s5pv210-cpufreq.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*
  2. * Copyright (c) 2010 Samsung Electronics Co., Ltd.
  3. * http://www.samsung.com
  4. *
  5. * CPU frequency scaling for S5PC110/S5PV210
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/of.h>
  20. #include <linux/of_address.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/reboot.h>
  23. #include <linux/regulator/consumer.h>
  24. static void __iomem *clk_base;
  25. static void __iomem *dmc_base[2];
  26. #define S5P_CLKREG(x) (clk_base + (x))
  27. #define S5P_APLL_LOCK S5P_CLKREG(0x00)
  28. #define S5P_APLL_CON S5P_CLKREG(0x100)
  29. #define S5P_CLK_SRC0 S5P_CLKREG(0x200)
  30. #define S5P_CLK_SRC2 S5P_CLKREG(0x208)
  31. #define S5P_CLK_DIV0 S5P_CLKREG(0x300)
  32. #define S5P_CLK_DIV2 S5P_CLKREG(0x308)
  33. #define S5P_CLK_DIV6 S5P_CLKREG(0x318)
  34. #define S5P_CLKDIV_STAT0 S5P_CLKREG(0x1000)
  35. #define S5P_CLKDIV_STAT1 S5P_CLKREG(0x1004)
  36. #define S5P_CLKMUX_STAT0 S5P_CLKREG(0x1100)
  37. #define S5P_CLKMUX_STAT1 S5P_CLKREG(0x1104)
  38. #define S5P_ARM_MCS_CON S5P_CLKREG(0x6100)
  39. /* CLKSRC0 */
  40. #define S5P_CLKSRC0_MUX200_SHIFT (16)
  41. #define S5P_CLKSRC0_MUX200_MASK (0x1 << S5P_CLKSRC0_MUX200_SHIFT)
  42. #define S5P_CLKSRC0_MUX166_MASK (0x1<<20)
  43. #define S5P_CLKSRC0_MUX133_MASK (0x1<<24)
  44. /* CLKSRC2 */
  45. #define S5P_CLKSRC2_G3D_SHIFT (0)
  46. #define S5P_CLKSRC2_G3D_MASK (0x3 << S5P_CLKSRC2_G3D_SHIFT)
  47. #define S5P_CLKSRC2_MFC_SHIFT (4)
  48. #define S5P_CLKSRC2_MFC_MASK (0x3 << S5P_CLKSRC2_MFC_SHIFT)
  49. /* CLKDIV0 */
  50. #define S5P_CLKDIV0_APLL_SHIFT (0)
  51. #define S5P_CLKDIV0_APLL_MASK (0x7 << S5P_CLKDIV0_APLL_SHIFT)
  52. #define S5P_CLKDIV0_A2M_SHIFT (4)
  53. #define S5P_CLKDIV0_A2M_MASK (0x7 << S5P_CLKDIV0_A2M_SHIFT)
  54. #define S5P_CLKDIV0_HCLK200_SHIFT (8)
  55. #define S5P_CLKDIV0_HCLK200_MASK (0x7 << S5P_CLKDIV0_HCLK200_SHIFT)
  56. #define S5P_CLKDIV0_PCLK100_SHIFT (12)
  57. #define S5P_CLKDIV0_PCLK100_MASK (0x7 << S5P_CLKDIV0_PCLK100_SHIFT)
  58. #define S5P_CLKDIV0_HCLK166_SHIFT (16)
  59. #define S5P_CLKDIV0_HCLK166_MASK (0xF << S5P_CLKDIV0_HCLK166_SHIFT)
  60. #define S5P_CLKDIV0_PCLK83_SHIFT (20)
  61. #define S5P_CLKDIV0_PCLK83_MASK (0x7 << S5P_CLKDIV0_PCLK83_SHIFT)
  62. #define S5P_CLKDIV0_HCLK133_SHIFT (24)
  63. #define S5P_CLKDIV0_HCLK133_MASK (0xF << S5P_CLKDIV0_HCLK133_SHIFT)
  64. #define S5P_CLKDIV0_PCLK66_SHIFT (28)
  65. #define S5P_CLKDIV0_PCLK66_MASK (0x7 << S5P_CLKDIV0_PCLK66_SHIFT)
  66. /* CLKDIV2 */
  67. #define S5P_CLKDIV2_G3D_SHIFT (0)
  68. #define S5P_CLKDIV2_G3D_MASK (0xF << S5P_CLKDIV2_G3D_SHIFT)
  69. #define S5P_CLKDIV2_MFC_SHIFT (4)
  70. #define S5P_CLKDIV2_MFC_MASK (0xF << S5P_CLKDIV2_MFC_SHIFT)
  71. /* CLKDIV6 */
  72. #define S5P_CLKDIV6_ONEDRAM_SHIFT (28)
  73. #define S5P_CLKDIV6_ONEDRAM_MASK (0xF << S5P_CLKDIV6_ONEDRAM_SHIFT)
