))
  816. return 0;
  817. return 1;
  818. }
  819. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  820. pid_t pid, uid_t uid, int why, int status)
  821. {
  822. struct siginfo __user *infop;
  823. int retval = wo->wo_rusage
  824. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  825. put_task_struct(p);
  826. infop = wo->wo_info;
  827. if (infop) {
  828. if (!retval)
  829. retval = put_user(SIGCHLD, &infop->si_signo);
  830. if (!retval)
  831. retval = put_user(0, &infop->si_errno);
  832. if (!retval)
  833. retval = put_user((short)why, &infop->si_code);
  834. if (!retval)
  835. retval = put_user(pid, &infop->si_pid);
  836. if (!retval)
  837. retval = put_user(uid, &infop->si_uid);
  838. if (!retval)
  839. retval = put_user(status, &infop->si_status);
  840. }
  841. if (!retval)
  842. retval = pid;
  843. return retval;
  844. }
  845. /*
  846. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  847. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  848. * the lock and this task is uninteresting. If we return nonzero, we have
  849. * released the lock and the system call should return.
  850. */
  851. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  852. {
  853. int state, retval, status;
  854. pid_t pid = task_pid_vnr(p);
  855. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  856. struct siginfo __user *infop;
  857. if (!likely(wo->wo_flags & WEXITED))
  858. return 0;
  859. if (unlikely(wo->wo_flags & WNOWAIT)) {
  860. int exit_code = p->exit_code;
  861. int why;
  862. get_task_struct(p);
  863. read_unlock(&tasklist_lock);
  864. sched_annotate_sleep();
  865. if ((exit_code & 0x7f) == 0) {
  866. why = CLD_EXITED;
  867. status = exit_code >> 8;
  868. } else {
  869. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  870. status = exit_code & 0x7f;
  871. }
  872. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  873. }
  874. /*
  875. * Move the task's state to DEAD/TRACE, only one thread can do this.
  876. */
  877. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  878. EXIT_TRACE : EXIT_DEAD;
  879. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  880. return 0;
  881. /*
  882. * We own this thread, nobody else can reap it.
  883. */
  884. read_unlock(&tasklist_lock);
  885. sched_annotate_sleep();
  886. /*
  887. * Check thread_group_leader() to exclude the traced sub-threads.
  888. */
  889. if (state == EXIT_DEAD && thread_group_leader(p)) {
  890. struct signal_struct *sig = p->signal;
  891. struct signal_struct *psig = current->signal;
  892. unsigned long maxrss;
  893. cputime_t tgutime, tgstime;
  894. /*
  895. * The resource counters for the group leader are in its
  896. * own task_struct. Those for dead threads in the group
  897. * are in its signal_struct, as are those for the child
  898. * processes it has previously reaped. All these
  899. * accumulate in the parent's signal_struct c* fields.
  900. *
  901. * We don't bother to take a lock here to protect these
  902. * p->signal fields because the whole thread group is dead
  903. * and nobody can change them.
  904. *
  905. * psig->stats_lock also protects us from our sub-theads
  906. * which can reap other children at the same time. Until
  907. * we change k_getrusage()-like users to rely on this lock
  908. * we have to take ->siglock as well.
  909. *
  910. * We use thread_group_cputime_adjusted() to get times for
  911. * the thread group, which consolidates times for all threads
  912. * in the group including the group leader.
