xfrm_state.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548
  1. /*
  2. * xfrm_state.c
  3. *
  4. * Changes:
  5. * Mitsuru KANDA @USAGI
  6. * Kazunori MIYAZAWA @USAGI
  7. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  8. * IPv6 support
  9. * YOSHIFUJI Hideaki @USAGI
  10. * Split up af-specific functions
  11. * Derek Atkins <derek@ihtfp.com>
  12. * Add UDP Encapsulation
  13. *
  14. */
  15. #include <linux/workqueue.h>
  16. #include <net/xfrm.h>
  17. #include <linux/pfkeyv2.h>
  18. #include <linux/ipsec.h>
  19. #include <linux/module.h>
  20. #include <linux/cache.h>
  21. #include <linux/audit.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/ktime.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/kernel.h>
  27. #include "xfrm_hash.h"
  28. #define xfrm_state_deref_prot(table, net) \
  29. rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
  30. static void xfrm_state_gc_task(struct work_struct *work);
  31. /* Each xfrm_state may be linked to two tables:
  32. 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
  33. 2. Hash table by (daddr,family,reqid) to find what SAs exist for given
  34. destination/tunnel endpoint. (output)
  35. */
  36. static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
  37. static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation);
  38. static struct kmem_cache *xfrm_state_cache __ro_after_init;
  39. static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
  40. static HLIST_HEAD(xfrm_state_gc_list);
  41. static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
  42. {
  43. return refcount_inc_not_zero(&x->refcnt);
  44. }
  45. static inline unsigned int xfrm_dst_hash(struct net *net,
  46. const xfrm_address_t *daddr,
  47. const xfrm_address_t *saddr,
  48. u32 reqid,
  49. unsigned short family)
  50. {
  51. return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
  52. }
  53. static inline unsigned int xfrm_src_hash(struct net *net,
  54. const xfrm_address_t *daddr,
  55. const xfrm_address_t *saddr,
  56. unsigned short family)
  57. {
  58. return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
  59. }
  60. static inline unsigned int
  61. xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
  62. __be32 spi, u8 proto, unsigned short family)
  63. {
  64. return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
  65. }
  66. static void xfrm_hash_transfer(struct hlist_head *list,
  67. struct hlist_head *ndsttable,
  68. struct hlist_head *nsrctable,
  69. struct hlist_head *nspitable,
  70. unsigned int nhashmask)
  71. {
  72. struct hlist_node *tmp;
  73. struct xfrm_state *x;
  74. hlist_for_each_entry_safe(x, tmp, list, bydst) {
  75. unsigned int h;
  76. h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
  77. x->props.reqid, x->props.family,
  78. nhashmask);
  79. hlist_add_head_rcu(&x->bydst, ndsttable + h);
  80. h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
  81. x->props.family,
  82. nhashmask);
  83. hlist_add_head_rcu(&x->bysrc, nsrctable + h);
  84. if (x->id.spi) {
  85. h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
  86. x->id.proto, x->props.family,
  87. nhashmask);
  88. hlist_add_head_rcu(&x->byspi, nspitable + h);
  89. }
  90. }
  91. }
  92. static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
  93. {
  94. return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
  95. }
  96. static void xfrm_hash_resize(struct work_struct *work)
  97. {
  98. struct net *net = container_of(work, struct net, xfrm.state_hash_work);
  99. struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
  100. unsigned long nsize, osize;
  101. unsigned int nhashmask, ohashmask;
  102. int i;
  103. nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
  104. ndst = xfrm_hash_alloc(nsize);
  105. if (!ndst)
  106. return;
  107. nsrc = xfrm_hash_alloc(nsize);
  108. if (!nsrc) {
  109. xfrm_hash_free(ndst, nsize);
  110. return;
  111. }
  112. nspi = xfrm_hash_alloc(nsize);
  113. if (!nspi) {
  114. xfrm_hash_free(ndst, nsize);
  115. xfrm_hash_free(nsrc, nsize);
  116. return;
  117. }
  118. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  119. write_seqcount_begin(&xfrm_state_hash_generation);
  120. nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
  121. odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
  122. for (i = net->xfrm.state_hmask; i >= 0; i--)
  123. xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask);
  124. osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
  125. ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
  126. ohashmask = net->xfrm.state_hmask;
  127. rcu_assign_pointer(net->xfrm.state_bydst, ndst);
  128. rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
  129. rcu_assign_pointer(net->xfrm.state_byspi, nspi);
  130. net->xfrm.state_hmask = nhashmask;
  131. write_seqcount_end(&xfrm_state_hash_generation);
  132. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  133. osize = (ohashmask + 1) * sizeof(struct hlist_head);
  134. synchronize_rcu();
  135. xfrm_hash_free(odst, osize);
  136. xfrm_hash_free(osrc, osize);
  137. xfrm_hash_free(ospi, osize);
  138. }
  139. static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
  140. static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
  141. static DEFINE_SPINLOCK(xfrm_state_gc_lock);
  142. int __xfrm_state_delete(struct xfrm_state *x);
  143. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
  144. bool km_is_alive(const struct km_event *c);
  145. void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
  146. static DEFINE_SPINLOCK(xfrm_type_lock);
  147. int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
  148. {
  149. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  150. const struct xfrm_type **typemap;
  151. int err = 0;
  152. if (unlikely(afinfo == NULL))
  153. return -EAFNOSUPPORT;
  154. typemap = afinfo->type_map;
  155. spin_lock_bh(&xfrm_type_lock);
  156. if (likely(typemap[type->proto] == NULL))
  157. typemap[type->proto] = type;
  158. else
  159. err = -EEXIST;
  160. spin_unlock_bh(&xfrm_type_lock);
  161. rcu_read_unlock();
  162. return err;
  163. }
  164. EXPORT_SYMBOL(xfrm_register_type);
  165. int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
  166. {
  167. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  168. const struct xfrm_type **typemap;
  169. int err = 0;
  170. if (unlikely(afinfo == NULL))
  171. return -EAFNOSUPPORT;
  172. typemap = afinfo->type_map;
  173. spin_lock_bh(&xfrm_type_lock);
  174. if (unlikely(typemap[type->proto] != type))
  175. err = -ENOENT;
  176. else
  177. typemap[type->proto] = NULL;
  178. spin_unlock_bh(&xfrm_type_lock);
  179. rcu_read_unlock();
  180. return err;
  181. }
  182. EXPORT_SYMBOL(xfrm_unregister_type);
  183. static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
  184. {
  185. struct xfrm_state_afinfo *afinfo;
  186. const struct xfrm_type **typemap;
  187. const struct xfrm_type *type;
  188. int modload_attempted = 0;
  189. retry:
  190. afinfo = xfrm_state_get_afinfo(family);
  191. if (unlikely(afinfo == NULL))
  192. return NULL;
  193. typemap = afinfo->type_map;
  194. type = READ_ONCE(typemap[proto]);
  195. if (unlikely(type && !try_module_get(type->owner)))
  196. type = NULL;
  197. rcu_read_unlock();
  198. if (!type && !modload_attempted) {
  199. request_module("xfrm-type-%d-%d", family, proto);
  200. modload_attempted = 1;
  201. goto retry;
  202. }
  203. return type;
  204. }
  205. static void xfrm_put_type(const struct xfrm_type *type)
  206. {
  207. module_put(type->owner);
  208. }
  209. static DEFINE_SPINLOCK(xfrm_type_offload_lock);
  210. int xfrm_register_type_offload(const struct xfrm_type_offload *type,
  211. unsigned short family)
  212. {
  213. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  214. const struct xfrm_type_offload **typemap;
  215. int err = 0;
  216. if (unlikely(afinfo == NULL))
  217. return -EAFNOSUPPORT;
  218. typemap = afinfo->type_offload_map;
  219. spin_lock_bh(&xfrm_type_offload_lock);
  220. if (likely(typemap[type->proto] == NULL))
  221. typemap[type->proto] = type;
  222. else
  223. err = -EEXIST;
  224. spin_unlock_bh(&xfrm_type_offload_lock);
  225. rcu_read_unlock();
  226. return err;
  227. }
  228. EXPORT_SYMBOL(xfrm_register_type_offload);
  229. int xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
  230. unsigned short family)
  231. {
  232. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  233. const struct xfrm_type_offload **typemap;
  234. int err = 0;
  235. if (unlikely(afinfo == NULL))
  236. return -EAFNOSUPPORT;
  237. typemap = afinfo->type_offload_map;
  238. spin_lock_bh(&xfrm_type_offload_lock);
  239. if (unlikely(typemap[type->proto] != type))
  240. err = -ENOENT;
  241. else
  242. typemap[type->proto] = NULL;
  243. spin_unlock_bh(&xfrm_type_offload_lock);
  244. rcu_read_unlock();
  245. return err;
  246. }
  247. EXPORT_SYMBOL(xfrm_unregister_type_offload);
  248. static const struct xfrm_type_offload *