  74. static struct clk *dmc0_clk;
  75. static struct clk *dmc1_clk;
  76. static DEFINE_MUTEX(set_freq_lock);
  77. /* APLL M,P,S values for 1G/800Mhz */
  78. #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1)
  79. #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1)
  80. /* Use 800MHz when entering sleep mode */
  81. #define SLEEP_FREQ (800 * 1000)
  82. /* Tracks if cpu freqency can be updated anymore */
  83. static bool no_cpufreq_access;
  84. /*
  85. * DRAM configurations to calculate refresh counter for changing
  86. * frequency of memory.
  87. */
  88. struct dram_conf {
  89. unsigned long freq; /* HZ */
  90. unsigned long refresh; /* DRAM refresh counter * 1000 */
  91. };
  92. /* DRAM configuration (DMC0 and DMC1) */
  93. static struct dram_conf s5pv210_dram_conf[2];
  94. enum perf_level {
  95. L0, L1, L2, L3, L4,
  96. };
  97. enum s5pv210_mem_type {
  98. LPDDR = 0x1,
  99. LPDDR2 = 0x2,
  100. DDR2 = 0x4,
  101. };
  102. enum s5pv210_dmc_port {
  103. DMC0 = 0,
  104. DMC1,
  105. };
  106. static struct cpufreq_frequency_table s5pv210_freq_table[] = {
  107. {0, L0, 1000*1000},
  108. {0, L1, 800*1000},
  109. {0, L2, 400*1000},
  110. {0, L3, 200*1000},
  111. {0, L4, 100*1000},
  112. {0, 0, CPUFREQ_TABLE_END},
  113. };
  114. static struct regulator *arm_regulator;
  115. static struct regulator *int_regulator;
  116. struct s5pv210_dvs_conf {
  117. int arm_volt; /* uV */
  118. int int_volt; /* uV */
  119. };
  120. static const int arm_volt_max = 1350000;
  121. static const int int_volt_max = 1250000;
  122. static struct s5pv210_dvs_conf dvs_conf[] = {
  123. [L0] = {
  124. .arm_volt = 1250000,
  125. .int_volt = 1100000,
  126. },
  127. [L1] = {
  128. .arm_volt = 1200000,
  129. .int_volt = 1100000,
  130. },
  131. [L2] = {
  132. .arm_volt = 1050000,
  133. .int_volt = 1100000,
  134. },
  135. [L3] = {
  136. .arm_volt = 950000,
  137. .int_volt = 1100000,
  138. },
  139. [L4] = {
  140. .arm_volt = 950000,
  141. .int_volt = 1000000,
  142. },
  143. };
  144. static u32 clkdiv_val[5][11] = {
  145. /*
  146. * Clock divider value for following
  147. * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
  148. * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
  149. * ONEDRAM, MFC, G3D }
  150. */
  151. /* L0 : [1000/200/100][166/83][133/66][200/200] */
  152. {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
  153. /* L1 : [800/200/100][166/83][133/66][200/200] */
  154. {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
  155. /* L2 : [400/200/100][166/83][133/66][200/200] */
  156. {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  157. /* L3 : [200/200/100][166/83][133/66][200/200] */
  158. {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  159. /* L4 : [100/100/100][83/83][66/66][100/100] */
