urb.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/log2.h>
  6. #include <linux/usb.h>
  7. #include <linux/wait.h>
  8. #include <linux/usb/hcd.h>
  9. #include <linux/scatterlist.h>
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, increments the usage counter, and returns a pointer to it.
  49. *
  50. * If the driver want to use this urb for interrupt, control, or bulk
  51. * endpoints, pass '0' as the number of iso packets.
  52. *
  53. * The driver must call usb_free_urb() when it is finished with the urb.
  54. *
  55. * Return: A pointer to the new urb, or %NULL if no memory is available.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb)
  64. return NULL;
  65. usb_init_urb(urb);
  66. return urb;
  67. }
  68. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  69. /**
  70. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  71. * @urb: pointer to the urb to free, may be NULL
  72. *
  73. * Must be called when a user of a urb is finished with it. When the last user
  74. * of the urb calls this function, the memory of the urb is freed.
  75. *
  76. * Note: The transfer buffer associated with the urb is not freed unless the
  77. * URB_FREE_BUFFER transfer flag is set.
  78. */
  79. void usb_free_urb(struct urb *urb)
  80. {
  81. if (urb)
  82. kref_put(&urb->kref, urb_destroy);
  83. }
  84. EXPORT_SYMBOL_GPL(usb_free_urb);
  85. /**
  86. * usb_get_urb - increments the reference count of the urb
  87. * @urb: pointer to the urb to modify, may be NULL
  88. *
  89. * This must be called whenever a urb is transferred from a device driver to a
  90. * host controller driver. This allows proper reference counting to happen
  91. * for urbs.
  92. *
  93. * Return: A pointer to the urb with the incremented reference counter.
  94. */
  95. struct urb *usb_get_urb(struct urb *urb)
  96. {
  97. if (urb)
  98. kref_get(&urb->kref);
  99. return urb;
  100. }
  101. EXPORT_SYMBOL_GPL(usb_get_urb);
  102. /**
  103. * usb_anchor_urb - anchors an URB while it is processed
  104. * @urb: pointer to the urb to anchor
  105. * @anchor: pointer to the anchor
  106. *
  107. * This can be called to have access to URBs which are to be executed
  108. * without bothering to track them
  109. */
  110. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  111. {
  112. unsigned long flags;
  113. spin_lock_irqsave(&anchor->lock, flags);
  114. usb_get_urb(urb);
  115. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  116. urb->anchor = anchor;
  117. if (unlikely(anchor->poisoned))
  118. atomic_inc(&urb->reject);
  119. spin_unlock_irqrestore(&anchor->lock, flags);
  120. }
  121. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  122. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  123. {
  124. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  125. list_empty(&anchor->urb_list);
  126. }
  127. /* Callers must hold anchor->lock */
  128. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  129. {
  130. urb->anchor = NULL;
  131. list_del(&urb->anchor_list);
  132. usb_put_urb(urb);
  133. if (usb_anchor_check_wakeup(anchor))
  134. wake_up(&anchor->wait);
  135. }
  136. /**
  137. * usb_unanchor_urb - unanchors an URB
  138. * @urb: pointer to the urb to anchor
  139. *
  140. * Call this to stop the system keeping track of this URB
  141. */
  142. void usb_unanchor_urb(struct urb *urb)
  143. {
  144. unsigned long flags;
  145. struct usb_anchor *anchor;
  146. if (!urb)
  147. return;
  148. anchor = urb->anchor;
  149. if (!anchor)
  150. return;
  151. spin_lock_irqsave(&anchor->lock, flags);
  152. /*
  153. * At this point, we could be competing with another thread which
  154. * has the same intention. To protect the urb from being unanchored
  155. * twice, only the winner of the race gets the job.
  156. */
  157. if (likely(anchor == urb->anchor))
  158. __usb_unanchor_urb(urb, anchor);
  159. spin_unlock_irqrestore(&anchor->lock, flags);
  160. }
  161. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  162. /*-------------------------------------------------------------------*/
  163. /**
  164. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  165. * @urb: pointer to the urb describing the request
  166. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  167. * of valid options for this.
