fsl_esai.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver
  4. //
  5. // Copyright (C) 2014 Freescale Semiconductor, Inc.
  6. #include <linux/clk.h>
  7. #include <linux/dmaengine.h>
  8. #include <linux/module.h>
  9. #include <linux/of_irq.h>
  10. #include <linux/of_platform.h>
  11. #include <sound/dmaengine_pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include "fsl_esai.h"
  14. #include "imx-pcm.h"
  15. #define FSL_ESAI_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  16. SNDRV_PCM_FMTBIT_S16_LE | \
  17. SNDRV_PCM_FMTBIT_S20_3LE | \
  18. SNDRV_PCM_FMTBIT_S24_LE)
  19. /**
  20. * fsl_esai: ESAI private data
  21. *
  22. * @dma_params_rx: DMA parameters for receive channel
  23. * @dma_params_tx: DMA parameters for transmit channel
  24. * @pdev: platform device pointer
  25. * @regmap: regmap handler
  26. * @coreclk: clock source to access register
  27. * @extalclk: esai clock source to derive HCK, SCK and FS
  28. * @fsysclk: system clock source to derive HCK, SCK and FS
  29. * @spbaclk: SPBA clock (optional, depending on SoC design)
  30. * @fifo_depth: depth of tx/rx FIFO
  31. * @slot_width: width of each DAI slot
  32. * @slots: number of slots
  33. * @hck_rate: clock rate of desired HCKx clock
  34. * @sck_rate: clock rate of desired SCKx clock
  35. * @hck_dir: the direction of HCKx pads
  36. * @sck_div: if using PSR/PM dividers for SCKx clock
  37. * @slave_mode: if fully using DAI slave mode
  38. * @synchronous: if using tx/rx synchronous mode
  39. * @name: driver name
  40. */
  41. struct fsl_esai {
  42. struct snd_dmaengine_dai_dma_data dma_params_rx;
  43. struct snd_dmaengine_dai_dma_data dma_params_tx;
  44. struct platform_device *pdev;
  45. struct regmap *regmap;
  46. struct clk *coreclk;
  47. struct clk *extalclk;
  48. struct clk *fsysclk;
  49. struct clk *spbaclk;
  50. u32 fifo_depth;
  51. u32 slot_width;
  52. u32 slots;
  53. u32 hck_rate[2];
  54. u32 sck_rate[2];
  55. bool hck_dir[2];
  56. bool sck_div[2];
  57. bool slave_mode;
  58. bool synchronous;
  59. char name[32];
  60. };
  61. static irqreturn_t esai_isr(int irq, void *devid)
  62. {
  63. struct fsl_esai *esai_priv = (struct fsl_esai *)devid;
  64. struct platform_device *pdev = esai_priv->pdev;
  65. u32 esr;
  66. regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr);
  67. if (esr & ESAI_ESR_TINIT_MASK)
  68. dev_dbg(&pdev->dev, "isr: Transmission Initialized\n");
  69. if (esr & ESAI_ESR_RFF_MASK)
  70. dev_warn(&pdev->dev, "isr: Receiving overrun\n");
  71. if (esr & ESAI_ESR_TFE_MASK)
  72. dev_warn(&pdev->dev, "isr: Transmission underrun\n");
  73. if (esr & ESAI_ESR_TLS_MASK)
  74. dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n");
  75. if (esr & ESAI_ESR_TDE_MASK)
  76. dev_dbg(&pdev->dev, "isr: Transmission data exception\n");
  77. if (esr & ESAI_ESR_TED_MASK)
  78. dev_dbg(&pdev->dev, "isr: Transmitting even slots\n");
  79. if (esr & ESAI_ESR_TD_MASK)
  80. dev_dbg(&pdev->dev, "isr: Transmitting data\n");
  81. if (esr & ESAI_ESR_RLS_MASK)
  82. dev_dbg(&pdev->dev, "isr: Just received the last slot\n");
  83. if (esr & ESAI_ESR_RDE_MASK)
  84. dev_dbg(&pdev->dev, "isr: Receiving data exception\n");
  85. if (esr & ESAI_ESR_RED_MASK)
  86. dev_dbg(&pdev->dev, "isr: Receiving even slots\n");
  87. if (esr & ESAI_ESR_RD_MASK)
  88. dev_dbg(&pdev->dev, "isr: Receiving data\n");
  89. return IRQ_HANDLED;
  90. }
  91. /**
  92. * This function is used to calculate the divisors of psr, pm, fp and it is
  93. * supposed to be called in set_dai_sysclk() and set_bclk().