  160. {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
  161. };
  162. /*
  163. * This function set DRAM refresh counter
  164. * accoriding to operating frequency of DRAM
  165. * ch: DMC port number 0 or 1
  166. * freq: Operating frequency of DRAM(KHz)
  167. */
  168. static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
  169. {
  170. unsigned long tmp, tmp1;
  171. void __iomem *reg = NULL;
  172. if (ch == DMC0) {
  173. reg = (dmc_base[0] + 0x30);
  174. } else if (ch == DMC1) {
  175. reg = (dmc_base[1] + 0x30);
  176. } else {
  177. pr_err("Cannot find DMC port\n");
  178. return;
  179. }
  180. /* Find current DRAM frequency */
  181. tmp = s5pv210_dram_conf[ch].freq;
  182. tmp /= freq;
  183. tmp1 = s5pv210_dram_conf[ch].refresh;
  184. tmp1 /= tmp;
  185. __raw_writel(tmp1, reg);
  186. }
  187. static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index)
  188. {
  189. unsigned long reg;
  190. unsigned int priv_index;
  191. unsigned int pll_changing = 0;
  192. unsigned int bus_speed_changing = 0;
  193. unsigned int old_freq, new_freq;
  194. int arm_volt, int_volt;
  195. int ret = 0;
  196. mutex_lock(&set_freq_lock);
  197. if (no_cpufreq_access) {
  198. pr_err("Denied access to %s as it is disabled temporarily\n",
  199. __func__);
  200. ret = -EINVAL;
  201. goto exit;
  202. }
  203. old_freq = policy->cur;
  204. new_freq = s5pv210_freq_table[index].frequency;
  205. /* Finding current running level index */
  206. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  207. old_freq, CPUFREQ_RELATION_H,
  208. &priv_index)) {
  209. ret = -EINVAL;
  210. goto exit;
  211. }
  212. arm_volt = dvs_conf[index].arm_volt;
  213. int_volt = dvs_conf[index].int_volt;
  214. if (new_freq > old_freq) {
  215. ret = regulator_set_voltage(arm_regulator,
  216. arm_volt, arm_volt_max);
  217. if (ret)
  218. goto exit;
  219. ret = regulator_set_voltage(int_regulator,
  220. int_volt, int_volt_max);
  221. if (ret)
  222. goto exit;
  223. }
  224. /* Check if there need to change PLL */
  225. if ((index == L0) || (priv_index == L0))
  226. pll_changing = 1;
  227. /* Check if there need to change System bus clock */
  228. if ((index == L4) || (priv_index == L4))
  229. bus_speed_changing = 1;
  230. if (bus_speed_changing) {
  231. /*
  232. * Reconfigure DRAM refresh counter value for minimum
  233. * temporary clock while changing divider.
  234. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
  235. */
  236. if (pll_changing)
  237. s5pv210_set_refresh(DMC1, 83000);
  238. else
  239. s5pv210_set_refresh(DMC1, 100000);
  240. s5pv210_set_refresh(DMC0, 83000);
  241. }
  242. /*
  243. * APLL should be changed in this level
  244. * APLL -> MPLL(for stable transition) -> APLL
  245. * Some clock source's clock API are not prepared.
  246. * Do not use clock API in below code.