  913. */
  914. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  915. spin_lock_irq(&current->sighand->siglock);
  916. write_seqlock(&psig->stats_lock);
  917. psig->cutime += tgutime + sig->cutime;
  918. psig->cstime += tgstime + sig->cstime;
  919. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  920. psig->cmin_flt +=
  921. p->min_flt + sig->min_flt + sig->cmin_flt;
  922. psig->cmaj_flt +=
  923. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  924. psig->cnvcsw +=
  925. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  926. psig->cnivcsw +=
  927. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  928. psig->cinblock +=
  929. task_io_get_inblock(p) +
  930. sig->inblock + sig->cinblock;
  931. psig->coublock +=
  932. task_io_get_oublock(p) +
  933. sig->oublock + sig->coublock;
  934. maxrss = max(sig->maxrss, sig->cmaxrss);
  935. if (psig->cmaxrss < maxrss)
  936. psig->cmaxrss = maxrss;
  937. task_io_accounting_add(&psig->ioac, &p->ioac);
  938. task_io_accounting_add(&psig->ioac, &sig->ioac);
  939. write_sequnlock(&psig->stats_lock);
  940. spin_unlock_irq(&current->sighand->siglock);
  941. }
  942. retval = wo->wo_rusage
  943. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  944. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  945. ? p->signal->group_exit_code : p->exit_code;
  946. if (!retval && wo->wo_stat)
  947. retval = put_user(status, wo->wo_stat);
  948. infop = wo->wo_info;
  949. if (!retval && infop)
  950. retval = put_user(SIGCHLD, &infop->si_signo);
  951. if (!retval && infop)
  952. retval = put_user(0, &infop->si_errno);
  953. if (!retval && infop) {
  954. int why;
  955. if ((status & 0x7f) == 0) {
  956. why = CLD_EXITED;
  957. status >>= 8;
  958. } else {
  959. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  960. status &= 0x7f;
  961. }
  962. retval = put_user((short)why, &infop->si_code);
  963. if (!retval)
  964. retval = put_user(status, &infop->si_status);
  965. }
  966. if (!retval && infop)
  967. retval = put_user(pid, &infop->si_pid);
  968. if (!retval && infop)
  969. retval = put_user(uid, &infop->si_uid);
  970. if (!retval)
  971. retval = pid;
  972. if (state == EXIT_TRACE) {
  973. write_lock_irq(&tasklist_lock);
  974. /* We dropped tasklist, ptracer could die and untrace */
  975. ptrace_unlink(p);
  976. /* If parent wants a zombie, don't release it now */
  977. state = EXIT_ZOMBIE;
  978. if (do_notify_parent(p, p->exit_signal))
  979. state = EXIT_DEAD;
  980. p->exit_state = state;
  981. write_unlock_irq(&tasklist_lock);
  982. }
  983. if (state == EXIT_DEAD)
  984. release_task(p);
  985. return retval;
  986. }
  987. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  988. {
  989. if (ptrace) {
  990. if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
  991. return &p->exit_code;
  992. } else {
  993. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  994. return &p->signal->group_exit_code;
  995. }
  996. return NULL;
  997. }
  998. /**
  999. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1000. * @wo: wait options
  1001. * @ptrace: is the wait for ptrace
  1002. * @p: task to wait for
  1003. *
  1004. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1005. *
  1006. * CONTEXT:
  1007. * read_lock(&tasklist_lock), which is released if return value is
  1008. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1009. *
  1010. * RETURNS:
  1011. * 0 if wait condition didn't exist and search for other wait conditions
  1012. * should continue. Non-zero return, -errno on failure and @p's pid on
  1013. * success, implies that tasklist_lock is released and wait condition
  1014. * search should terminate.
  1015. */
  1016. static int wait_task_stopped(struct wait_opts *wo,
  1017. int ptrace, struct task_struct *p)
  1018. {
  1019. struct siginfo __user *infop;
  1020. int retval, exit_code, *p_code, why;
  1021. uid_t uid = 0; /* unneeded, required by compiler */
  1022. pid_t pid;
  1023. /*
  1024. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1025. */
  1026. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1027. return 0;
  1028. if (!task_stopped_code(p, ptrace))
  1029. return 0;
  1030. exit_code = 0;
  1031. spin_lock_irq(&p->sighand->siglock);
  1032. p_code = task_stopped_code(p, ptrace);
  1033. if (unlikely(!p_code))
  1034. goto unlock_sig;
  1035. exit_code = *p_code;
  1036. if (!exit_code)
  1037. goto unlock_sig;
  1038. if (!unlikely(wo->wo_flags & WNOWAIT))
  1039. *p_code = 0;
  1040. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1041. unlock_sig:
  1042. spin_unlock_irq(&p->sighand->siglock);
  1043. if (!exit_code)
  1044. return 0;
  1045. /*
  1046. * Now we are pretty sure this task is interesting.
  1047. * Make sure it doesn't get reaped out from under us while we
  1048. * give up the lock and then examine it below. We don't want to
  1049. * keep holding onto the tasklist_lock while we call getrusage and
  1050. * possibly take page faults for user memory.