  168. *
  169. * This submits a transfer request, and transfers control of the URB
  170. * describing that request to the USB subsystem. Request completion will
  171. * be indicated later, asynchronously, by calling the completion handler.
  172. * The three types of completion are success, error, and unlink
  173. * (a software-induced fault, also called "request cancellation").
  174. *
  175. * URBs may be submitted in interrupt context.
  176. *
  177. * The caller must have correctly initialized the URB before submitting
  178. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  179. * available to ensure that most fields are correctly initialized, for
  180. * the particular kind of transfer, although they will not initialize
  181. * any transfer flags.
  182. *
  183. * If the submission is successful, the complete() callback from the URB
  184. * will be called exactly once, when the USB core and Host Controller Driver
  185. * (HCD) are finished with the URB. When the completion function is called,
  186. * control of the URB is returned to the device driver which issued the
  187. * request. The completion handler may then immediately free or reuse that
  188. * URB.
  189. *
  190. * With few exceptions, USB device drivers should never access URB fields
  191. * provided by usbcore or the HCD until its complete() is called.
  192. * The exceptions relate to periodic transfer scheduling. For both
  193. * interrupt and isochronous urbs, as part of successful URB submission
  194. * urb->interval is modified to reflect the actual transfer period used
  195. * (normally some power of two units). And for isochronous urbs,
  196. * urb->start_frame is modified to reflect when the URB's transfers were
  197. * scheduled to start.
  198. *
  199. * Not all isochronous transfer scheduling policies will work, but most
  200. * host controller drivers should easily handle ISO queues going from now
  201. * until 10-200 msec into the future. Drivers should try to keep at
  202. * least one or two msec of data in the queue; many controllers require
  203. * that new transfers start at least 1 msec in the future when they are
  204. * added. If the driver is unable to keep up and the queue empties out,
  205. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  206. * If the flag is set, or if the queue is idle, then the URB is always
  207. * assigned to the first available (and not yet expired) slot in the
  208. * endpoint's schedule. If the flag is not set and the queue is active
  209. * then the URB is always assigned to the next slot in the schedule
  210. * following the end of the endpoint's previous URB, even if that slot is
  211. * in the past. When a packet is assigned in this way to a slot that has
  212. * already expired, the packet is not transmitted and the corresponding
  213. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  214. * would happen to all the packets in the URB, submission fails with a
  215. * -EXDEV error code.
  216. *
  217. * For control endpoints, the synchronous usb_control_msg() call is
  218. * often used (in non-interrupt context) instead of this call.
  219. * That is often used through convenience wrappers, for the requests
  220. * that are standardized in the USB 2.0 specification. For bulk
  221. * endpoints, a synchronous usb_bulk_msg() call is available.
  222. *
  223. * Return:
  224. * 0 on successful submissions. A negative error number otherwise.
  225. *
  226. * Request Queuing:
  227. *
  228. * URBs may be submitted to endpoints before previous ones complete, to
  229. * minimize the impact of interrupt latencies and system overhead on data
  230. * throughput. With that queuing policy, an endpoint's queue would never
  231. * be empty. This is required for continuous isochronous data streams,
  232. * and may also be required for some kinds of interrupt transfers. Such
  233. * queuing also maximizes bandwidth utilization by letting USB controllers
  234. * start work on later requests before driver software has finished the
  235. * completion processing for earlier (successful) requests.
  236. *
  237. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  238. * than one. This was previously a HCD-specific behavior, except for ISO
  239. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  240. * after faults (transfer errors or cancellation).
  241. *
  242. * Reserved Bandwidth Transfers:
  243. *
  244. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  245. * using the interval specified in the urb. Submitting the first urb to
  246. * the endpoint reserves the bandwidth necessary to make those transfers.
  247. * If the USB subsystem can't allocate sufficient bandwidth to perform
  248. * the periodic request, submitting such a periodic request should fail.