  247. */
  248. if (pll_changing) {
  249. /*
  250. * 1. Temporary Change divider for MFC and G3D
  251. * SCLKA2M(200/1=200)->(200/4=50)Mhz
  252. */
  253. reg = __raw_readl(S5P_CLK_DIV2);
  254. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  255. reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
  256. (3 << S5P_CLKDIV2_MFC_SHIFT);
  257. __raw_writel(reg, S5P_CLK_DIV2);
  258. /* For MFC, G3D dividing */
  259. do {
  260. reg = __raw_readl(S5P_CLKDIV_STAT0);
  261. } while (reg & ((1 << 16) | (1 << 17)));
  262. /*
  263. * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
  264. * (200/4=50)->(667/4=166)Mhz
  265. */
  266. reg = __raw_readl(S5P_CLK_SRC2);
  267. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  268. reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
  269. (1 << S5P_CLKSRC2_MFC_SHIFT);
  270. __raw_writel(reg, S5P_CLK_SRC2);
  271. do {
  272. reg = __raw_readl(S5P_CLKMUX_STAT1);
  273. } while (reg & ((1 << 7) | (1 << 3)));
  274. /*
  275. * 3. DMC1 refresh count for 133Mhz if (index == L4) is
  276. * true refresh counter is already programed in upper
  277. * code. 0x287@83Mhz
  278. */
  279. if (!bus_speed_changing)
  280. s5pv210_set_refresh(DMC1, 133000);
  281. /* 4. SCLKAPLL -> SCLKMPLL */
  282. reg = __raw_readl(S5P_CLK_SRC0);
  283. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  284. reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
  285. __raw_writel(reg, S5P_CLK_SRC0);
  286. do {
  287. reg = __raw_readl(S5P_CLKMUX_STAT0);
  288. } while (reg & (0x1 << 18));
  289. }
  290. /* Change divider */
  291. reg = __raw_readl(S5P_CLK_DIV0);
  292. reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
  293. S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
  294. S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
  295. S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
  296. reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
  297. (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
  298. (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
  299. (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
  300. (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
  301. (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
  302. (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
  303. (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
  304. __raw_writel(reg, S5P_CLK_DIV0);
  305. do {
  306. reg = __raw_readl(S5P_CLKDIV_STAT0);
  307. } while (reg & 0xff);
  308. /* ARM MCS value changed */
  309. reg = __raw_readl(S5P_ARM_MCS_CON);
  310. reg &= ~0x3;
  311. if (index >= L3)
  312. reg |= 0x3;
  313. else
  314. reg |= 0x1;
  315. __raw_writel(reg, S5P_ARM_MCS_CON);
  316. if (pll_changing) {
  317. /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
  318. __raw_writel(0x2cf, S5P_APLL_LOCK);
  319. /*
  320. * 6. Turn on APLL
  321. * 6-1. Set PMS values
  322. * 6-2. Wait untile the PLL is locked
  323. */
  324. if (index == L0)
  325. __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
  326. else
  327. __raw_writel(APLL_VAL_800, S5P_APLL_CON);
  328. do {
  329. reg = __raw_readl(S5P_APLL_CON);
  330. } while (!(reg & (0x1 << 29)));
  331. /*
  332. * 7. Change souce clock from SCLKMPLL(667Mhz)
  333. * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
  334. * (667/4=166)->(200/4=50)Mhz
  335. */
  336. reg = __raw_readl(S5P_CLK_SRC2);