  94. *
  95. * @ratio: desired overall ratio for the paticipating dividers
  96. * @usefp: for HCK setting, there is no need to set fp divider
  97. * @fp: bypass other dividers by setting fp directly if fp != 0
  98. * @tx: current setting is for playback or capture
  99. */
  100. static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio,
  101. bool usefp, u32 fp)
  102. {
  103. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  104. u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j;
  105. maxfp = usefp ? 16 : 1;
  106. if (usefp && fp)
  107. goto out_fp;
  108. if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) {
  109. dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n",
  110. 2 * 8 * 256 * maxfp);
  111. return -EINVAL;
  112. } else if (ratio % 2) {
  113. dev_err(dai->dev, "the raio must be even if using upper divider\n");
  114. return -EINVAL;
  115. }
  116. ratio /= 2;
  117. psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8;
  118. /* Do not loop-search if PM (1 ~ 256) alone can serve the ratio */
  119. if (ratio <= 256) {
  120. pm = ratio;
  121. fp = 1;
  122. goto out;
  123. }
  124. /* Set the max fluctuation -- 0.1% of the max devisor */
  125. savesub = (psr ? 1 : 8) * 256 * maxfp / 1000;
  126. /* Find the best value for PM */
  127. for (i = 1; i <= 256; i++) {
  128. for (j = 1; j <= maxfp; j++) {
  129. /* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */
  130. prod = (psr ? 1 : 8) * i * j;
  131. if (prod == ratio)
  132. sub = 0;
  133. else if (prod / ratio == 1)
  134. sub = prod - ratio;
  135. else if (ratio / prod == 1)
  136. sub = ratio - prod;
  137. else
  138. continue;
  139. /* Calculate the fraction */
  140. sub = sub * 1000 / ratio;
  141. if (sub < savesub) {
  142. savesub = sub;
  143. pm = i;
  144. fp = j;
  145. }
  146. /* We are lucky */
  147. if (savesub == 0)
  148. goto out;
  149. }
  150. }
  151. if (pm == 999) {
  152. dev_err(dai->dev, "failed to calculate proper divisors\n");
  153. return -EINVAL;
  154. }
  155. out:
  156. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  157. ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK,
  158. psr | ESAI_xCCR_xPM(pm));
  159. out_fp:
  160. /* Bypass fp if not being required */
  161. if (maxfp <= 1)
  162. return 0;
  163. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  164. ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp));
  165. return 0;
  166. }
  167. /**
  168. * This function mainly configures the clock frequency of MCLK (HCKT/HCKR)
  169. *
  170. * @Parameters:
  171. * clk_id: The clock source of HCKT/HCKR
  172. * (Input from outside; output from inside, FSYS or EXTAL)
  173. * freq: The required clock rate of HCKT/HCKR
  174. * dir: The clock direction of HCKT/HCKR
  175. *
  176. * Note: If the direction is input, we do not care about clk_id.