  249. xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
  250. {
  251. struct xfrm_state_afinfo *afinfo;
  252. const struct xfrm_type_offload **typemap;
  253. const struct xfrm_type_offload *type;
  254. retry:
  255. afinfo = xfrm_state_get_afinfo(family);
  256. if (unlikely(afinfo == NULL))
  257. return NULL;
  258. typemap = afinfo->type_offload_map;
  259. type = typemap[proto];
  260. if ((type && !try_module_get(type->owner)))
  261. type = NULL;
  262. rcu_read_unlock();
  263. if (!type && try_load) {
  264. request_module("xfrm-offload-%d-%d", family, proto);
  265. try_load = false;
  266. goto retry;
  267. }
  268. return type;
  269. }
  270. static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
  271. {
  272. module_put(type->owner);
  273. }
  274. static DEFINE_SPINLOCK(xfrm_mode_lock);
  275. int xfrm_register_mode(struct xfrm_mode *mode, int family)
  276. {
  277. struct xfrm_state_afinfo *afinfo;
  278. struct xfrm_mode **modemap;
  279. int err;
  280. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  281. return -EINVAL;
  282. afinfo = xfrm_state_get_afinfo(family);
  283. if (unlikely(afinfo == NULL))
  284. return -EAFNOSUPPORT;
  285. err = -EEXIST;
  286. modemap = afinfo->mode_map;
  287. spin_lock_bh(&xfrm_mode_lock);
  288. if (modemap[mode->encap])
  289. goto out;
  290. err = -ENOENT;
  291. if (!try_module_get(afinfo->owner))
  292. goto out;
  293. mode->afinfo = afinfo;
  294. modemap[mode->encap] = mode;
  295. err = 0;
  296. out:
  297. spin_unlock_bh(&xfrm_mode_lock);
  298. rcu_read_unlock();
  299. return err;
  300. }
  301. EXPORT_SYMBOL(xfrm_register_mode);
  302. int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
  303. {
  304. struct xfrm_state_afinfo *afinfo;
  305. struct xfrm_mode **modemap;
  306. int err;
  307. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  308. return -EINVAL;
  309. afinfo = xfrm_state_get_afinfo(family);
  310. if (unlikely(afinfo == NULL))
  311. return -EAFNOSUPPORT;
  312. err = -ENOENT;
  313. modemap = afinfo->mode_map;
  314. spin_lock_bh(&xfrm_mode_lock);
  315. if (likely(modemap[mode->encap] == mode)) {
  316. modemap[mode->encap] = NULL;
  317. module_put(mode->afinfo->owner);
  318. err = 0;
  319. }
  320. spin_unlock_bh(&xfrm_mode_lock);
  321. rcu_read_unlock();
  322. return err;
  323. }
  324. EXPORT_SYMBOL(xfrm_unregister_mode);
  325. static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
  326. {
  327. struct xfrm_state_afinfo *afinfo;
  328. struct xfrm_mode *mode;
  329. int modload_attempted = 0;
  330. if (unlikely(encap >= XFRM_MODE_MAX))
  331. return NULL;
  332. retry:
  333. afinfo = xfrm_state_get_afinfo(family);
  334. if (unlikely(afinfo == NULL))
  335. return NULL;
  336. mode = READ_ONCE(afinfo->mode_map[encap]);
  337. if (unlikely(mode && !try_module_get(mode->owner)))
  338. mode = NULL;
  339. rcu_read_unlock();
  340. if (!mode && !modload_attempted) {
  341. request_module("xfrm-mode-%d-%d", family, encap);
  342. modload_attempted = 1;
  343. goto retry;
  344. }
  345. return mode;
  346. }
  347. static void xfrm_put_mode(struct xfrm_mode *mode)
  348. {
  349. module_put(mode->owner);
  350. }
  351. static void xfrm_state_gc_destroy(struct xfrm_state *x)
  352. {
  353. tasklet_hrtimer_cancel(&x->mtimer);
  354. del_timer_sync(&x->rtimer);
  355. kfree(x->aead);
  356. kfree(x->aalg);
  357. kfree(x->ealg);
  358. kfree(x->calg);
  359. kfree(x->encap);
  360. kfree(x->coaddr);
  361. kfree(x->replay_esn);
  362. kfree(x->preplay_esn);
  363. if (x->inner_mode)
  364. xfrm_put_mode(x->inner_mode);
  365. if (x->inner_mode_iaf)
  366. xfrm_put_mode(x->inner_mode_iaf);
  367. if (x->outer_mode)
  368. xfrm_put_mode(x->outer_mode);
  369. if (x->type_offload)
  370. xfrm_put_type_offload(x->type_offload);
  371. if (x->type) {
  372. x->type->destructor(x);
  373. xfrm_put_type(x->type);
  374. }
  375. xfrm_dev_state_free(x);
  376. security_xfrm_state_free(x);
  377. kmem_cache_free(xfrm_state_cache, x);
  378. }
  379. static void xfrm_state_gc_task(struct work_struct *work)
  380. {
  381. struct xfrm_state *x;
  382. struct hlist_node *tmp;
  383. struct hlist_head gc_list;
  384. spin_lock_bh(&xfrm_state_gc_lock);
  385. hlist_move_list(&xfrm_state_gc_list, &gc_list);
  386. spin_unlock_bh(&xfrm_state_gc_lock);
  387. synchronize_rcu();
  388. hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
  389. xfrm_state_gc_destroy(x);
  390. }
  391. static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
  392. {
  393. struct tasklet_hrtimer *thr = container_of(me, struct tasklet_hrtimer, timer);
  394. struct xfrm_state *x = container_of(thr, struct xfrm_state, mtimer);
  395. time64_t now = ktime_get_real_seconds();
  396. time64_t next = TIME64_MAX;
  397. int warn = 0;
  398. int err = 0;
  399. spin_lock(&x->lock);
  400. if (x->km.state == XFRM_STATE_DEAD)
  401. goto out;
  402. if (x->km.state == XFRM_STATE_EXPIRED)
  403. goto expired;
  404. if (x->lft.hard_add_expires_seconds) {
  405. long tmo = x->lft.hard_add_expires_seconds +
  406. x->curlft.add_time - now;
  407. if (tmo <= 0) {
  408. if (x->xflags & XFRM_SOFT_EXPIRE) {
  409. /* enter hard expire without soft expire first?!
  410. * setting a new date could trigger this.
  411. * workaround: fix x->curflt.add_time by below:
  412. */
  413. x->curlft.add_time = now - x->saved_tmo - 1;
  414. tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
  415. } else
  416. goto expired;
  417. }
  418. if (tmo < next)
  419. next = tmo;
  420. }
  421. if (x->lft.hard_use_expires_seconds) {
  422. long tmo = x->lft.hard_use_expires_seconds +
  423. (x->curlft.use_time ? : now) - now;
  424. if (tmo <= 0)
  425. goto expired;
  426. if (tmo < next)
  427. next = tmo;
  428. }
  429. if (x->km.dying)
  430. goto resched;
  431. if (x->lft.soft_add_expires_seconds) {
  432. long tmo = x->lft.soft_add_expires_seconds +
  433. x->curlft.add_time - now;
  434. if (tmo <= 0) {
  435. warn = 1;
  436. x->xflags &= ~XFRM_SOFT_EXPIRE;
  437. } else if (tmo < next) {
  438. next = tmo;
  439. x->xflags |= XFRM_SOFT_EXPIRE;
  440. x->saved_tmo = tmo;
  441. }
  442. }
  443. if (x->lft.soft_use_expires_seconds) {
  444. long tmo = x->lft.soft_use_expires_seconds +
  445. (x->curlft.use_time ? : now) - now;
  446. if (tmo <= 0)
  447. warn = 1;
  448. else if (tmo < next)
  449. next = tmo;
  450. }
  451. x->km.dying = warn;
  452. if (warn)
  453. km_state_expired(x, 0, 0);
  454. resched:
  455. if (next != TIME64_MAX) {
  456. tasklet_hrtimer_start(&x->mtimer, ktime_set(next, 0), HRTIMER_MODE_REL);
  457. }
  458. goto out;
  459. expired:
  460. if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
  461. x->km.state = XFRM_STATE_EXPIRED;
  462. err = __xfrm_state_delete(x);
  463. if (!err)
  464. km_state_expired(x, 1, 0);
  465. xfrm_audit_state_delete(x, err ? 0 : 1, true);
  466. out:
  467. spin_unlock(&x->lock);
  468. return HRTIMER_NORESTART;
  469. }
  470. static void xfrm_replay_timer_handler(struct timer_list *t);
  471. struct xfrm_state *xfrm_state_alloc(struct net *net)
  472. {
  473. struct xfrm_state *x;
  474. x = kmem_cache_alloc(xfrm_state_cache, GFP_ATOMIC | __GFP_ZERO);
  475. if (x) {
  476. write_pnet(&x->xs_net, net);
  477. refcount_set(&x->refcnt, 1);
  478. atomic_set(&x->tunnel_users, 0);
  479. INIT_LIST_HEAD(&x->km.all);
  480. INIT_HLIST_NODE(&x->bydst);
  481. INIT_HLIST_NODE(&x->bysrc);
  482. INIT_HLIST_NODE(&x->byspi);
  483. tasklet_hrtimer_init(&x->mtimer, xfrm_timer_handler,
  484. CLOCK_BOOTTIME, HRTIMER_MODE_ABS);
  485. timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
  486. x->curlft.add_time = ktime_get_real_seconds();
  487. x->lft.soft_byte_limit = XFRM_INF;
  488. x->lft.soft_packet_limit = XFRM_INF;
  489. x->lft.hard_byte_limit = XFRM_INF;
  490. x->lft.hard_packet_limit = XFRM_INF;
  491. x->replay_maxage = 0;
  492. x->replay_maxdiff = 0;
  493. x->inner_mode = NULL;
  494. x->inner_mode_iaf = NULL;
  495. spin_lock_init(&x->lock);
  496. }
  497. return x;
  498. }
  499. EXPORT_SYMBOL(xfrm_state_alloc);
  500. void __xfrm_state_destroy(struct xfrm_state *x)
  501. {
  502. WARN_ON(x->km.state != XFRM_STATE_DEAD);
  503. spin_lock_bh(&xfrm_state_gc_lock);
  504. hlist_add_head(&x->gclist, &xfrm_state_gc_list);
  505. spin_unlock_bh(&xfrm_state_gc_lock);
  506. schedule_work(&xfrm_state_gc_work);
  507. }
  508. EXPORT_SYMBOL(__xfrm_state_destroy);
  509. int __xfrm_state_delete(struct xfrm_state *x)
  510. {
  511. struct net *net = xs_net(x);
  512. int err = -ESRCH;
  513. if (x->km.state != XFRM_STATE_DEAD) {
  514. x->km.state = XFRM_STATE_DEAD;
  515. spin_lock(&net->xfrm.xfrm_state_lock);
  516. list_del(&x->km.all);
  517. hlist_del_rcu(&x->bydst);
  518. hlist_del_rcu(&x->bysrc);
  519. if (x->id.spi)
  520. hlist_del_rcu(&x->byspi);
  521. net->xfrm.state_num--;
  522. spin_unlock(&net->xfrm.xfrm_state_lock);
  523. xfrm_dev_state_delete(x);
  524. /* All xfrm_state objects are created by xfrm_state_alloc.