  249. *
  250. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  251. * when the alt setting is selected. If there is not enough bus bandwidth, the
  252. * configuration/alt setting request will fail. Therefore, submissions to
  253. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  254. * constraints.
  255. *
  256. * Device drivers must explicitly request that repetition, by ensuring that
  257. * some URB is always on the endpoint's queue (except possibly for short
  258. * periods during completion callbacks). When there is no longer an urb
  259. * queued, the endpoint's bandwidth reservation is canceled. This means
  260. * drivers can use their completion handlers to ensure they keep bandwidth
  261. * they need, by reinitializing and resubmitting the just-completed urb
  262. * until the driver longer needs that periodic bandwidth.
  263. *
  264. * Memory Flags:
  265. *
  266. * The general rules for how to decide which mem_flags to use
  267. * are the same as for kmalloc. There are four
  268. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  269. * GFP_ATOMIC.
  270. *
  271. * GFP_NOFS is not ever used, as it has not been implemented yet.
  272. *
  273. * GFP_ATOMIC is used when
  274. * (a) you are inside a completion handler, an interrupt, bottom half,
  275. * tasklet or timer, or
  276. * (b) you are holding a spinlock or rwlock (does not apply to
  277. * semaphores), or
  278. * (c) current->state != TASK_RUNNING, this is the case only after
  279. * you've changed it.
  280. *
  281. * GFP_NOIO is used in the block io path and error handling of storage
  282. * devices.
  283. *
  284. * All other situations use GFP_KERNEL.
  285. *
  286. * Some more specific rules for mem_flags can be inferred, such as
  287. * (1) start_xmit, timeout, and receive methods of network drivers must
  288. * use GFP_ATOMIC (they are called with a spinlock held);
  289. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  290. * called with a spinlock held);
  291. * (3) If you use a kernel thread with a network driver you must use
  292. * GFP_NOIO, unless (b) or (c) apply;
  293. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  294. * apply or your are in a storage driver's block io path;
  295. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  296. * (6) changing firmware on a running storage or net device uses
  297. * GFP_NOIO, unless b) or c) apply
  298. *
  299. */
  300. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  301. {
  302. static int pipetypes[4] = {
  303. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  304. };
  305. int xfertype, max;
  306. struct usb_device *dev;
  307. struct usb_host_endpoint *ep;
  308. int is_out;
  309. unsigned int allowed;
  310. if (!urb || !urb->complete)
  311. return -EINVAL;
  312. if (urb->hcpriv) {
  313. WARN_ONCE(1, "URB %p submitted while active\n", urb);
  314. return -EBUSY;
  315. }
  316. dev = urb->dev;
  317. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  318. return -ENODEV;
  319. /* For now, get the endpoint from the pipe. Eventually drivers
  320. * will be required to set urb->ep directly and we will eliminate
  321. * urb->pipe.
  322. */
  323. ep = usb_pipe_endpoint(dev, urb->pipe);
  324. if (!ep)
  325. return -ENOENT;
  326. urb->ep = ep;
  327. urb->status = -EINPROGRESS;
  328. urb->actual_length = 0;
  329. /* Lots of sanity checks, so HCDs can rely on clean data
  330. * and don't need to duplicate tests
  331. */
  332. xfertype = usb_endpoint_type(&ep->desc);
  333. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  334. struct usb_ctrlrequest *setup =
  335. (struct usb_ctrlrequest *) urb->setup_packet;
  336. if (!setup)
  337. return -ENOEXEC;
  338. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  339. !setup->wLength;
  340. } else {
  341. is_out = usb_endpoint_dir_out(&ep->desc);
  342. }
  343. /* Clear the internal flags and cache the direction for later use */
  344. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  345. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  346. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  347. URB_DMA_SG_COMBINED);
  348. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  349. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  350. dev->state < USB_STATE_CONFIGURED)
  351. return -ENODEV;
  352. max = usb_endpoint_maxp(&ep->desc);
  353. if (max <= 0) {
  354. dev_dbg(&dev->dev,
  355. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  356. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  357. __func__, max);
  358. return -EMSGSIZE;
  359. }
  360. /* periodic transfers limit size per frame/uframe,
  361. * but drivers only control those sizes for ISO.