  177. */
  178. static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
  179. unsigned int freq, int dir)
  180. {
  181. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  182. struct clk *clksrc = esai_priv->extalclk;
  183. bool tx = clk_id <= ESAI_HCKT_EXTAL;
  184. bool in = dir == SND_SOC_CLOCK_IN;
  185. u32 ratio, ecr = 0;
  186. unsigned long clk_rate;
  187. int ret;
  188. if (freq == 0) {
  189. dev_err(dai->dev, "%sput freq of HCK%c should not be 0Hz\n",
  190. in ? "in" : "out", tx ? 'T' : 'R');
  191. return -EINVAL;
  192. }
  193. /* Bypass divider settings if the requirement doesn't change */
  194. if (freq == esai_priv->hck_rate[tx] && dir == esai_priv->hck_dir[tx])
  195. return 0;
  196. /* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */
  197. esai_priv->sck_div[tx] = true;
  198. /* Set the direction of HCKT/HCKR pins */
  199. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
  200. ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD);
  201. if (in)
  202. goto out;
  203. switch (clk_id) {
  204. case ESAI_HCKT_FSYS:
  205. case ESAI_HCKR_FSYS:
  206. clksrc = esai_priv->fsysclk;
  207. break;
  208. case ESAI_HCKT_EXTAL:
  209. ecr |= ESAI_ECR_ETI;
  210. /* fall through */
  211. case ESAI_HCKR_EXTAL:
  212. ecr |= ESAI_ECR_ERI;
  213. break;
  214. default:
  215. return -EINVAL;
  216. }
  217. if (IS_ERR(clksrc)) {
  218. dev_err(dai->dev, "no assigned %s clock\n",
  219. clk_id % 2 ? "extal" : "fsys");
  220. return PTR_ERR(clksrc);
  221. }
  222. clk_rate = clk_get_rate(clksrc);
  223. ratio = clk_rate / freq;
  224. if (ratio * freq > clk_rate)
  225. ret = ratio * freq - clk_rate;
  226. else if (ratio * freq < clk_rate)
  227. ret = clk_rate - ratio * freq;
  228. else
  229. ret = 0;
  230. /* Block if clock source can not be divided into the required rate */
  231. if (ret != 0 && clk_rate / ret < 1000) {
  232. dev_err(dai->dev, "failed to derive required HCK%c rate\n",
  233. tx ? 'T' : 'R');
  234. return -EINVAL;
  235. }
  236. /* Only EXTAL source can be output directly without using PSR and PM */
  237. if (ratio == 1 && clksrc == esai_priv->extalclk) {
  238. /* Bypass all the dividers if not being needed */
  239. ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO;
  240. goto out;
  241. } else if (ratio < 2) {
  242. /* The ratio should be no less than 2 if using other sources */
  243. dev_err(dai->dev, "failed to derive required HCK%c rate\n",
  244. tx ? 'T' : 'R');
  245. return -EINVAL;
  246. }
  247. ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0);
  248. if (ret)
  249. return ret;
  250. esai_priv->sck_div[tx] = false;
  251. out:
  252. esai_priv->hck_dir[tx] = dir;
  253. esai_priv->hck_rate[tx] = freq;
  254. regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR,
  255. tx ? ESAI_ECR_ETI | ESAI_ECR_ETO :
  256. ESAI_ECR_ERI | ESAI_ECR_ERO, ecr);
  257. return 0;
  258. }
  259. /**
  260. * This function configures the related dividers according to the bclk rate
  261. */
  262. static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
  263. {
  264. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  265. u32 hck_rate = esai_priv->hck_rate[tx];
  266. u32 sub, ratio = hck_rate / freq;
  267. int ret;
  268. /* Don't apply for fully slave mode or unchanged bclk */
  269. if (esai_priv->slave_mode || esai_priv->sck_rate[tx] == freq)
  270. return 0;
  271. if (ratio * freq > hck_rate)
  272. sub = ratio * freq - hck_rate;
  273. else if (ratio * freq < hck_rate)
  274. sub = hck_rate - ratio * freq;
  275. else
  276. sub = 0;
  277. /* Block if clock source can not be divided into the required rate */
  278. if (sub != 0 && hck_rate / sub < 1000) {
  279. dev_err(dai->dev, "failed to derive required SCK%c rate\n",
  280. tx ? 'T' : 'R');
  281. return -EINVAL;
  282. }
  283. /* The ratio should be contented by FP alone if bypassing PM and PSR */
  284. if (!esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) {
  285. dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n");
  286. return -EINVAL;
  287. }
  288. ret = fsl_esai_divisor_cal(dai, tx, ratio, true,
  289. esai_priv->sck_div[tx] ? 0 : ratio);
  290. if (ret)
  291. return ret;
  292. /* Save current bclk rate */
  293. esai_priv->sck_rate[tx] = freq;
  294. return 0;
  295. }
  296. static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
  297. u32 rx_mask, int slots, int slot_width)
  298. {
  299. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  300. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