  525. * The xfrm_state_alloc call gives a reference, and that
  526. * is what we are dropping here.
  527. */
  528. xfrm_state_put(x);
  529. err = 0;
  530. }
  531. return err;
  532. }
  533. EXPORT_SYMBOL(__xfrm_state_delete);
  534. int xfrm_state_delete(struct xfrm_state *x)
  535. {
  536. int err;
  537. spin_lock_bh(&x->lock);
  538. err = __xfrm_state_delete(x);
  539. spin_unlock_bh(&x->lock);
  540. return err;
  541. }
  542. EXPORT_SYMBOL(xfrm_state_delete);
  543. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  544. static inline int
  545. xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
  546. {
  547. int i, err = 0;
  548. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  549. struct xfrm_state *x;
  550. hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
  551. if (xfrm_id_proto_match(x->id.proto, proto) &&
  552. (err = security_xfrm_state_delete(x)) != 0) {
  553. xfrm_audit_state_delete(x, 0, task_valid);
  554. return err;
  555. }
  556. }
  557. }
  558. return err;
  559. }
  560. static inline int
  561. xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
  562. {
  563. int i, err = 0;
  564. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  565. struct xfrm_state *x;
  566. struct xfrm_state_offload *xso;
  567. hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
  568. xso = &x->xso;
  569. if (xso->dev == dev &&
  570. (err = security_xfrm_state_delete(x)) != 0) {
  571. xfrm_audit_state_delete(x, 0, task_valid);
  572. return err;
  573. }
  574. }
  575. }
  576. return err;
  577. }
  578. #else
  579. static inline int
  580. xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
  581. {
  582. return 0;
  583. }
  584. static inline int
  585. xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
  586. {
  587. return 0;
  588. }
  589. #endif
  590. int xfrm_state_flush(struct net *net, u8 proto, bool task_valid)
  591. {
  592. int i, err = 0, cnt = 0;
  593. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  594. err = xfrm_state_flush_secctx_check(net, proto, task_valid);
  595. if (err)
  596. goto out;
  597. err = -ESRCH;
  598. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  599. struct xfrm_state *x;
  600. restart:
  601. hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
  602. if (!xfrm_state_kern(x) &&
  603. xfrm_id_proto_match(x->id.proto, proto)) {
  604. xfrm_state_hold(x);
  605. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  606. err = xfrm_state_delete(x);
  607. xfrm_audit_state_delete(x, err ? 0 : 1,
  608. task_valid);
  609. xfrm_state_put(x);
  610. if (!err)
  611. cnt++;
  612. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  613. goto restart;
  614. }
  615. }
  616. }
  617. out:
  618. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  619. if (cnt)
  620. err = 0;
  621. return err;
  622. }
  623. EXPORT_SYMBOL(xfrm_state_flush);
  624. int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
  625. {
  626. int i, err = 0, cnt = 0;
  627. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  628. err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
  629. if (err)
  630. goto out;
  631. err = -ESRCH;
  632. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  633. struct xfrm_state *x;
  634. struct xfrm_state_offload *xso;
  635. restart:
  636. hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
  637. xso = &x->xso;
  638. if (!xfrm_state_kern(x) && xso->dev == dev) {
  639. xfrm_state_hold(x);
  640. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  641. err = xfrm_state_delete(x);
  642. xfrm_audit_state_delete(x, err ? 0 : 1,
  643. task_valid);
  644. xfrm_state_put(x);
  645. if (!err)
  646. cnt++;
  647. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  648. goto restart;
  649. }
  650. }
  651. }
  652. if (cnt)
  653. err = 0;
  654. out:
  655. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  656. return err;
  657. }
  658. EXPORT_SYMBOL(xfrm_dev_state_flush);
  659. void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
  660. {
  661. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  662. si->sadcnt = net->xfrm.state_num;
  663. si->sadhcnt = net->xfrm.state_hmask;
  664. si->sadhmcnt = xfrm_state_hashmax;
  665. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  666. }
  667. EXPORT_SYMBOL(xfrm_sad_getinfo);
  668. static void
  669. xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
  670. const struct xfrm_tmpl *tmpl,
  671. const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  672. unsigned short family)
  673. {
  674. struct xfrm_state_afinfo *afinfo = xfrm_state_afinfo_get_rcu(family);
  675. if (!afinfo)
  676. return;
  677. afinfo->init_tempsel(&x->sel, fl);
  678. if (family != tmpl->encap_family) {
  679. afinfo = xfrm_state_afinfo_get_rcu(tmpl->encap_family);
  680. if (!afinfo)
  681. return;
  682. }
  683. afinfo->init_temprop(x, tmpl, daddr, saddr);
  684. }
  685. static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
  686. const xfrm_address_t *daddr,
  687. __be32 spi, u8 proto,
  688. unsigned short family)
  689. {
  690. unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
  691. struct xfrm_state *x;
  692. hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
  693. if (x->props.family != family ||
  694. x->id.spi != spi ||
  695. x->id.proto != proto ||
  696. !xfrm_addr_equal(&x->id.daddr, daddr, family))
  697. continue;
  698. if ((mark & x->mark.m) != x->mark.v)
  699. continue;
  700. if (!xfrm_state_hold_rcu(x))
  701. continue;
  702. return x;
  703. }
  704. return NULL;
  705. }
  706. static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
  707. const xfrm_address_t *daddr,
  708. const xfrm_address_t *saddr,
  709. u8 proto, unsigned short family)
  710. {
  711. unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
  712. struct xfrm_state *x;
  713. hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
  714. if (x->props.family != family ||
  715. x->id.proto != proto ||
  716. !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
  717. !xfrm_addr_equal(&x->props.saddr, saddr, family))
  718. continue;
  719. if ((mark & x->mark.m) != x->mark.v)
  720. continue;
  721. if (!xfrm_state_hold_rcu(x))
  722. continue;
  723. return x;
  724. }
  725. return NULL;
  726. }
  727. static inline struct xfrm_state *
  728. __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
  729. {
  730. struct net *net = xs_net(x);
  731. u32 mark = x->mark.v & x->mark.m;
  732. if (use_spi)
  733. return __xfrm_state_lookup(net, mark, &x->id.daddr,
  734. x->id.spi, x->id.proto, family);
  735. else
  736. return __xfrm_state_lookup_byaddr(net, mark,
  737. &x->id.daddr,
  738. &x->props.saddr,
  739. x->id.proto, family);
  740. }
  741. static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
  742. {
  743. if (have_hash_collision &&
  744. (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
  745. net->xfrm.state_num > net->xfrm.state_hmask)
  746. schedule_work(&net->xfrm.state_hash_work);
  747. }
  748. static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
  749. const struct flowi *fl, unsigned short family,
  750. struct xfrm_state **best, int *acq_in_progress,
  751. int *error)
  752. {
  753. /* Resolution logic:
  754. * 1. There is a valid state with matching selector. Done.
  755. * 2. Valid state with inappropriate selector. Skip.
  756. *
  757. * Entering area of "sysdeps".
  758. *
  759. * 3. If state is not valid, selector is temporary, it selects
  760. * only session which triggered previous resolution. Key
  761. * manager will do something to install a state with proper
  762. * selector.