  337. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  338. reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
  339. (0 << S5P_CLKSRC2_MFC_SHIFT);
  340. __raw_writel(reg, S5P_CLK_SRC2);
  341. do {
  342. reg = __raw_readl(S5P_CLKMUX_STAT1);
  343. } while (reg & ((1 << 7) | (1 << 3)));
  344. /*
  345. * 8. Change divider for MFC and G3D
  346. * (200/4=50)->(200/1=200)Mhz
  347. */
  348. reg = __raw_readl(S5P_CLK_DIV2);
  349. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  350. reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
  351. (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
  352. __raw_writel(reg, S5P_CLK_DIV2);
  353. /* For MFC, G3D dividing */
  354. do {
  355. reg = __raw_readl(S5P_CLKDIV_STAT0);
  356. } while (reg & ((1 << 16) | (1 << 17)));
  357. /* 9. Change MPLL to APLL in MSYS_MUX */
  358. reg = __raw_readl(S5P_CLK_SRC0);
  359. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  360. reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
  361. __raw_writel(reg, S5P_CLK_SRC0);
  362. do {
  363. reg = __raw_readl(S5P_CLKMUX_STAT0);
  364. } while (reg & (0x1 << 18));
  365. /*
  366. * 10. DMC1 refresh counter
  367. * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
  368. * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
  369. */
  370. if (!bus_speed_changing)
  371. s5pv210_set_refresh(DMC1, 200000);
  372. }
  373. /*
  374. * L4 level need to change memory bus speed, hence onedram clock divier
  375. * and memory refresh parameter should be changed
  376. */
  377. if (bus_speed_changing) {
  378. reg = __raw_readl(S5P_CLK_DIV6);
  379. reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
  380. reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
  381. __raw_writel(reg, S5P_CLK_DIV6);
  382. do {
  383. reg = __raw_readl(S5P_CLKDIV_STAT1);
  384. } while (reg & (1 << 15));
  385. /* Reconfigure DRAM refresh counter value */
  386. if (index != L4) {
  387. /*
  388. * DMC0 : 166Mhz
  389. * DMC1 : 200Mhz
  390. */
  391. s5pv210_set_refresh(DMC0, 166000);
  392. s5pv210_set_refresh(DMC1, 200000);
  393. } else {
  394. /*
  395. * DMC0 : 83Mhz
  396. * DMC1 : 100Mhz
  397. */
  398. s5pv210_set_refresh(DMC0, 83000);
  399. s5pv210_set_refresh(DMC1, 100000);
  400. }
  401. }
  402. if (new_freq < old_freq) {
  403. regulator_set_voltage(int_regulator,
  404. int_volt, int_volt_max);
  405. regulator_set_voltage(arm_regulator,
  406. arm_volt, arm_volt_max);
  407. }
  408. printk(KERN_DEBUG "Perf changed[L%d]\n", index);
  409. exit:
  410. mutex_unlock(&set_freq_lock);
  411. return ret;
  412. }
  413. static int check_mem_type(void __iomem *dmc_reg)
  414. {
  415. unsigned long val;
  416. val = __raw_readl(dmc_reg + 0x4);
  417. val = (val & (0xf << 8));
  418. return val >> 8;
  419. }
  420. static int s5pv210_cpu_init(struct cpufreq_policy *policy)
  421. {
  422. unsigned long mem_type;
  423. int ret;
  424. policy->clk = clk_get(NULL, "armclk");
  425. if (IS_ERR(policy->clk))
  426. return PTR_ERR(policy->clk);
  427. dmc0_clk = clk_get(NULL, "sclk_dmc0");
  428. if (IS_ERR(dmc0_clk)) {
  429. ret = PTR_ERR(dmc0_clk);
  430. goto out_dmc0;
  431. }
  432. dmc1_clk = clk_get(NULL, "hclk_msys");
  433. if (IS_ERR(dmc1_clk)) {
  434. ret = PTR_ERR(dmc1_clk);
  435. goto out_dmc1;
  436. }
  437. if (policy->cpu != 0) {
  438. ret = -EINVAL;
  439. goto out_dmc1;
  440. }
  441. /*
  442. * check_mem_type : This driver only support LPDDR & LPDDR2.
  443. * other memory type is not supported.