  1051. */
  1052. get_task_struct(p);
  1053. pid = task_pid_vnr(p);
  1054. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1055. read_unlock(&tasklist_lock);
  1056. sched_annotate_sleep();
  1057. if (unlikely(wo->wo_flags & WNOWAIT))
  1058. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1059. retval = wo->wo_rusage
  1060. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1061. if (!retval && wo->wo_stat)
  1062. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1063. infop = wo->wo_info;
  1064. if (!retval && infop)
  1065. retval = put_user(SIGCHLD, &infop->si_signo);
  1066. if (!retval && infop)
  1067. retval = put_user(0, &infop->si_errno);
  1068. if (!retval && infop)
  1069. retval = put_user((short)why, &infop->si_code);
  1070. if (!retval && infop)
  1071. retval = put_user(exit_code, &infop->si_status);
  1072. if (!retval && infop)
  1073. retval = put_user(pid, &infop->si_pid);
  1074. if (!retval && infop)
  1075. retval = put_user(uid, &infop->si_uid);
  1076. if (!retval)
  1077. retval = pid;
  1078. put_task_struct(p);
  1079. BUG_ON(!retval);
  1080. return retval;
  1081. }
  1082. /*
  1083. * Handle do_wait work for one task in a live, non-stopped state.
  1084. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1085. * the lock and this task is uninteresting. If we return nonzero, we have
  1086. * released the lock and the system call should return.
  1087. */
  1088. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1089. {
  1090. int retval;
  1091. pid_t pid;
  1092. uid_t uid;
  1093. if (!unlikely(wo->wo_flags & WCONTINUED))
  1094. return 0;
  1095. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1096. return 0;
  1097. spin_lock_irq(&p->sighand->siglock);
  1098. /* Re-check with the lock held. */
  1099. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1100. spin_unlock_irq(&p->sighand->siglock);
  1101. return 0;
  1102. }
  1103. if (!unlikely(wo->wo_flags & WNOWAIT))
  1104. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1105. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1106. spin_unlock_irq(&p->sighand->siglock);
  1107. pid = task_pid_vnr(p);
  1108. get_task_struct(p);
  1109. read_unlock(&tasklist_lock);
  1110. sched_annotate_sleep();
  1111. if (!wo->wo_info) {
  1112. retval = wo->wo_rusage
  1113. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1114. put_task_struct(p);
  1115. if (!retval && wo->wo_stat)
  1116. retval = put_user(0xffff, wo->wo_stat);
  1117. if (!retval)
  1118. retval = pid;
  1119. } else {
  1120. retval = wait_noreap_copyout(wo, p, pid, uid,
  1121. CLD_CONTINUED, SIGCONT);
  1122. BUG_ON(retval == 0);
  1123. }
  1124. return retval;
  1125. }
  1126. /*
  1127. * Consider @p for a wait by @parent.
  1128. *
  1129. * -ECHILD should be in ->notask_error before the first call.
  1130. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1131. * Returns zero if the search for a child should continue;
  1132. * then ->notask_error is 0 if @p is an eligible child,
  1133. * or another error from security_task_wait(), or still -ECHILD.
  1134. */
  1135. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1136. struct task_struct *p)
  1137. {
  1138. /*
  1139. * We can race with wait_task_zombie() from another thread.
  1140. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1141. * can't confuse the checks below.
  1142. */
  1143. int exit_state = ACCESS_ONCE(p->exit_state);
  1144. int ret;
  1145. if (unlikely(exit_state == EXIT_DEAD))
  1146. return 0;
  1147. ret = eligible_child(wo, p);
  1148. if (!ret)
  1149. return ret;
  1150. ret = security_task_wait(p);
  1151. if (unlikely(ret < 0)) {
  1152. /*
  1153. * If we have not yet seen any eligible child,
  1154. * then let this error code replace -ECHILD.
  1155. * A permission error will give the user a clue
  1156. * to look for security policy problems, rather
  1157. * than for mysterious wait bugs.
  1158. */
  1159. if (wo->notask_error)
  1160. wo->notask_error = ret;
  1161. return 0;
  1162. }
  1163. if (unlikely(exit_state == EXIT_TRACE)) {
  1164. /*
  1165. * ptrace == 0 means we are the natural parent. In this case
  1166. * we should clear notask_error, debugger will notify us.
  1167. */
  1168. if (likely(!ptrace))
  1169. wo->notask_error = 0;
  1170. return 0;
  1171. }
  1172. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1173. /*
  1174. * If it is traced by its real parent's group, just pretend
  1175. * the caller is ptrace_do_wait() and reap this child if it
  1176. * is zombie.
  1177. *
  1178. * This also hides group stop state from real parent; otherwise
  1179. * a single stop can be reported twice as group and ptrace stop.
  1180. * If a ptracer wants to distinguish these two events for its
  1181. * own children it should create a separate process which takes
  1182. * the role of real parent.