  763. */
  764. if (x->km.state == XFRM_STATE_VALID) {
  765. if ((x->sel.family &&
  766. !xfrm_selector_match(&x->sel, fl, x->sel.family)) ||
  767. !security_xfrm_state_pol_flow_match(x, pol, fl))
  768. return;
  769. if (!*best ||
  770. (*best)->km.dying > x->km.dying ||
  771. ((*best)->km.dying == x->km.dying &&
  772. (*best)->curlft.add_time < x->curlft.add_time))
  773. *best = x;
  774. } else if (x->km.state == XFRM_STATE_ACQ) {
  775. *acq_in_progress = 1;
  776. } else if (x->km.state == XFRM_STATE_ERROR ||
  777. x->km.state == XFRM_STATE_EXPIRED) {
  778. if (xfrm_selector_match(&x->sel, fl, x->sel.family) &&
  779. security_xfrm_state_pol_flow_match(x, pol, fl))
  780. *error = -ESRCH;
  781. }
  782. }
  783. struct xfrm_state *
  784. xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  785. const struct flowi *fl, struct xfrm_tmpl *tmpl,
  786. struct xfrm_policy *pol, int *err,
  787. unsigned short family, u32 if_id)
  788. {
  789. static xfrm_address_t saddr_wildcard = { };
  790. struct net *net = xp_net(pol);
  791. unsigned int h, h_wildcard;
  792. struct xfrm_state *x, *x0, *to_put;
  793. int acquire_in_progress = 0;
  794. int error = 0;
  795. struct xfrm_state *best = NULL;
  796. u32 mark = pol->mark.v & pol->mark.m;
  797. unsigned short encap_family = tmpl->encap_family;
  798. unsigned int sequence;
  799. struct km_event c;
  800. to_put = NULL;
  801. sequence = read_seqcount_begin(&xfrm_state_hash_generation);
  802. rcu_read_lock();
  803. h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
  804. hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
  805. if (x->props.family == encap_family &&
  806. x->props.reqid == tmpl->reqid &&
  807. (mark & x->mark.m) == x->mark.v &&
  808. x->if_id == if_id &&
  809. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  810. xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
  811. tmpl->mode == x->props.mode &&
  812. tmpl->id.proto == x->id.proto &&
  813. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  814. xfrm_state_look_at(pol, x, fl, encap_family,
  815. &best, &acquire_in_progress, &error);
  816. }
  817. if (best || acquire_in_progress)
  818. goto found;
  819. h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
  820. hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
  821. if (x->props.family == encap_family &&
  822. x->props.reqid == tmpl->reqid &&
  823. (mark & x->mark.m) == x->mark.v &&
  824. x->if_id == if_id &&
  825. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  826. xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
  827. tmpl->mode == x->props.mode &&
  828. tmpl->id.proto == x->id.proto &&
  829. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  830. xfrm_state_look_at(pol, x, fl, encap_family,
  831. &best, &acquire_in_progress, &error);
  832. }
  833. found:
  834. x = best;
  835. if (!x && !error && !acquire_in_progress) {
  836. if (tmpl->id.spi &&
  837. (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
  838. tmpl->id.proto, encap_family)) != NULL) {
  839. to_put = x0;
  840. error = -EEXIST;
  841. goto out;
  842. }
  843. c.net = net;
  844. /* If the KMs have no listeners (yet...), avoid allocating an SA
  845. * for each and every packet - garbage collection might not
  846. * handle the flood.
  847. */
  848. if (!km_is_alive(&c)) {
  849. error = -ESRCH;
  850. goto out;
  851. }
  852. x = xfrm_state_alloc(net);
  853. if (x == NULL) {
  854. error = -ENOMEM;
  855. goto out;
  856. }
  857. /* Initialize temporary state matching only
  858. * to current session. */
  859. xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
  860. memcpy(&x->mark, &pol->mark, sizeof(x->mark));
  861. x->if_id = if_id;
  862. error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
  863. if (error) {
  864. x->km.state = XFRM_STATE_DEAD;
  865. to_put = x;
  866. x = NULL;
  867. goto out;
  868. }
  869. if (km_query(x, tmpl, pol) == 0) {
  870. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  871. x->km.state = XFRM_STATE_ACQ;
  872. list_add(&x->km.all, &net->xfrm.state_all);
  873. hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
  874. h = xfrm_src_hash(net, daddr, saddr, encap_family);
  875. hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
  876. if (x->id.spi) {
  877. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
  878. hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
  879. }
  880. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  881. tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
  882. net->xfrm.state_num++;
  883. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  884. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  885. } else {
  886. x->km.state = XFRM_STATE_DEAD;
  887. to_put = x;
  888. x = NULL;
  889. error = -ESRCH;
  890. }
  891. }
  892. out:
  893. if (x) {
  894. if (!xfrm_state_hold_rcu(x)) {
  895. *err = -EAGAIN;
  896. x = NULL;
  897. }
  898. } else {
  899. *err = acquire_in_progress ? -EAGAIN : error;
  900. }
  901. rcu_read_unlock();
  902. if (to_put)
  903. xfrm_state_put(to_put);
  904. if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) {
  905. *err = -EAGAIN;
  906. if (x) {
  907. xfrm_state_put(x);
  908. x = NULL;
  909. }
  910. }
  911. return x;
  912. }
  913. struct xfrm_state *
  914. xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
  915. xfrm_address_t *daddr, xfrm_address_t *saddr,
  916. unsigned short family, u8 mode, u8 proto, u32 reqid)
  917. {
  918. unsigned int h;
  919. struct xfrm_state *rx = NULL, *x = NULL;
  920. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  921. h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  922. hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
  923. if (x->props.family == family &&
  924. x->props.reqid == reqid &&
  925. (mark & x->mark.m) == x->mark.v &&
  926. x->if_id == if_id &&
  927. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  928. xfrm_state_addr_check(x, daddr, saddr, family) &&
  929. mode == x->props.mode &&
  930. proto == x->id.proto &&
  931. x->km.state == XFRM_STATE_VALID) {
  932. rx = x;
  933. break;
  934. }
  935. }
  936. if (rx)
  937. xfrm_state_hold(rx);
  938. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  939. return rx;
  940. }
  941. EXPORT_SYMBOL(xfrm_stateonly_find);
  942. struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
  943. unsigned short family)
  944. {
  945. struct xfrm_state *x;
  946. struct xfrm_state_walk *w;
  947. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  948. list_for_each_entry(w, &net->xfrm.state_all, all) {
  949. x = container_of(w, struct xfrm_state, km);
  950. if (x->props.family != family ||
  951. x->id.spi != spi)
  952. continue;
  953. xfrm_state_hold(x);
  954. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  955. return x;
  956. }
  957. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  958. return NULL;
  959. }
  960. EXPORT_SYMBOL(xfrm_state_lookup_byspi);
  961. static void __xfrm_state_insert(struct xfrm_state *x)
  962. {
  963. struct net *net = xs_net(x);
  964. unsigned int h;
  965. list_add(&x->km.all, &net->xfrm.state_all);
  966. h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
  967. x->props.reqid, x->props.family);
  968. hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
  969. h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
  970. hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
  971. if (x->id.spi) {
  972. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
  973. x->props.family);
  974. hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
  975. }
  976. tasklet_hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
  977. if (x->replay_maxage)
  978. mod_timer(&x->rtimer, jiffies + x->replay_maxage);
  979. net->xfrm.state_num++;
  980. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  981. }
  982. /* net->xfrm.xfrm_state_lock is held */
  983. static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
  984. {
  985. struct net *net = xs_net(xnew);
  986. unsigned short family = xnew->props.family;
  987. u32 reqid = xnew->props.reqid;
  988. struct xfrm_state *x;
  989. unsigned int h;
  990. u32 mark = xnew->mark.v & xnew->mark.m;
  991. u32 if_id = xnew->if_id;
  992. h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
  993. hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
  994. if (x->props.family == family &&
  995. x->props.reqid == reqid &&
  996. x->if_id == if_id &&
  997. (mark & x->mark.m) == x->mark.v &&
  998. xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
  999. xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
  1000. x->genid++;
  1001. }
  1002. }
  1003. void xfrm_state_insert(struct xfrm_state *x)
  1004. {
  1005. struct net *net = xs_net(x);
  1006. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1007. __xfrm_state_bump_genids(x);
  1008. __xfrm_state_insert(x);
  1009. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1010. }
  1011. EXPORT_SYMBOL(xfrm_state_insert);
  1012. /* net->xfrm.xfrm_state_lock is held */
  1013. static struct xfrm_state *__find_acq_core(struct net *net,
  1014. const struct xfrm_mark *m,
  1015. unsigned short family, u8 mode,
  1016. u32 reqid, u32 if_id, u8 proto,
  1017. const xfrm_address_t *daddr,
  1018. const xfrm_address_t *saddr,