  362. * while we're checking, initialize return status.
  363. */
  364. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  365. int n, len;
  366. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  367. * 3 packets each
  368. */
  369. if (dev->speed >= USB_SPEED_SUPER) {
  370. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  371. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  372. max *= burst;
  373. max *= mult;
  374. }
  375. /* "high bandwidth" mode, 1-3 packets/uframe? */
  376. if (dev->speed == USB_SPEED_HIGH)
  377. max *= usb_endpoint_maxp_mult(&ep->desc);
  378. if (urb->number_of_packets <= 0)
  379. return -EINVAL;
  380. for (n = 0; n < urb->number_of_packets; n++) {
  381. len = urb->iso_frame_desc[n].length;
  382. if (len < 0 || len > max)
  383. return -EMSGSIZE;
  384. urb->iso_frame_desc[n].status = -EXDEV;
  385. urb->iso_frame_desc[n].actual_length = 0;
  386. }
  387. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  388. dev->speed != USB_SPEED_WIRELESS) {
  389. struct scatterlist *sg;
  390. int i;
  391. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  392. if (sg->length % max)
  393. return -EINVAL;
  394. }
  395. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  396. if (urb->transfer_buffer_length > INT_MAX)
  397. return -EMSGSIZE;
  398. /*
  399. * stuff that drivers shouldn't do, but which shouldn't
  400. * cause problems in HCDs if they get it wrong.
  401. */
  402. /* Check that the pipe's type matches the endpoint's type */
  403. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  404. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  405. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  406. /* Check against a simple/standard policy */
  407. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  408. URB_FREE_BUFFER);
  409. switch (xfertype) {
  410. case USB_ENDPOINT_XFER_BULK:
  411. case USB_ENDPOINT_XFER_INT:
  412. if (is_out)
  413. allowed |= URB_ZERO_PACKET;
  414. /* FALLTHROUGH */
  415. case USB_ENDPOINT_XFER_CONTROL:
  416. allowed |= URB_NO_FSBR; /* only affects UHCI */
  417. /* FALLTHROUGH */
  418. default: /* all non-iso endpoints */
  419. if (!is_out)
  420. allowed |= URB_SHORT_NOT_OK;
  421. break;
  422. case USB_ENDPOINT_XFER_ISOC:
  423. allowed |= URB_ISO_ASAP;
  424. break;
  425. }
  426. allowed &= urb->transfer_flags;
  427. /* warn if submitter gave bogus flags */
  428. if (allowed != urb->transfer_flags)
  429. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  430. urb->transfer_flags, allowed);
  431. /*
  432. * Force periodic transfer intervals to be legal values that are
  433. * a power of two (so HCDs don't need to).
  434. *
  435. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  436. * supports different values... this uses EHCI/UHCI defaults (and
  437. * EHCI can use smaller non-default values).