  1183. */
  1184. if (!ptrace_reparented(p))
  1185. ptrace = 1;
  1186. }
  1187. /* slay zombie? */
  1188. if (exit_state == EXIT_ZOMBIE) {
  1189. /* we don't reap group leaders with subthreads */
  1190. if (!delay_group_leader(p)) {
  1191. /*
  1192. * A zombie ptracee is only visible to its ptracer.
  1193. * Notification and reaping will be cascaded to the
  1194. * real parent when the ptracer detaches.
  1195. */
  1196. if (unlikely(ptrace) || likely(!p->ptrace))
  1197. return wait_task_zombie(wo, p);
  1198. }
  1199. /*
  1200. * Allow access to stopped/continued state via zombie by
  1201. * falling through. Clearing of notask_error is complex.
  1202. *
  1203. * When !@ptrace:
  1204. *
  1205. * If WEXITED is set, notask_error should naturally be
  1206. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1207. * so, if there are live subthreads, there are events to
  1208. * wait for. If all subthreads are dead, it's still safe
  1209. * to clear - this function will be called again in finite
  1210. * amount time once all the subthreads are released and
  1211. * will then return without clearing.
  1212. *
  1213. * When @ptrace:
  1214. *
  1215. * Stopped state is per-task and thus can't change once the
  1216. * target task dies. Only continued and exited can happen.
  1217. * Clear notask_error if WCONTINUED | WEXITED.
  1218. */
  1219. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1220. wo->notask_error = 0;
  1221. } else {
  1222. /*
  1223. * @p is alive and it's gonna stop, continue or exit, so
  1224. * there always is something to wait for.
  1225. */
  1226. wo->notask_error = 0;
  1227. }
  1228. /*
  1229. * Wait for stopped. Depending on @ptrace, different stopped state
  1230. * is used and the two don't interact with each other.
  1231. */
  1232. ret = wait_task_stopped(wo, ptrace, p);
  1233. if (ret)
  1234. return ret;
  1235. /*
  1236. * Wait for continued. There's only one continued state and the
  1237. * ptracer can consume it which can confuse the real parent. Don't
  1238. * use WCONTINUED from ptracer. You don't need or want it.
  1239. */
  1240. return wait_task_continued(wo, p);
  1241. }
  1242. /*
  1243. * Do the work of do_wait() for one thread in the group, @tsk.
  1244. *
  1245. * -ECHILD should be in ->notask_error before the first call.
  1246. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1247. * Returns zero if the search for a child should continue; then
  1248. * ->notask_error is 0 if there were any eligible children,
  1249. * or another error from security_task_wait(), or still -ECHILD.
  1250. */
  1251. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1252. {
  1253. struct task_struct *p;
  1254. list_for_each_entry(p, &tsk->children, sibling) {
  1255. int ret = wait_consider_task(wo, 0, p);
  1256. if (ret)
  1257. return ret;
  1258. }
  1259. return 0;
  1260. }
  1261. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1262. {
  1263. struct task_struct *p;
  1264. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1265. int ret = wait_consider_task(wo, 1, p);
  1266. if (ret)
  1267. return ret;
  1268. }
  1269. return 0;
  1270. }
  1271. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1272. int sync, void *key)
  1273. {
  1274. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1275. child_wait);
  1276. struct task_struct *p = key;
  1277. if (!eligible_pid(wo, p))
  1278. return 0;
  1279. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1280. return 0;
  1281. return default_wake_function(wait, mode, sync, key);
  1282. }
  1283. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1284. {
  1285. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1286. TASK_INTERRUPTIBLE, 1, p);
  1287. }
  1288. static long do_wait(struct wait_opts *wo)
  1289. {
  1290. struct task_struct *tsk;
  1291. int retval;
  1292. trace_sched_process_wait(wo->wo_pid);
  1293. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1294. wo->child_wait.private = current;
  1295. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1296. repeat:
  1297. /*
  1298. * If there is nothing that can match our criteria, just get out.
  1299. * We will clear ->notask_error to zero if we see any child that
  1300. * might later match our criteria, even if we are not able to reap
  1301. * it yet.