  301. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
  302. regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA,
  303. ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask));
  304. regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB,
  305. ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(tx_mask));
  306. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
  307. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
  308. regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA,
  309. ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask));
  310. regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB,
  311. ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(rx_mask));
  312. esai_priv->slot_width = slot_width;
  313. esai_priv->slots = slots;
  314. return 0;
  315. }
  316. static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  317. {
  318. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  319. u32 xcr = 0, xccr = 0, mask;
  320. /* DAI mode */
  321. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  322. case SND_SOC_DAIFMT_I2S:
  323. /* Data on rising edge of bclk, frame low, 1clk before data */
  324. xcr |= ESAI_xCR_xFSR;
  325. xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  326. break;
  327. case SND_SOC_DAIFMT_LEFT_J:
  328. /* Data on rising edge of bclk, frame high */
  329. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  330. break;
  331. case SND_SOC_DAIFMT_RIGHT_J:
  332. /* Data on rising edge of bclk, frame high, right aligned */
  333. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA;
  334. break;
  335. case SND_SOC_DAIFMT_DSP_A:
  336. /* Data on rising edge of bclk, frame high, 1clk before data */
  337. xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR;
  338. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  339. break;
  340. case SND_SOC_DAIFMT_DSP_B:
  341. /* Data on rising edge of bclk, frame high */
  342. xcr |= ESAI_xCR_xFSL;
  343. xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  344. break;
  345. default:
  346. return -EINVAL;
  347. }
  348. /* DAI clock inversion */
  349. switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
  350. case SND_SOC_DAIFMT_NB_NF:
  351. /* Nothing to do for both normal cases */
  352. break;
  353. case SND_SOC_DAIFMT_IB_NF:
  354. /* Invert bit clock */
  355. xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
  356. break;
  357. case SND_SOC_DAIFMT_NB_IF:
  358. /* Invert frame clock */
  359. xccr ^= ESAI_xCCR_xFSP;
  360. break;
  361. case SND_SOC_DAIFMT_IB_IF:
  362. /* Invert both clocks */
  363. xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP;
  364. break;
  365. default:
  366. return -EINVAL;
  367. }
  368. esai_priv->slave_mode = false;
  369. /* DAI clock master masks */
  370. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  371. case SND_SOC_DAIFMT_CBM_CFM:
  372. esai_priv->slave_mode = true;
  373. break;
  374. case SND_SOC_DAIFMT_CBS_CFM:
  375. xccr |= ESAI_xCCR_xCKD;
  376. break;
  377. case SND_SOC_DAIFMT_CBM_CFS:
  378. xccr |= ESAI_xCCR_xFSD;
  379. break;
  380. case SND_SOC_DAIFMT_CBS_CFS:
  381. xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD;
  382. break;
  383. default:
  384. return -EINVAL;
  385. }
  386. mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR;
  387. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr);
  388. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr);
  389. mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP |
  390. ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA;
  391. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr);
  392. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr);
  393. return 0;
  394. }
  395. static int fsl_esai_startup(struct snd_pcm_substream *substream,
  396. struct snd_soc_dai *dai)
  397. {
  398. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  399. int ret;
  400. /*
  401. * Some platforms might use the same bit to gate all three or two of
  402. * clocks, so keep all clocks open/close at the same time for safety
  403. */
  404. ret = clk_prepare_enable(esai_priv->coreclk);
  405. if (ret)
  406. return ret;
  407. if (!IS_ERR(esai_priv->spbaclk)) {
  408. ret = clk_prepare_enable(esai_priv->spbaclk);
  409. if (ret)
  410. goto err_spbaclk;
  411. }
  412. if (!IS_ERR(esai_priv->extalclk)) {
  413. ret = clk_prepare_enable(esai_priv->extalclk);
  414. if (ret)
  415. goto err_extalck;
  416. }
  417. if (!IS_ERR(esai_priv->fsysclk)) {
  418. ret = clk_prepare_enable(esai_priv->fsysclk);
  419. if (ret)
  420. goto err_fsysclk;