  438. */
  439. switch (xfertype) {
  440. case USB_ENDPOINT_XFER_ISOC:
  441. case USB_ENDPOINT_XFER_INT:
  442. /* too small? */
  443. switch (dev->speed) {
  444. case USB_SPEED_WIRELESS:
  445. if ((urb->interval < 6)
  446. && (xfertype == USB_ENDPOINT_XFER_INT))
  447. return -EINVAL;
  448. default:
  449. if (urb->interval <= 0)
  450. return -EINVAL;
  451. break;
  452. }
  453. /* too big? */
  454. switch (dev->speed) {
  455. case USB_SPEED_SUPER_PLUS:
  456. case USB_SPEED_SUPER: /* units are 125us */
  457. /* Handle up to 2^(16-1) microframes */
  458. if (urb->interval > (1 << 15))
  459. return -EINVAL;
  460. max = 1 << 15;
  461. break;
  462. case USB_SPEED_WIRELESS:
  463. if (urb->interval > 16)
  464. return -EINVAL;
  465. break;
  466. case USB_SPEED_HIGH: /* units are microframes */
  467. /* NOTE usb handles 2^15 */
  468. if (urb->interval > (1024 * 8))
  469. urb->interval = 1024 * 8;
  470. max = 1024 * 8;
  471. break;
  472. case USB_SPEED_FULL: /* units are frames/msec */
  473. case USB_SPEED_LOW:
  474. if (xfertype == USB_ENDPOINT_XFER_INT) {
  475. if (urb->interval > 255)
  476. return -EINVAL;
  477. /* NOTE ohci only handles up to 32 */
  478. max = 128;
  479. } else {
  480. if (urb->interval > 1024)
  481. urb->interval = 1024;
  482. /* NOTE usb and ohci handle up to 2^15 */
  483. max = 1024;
  484. }
  485. break;
  486. default:
  487. return -EINVAL;
  488. }
  489. if (dev->speed != USB_SPEED_WIRELESS) {
  490. /* Round down to a power of 2, no more than max */
  491. urb->interval = min(max, 1 << ilog2(urb->interval));
  492. }
  493. }
  494. return usb_hcd_submit_urb(urb, mem_flags);
  495. }
  496. EXPORT_SYMBOL_GPL(usb_submit_urb);
  497. /*-------------------------------------------------------------------*/
  498. /**
  499. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  500. * @urb: pointer to urb describing a previously submitted request,
  501. * may be NULL
  502. *
  503. * This routine cancels an in-progress request. URBs complete only once
  504. * per submission, and may be canceled only once per submission.
  505. * Successful cancellation means termination of @urb will be expedited
  506. * and the completion handler will be called with a status code
  507. * indicating that the request has been canceled (rather than any other
  508. * code).
  509. *
  510. * Drivers should not call this routine or related routines, such as
  511. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  512. * method has returned. The disconnect function should synchronize with
  513. * a driver's I/O routines to insure that all URB-related activity has
  514. * completed before it returns.
  515. *
  516. * This request is asynchronous, however the HCD might call the ->complete()
  517. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  518. * must not hold any locks that may be taken by the completion function.
  519. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  520. * probably not yet have been given back to the device driver. When it is
  521. * eventually called, the completion function will see @urb->status ==
  522. * -ECONNRESET.
  523. * Failure is indicated by usb_unlink_urb() returning any other value.
  524. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  525. * never submitted, or it was unlinked before, or the hardware is already
  526. * finished with it), even if the completion handler has not yet run.
  527. *
  528. * The URB must not be deallocated while this routine is running. In
  529. * particular, when a driver calls this routine, it must insure that the
  530. * completion handler cannot deallocate the URB.
  531. *
  532. * Return: -EINPROGRESS on success. See description for other values on
  533. * failure.
  534. *
  535. * Unlinking and Endpoint Queues:
  536. *
  537. * [The behaviors and guarantees described below do not apply to virtual
  538. * root hubs but only to endpoint queues for physical USB devices.]
  539. *
  540. * Host Controller Drivers (HCDs) place all the URBs for a particular
  541. * endpoint in a queue. Normally the queue advances as the controller
  542. * hardware processes each request. But when an URB terminates with an
  543. * error its queue generally stops (see below), at least until that URB's
  544. * completion routine returns. It is guaranteed that a stopped queue
  545. * will not restart until all its unlinked URBs have been fully retired,
  546. * with their completion routines run, even if that's not until some time
  547. * after the original completion handler returns. The same behavior and
  548. * guarantee apply when an URB terminates because it was unlinked.
  549. *
  550. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  551. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  552. * and -EREMOTEIO. Control endpoint queues behave the same way except
  553. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  554. * for isochronous endpoints are treated differently, because they must
  555. * advance at fixed rates. Such queues do not stop when an URB
  556. * encounters an error or is unlinked. An unlinked isochronous URB may
  557. * leave a gap in the stream of packets; it is undefined whether such
  558. * gaps can be filled in.