  444. */
  445. mem_type = check_mem_type(dmc_base[0]);
  446. if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
  447. pr_err("CPUFreq doesn't support this memory type\n");
  448. ret = -EINVAL;
  449. goto out_dmc1;
  450. }
  451. /* Find current refresh counter and frequency each DMC */
  452. s5pv210_dram_conf[0].refresh = (__raw_readl(dmc_base[0] + 0x30) * 1000);
  453. s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
  454. s5pv210_dram_conf[1].refresh = (__raw_readl(dmc_base[1] + 0x30) * 1000);
  455. s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
  456. policy->suspend_freq = SLEEP_FREQ;
  457. return cpufreq_generic_init(policy, s5pv210_freq_table, 40000);
  458. out_dmc1:
  459. clk_put(dmc0_clk);
  460. out_dmc0:
  461. clk_put(policy->clk);
  462. return ret;
  463. }
  464. static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this,
  465. unsigned long event, void *ptr)
  466. {
  467. int ret;
  468. ret = cpufreq_driver_target(cpufreq_cpu_get(0), SLEEP_FREQ, 0);
  469. if (ret < 0)
  470. return NOTIFY_BAD;
  471. no_cpufreq_access = true;
  472. return NOTIFY_DONE;
  473. }
  474. static struct cpufreq_driver s5pv210_driver = {
  475. .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  476. .verify = cpufreq_generic_frequency_table_verify,
  477. .target_index = s5pv210_target,
  478. .get = cpufreq_generic_get,
  479. .init = s5pv210_cpu_init,
  480. .name = "s5pv210",
  481. .suspend = cpufreq_generic_suspend,
  482. .resume = cpufreq_generic_suspend, /* We need to set SLEEP FREQ again */
  483. };
  484. static struct notifier_block s5pv210_cpufreq_reboot_notifier = {
  485. .notifier_call = s5pv210_cpufreq_reboot_notifier_event,
  486. };
  487. static int s5pv210_cpufreq_probe(struct platform_device *pdev)
  488. {
  489. struct device_node *np;
  490. int id;
  491. /*
  492. * HACK: This is a temporary workaround to get access to clock
  493. * and DMC controller registers directly and remove static mappings
  494. * and dependencies on platform headers. It is necessary to enable
  495. * S5PV210 multi-platform support and will be removed together with
  496. * this whole driver as soon as S5PV210 gets migrated to use
  497. * cpufreq-dt driver.
  498. */
  499. np = of_find_compatible_node(NULL, NULL, "samsung,s5pv210-clock");
  500. if (!np) {
  501. pr_err("%s: failed to find clock controller DT node\n",
  502. __func__);
  503. return -ENODEV;
  504. }
  505. clk_base = of_iomap(np, 0);
  506. if (!clk_base) {
  507. pr_err("%s: failed to map clock registers\n", __func__);
  508. return -EFAULT;
  509. }
  510. for_each_compatible_node(np, NULL, "samsung,s5pv210-dmc") {
  511. id = of_alias_get_id(np, "dmc");
  512. if (id < 0 || id >= ARRAY_SIZE(dmc_base)) {
  513. pr_err("%s: failed to get alias of dmc node '%s'\n",
  514. __func__, np->name);
  515. return id;
  516. }
  517. dmc_base[id] = of_iomap(np, 0);
  518. if (!dmc_base[id]) {
  519. pr_err("%s: failed to map dmc%d registers\n",
  520. __func__, id);
  521. return -EFAULT;
  522. }
  523. }
  524. for (id = 0; id < ARRAY_SIZE(dmc_base); ++id) {
  525. if (!dmc_base[id]) {
  526. pr_err("%s: failed to find dmc%d node\n", __func__, id);
  527. return -ENODEV;
  528. }
  529. }
  530. arm_regulator = regulator_get(NULL, "vddarm");
  531. if (IS_ERR(arm_regulator)) {
  532. pr_err("failed to get regulator vddarm\n");
  533. return PTR_ERR(arm_regulator);
  534. }
  535. int_regulator = regulator_get(NULL, "vddint");
  536. if (IS_ERR(int_regulator)) {
  537. pr_err("failed to get regulator vddint\n");
  538. regulator_put(arm_regulator);
  539. return PTR_ERR(int_regulator);
  540. }
  541. register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier);
  542. return cpufreq_register_driver(&s5pv210_driver);
  543. }
  544. static struct platform_driver s5pv210_cpufreq_platdrv = {
  545. .driver = {
  546. .name = "s5pv210-cpufreq",
  547. },
  548. .probe = s5pv210_cpufreq_probe,
  549. };
  550. builtin_platform_driver(s5pv210_cpufreq_platdrv);