  1302. */
  1303. wo->notask_error = -ECHILD;
  1304. if ((wo->wo_type < PIDTYPE_MAX) &&
  1305. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1306. goto notask;
  1307. set_current_state(TASK_INTERRUPTIBLE);
  1308. read_lock(&tasklist_lock);
  1309. tsk = current;
  1310. do {
  1311. retval = do_wait_thread(wo, tsk);
  1312. if (retval)
  1313. goto end;
  1314. retval = ptrace_do_wait(wo, tsk);
  1315. if (retval)
  1316. goto end;
  1317. if (wo->wo_flags & __WNOTHREAD)
  1318. break;
  1319. } while_each_thread(current, tsk);
  1320. read_unlock(&tasklist_lock);
  1321. notask:
  1322. retval = wo->notask_error;
  1323. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1324. retval = -ERESTARTSYS;
  1325. if (!signal_pending(current)) {
  1326. schedule();
  1327. goto repeat;
  1328. }
  1329. }
  1330. end:
  1331. __set_current_state(TASK_RUNNING);
  1332. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1333. return retval;
  1334. }
  1335. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1336. infop, int, options, struct rusage __user *, ru)
  1337. {
  1338. struct wait_opts wo;
  1339. struct pid *pid = NULL;
  1340. enum pid_type type;
  1341. long ret;
  1342. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1343. return -EINVAL;
  1344. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1345. return -EINVAL;
  1346. switch (which) {
  1347. case P_ALL:
  1348. type = PIDTYPE_MAX;
  1349. break;
  1350. case P_PID:
  1351. type = PIDTYPE_PID;
  1352. if (upid <= 0)
  1353. return -EINVAL;
  1354. break;
  1355. case P_PGID:
  1356. type = PIDTYPE_PGID;
  1357. if (upid <= 0)
  1358. return -EINVAL;
  1359. break;
  1360. default:
  1361. return -EINVAL;
  1362. }
  1363. if (type < PIDTYPE_MAX)
  1364. pid = find_get_pid(upid);
  1365. wo.wo_type = type;
  1366. wo.wo_pid = pid;
  1367. wo.wo_flags = options;
  1368. wo.wo_info = infop;
  1369. wo.wo_stat = NULL;
  1370. wo.wo_rusage = ru;
  1371. ret = do_wait(&wo);
  1372. if (ret > 0) {
  1373. ret = 0;
  1374. } else if (infop) {
  1375. /*
  1376. * For a WNOHANG return, clear out all the fields
  1377. * we would set so the user can easily tell the
  1378. * difference.
  1379. */
  1380. if (!ret)
  1381. ret = put_user(0, &infop->si_signo);
  1382. if (!ret)
  1383. ret = put_user(0, &infop->si_errno);
  1384. if (!ret)
  1385. ret = put_user(0, &infop->si_code);
  1386. if (!ret)
  1387. ret = put_user(0, &infop->si_pid);
  1388. if (!ret)
  1389. ret = put_user(0, &infop->si_uid);
  1390. if (!ret)
  1391. ret = put_user(0, &infop->si_status);
  1392. }
  1393. put_pid(pid);
  1394. return ret;
  1395. }
  1396. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1397. int, options, struct rusage __user *, ru)
  1398. {
  1399. struct wait_opts wo;
  1400. struct pid *pid = NULL;
  1401. enum pid_type type;
  1402. long ret;
  1403. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1404. __WNOTHREAD|__WCLONE|__WALL))
  1405. return -EINVAL;
  1406. if (upid == -1)
  1407. type = PIDTYPE_MAX;
  1408. else if (upid < 0) {
  1409. type = PIDTYPE_PGID;
  1410. pid = find_get_pid(-upid);
  1411. } else if (upid == 0) {
  1412. type = PIDTYPE_PGID;
  1413. pid = get_task_pid(current, PIDTYPE_PGID);
  1414. } else /* upid > 0 */ {
  1415. type = PIDTYPE_PID;
  1416. pid = find_get_pid(upid);
  1417. }
  1418. wo.wo_type = type;
  1419. wo.wo_pid = pid;
  1420. wo.wo_flags = options | WEXITED;
  1421. wo.wo_info = NULL;
  1422. wo.wo_stat = stat_addr;
  1423. wo.wo_rusage = ru;
  1424. ret = do_wait(&wo);
  1425. put_pid(pid);
  1426. return ret;
  1427. }
  1428. #ifdef __ARCH_WANT_SYS_WAITPID
  1429. /*
  1430. * sys_waitpid() remains for compatibility. waitpid() should be
  1431. * implemented by calling sys_wait4() from libc.a.
  1432. */
  1433. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1434. {
  1435. return sys_wait4(pid, stat_addr, options, NULL);
  1436. }
  1437. #endif