  1019. int create)
  1020. {
  1021. unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  1022. struct xfrm_state *x;
  1023. u32 mark = m->v & m->m;
  1024. hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
  1025. if (x->props.reqid != reqid ||
  1026. x->props.mode != mode ||
  1027. x->props.family != family ||
  1028. x->km.state != XFRM_STATE_ACQ ||
  1029. x->id.spi != 0 ||
  1030. x->id.proto != proto ||
  1031. (mark & x->mark.m) != x->mark.v ||
  1032. !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
  1033. !xfrm_addr_equal(&x->props.saddr, saddr, family))
  1034. continue;
  1035. xfrm_state_hold(x);
  1036. return x;
  1037. }
  1038. if (!create)
  1039. return NULL;
  1040. x = xfrm_state_alloc(net);
  1041. if (likely(x)) {
  1042. switch (family) {
  1043. case AF_INET:
  1044. x->sel.daddr.a4 = daddr->a4;
  1045. x->sel.saddr.a4 = saddr->a4;
  1046. x->sel.prefixlen_d = 32;
  1047. x->sel.prefixlen_s = 32;
  1048. x->props.saddr.a4 = saddr->a4;
  1049. x->id.daddr.a4 = daddr->a4;
  1050. break;
  1051. case AF_INET6:
  1052. x->sel.daddr.in6 = daddr->in6;
  1053. x->sel.saddr.in6 = saddr->in6;
  1054. x->sel.prefixlen_d = 128;
  1055. x->sel.prefixlen_s = 128;
  1056. x->props.saddr.in6 = saddr->in6;
  1057. x->id.daddr.in6 = daddr->in6;
  1058. break;
  1059. }
  1060. x->km.state = XFRM_STATE_ACQ;
  1061. x->id.proto = proto;
  1062. x->props.family = family;
  1063. x->props.mode = mode;
  1064. x->props.reqid = reqid;
  1065. x->if_id = if_id;
  1066. x->mark.v = m->v;
  1067. x->mark.m = m->m;
  1068. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  1069. xfrm_state_hold(x);
  1070. tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
  1071. list_add(&x->km.all, &net->xfrm.state_all);
  1072. hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
  1073. h = xfrm_src_hash(net, daddr, saddr, family);
  1074. hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
  1075. net->xfrm.state_num++;
  1076. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  1077. }
  1078. return x;
  1079. }
  1080. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
  1081. int xfrm_state_add(struct xfrm_state *x)
  1082. {
  1083. struct net *net = xs_net(x);
  1084. struct xfrm_state *x1, *to_put;
  1085. int family;
  1086. int err;
  1087. u32 mark = x->mark.v & x->mark.m;
  1088. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  1089. family = x->props.family;
  1090. to_put = NULL;
  1091. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1092. x1 = __xfrm_state_locate(x, use_spi, family);
  1093. if (x1) {
  1094. to_put = x1;
  1095. x1 = NULL;
  1096. err = -EEXIST;
  1097. goto out;
  1098. }
  1099. if (use_spi && x->km.seq) {
  1100. x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
  1101. if (x1 && ((x1->id.proto != x->id.proto) ||
  1102. !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
  1103. to_put = x1;
  1104. x1 = NULL;
  1105. }
  1106. }
  1107. if (use_spi && !x1)
  1108. x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
  1109. x->props.reqid, x->if_id, x->id.proto,
  1110. &x->id.daddr, &x->props.saddr, 0);
  1111. __xfrm_state_bump_genids(x);
  1112. __xfrm_state_insert(x);
  1113. err = 0;
  1114. out:
  1115. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1116. if (x1) {
  1117. xfrm_state_delete(x1);
  1118. xfrm_state_put(x1);
  1119. }
  1120. if (to_put)
  1121. xfrm_state_put(to_put);
  1122. return err;
  1123. }
  1124. EXPORT_SYMBOL(xfrm_state_add);
  1125. #ifdef CONFIG_XFRM_MIGRATE
  1126. static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
  1127. struct xfrm_encap_tmpl *encap)
  1128. {
  1129. struct net *net = xs_net(orig);
  1130. struct xfrm_state *x = xfrm_state_alloc(net);
  1131. if (!x)
  1132. goto out;
  1133. memcpy(&x->id, &orig->id, sizeof(x->id));
  1134. memcpy(&x->sel, &orig->sel, sizeof(x->sel));
  1135. memcpy(&x->lft, &orig->lft, sizeof(x->lft));
  1136. x->props.mode = orig->props.mode;
  1137. x->props.replay_window = orig->props.replay_window;
  1138. x->props.reqid = orig->props.reqid;
  1139. x->props.family = orig->props.family;
  1140. x->props.saddr = orig->props.saddr;
  1141. if (orig->aalg) {
  1142. x->aalg = xfrm_algo_auth_clone(orig->aalg);
  1143. if (!x->aalg)
  1144. goto error;
  1145. }
  1146. x->props.aalgo = orig->props.aalgo;
  1147. if (orig->aead) {
  1148. x->aead = xfrm_algo_aead_clone(orig->aead);
  1149. x->geniv = orig->geniv;
  1150. if (!x->aead)
  1151. goto error;
  1152. }
  1153. if (orig->ealg) {
  1154. x->ealg = xfrm_algo_clone(orig->ealg);
  1155. if (!x->ealg)
  1156. goto error;
  1157. }
  1158. x->props.ealgo = orig->props.ealgo;
  1159. if (orig->calg) {
  1160. x->calg = xfrm_algo_clone(orig->calg);
  1161. if (!x->calg)
  1162. goto error;
  1163. }
  1164. x->props.calgo = orig->props.calgo;
  1165. if (encap || orig->encap) {
  1166. if (encap)
  1167. x->encap = kmemdup(encap, sizeof(*x->encap),
  1168. GFP_KERNEL);
  1169. else
  1170. x->encap = kmemdup(orig->encap, sizeof(*x->encap),
  1171. GFP_KERNEL);
  1172. if (!x->encap)
  1173. goto error;
  1174. }
  1175. if (orig->coaddr) {
  1176. x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
  1177. GFP_KERNEL);
  1178. if (!x->coaddr)
  1179. goto error;
  1180. }
  1181. if (orig->replay_esn) {
  1182. if (xfrm_replay_clone(x, orig))
  1183. goto error;
  1184. }
  1185. memcpy(&x->mark, &orig->mark, sizeof(x->mark));
  1186. if (xfrm_init_state(x) < 0)
  1187. goto error;
  1188. x->props.flags = orig->props.flags;
  1189. x->props.extra_flags = orig->props.extra_flags;
  1190. x->if_id = orig->if_id;
  1191. x->tfcpad = orig->tfcpad;
  1192. x->replay_maxdiff = orig->replay_maxdiff;
  1193. x->replay_maxage = orig->replay_maxage;
  1194. x->curlft.add_time = orig->curlft.add_time;
  1195. x->km.state = orig->km.state;
  1196. x->km.seq = orig->km.seq;
  1197. x->replay = orig->replay;
  1198. x->preplay = orig->preplay;
  1199. return x;
  1200. error:
  1201. xfrm_state_put(x);
  1202. out:
  1203. return NULL;
  1204. }
  1205. struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
  1206. {
  1207. unsigned int h;
  1208. struct xfrm_state *x = NULL;
  1209. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1210. if (m->reqid) {
  1211. h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
  1212. m->reqid, m->old_family);
  1213. hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
  1214. if (x->props.mode != m->mode ||
  1215. x->id.proto != m->proto)
  1216. continue;
  1217. if (m->reqid && x->props.reqid != m->reqid)
  1218. continue;
  1219. if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
  1220. m->old_family) ||
  1221. !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
  1222. m->old_family))
  1223. continue;
  1224. xfrm_state_hold(x);
  1225. break;
  1226. }
  1227. } else {
  1228. h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
  1229. m->old_family);
  1230. hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
  1231. if (x->props.mode != m->mode ||
  1232. x->id.proto != m->proto)
  1233. continue;
  1234. if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
  1235. m->old_family) ||
  1236. !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
  1237. m->old_family))
  1238. continue;
  1239. xfrm_state_hold(x);
  1240. break;
  1241. }
  1242. }
  1243. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1244. return x;
  1245. }
  1246. EXPORT_SYMBOL(xfrm_migrate_state_find);
  1247. struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
  1248. struct xfrm_migrate *m,
  1249. struct xfrm_encap_tmpl *encap)
  1250. {
  1251. struct xfrm_state *xc;
  1252. xc = xfrm_state_clone(x, encap);
  1253. if (!xc)
  1254. return NULL;
  1255. memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
  1256. memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
  1257. /* add state */
  1258. if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
  1259. /* a care is needed when the destination address of the
  1260. state is to be updated as it is a part of triplet */
  1261. xfrm_state_insert(xc);
  1262. } else {
  1263. if (xfrm_state_add(xc) < 0)
  1264. goto error;
  1265. }
  1266. return xc;
  1267. error:
  1268. xfrm_state_put(xc);
  1269. return NULL;
  1270. }
  1271. EXPORT_SYMBOL(xfrm_state_migrate);
  1272. #endif
  1273. int xfrm_state_update(struct xfrm_state *x)
  1274. {
  1275. struct xfrm_state *x1, *to_put;
  1276. int err;
  1277. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  1278. struct net *net = xs_net(x);
  1279. to_put = NULL;
  1280. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1281. x1 = __xfrm_state_locate(x, use_spi, x->props.family);
  1282. err = -ESRCH;
  1283. if (!x1)
  1284. goto out;
  1285. if (xfrm_state_kern(x1)) {
  1286. to_put = x1;
  1287. err = -EEXIST;
  1288. goto out;
  1289. }
  1290. if (x1->km.state == XFRM_STATE_ACQ) {
  1291. __xfrm_state_insert(x);
  1292. x = NULL;
  1293. }
  1294. err = 0;
  1295. out:
  1296. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1297. if (to_put)
  1298. xfrm_state_put(to_put);
  1299. if (err)
  1300. return err;
  1301. if (!x) {
  1302. xfrm_state_delete(x1);
  1303. xfrm_state_put(x1);
  1304. return 0;
  1305. }
  1306. err = -EINVAL;
  1307. spin_lock_bh(&x1->lock);
  1308. if (likely(x1->km.state == XFRM_STATE_VALID)) {