  559. *
  560. * Note that early termination of an URB because a short packet was
  561. * received will generate a -EREMOTEIO error if and only if the
  562. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  563. * drivers can build deep queues for large or complex bulk transfers
  564. * and clean them up reliably after any sort of aborted transfer by
  565. * unlinking all pending URBs at the first fault.
  566. *
  567. * When a control URB terminates with an error other than -EREMOTEIO, it
  568. * is quite likely that the status stage of the transfer will not take
  569. * place.
  570. */
  571. int usb_unlink_urb(struct urb *urb)
  572. {
  573. if (!urb)
  574. return -EINVAL;
  575. if (!urb->dev)
  576. return -ENODEV;
  577. if (!urb->ep)
  578. return -EIDRM;
  579. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  580. }
  581. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  582. /**
  583. * usb_kill_urb - cancel a transfer request and wait for it to finish
  584. * @urb: pointer to URB describing a previously submitted request,
  585. * may be NULL
  586. *
  587. * This routine cancels an in-progress request. It is guaranteed that
  588. * upon return all completion handlers will have finished and the URB
  589. * will be totally idle and available for reuse. These features make
  590. * this an ideal way to stop I/O in a disconnect() callback or close()
  591. * function. If the request has not already finished or been unlinked
  592. * the completion handler will see urb->status == -ENOENT.
  593. *
  594. * While the routine is running, attempts to resubmit the URB will fail
  595. * with error -EPERM. Thus even if the URB's completion handler always
  596. * tries to resubmit, it will not succeed and the URB will become idle.
  597. *
  598. * The URB must not be deallocated while this routine is running. In
  599. * particular, when a driver calls this routine, it must insure that the
  600. * completion handler cannot deallocate the URB.
  601. *
  602. * This routine may not be used in an interrupt context (such as a bottom
  603. * half or a completion handler), or when holding a spinlock, or in other
  604. * situations where the caller can't schedule().
  605. *
  606. * This routine should not be called by a driver after its disconnect
  607. * method has returned.
  608. */
  609. void usb_kill_urb(struct urb *urb)
  610. {
  611. might_sleep();
  612. if (!(urb && urb->dev && urb->ep))
  613. return;
  614. atomic_inc(&urb->reject);
  615. usb_hcd_unlink_urb(urb, -ENOENT);
  616. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  617. atomic_dec(&urb->reject);
  618. }
  619. EXPORT_SYMBOL_GPL(usb_kill_urb);
  620. /**
  621. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  622. * @urb: pointer to URB describing a previously submitted request,
  623. * may be NULL
  624. *
  625. * This routine cancels an in-progress request. It is guaranteed that
  626. * upon return all completion handlers will have finished and the URB
  627. * will be totally idle and cannot be reused. These features make
  628. * this an ideal way to stop I/O in a disconnect() callback.
  629. * If the request has not already finished or been unlinked
  630. * the completion handler will see urb->status == -ENOENT.
  631. *
  632. * After and while the routine runs, attempts to resubmit the URB will fail
  633. * with error -EPERM. Thus even if the URB's completion handler always
  634. * tries to resubmit, it will not succeed and the URB will become idle.
  635. *
  636. * The URB must not be deallocated while this routine is running. In
  637. * particular, when a driver calls this routine, it must insure that the
  638. * completion handler cannot deallocate the URB.
  639. *
  640. * This routine may not be used in an interrupt context (such as a bottom
  641. * half or a completion handler), or when holding a spinlock, or in other
  642. * situations where the caller can't schedule().
  643. *
  644. * This routine should not be called by a driver after its disconnect
  645. * method has returned.