  421. }
  422. if (!dai->active) {
  423. /* Set synchronous mode */
  424. regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR,
  425. ESAI_SAICR_SYNC, esai_priv->synchronous ?
  426. ESAI_SAICR_SYNC : 0);
  427. /* Set a default slot number -- 2 */
  428. regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
  429. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
  430. regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
  431. ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
  432. }
  433. return 0;
  434. err_fsysclk:
  435. if (!IS_ERR(esai_priv->extalclk))
  436. clk_disable_unprepare(esai_priv->extalclk);
  437. err_extalck:
  438. if (!IS_ERR(esai_priv->spbaclk))
  439. clk_disable_unprepare(esai_priv->spbaclk);
  440. err_spbaclk:
  441. clk_disable_unprepare(esai_priv->coreclk);
  442. return ret;
  443. }
  444. static int fsl_esai_hw_params(struct snd_pcm_substream *substream,
  445. struct snd_pcm_hw_params *params,
  446. struct snd_soc_dai *dai)
  447. {
  448. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  449. bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  450. u32 width = params_width(params);
  451. u32 channels = params_channels(params);
  452. u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
  453. u32 slot_width = width;
  454. u32 bclk, mask, val;
  455. int ret;
  456. /* Override slot_width if being specifically set */
  457. if (esai_priv->slot_width)
  458. slot_width = esai_priv->slot_width;
  459. bclk = params_rate(params) * slot_width * esai_priv->slots;
  460. ret = fsl_esai_set_bclk(dai, tx, bclk);
  461. if (ret)
  462. return ret;
  463. /* Use Normal mode to support monaural audio */
  464. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  465. ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ?
  466. ESAI_xCR_xMOD_NETWORK : 0);
  467. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  468. ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR);
  469. mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK |
  470. (tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK);
  471. val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) |
  472. (tx ? ESAI_xFCR_TE(pins) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(pins));
  473. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val);
  474. mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0);
  475. val = ESAI_xCR_xSWS(slot_width, width) | (tx ? ESAI_xCR_PADC : 0);
  476. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val);
  477. /* Remove ESAI personal reset by configuring ESAI_PCRC and ESAI_PRRC */
  478. regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC,
  479. ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO));
  480. regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC,
  481. ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO));
  482. return 0;
  483. }
  484. static void fsl_esai_shutdown(struct snd_pcm_substream *substream,
  485. struct snd_soc_dai *dai)
  486. {
  487. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  488. if (!IS_ERR(esai_priv->fsysclk))
  489. clk_disable_unprepare(esai_priv->fsysclk);
  490. if (!IS_ERR(esai_priv->extalclk))
  491. clk_disable_unprepare(esai_priv->extalclk);
  492. if (!IS_ERR(esai_priv->spbaclk))
  493. clk_disable_unprepare(esai_priv->spbaclk);
  494. clk_disable_unprepare(esai_priv->coreclk);
  495. }
  496. static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd,
  497. struct snd_soc_dai *dai)
  498. {
  499. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  500. bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  501. u8 i, channels = substream->runtime->channels;
  502. u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
  503. switch (cmd) {
  504. case SNDRV_PCM_TRIGGER_START:
  505. case SNDRV_PCM_TRIGGER_RESUME:
  506. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  507. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  508. ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN);
  509. /* Write initial words reqiured by ESAI as normal procedure */
  510. for (i = 0; tx && i < channels; i++)
  511. regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0);
  512. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  513. tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK,
  514. tx ? ESAI_xCR_TE(pins) : ESAI_xCR_RE(pins));
  515. break;
  516. case SNDRV_PCM_TRIGGER_SUSPEND:
  517. case SNDRV_PCM_TRIGGER_STOP:
  518. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  519. regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
  520. tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0);
  521. /* Disable and reset FIFO */
  522. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  523. ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR);
  524. regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
  525. ESAI_xFCR_xFR, 0);
  526. break;
  527. default:
  528. return -EINVAL;
  529. }
  530. return 0;
  531. }
  532. static const struct snd_soc_dai_ops fsl_esai_dai_ops = {
  533. .startup = fsl_esai_startup,
  534. .shutdown = fsl_esai_shutdown,
  535. .trigger = fsl_esai_trigger,
  536. .hw_params = fsl_esai_hw_params,
  537. .set_sysclk = fsl_esai_set_dai_sysclk,
  538. .set_fmt = fsl_esai_set_dai_fmt,
  539. .set_tdm_slot = fsl_esai_set_dai_tdm_slot,
  540. };
  541. static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
  542. {
  543. struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
  544. snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx,
  545. &esai_priv->dma_params_rx);
  546. return 0;
  547. }
  548. static struct snd_soc_dai_driver fsl_esai_dai = {
  549. .probe = fsl_esai_dai_probe,
  550. .playback = {
  551. .stream_name = "CPU-Playback",
  552. .channels_min = 1,
  553. .channels_max = 12,
  554. .rates = SNDRV_PCM_RATE_8000_192000,
  555. .formats = FSL_ESAI_FORMATS,
  556. },
  557. .capture = {
  558. .stream_name = "CPU-Capture",
  559. .channels_min = 1,
  560. .channels_max = 8,
  561. .rates = SNDRV_PCM_RATE_8000_192000,
  562. .formats = FSL_ESAI_FORMATS,
  563. },
  564. .ops = &fsl_esai_dai_ops,
  565. };
  566. static const struct snd_soc_component_driver fsl_esai_component = {
  567. .name = "fsl-esai",
  568. };
  569. static const struct reg_default fsl_esai_reg_defaults[] = {
  570. {REG_ESAI_ETDR, 0x00000000},
  571. {REG_ESAI_ECR, 0x00000000},
  572. {REG_ESAI_TFCR, 0x00000000},
  573. {REG_ESAI_RFCR, 0x00000000},
  574. {REG_ESAI_TX0, 0x00000000},
  575. {REG_ESAI_TX1, 0x00000000},
  576. {REG_ESAI_TX2, 0x00000000},
  577. {REG_ESAI_TX3, 0x00000000},
  578. {REG_ESAI_TX4, 0x00000000},
  579. {REG_ESAI_TX5, 0x00000000},
  580. {REG_ESAI_TSR, 0x00000000},
  581. {REG_ESAI_SAICR, 0x00000000},
  582. {REG_ESAI_TCR, 0x00000000},
  583. {REG_ESAI_TCCR, 0x00000000},
  584. {REG_ESAI_RCR, 0x00000000},
  585. {REG_ESAI_RCCR, 0x00000000},
  586. {REG_ESAI_TSMA, 0x0000ffff},
  587. {REG_ESAI_TSMB, 0x0000ffff},
  588. {REG_ESAI_RSMA, 0x0000ffff},
  589. {REG_ESAI_RSMB, 0x0000ffff},
  590. {REG_ESAI_PRRC, 0x00000000},
  591. {REG_ESAI_PCRC, 0x00000000},
  592. };
  593. static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg)
  594. {
  595. switch (reg) {
  596. case REG_ESAI_ERDR:
  597. case REG_ESAI_ECR:
  598. case REG_ESAI_ESR:
  599. case REG_ESAI_TFCR:
  600. case REG_ESAI_TFSR:
  601. case REG_ESAI_RFCR:
  602. case REG_ESAI_RFSR:
  603. case REG_ESAI_RX0:
  604. case REG_ESAI_RX1:
  605. case REG_ESAI_RX2:
  606. case REG_ESAI_RX3:
  607. case REG_ESAI_SAISR:
  608. case REG_ESAI_SAICR:
  609. case REG_ESAI_TCR:
  610. case REG_ESAI_TCCR:
  611. case REG_ESAI_RCR:
  612. case REG_ESAI_RCCR:
  613. case REG_ESAI_TSMA:
  614. case REG_ESAI_TSMB:
  615. case REG_ESAI_RSMA:
  616. case REG_ESAI_RSMB:
  617. case REG_ESAI_PRRC:
  618. case REG_ESAI_PCRC:
  619. return true;
  620. default:
  621. return false;
  622. }
  623. }
  624. static bool fsl_esai_volatile_reg(struct device *dev, unsigned int reg)
  625. {
  626. switch (reg) {
  627. case REG_ESAI_ERDR:
  628. case REG_ESAI_ESR:
  629. case REG_ESAI_TFSR:
  630. case REG_ESAI_RFSR:
  631. case REG_ESAI_RX0:
  632. case REG_ESAI_RX1:
  633. case REG_ESAI_RX2:
  634. case REG_ESAI_RX3:
  635. case REG_ESAI_SAISR:
  636. return true;
  637. default:
  638. return false;
  639. }
  640. }
  641. static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg)
  642. {
  643. switch (reg) {
  644. case REG_ESAI_ETDR:
  645. case REG_ESAI_ECR:
  646. case REG_ESAI_TFCR:
  647. case REG_ESAI_RFCR:
  648. case REG_ESAI_TX0:
  649. case REG_ESAI_TX1:
  650. case REG_ESAI_TX2:
  651. case REG_ESAI_TX3:
  652. case REG_ESAI_TX4:
  653. case REG_ESAI_TX5:
  654. case REG_ESAI_TSR:
  655. case REG_ESAI_SAICR:
  656. case REG_ESAI_TCR:
  657. case REG_ESAI_TCCR:
  658. case REG_ESAI_RCR:
  659. case REG_ESAI_RCCR:
  660. case REG_ESAI_TSMA:
  661. case REG_ESAI_TSMB:
  662. case REG_ESAI_RSMA:
  663. case REG_ESAI_RSMB:
  664. case REG_ESAI_PRRC:
  665. case REG_ESAI_PCRC:
  666. return true;
  667. default:
  668. return false;
  669. }
  670. }
  671. static const struct regmap_config fsl_esai_regmap_config = {
  672. .reg_bits = 32,
  673. .reg_stride = 4,
  674. .val_bits = 32,
  675. .max_register = REG_ESAI_PCRC,
  676. .reg_defaults = fsl_esai_reg_defaults,
  677. .num_reg_defaults = ARRAY_SIZE(fsl_esai_reg_defaults),
  678. .readable_reg = fsl_esai_readable_reg,
  679. .volatile_reg = fsl_esai_volatile_reg,
  680. .writeable_reg = fsl_esai_writeable_reg,
  681. .cache_type = REGCACHE_FLAT,
  682. };
  683. static int fsl_esai_probe(struct platform_device *pdev)
  684. {
  685. struct device_node *np = pdev->dev.of_node;
  686. struct fsl_esai *esai_priv;
  687. struct resource *res;
  688. const __be32 *iprop;
  689. void __iomem *regs;
  690. int irq, ret;
  691. esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL);
  692. if (!esai_priv)
  693. return -ENOMEM;
  694. esai_priv->pdev = pdev;
  695. strncpy(esai_priv->name, np->name, sizeof(esai_priv->name) - 1);
  696. /* Get the addresses and IRQ */
  697. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  698. regs = devm_ioremap_resource(&pdev->dev, res);
  699. if (IS_ERR(regs))
  700. return PTR_ERR(regs);
  701. esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
  702. "core", regs, &fsl_esai_regmap_config);
  703. if (IS_ERR(esai_priv->regmap)) {
  704. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  705. PTR_ERR(esai_priv->regmap));
  706. return PTR_ERR(esai_priv->regmap);
  707. }
  708. esai_priv->coreclk = devm_clk_get(&pdev->dev, "core");
  709. if (IS_ERR(esai_priv->coreclk)) {
  710. dev_err(&pdev->dev, "failed to get core clock: %ld\n",
  711. PTR_ERR(esai_priv->coreclk));
  712. return PTR_ERR(esai_priv->coreclk);
  713. }
  714. esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal");
  715. if (IS_ERR(esai_priv->extalclk))
  716. dev_warn(&pdev->dev, "failed to get extal clock: %ld\n",
  717. PTR_ERR(esai_priv->extalclk));
  718. esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys");
  719. if (IS_ERR(esai_priv->fsysclk))
  720. dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n",
  721. PTR_ERR(esai_priv->fsysclk));
  722. esai_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
  723. if (IS_ERR(esai_priv->spbaclk))
  724. dev_warn(&pdev->dev, "failed to get spba clock: %ld\n",
  725. PTR_ERR(esai_priv->spbaclk));
  726. irq = platform_get_irq(pdev, 0);
  727. if (irq < 0) {
  728. dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
  729. return irq;
  730. }
  731. ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0,