  1309. if (x->encap && x1->encap &&
  1310. x->encap->encap_type == x1->encap->encap_type)
  1311. memcpy(x1->encap, x->encap, sizeof(*x1->encap));
  1312. else if (x->encap || x1->encap)
  1313. goto fail;
  1314. if (x->coaddr && x1->coaddr) {
  1315. memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
  1316. }
  1317. if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
  1318. memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
  1319. memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
  1320. x1->km.dying = 0;
  1321. tasklet_hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
  1322. if (x1->curlft.use_time)
  1323. xfrm_state_check_expire(x1);
  1324. if (x->props.smark.m || x->props.smark.v || x->if_id) {
  1325. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1326. if (x->props.smark.m || x->props.smark.v)
  1327. x1->props.smark = x->props.smark;
  1328. if (x->if_id)
  1329. x1->if_id = x->if_id;
  1330. __xfrm_state_bump_genids(x1);
  1331. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1332. }
  1333. err = 0;
  1334. x->km.state = XFRM_STATE_DEAD;
  1335. __xfrm_state_put(x);
  1336. }
  1337. fail:
  1338. spin_unlock_bh(&x1->lock);
  1339. xfrm_state_put(x1);
  1340. return err;
  1341. }
  1342. EXPORT_SYMBOL(xfrm_state_update);
  1343. int xfrm_state_check_expire(struct xfrm_state *x)
  1344. {
  1345. if (!x->curlft.use_time)
  1346. x->curlft.use_time = ktime_get_real_seconds();
  1347. if (x->curlft.bytes >= x->lft.hard_byte_limit ||
  1348. x->curlft.packets >= x->lft.hard_packet_limit) {
  1349. x->km.state = XFRM_STATE_EXPIRED;
  1350. tasklet_hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL);
  1351. return -EINVAL;
  1352. }
  1353. if (!x->km.dying &&
  1354. (x->curlft.bytes >= x->lft.soft_byte_limit ||
  1355. x->curlft.packets >= x->lft.soft_packet_limit)) {
  1356. x->km.dying = 1;
  1357. km_state_expired(x, 0, 0);
  1358. }
  1359. return 0;
  1360. }
  1361. EXPORT_SYMBOL(xfrm_state_check_expire);
  1362. struct xfrm_state *
  1363. xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
  1364. u8 proto, unsigned short family)
  1365. {
  1366. struct xfrm_state *x;
  1367. rcu_read_lock();
  1368. x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
  1369. rcu_read_unlock();
  1370. return x;
  1371. }
  1372. EXPORT_SYMBOL(xfrm_state_lookup);
  1373. struct xfrm_state *
  1374. xfrm_state_lookup_byaddr(struct net *net, u32 mark,
  1375. const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  1376. u8 proto, unsigned short family)
  1377. {
  1378. struct xfrm_state *x;
  1379. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1380. x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
  1381. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1382. return x;
  1383. }
  1384. EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
  1385. struct xfrm_state *
  1386. xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
  1387. u32 if_id, u8 proto, const xfrm_address_t *daddr,
  1388. const xfrm_address_t *saddr, int create, unsigned short family)
  1389. {
  1390. struct xfrm_state *x;
  1391. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1392. x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
  1393. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1394. return x;
  1395. }
  1396. EXPORT_SYMBOL(xfrm_find_acq);
  1397. #ifdef CONFIG_XFRM_SUB_POLICY
  1398. int
  1399. xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
  1400. unsigned short family, struct net *net)
  1401. {
  1402. int i;
  1403. int err = 0;
  1404. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1405. if (!afinfo)
  1406. return -EAFNOSUPPORT;
  1407. spin_lock_bh(&net->xfrm.xfrm_state_lock); /*FIXME*/
  1408. if (afinfo->tmpl_sort)
  1409. err = afinfo->tmpl_sort(dst, src, n);
  1410. else
  1411. for (i = 0; i < n; i++)
  1412. dst[i] = src[i];
  1413. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1414. rcu_read_unlock();
  1415. return err;
  1416. }
  1417. EXPORT_SYMBOL(xfrm_tmpl_sort);
  1418. int
  1419. xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
  1420. unsigned short family)
  1421. {
  1422. int i;
  1423. int err = 0;
  1424. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1425. struct net *net = xs_net(*src);
  1426. if (!afinfo)
  1427. return -EAFNOSUPPORT;
  1428. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1429. if (afinfo->state_sort)
  1430. err = afinfo->state_sort(dst, src, n);
  1431. else
  1432. for (i = 0; i < n; i++)
  1433. dst[i] = src[i];
  1434. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1435. rcu_read_unlock();
  1436. return err;
  1437. }
  1438. EXPORT_SYMBOL(xfrm_state_sort);
  1439. #endif
  1440. /* Silly enough, but I'm lazy to build resolution list */
  1441. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
  1442. {
  1443. int i;
  1444. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  1445. struct xfrm_state *x;
  1446. hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
  1447. if (x->km.seq == seq &&
  1448. (mark & x->mark.m) == x->mark.v &&
  1449. x->km.state == XFRM_STATE_ACQ) {
  1450. xfrm_state_hold(x);
  1451. return x;
  1452. }
  1453. }
  1454. }
  1455. return NULL;
  1456. }
  1457. struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
  1458. {
  1459. struct xfrm_state *x;
  1460. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1461. x = __xfrm_find_acq_byseq(net, mark, seq);
  1462. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1463. return x;
  1464. }
  1465. EXPORT_SYMBOL(xfrm_find_acq_byseq);
  1466. u32 xfrm_get_acqseq(void)
  1467. {
  1468. u32 res;
  1469. static atomic_t acqseq;
  1470. do {
  1471. res = atomic_inc_return(&acqseq);
  1472. } while (!res);
  1473. return res;
  1474. }
  1475. EXPORT_SYMBOL(xfrm_get_acqseq);
  1476. int verify_spi_info(u8 proto, u32 min, u32 max)
  1477. {
  1478. switch (proto) {
  1479. case IPPROTO_AH:
  1480. case IPPROTO_ESP:
  1481. break;
  1482. case IPPROTO_COMP:
  1483. /* IPCOMP spi is 16-bits. */
  1484. if (max >= 0x10000)
  1485. return -EINVAL;
  1486. break;
  1487. default:
  1488. return -EINVAL;
  1489. }
  1490. if (min > max)
  1491. return -EINVAL;
  1492. return 0;
  1493. }
  1494. EXPORT_SYMBOL(verify_spi_info);
  1495. int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
  1496. {
  1497. struct net *net = xs_net(x);
  1498. unsigned int h;
  1499. struct xfrm_state *x0;
  1500. int err = -ENOENT;
  1501. __be32 minspi = htonl(low);
  1502. __be32 maxspi = htonl(high);
  1503. u32 mark = x->mark.v & x->mark.m;
  1504. spin_lock_bh(&x->lock);
  1505. if (x->km.state == XFRM_STATE_DEAD)
  1506. goto unlock;
  1507. err = 0;
  1508. if (x->id.spi)
  1509. goto unlock;
  1510. err = -ENOENT;
  1511. if (minspi == maxspi) {
  1512. x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
  1513. if (x0) {
  1514. xfrm_state_put(x0);
  1515. goto unlock;
  1516. }
  1517. x->id.spi = minspi;
  1518. } else {
  1519. u32 spi = 0;
  1520. for (h = 0; h < high-low+1; h++) {
  1521. spi = low + prandom_u32()%(high-low+1);
  1522. x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
  1523. if (x0 == NULL) {
  1524. x->id.spi = htonl(spi);
  1525. break;
  1526. }
  1527. xfrm_state_put(x0);
  1528. }
  1529. }
  1530. if (x->id.spi) {
  1531. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1532. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
  1533. hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
  1534. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1535. err = 0;
  1536. }
  1537. unlock:
  1538. spin_unlock_bh(&x->lock);
  1539. return err;
  1540. }
  1541. EXPORT_SYMBOL(xfrm_alloc_spi);
  1542. static bool __xfrm_state_filter_match(struct xfrm_state *x,
  1543. struct xfrm_address_filter *filter)
  1544. {
  1545. if (filter) {
  1546. if ((filter->family == AF_INET ||
  1547. filter->family == AF_INET6) &&
  1548. x->props.family != filter->family)
  1549. return false;
  1550. return addr_match(&x->props.saddr, &filter->saddr,
  1551. filter->splen) &&
  1552. addr_match(&x->id.daddr, &filter->daddr,
  1553. filter->dplen);
  1554. }
  1555. return true;
  1556. }
  1557. int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
  1558. int (*func)(struct xfrm_state *, int, void*),
  1559. void *data)
  1560. {
  1561. struct xfrm_state *state;
  1562. struct xfrm_state_walk *x;
  1563. int err = 0;
  1564. if (walk->seq != 0 && list_empty(&walk->all))
  1565. return 0;
  1566. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1567. if (list_empty(&walk->all))
  1568. x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
  1569. else
  1570. x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
  1571. list_for_each_entry_from(x, &net->xfrm.state_all, all) {
  1572. if (x->state == XFRM_STATE_DEAD)
  1573. continue;
  1574. state = container_of(x, struct xfrm_state, km);
  1575. if (!xfrm_id_proto_match(state->id.proto, walk->proto))
  1576. continue;
  1577. if (!__xfrm_state_filter_match(state, walk->filter))
  1578. continue;
  1579. err = func(state, walk->seq, data);
  1580. if (err) {
  1581. list_move_tail(&walk->all, &x->all);
  1582. goto out;
  1583. }
  1584. walk->seq++;
  1585. }
  1586. if (walk->seq == 0) {
  1587. err = -ENOENT;
  1588. goto out;
  1589. }
  1590. list_del_init(&walk->all);
  1591. out:
  1592. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1593. return err;
  1594. }
  1595. EXPORT_SYMBOL(xfrm_state_walk);
  1596. void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
  1597. struct xfrm_address_filter *filter)
  1598. {
  1599. INIT_LIST_HEAD(&walk->all);
  1600. walk->proto = proto;
  1601. walk->state = XFRM_STATE_DEAD;
  1602. walk->seq = 0;
  1603. walk->filter = filter;
  1604. }
  1605. EXPORT_SYMBOL(xfrm_state_walk_init);
  1606. void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
  1607. {
  1608. kfree(walk->filter);
  1609. if (list_empty(&walk->all))
  1610. return;
  1611. spin_lock_bh(&net->xfrm.xfrm_state_lock);
  1612. list_del(&walk->all);
  1613. spin_unlock_bh(&net->xfrm.xfrm_state_lock);
  1614. }
  1615. EXPORT_SYMBOL(xfrm_state_walk_done);
  1616. static void xfrm_replay_timer_handler(struct timer_list *t)
  1617. {
  1618. struct xfrm_state *x = from_timer(x, t, rtimer);
  1619. spin_lock(&x->lock);
  1620. if (x->km.state == XFRM_STATE_VALID) {
  1621. if (xfrm_aevent_is_on(xs_net(x)))
  1622. x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
  1623. else
  1624. x->xflags |= XFRM_TIME_DEFER;
  1625. }
  1626. spin_unlock(&x->lock);
  1627. }
  1628. static LIST_HEAD(xfrm_km_list);
  1629. void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1630. {
  1631. struct xfrm_mgr *km;
  1632. rcu_read_lock();
  1633. list_for_each_entry_rcu(km, &xfrm_km_list, list)
  1634. if (km->notify_policy)
  1635. km->notify_policy(xp, dir, c);
  1636. rcu_read_unlock();
  1637. }
  1638. void km_state_notify(struct xfrm_state *x, const struct km_event *c)
  1639. {
  1640. struct xfrm_mgr *km;
  1641. rcu_read_lock();
  1642. list_for_each_entry_rcu(km, &xfrm_km_list, list)
  1643. if (km->notify)
  1644. km->notify(x, c);
  1645. rcu_read_unlock();
  1646. }
  1647. EXPORT_SYMBOL(km_policy_notify);
  1648. EXPORT_SYMBOL(km_state_notify);
  1649. void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
  1650. {
  1651. struct km_event c;
  1652. c.data.hard = hard;
  1653. c.portid = portid;
  1654. c.event = XFRM_MSG_EXPIRE;
  1655. km_state_notify(x, &c);
  1656. }
  1657. EXPORT_SYMBOL(km_state_expired);
  1658. /*
  1659. * We send to all registered managers regardless of failure
  1660. * We are happy with one success
  1661. */
  1662. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
  1663. {
  1664. int err = -EINVAL, acqret;
  1665. struct xfrm_mgr *km;
  1666. rcu_read_lock();
  1667. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1668. acqret = km->acquire(x, t, pol);
  1669. if (!acqret)
  1670. err = acqret;
  1671. }
  1672. rcu_read_unlock();
  1673. return err;
  1674. }
  1675. EXPORT_SYMBOL(km_query);
  1676. int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  1677. {
  1678. int err = -EINVAL;
  1679. struct xfrm_mgr *km;
  1680. rcu_read_lock();
  1681. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1682. if (km->new_mapping)
  1683. err = km->new_mapping(x, ipaddr, sport);
  1684. if (!err)
  1685. break;
  1686. }
  1687. rcu_read_unlock();
  1688. return err;
  1689. }
  1690. EXPORT_SYMBOL(km_new_mapping);
  1691. void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
  1692. {
  1693. struct km_event c;
  1694. c.data.hard = hard;
  1695. c.portid = portid;
  1696. c.event = XFRM_MSG_POLEXPIRE;
  1697. km_policy_notify(pol, dir, &c);
  1698. }
  1699. EXPORT_SYMBOL(km_policy_expired);
  1700. #ifdef CONFIG_XFRM_MIGRATE
  1701. int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  1702. const struct xfrm_migrate *m, int num_migrate,
  1703. const struct xfrm_kmaddress *k,
  1704. const struct xfrm_encap_tmpl *encap)
  1705. {
  1706. int err = -EINVAL;
  1707. int ret;
  1708. struct xfrm_mgr *km;
  1709. rcu_read_lock();
  1710. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1711. if (km->migrate) {
  1712. ret = km->migrate(sel, dir, type, m, num_migrate, k,
  1713. encap);
  1714. if (!ret)
  1715. err = ret;
  1716. }
  1717. }
  1718. rcu_read_unlock();
  1719. return err;
  1720. }
  1721. EXPORT_SYMBOL(km_migrate);
  1722. #endif
  1723. int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
  1724. {
  1725. int err = -EINVAL;
  1726. int ret;
  1727. struct xfrm_mgr *km;
  1728. rcu_read_lock();
  1729. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1730. if (km->report) {
  1731. ret = km->report(net, proto, sel, addr);
  1732. if (!ret)
  1733. err = ret;
  1734. }
  1735. }
  1736. rcu_read_unlock();
  1737. return err;
  1738. }
  1739. EXPORT_SYMBOL(km_report);
  1740. bool km_is_alive(const struct km_event *c)
  1741. {
  1742. struct xfrm_mgr *km;
  1743. bool is_alive = false;
  1744. rcu_read_lock();
  1745. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1746. if (km->is_alive && km->is_alive(c)) {
  1747. is_alive = true;
  1748. break;
  1749. }
  1750. }
  1751. rcu_read_unlock();
  1752. return is_alive;
  1753. }
  1754. EXPORT_SYMBOL(km_is_alive);
  1755. int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
  1756. {
  1757. int err;
  1758. u8 *data;
  1759. struct xfrm_mgr *km;
  1760. struct xfrm_policy *pol = NULL;
  1761. #ifdef CONFIG_COMPAT
  1762. if (in_compat_syscall())
  1763. return -EOPNOTSUPP;
  1764. #endif
  1765. if (!optval && !optlen) {
  1766. xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
  1767. xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
  1768. __sk_dst_reset(sk);
  1769. return 0;
  1770. }
  1771. if (optlen <= 0 || optlen > PAGE_SIZE)
  1772. return -EMSGSIZE;
  1773. data = memdup_user(optval, optlen);
  1774. if (IS_ERR(data))
  1775. return PTR_ERR(data);
  1776. err = -EINVAL;
  1777. rcu_read_lock();
  1778. list_for_each_entry_rcu(km, &xfrm_km_list, list) {
  1779. pol = km->compile_policy(sk, optname, data,
  1780. optlen, &err);
  1781. if (err >= 0)
  1782. break;
  1783. }
  1784. rcu_read_unlock();
  1785. if (err >= 0) {
  1786. xfrm_sk_policy_insert(sk, err, pol);
  1787. xfrm_pol_put(pol);
  1788. __sk_dst_reset(sk);
  1789. err = 0;
  1790. }
  1791. kfree(data);
  1792. return err;
  1793. }
  1794. EXPORT_SYMBOL(xfrm_user_policy);
  1795. static DEFINE_SPINLOCK(xfrm_km_lock);
  1796. int xfrm_register_km(struct xfrm_mgr *km)
  1797. {
  1798. spin_lock_bh(&xfrm_km_lock);
  1799. list_add_tail_rcu(&km->list, &xfrm_km_list);
  1800. spin_unlock_bh(&xfrm_km_lock);
  1801. return 0;
  1802. }
  1803. EXPORT_SYMBOL(xfrm_register_km);
  1804. int xfrm_unregister_km(struct xfrm_mgr *km)
  1805. {
  1806. spin_lock_bh(&xfrm_km_lock);
  1807. list_del_rcu(&km->list);
  1808. spin_unlock_bh(&xfrm_km_lock);
  1809. synchronize_rcu();
  1810. return 0;
  1811. }
  1812. EXPORT_SYMBOL(xfrm_unregister_km);
  1813. int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
  1814. {
  1815. int err = 0;
  1816. if (WARN_ON(afinfo->family >= NPROTO))
  1817. return -EAFNOSUPPORT;
  1818. spin_lock_bh(&xfrm_state_afinfo_lock);
  1819. if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
  1820. err = -EEXIST;
  1821. else
  1822. rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
  1823. spin_unlock_bh(&xfrm_state_afinfo_lock);
  1824. return err;
  1825. }
  1826. EXPORT_SYMBOL(xfrm_state_register_afinfo);
  1827. int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
  1828. {
  1829. int err = 0, family = afinfo->family;
  1830. if (WARN_ON(family >= NPROTO))
  1831. return -EAFNOSUPPORT;
  1832. spin_lock_bh(&xfrm_state_afinfo_lock);
  1833. if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
  1834. if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
  1835. err = -EINVAL;
  1836. else
  1837. RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
  1838. }
  1839. spin_unlock_bh(&xfrm_state_afinfo_lock);
  1840. synchronize_rcu();
  1841. return err;
  1842. }
  1843. EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
  1844. struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
  1845. {
  1846. if (unlikely(family >= NPROTO))
  1847. return NULL;
  1848. return rcu_dereference(xfrm_state_afinfo[family]);
  1849. }
  1850. struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
  1851. {
  1852. struct xfrm_state_afinfo *afinfo;
  1853. if (unlikely(family >= NPROTO))
  1854. return NULL;
  1855. rcu_read_lock();
  1856. afinfo = rcu_dereference(xfrm_state_afinfo[family]);
  1857. if (unlikely(!afinfo))
  1858. rcu_read_unlock();
  1859. return afinfo;
  1860. }
  1861. void xfrm_flush_gc(void)
  1862. {
  1863. flush_work(&xfrm_state_gc_work);
  1864. }
  1865. EXPORT_SYMBOL(xfrm_flush_gc);
  1866. /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
  1867. void xfrm_state_delete_tunnel(struct xfrm_state *x)
  1868. {
  1869. if (x->tunnel) {
  1870. struct xfrm_state *t = x->tunnel;
  1871. if (atomic_read(&t->tunnel_users) == 2)
  1872. xfrm_state_delete(t);
  1873. atomic_dec(&t->tunnel_users);
  1874. xfrm_state_put(t);
  1875. x->tunnel = NULL;
  1876. }
  1877. }
  1878. EXPORT_SYMBOL(xfrm_state_delete_tunnel);
  1879. int xfrm_state_mtu(struct xfrm_state *x, int mtu)
  1880. {
  1881. const struct xfrm_type *type = READ_ONCE(x->type);
  1882. if (x->km.state == XFRM_STATE_VALID &&
  1883. type && type->get_mtu)
  1884. return type->get_mtu(x, mtu);
  1885. return mtu - x->props.header_len;
  1886. }
  1887. int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
  1888. {
  1889. struct xfrm_state_afinfo *afinfo;