  646. */
  647. void usb_poison_urb(struct urb *urb)
  648. {
  649. might_sleep();
  650. if (!urb)
  651. return;
  652. atomic_inc(&urb->reject);
  653. if (!urb->dev || !urb->ep)
  654. return;
  655. usb_hcd_unlink_urb(urb, -ENOENT);
  656. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  657. }
  658. EXPORT_SYMBOL_GPL(usb_poison_urb);
  659. void usb_unpoison_urb(struct urb *urb)
  660. {
  661. if (!urb)
  662. return;
  663. atomic_dec(&urb->reject);
  664. }
  665. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  666. /**
  667. * usb_block_urb - reliably prevent further use of an URB
  668. * @urb: pointer to URB to be blocked, may be NULL
  669. *
  670. * After the routine has run, attempts to resubmit the URB will fail
  671. * with error -EPERM. Thus even if the URB's completion handler always
  672. * tries to resubmit, it will not succeed and the URB will become idle.
  673. *
  674. * The URB must not be deallocated while this routine is running. In
  675. * particular, when a driver calls this routine, it must insure that the
  676. * completion handler cannot deallocate the URB.
  677. */
  678. void usb_block_urb(struct urb *urb)
  679. {
  680. if (!urb)
  681. return;
  682. atomic_inc(&urb->reject);
  683. }
  684. EXPORT_SYMBOL_GPL(usb_block_urb);
  685. /**
  686. * usb_kill_anchored_urbs - cancel transfer requests en masse
  687. * @anchor: anchor the requests are bound to
  688. *
  689. * this allows all outstanding URBs to be killed starting
  690. * from the back of the queue
  691. *
  692. * This routine should not be called by a driver after its disconnect
  693. * method has returned.
  694. */
  695. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  696. {
  697. struct urb *victim;
  698. spin_lock_irq(&anchor->lock);
  699. while (!list_empty(&anchor->urb_list)) {
  700. victim = list_entry(anchor->urb_list.prev, struct urb,
  701. anchor_list);
  702. /* we must make sure the URB isn't freed before we kill it*/
  703. usb_get_urb(victim);
  704. spin_unlock_irq(&anchor->lock);
  705. /* this will unanchor the URB */
  706. usb_kill_urb(victim);
  707. usb_put_urb(victim);
  708. spin_lock_irq(&anchor->lock);
  709. }
  710. spin_unlock_irq(&anchor->lock);
  711. }
  712. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  713. /**
  714. * usb_poison_anchored_urbs - cease all traffic from an anchor
  715. * @anchor: anchor the requests are bound to
  716. *
  717. * this allows all outstanding URBs to be poisoned starting
  718. * from the back of the queue. Newly added URBs will also be
  719. * poisoned
  720. *
  721. * This routine should not be called by a driver after its disconnect
  722. * method has returned.
  723. */
  724. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  725. {
  726. struct urb *victim;
  727. spin_lock_irq(&anchor->lock);
  728. anchor->poisoned = 1;
  729. while (!list_empty(&anchor->urb_list)) {
  730. victim = list_entry(anchor->urb_list.prev, struct urb,
  731. anchor_list);
  732. /* we must make sure the URB isn't freed before we kill it*/
  733. usb_get_urb(victim);
  734. spin_unlock_irq(&anchor->lock);
  735. /* this will unanchor the URB */
  736. usb_poison_urb(victim);
  737. usb_put_urb(victim);
  738. spin_lock_irq(&anchor->lock);
  739. }
  740. spin_unlock_irq(&anchor->lock);
  741. }
  742. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  743. /**
  744. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  745. * @anchor: anchor the requests are bound to
  746. *
  747. * Reverses the effect of usb_poison_anchored_urbs
  748. * the anchor can be used normally after it returns
  749. */
  750. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  751. {
  752. unsigned long flags;
  753. struct urb *lazarus;
  754. spin_lock_irqsave(&anchor->lock, flags);
  755. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  756. usb_unpoison_urb(lazarus);
  757. }
  758. anchor->poisoned = 0;
  759. spin_unlock_irqrestore(&anchor->lock, flags);
  760. }
  761. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  762. /**
  763. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  764. * @anchor: anchor the requests are bound to
  765. *
  766. * this allows all outstanding URBs to be unlinked starting
  767. * from the back of the queue. This function is asynchronous.