  732. esai_priv->name, esai_priv);
  733. if (ret) {
  734. dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
  735. return ret;
  736. }
  737. /* Set a default slot number */
  738. esai_priv->slots = 2;
  739. /* Set a default master/slave state */
  740. esai_priv->slave_mode = true;
  741. /* Determine the FIFO depth */
  742. iprop = of_get_property(np, "fsl,fifo-depth", NULL);
  743. if (iprop)
  744. esai_priv->fifo_depth = be32_to_cpup(iprop);
  745. else
  746. esai_priv->fifo_depth = 64;
  747. esai_priv->dma_params_tx.maxburst = 16;
  748. esai_priv->dma_params_rx.maxburst = 16;
  749. esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR;
  750. esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR;
  751. esai_priv->synchronous =
  752. of_property_read_bool(np, "fsl,esai-synchronous");
  753. /* Implement full symmetry for synchronous mode */
  754. if (esai_priv->synchronous) {
  755. fsl_esai_dai.symmetric_rates = 1;
  756. fsl_esai_dai.symmetric_channels = 1;
  757. fsl_esai_dai.symmetric_samplebits = 1;
  758. }
  759. dev_set_drvdata(&pdev->dev, esai_priv);
  760. /* Reset ESAI unit */
  761. ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST);
  762. if (ret) {
  763. dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret);
  764. return ret;
  765. }
  766. /*
  767. * We need to enable ESAI so as to access some of its registers.
  768. * Otherwise, we would fail to dump regmap from user space.
  769. */
  770. ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN);
  771. if (ret) {
  772. dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret);
  773. return ret;
  774. }
  775. ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component,
  776. &fsl_esai_dai, 1);
  777. if (ret) {
  778. dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
  779. return ret;
  780. }
  781. ret = imx_pcm_dma_init(pdev, IMX_ESAI_DMABUF_SIZE);
  782. if (ret)
  783. dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret);
  784. return ret;
  785. }
  786. static const struct of_device_id fsl_esai_dt_ids[] = {
  787. { .compatible = "fsl,imx35-esai", },
  788. { .compatible = "fsl,vf610-esai", },
  789. {}
  790. };
  791. MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids);
  792. #ifdef CONFIG_PM_SLEEP
  793. static int fsl_esai_suspend(struct device *dev)
  794. {
  795. struct fsl_esai *esai = dev_get_drvdata(dev);
  796. regcache_cache_only(esai->regmap, true);
  797. regcache_mark_dirty(esai->regmap);
  798. return 0;
  799. }
  800. static int fsl_esai_resume(struct device *dev)
  801. {
  802. struct fsl_esai *esai = dev_get_drvdata(dev);
  803. int ret;
  804. regcache_cache_only(esai->regmap, false);
  805. /* FIFO reset for safety */
  806. regmap_update_bits(esai->regmap, REG_ESAI_TFCR,
  807. ESAI_xFCR_xFR, ESAI_xFCR_xFR);
  808. regmap_update_bits(esai->regmap, REG_ESAI_RFCR,
  809. ESAI_xFCR_xFR, ESAI_xFCR_xFR);
  810. ret = regcache_sync(esai->regmap);
  811. if (ret)
  812. return ret;
  813. /* FIFO reset done */
  814. regmap_update_bits(esai->regmap, REG_ESAI_TFCR, ESAI_xFCR_xFR, 0);
  815. regmap_update_bits(esai->regmap, REG_ESAI_RFCR, ESAI_xFCR_xFR, 0);
  816. return 0;
  817. }
  818. #endif /* CONFIG_PM_SLEEP */
  819. static const struct dev_pm_ops fsl_esai_pm_ops = {
  820. SET_SYSTEM_SLEEP_PM_OPS(fsl_esai_suspend, fsl_esai_resume)
  821. };
  822. static struct platform_driver fsl_esai_driver = {
  823. .probe = fsl_esai_probe,
  824. .driver = {
  825. .name = "fsl-esai-dai",
  826. .pm = &fsl_esai_pm_ops,
  827. .of_match_table = fsl_esai_dt_ids,
  828. },
  829. };
  830. module_platform_driver(fsl_esai_driver);
  831. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  832. MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver");
  833. MODULE_LICENSE("GPL v2");
  834. MODULE_ALIAS("platform:fsl-esai-dai");