  1890. struct xfrm_mode *inner_mode;
  1891. int family = x->props.family;
  1892. int err;
  1893. err = -EAFNOSUPPORT;
  1894. afinfo = xfrm_state_get_afinfo(family);
  1895. if (!afinfo)
  1896. goto error;
  1897. err = 0;
  1898. if (afinfo->init_flags)
  1899. err = afinfo->init_flags(x);
  1900. rcu_read_unlock();
  1901. if (err)
  1902. goto error;
  1903. err = -EPROTONOSUPPORT;
  1904. if (x->sel.family != AF_UNSPEC) {
  1905. inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
  1906. if (inner_mode == NULL)
  1907. goto error;
  1908. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
  1909. family != x->sel.family) {
  1910. xfrm_put_mode(inner_mode);
  1911. goto error;
  1912. }
  1913. x->inner_mode = inner_mode;
  1914. } else {
  1915. struct xfrm_mode *inner_mode_iaf;
  1916. int iafamily = AF_INET;
  1917. inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
  1918. if (inner_mode == NULL)
  1919. goto error;
  1920. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) {
  1921. xfrm_put_mode(inner_mode);
  1922. goto error;
  1923. }
  1924. x->inner_mode = inner_mode;
  1925. if (x->props.family == AF_INET)
  1926. iafamily = AF_INET6;
  1927. inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
  1928. if (inner_mode_iaf) {
  1929. if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
  1930. x->inner_mode_iaf = inner_mode_iaf;
  1931. else
  1932. xfrm_put_mode(inner_mode_iaf);
  1933. }
  1934. }
  1935. x->type = xfrm_get_type(x->id.proto, family);
  1936. if (x->type == NULL)
  1937. goto error;
  1938. x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
  1939. err = x->type->init_state(x);
  1940. if (err)
  1941. goto error;
  1942. x->outer_mode = xfrm_get_mode(x->props.mode, family);
  1943. if (x->outer_mode == NULL) {
  1944. err = -EPROTONOSUPPORT;
  1945. goto error;
  1946. }
  1947. if (init_replay) {
  1948. err = xfrm_init_replay(x);
  1949. if (err)
  1950. goto error;
  1951. }
  1952. error:
  1953. return err;
  1954. }
  1955. EXPORT_SYMBOL(__xfrm_init_state);
  1956. int xfrm_init_state(struct xfrm_state *x)
  1957. {
  1958. int err;
  1959. err = __xfrm_init_state(x, true, false);
  1960. if (!err)
  1961. x->km.state = XFRM_STATE_VALID;
  1962. return err;
  1963. }
  1964. EXPORT_SYMBOL(xfrm_init_state);
  1965. int __net_init xfrm_state_init(struct net *net)
  1966. {
  1967. unsigned int sz;
  1968. if (net_eq(net, &init_net))
  1969. xfrm_state_cache = KMEM_CACHE(xfrm_state,
  1970. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  1971. INIT_LIST_HEAD(&net->xfrm.state_all);
  1972. sz = sizeof(struct hlist_head) * 8;
  1973. net->xfrm.state_bydst = xfrm_hash_alloc(sz);
  1974. if (!net->xfrm.state_bydst)
  1975. goto out_bydst;
  1976. net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
  1977. if (!net->xfrm.state_bysrc)
  1978. goto out_bysrc;
  1979. net->xfrm.state_byspi = xfrm_hash_alloc(sz);
  1980. if (!net->xfrm.state_byspi)
  1981. goto out_byspi;
  1982. net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
  1983. net->xfrm.state_num = 0;
  1984. INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
  1985. spin_lock_init(&net->xfrm.xfrm_state_lock);
  1986. return 0;
  1987. out_byspi:
  1988. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  1989. out_bysrc:
  1990. xfrm_hash_free(net->xfrm.state_bydst, sz);
  1991. out_bydst:
  1992. return -ENOMEM;
  1993. }
  1994. void xfrm_state_fini(struct net *net)
  1995. {
  1996. unsigned int sz;
  1997. flush_work(&net->xfrm.state_hash_work);
  1998. xfrm_state_flush(net, IPSEC_PROTO_ANY, false);
  1999. flush_work(&xfrm_state_gc_work);
  2000. WARN_ON(!list_empty(&net->xfrm.state_all));
  2001. sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
  2002. WARN_ON(!hlist_empty(net->xfrm.state_byspi));
  2003. xfrm_hash_free(net->xfrm.state_byspi, sz);
  2004. WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
  2005. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  2006. WARN_ON(!hlist_empty(net->xfrm.state_bydst));
  2007. xfrm_hash_free(net->xfrm.state_bydst, sz);
  2008. }
  2009. #ifdef CONFIG_AUDITSYSCALL
  2010. static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
  2011. struct audit_buffer *audit_buf)
  2012. {
  2013. struct xfrm_sec_ctx *ctx = x->security;
  2014. u32 spi = ntohl(x->id.spi);
  2015. if (ctx)
  2016. audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
  2017. ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
  2018. switch (x->props.family) {
  2019. case AF_INET:
  2020. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  2021. &x->props.saddr.a4, &x->id.daddr.a4);
  2022. break;
  2023. case AF_INET6:
  2024. audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
  2025. x->props.saddr.a6, x->id.daddr.a6);
  2026. break;
  2027. }
  2028. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  2029. }
  2030. static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
  2031. struct audit_buffer *audit_buf)
  2032. {
  2033. const struct iphdr *iph4;
  2034. const struct ipv6hdr *iph6;
  2035. switch (family) {
  2036. case AF_INET:
  2037. iph4 = ip_hdr(skb);
  2038. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  2039. &iph4->saddr, &iph4->daddr);
  2040. break;
  2041. case AF_INET6:
  2042. iph6 = ipv6_hdr(skb);
  2043. audit_log_format(audit_buf,
  2044. " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
  2045. &iph6->saddr, &iph6->daddr,
  2046. iph6->flow_lbl[0] & 0x0f,
  2047. iph6->flow_lbl[1],
  2048. iph6->flow_lbl[2]);
  2049. break;
  2050. }
  2051. }
  2052. void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
  2053. {
  2054. struct audit_buffer *audit_buf;
  2055. audit_buf = xfrm_audit_start("SAD-add");
  2056. if (audit_buf == NULL)
  2057. return;
  2058. xfrm_audit_helper_usrinfo(task_valid, audit_buf);
  2059. xfrm_audit_helper_sainfo(x, audit_buf);
  2060. audit_log_format(audit_buf, " res=%u", result);
  2061. audit_log_end(audit_buf);
  2062. }
  2063. EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
  2064. void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
  2065. {
  2066. struct audit_buffer *audit_buf;
  2067. audit_buf = xfrm_audit_start("SAD-delete");
  2068. if (audit_buf == NULL)
  2069. return;
  2070. xfrm_audit_helper_usrinfo(task_valid, audit_buf);
  2071. xfrm_audit_helper_sainfo(x, audit_buf);
  2072. audit_log_format(audit_buf, " res=%u", result);
  2073. audit_log_end(audit_buf);
  2074. }
  2075. EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
  2076. void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
  2077. struct sk_buff *skb)
  2078. {
  2079. struct audit_buffer *audit_buf;
  2080. u32 spi;
  2081. audit_buf = xfrm_audit_start("SA-replay-overflow");
  2082. if (audit_buf == NULL)
  2083. return;
  2084. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  2085. /* don't record the sequence number because it's inherent in this kind
  2086. * of audit message */
  2087. spi = ntohl(x->id.spi);
  2088. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  2089. audit_log_end(audit_buf);
  2090. }
  2091. EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
  2092. void xfrm_audit_state_replay(struct xfrm_state *x,
  2093. struct sk_buff *skb, __be32 net_seq)
  2094. {
  2095. struct audit_buffer *audit_buf;
  2096. u32 spi;
  2097. audit_buf = xfrm_audit_start("SA-replayed-pkt");
  2098. if (audit_buf == NULL)
  2099. return;
  2100. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  2101. spi = ntohl(x->id.spi);
  2102. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  2103. spi, spi, ntohl(net_seq));
  2104. audit_log_end(audit_buf);
  2105. }
  2106. EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
  2107. void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
  2108. {
  2109. struct audit_buffer *audit_buf;
  2110. audit_buf = xfrm_audit_start("SA-notfound");
  2111. if (audit_buf == NULL)
  2112. return;
  2113. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  2114. audit_log_end(audit_buf);
  2115. }
  2116. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
  2117. void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
  2118. __be32 net_spi, __be32 net_seq)
  2119. {
  2120. struct audit_buffer *audit_buf;
  2121. u32 spi;
  2122. audit_buf = xfrm_audit_start("SA-notfound");
  2123. if (audit_buf == NULL)
  2124. return;
  2125. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  2126. spi = ntohl(net_spi);
  2127. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  2128. spi, spi, ntohl(net_seq));
  2129. audit_log_end(audit_buf);
  2130. }
  2131. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
  2132. void xfrm_audit_state_icvfail(struct xfrm_state *x,
  2133. struct sk_buff *skb, u8 proto)
  2134. {
  2135. struct audit_buffer *audit_buf;
  2136. __be32 net_spi;
  2137. __be32 net_seq;
  2138. audit_buf = xfrm_audit_start("SA-icv-failure");
  2139. if (audit_buf == NULL)
  2140. return;
  2141. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  2142. if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
  2143. u32 spi = ntohl(net_spi);
  2144. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  2145. spi, spi, ntohl(net_seq));
  2146. }
  2147. audit_log_end(audit_buf);
  2148. }
  2149. EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
  2150. #endif /* CONFIG_AUDITSYSCALL */