  768. * The unlinking is just triggered. It may happen after this
  769. * function has returned.
  770. *
  771. * This routine should not be called by a driver after its disconnect
  772. * method has returned.
  773. */
  774. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  775. {
  776. struct urb *victim;
  777. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  778. usb_unlink_urb(victim);
  779. usb_put_urb(victim);
  780. }
  781. }
  782. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  783. /**
  784. * usb_anchor_suspend_wakeups
  785. * @anchor: the anchor you want to suspend wakeups on
  786. *
  787. * Call this to stop the last urb being unanchored from waking up any
  788. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  789. * back path to delay waking up until after the completion handler has run.
  790. */
  791. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  792. {
  793. if (anchor)
  794. atomic_inc(&anchor->suspend_wakeups);
  795. }
  796. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  797. /**
  798. * usb_anchor_resume_wakeups
  799. * @anchor: the anchor you want to resume wakeups on
  800. *
  801. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  802. * wake up any current waiters if the anchor is empty.
  803. */
  804. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  805. {
  806. if (!anchor)
  807. return;
  808. atomic_dec(&anchor->suspend_wakeups);
  809. if (usb_anchor_check_wakeup(anchor))
  810. wake_up(&anchor->wait);
  811. }
  812. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  813. /**
  814. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  815. * @anchor: the anchor you want to become unused
  816. * @timeout: how long you are willing to wait in milliseconds
  817. *
  818. * Call this is you want to be sure all an anchor's
  819. * URBs have finished
  820. *
  821. * Return: Non-zero if the anchor became unused. Zero on timeout.
  822. */
  823. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  824. unsigned int timeout)
  825. {
  826. return wait_event_timeout(anchor->wait,
  827. usb_anchor_check_wakeup(anchor),
  828. msecs_to_jiffies(timeout));
  829. }
  830. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  831. /**
  832. * usb_get_from_anchor - get an anchor's oldest urb
  833. * @anchor: the anchor whose urb you want
  834. *
  835. * This will take the oldest urb from an anchor,
  836. * unanchor and return it
  837. *
  838. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  839. * urbs associated with it.
  840. */
  841. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  842. {
  843. struct urb *victim;
  844. unsigned long flags;
  845. spin_lock_irqsave(&anchor->lock, flags);
  846. if (!list_empty(&anchor->urb_list)) {
  847. victim = list_entry(anchor->urb_list.next, struct urb,
  848. anchor_list);
  849. usb_get_urb(victim);
  850. __usb_unanchor_urb(victim, anchor);
  851. } else {
  852. victim = NULL;
  853. }
  854. spin_unlock_irqrestore(&anchor->lock, flags);
  855. return victim;
  856. }
  857. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  858. /**
  859. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  860. * @anchor: the anchor whose urbs you want to unanchor
  861. *
  862. * use this to get rid of all an anchor's urbs
  863. */
  864. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  865. {
  866. struct urb *victim;
  867. unsigned long flags;
  868. spin_lock_irqsave(&anchor->lock, flags);
  869. while (!list_empty(&anchor->urb_list)) {
  870. victim = list_entry(anchor->urb_list.prev, struct urb,
  871. anchor_list);
  872. __usb_unanchor_urb(victim, anchor);
  873. }
  874. spin_unlock_irqrestore(&anchor->lock, flags);
  875. }
  876. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  877. /**
  878. * usb_anchor_empty - is an anchor empty
  879. * @anchor: the anchor you want to query
  880. *
  881. * Return: 1 if the anchor has no urbs associated with it.
  882. */
  883. int usb_anchor_empty(struct usb_anchor *anchor)
  884. {
  885. return list_empty(&anchor->urb_list);
  886. }
  887. EXPORT_SYMBOL_GPL(usb_anchor_empty);