cls_flower.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/geneve.h>
  25. #include <net/dst.h>
  26. #include <net/dst_metadata.h>
  27. struct fl_flow_key {
  28. int indev_ifindex;
  29. struct flow_dissector_key_control control;
  30. struct flow_dissector_key_control enc_control;
  31. struct flow_dissector_key_basic basic;
  32. struct flow_dissector_key_eth_addrs eth;
  33. struct flow_dissector_key_vlan vlan;
  34. struct flow_dissector_key_vlan cvlan;
  35. union {
  36. struct flow_dissector_key_ipv4_addrs ipv4;
  37. struct flow_dissector_key_ipv6_addrs ipv6;
  38. };
  39. struct flow_dissector_key_ports tp;
  40. struct flow_dissector_key_icmp icmp;
  41. struct flow_dissector_key_arp arp;
  42. struct flow_dissector_key_keyid enc_key_id;
  43. union {
  44. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  45. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  46. };
  47. struct flow_dissector_key_ports enc_tp;
  48. struct flow_dissector_key_mpls mpls;
  49. struct flow_dissector_key_tcp tcp;
  50. struct flow_dissector_key_ip ip;
  51. struct flow_dissector_key_ip enc_ip;
  52. struct flow_dissector_key_enc_opts enc_opts;
  53. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  54. struct fl_flow_mask_range {
  55. unsigned short int start;
  56. unsigned short int end;
  57. };
  58. struct fl_flow_mask {
  59. struct fl_flow_key key;
  60. struct fl_flow_mask_range range;
  61. struct rhash_head ht_node;
  62. struct rhashtable ht;
  63. struct rhashtable_params filter_ht_params;
  64. struct flow_dissector dissector;
  65. struct list_head filters;
  66. struct rcu_work rwork;
  67. struct list_head list;
  68. };
  69. struct fl_flow_tmplt {
  70. struct fl_flow_key dummy_key;
  71. struct fl_flow_key mask;
  72. struct flow_dissector dissector;
  73. struct tcf_chain *chain;
  74. };
  75. struct cls_fl_head {
  76. struct rhashtable ht;
  77. struct list_head masks;
  78. struct rcu_work rwork;
  79. struct idr handle_idr;
  80. };
  81. struct cls_fl_filter {
  82. struct fl_flow_mask *mask;
  83. struct rhash_head ht_node;
  84. struct fl_flow_key mkey;
  85. struct tcf_exts exts;
  86. struct tcf_result res;
  87. struct fl_flow_key key;
  88. struct list_head list;
  89. u32 handle;
  90. u32 flags;
  91. unsigned int in_hw_count;
  92. struct rcu_work rwork;
  93. struct net_device *hw_dev;
  94. };
  95. static const struct rhashtable_params mask_ht_params = {
  96. .key_offset = offsetof(struct fl_flow_mask, key),
  97. .key_len = sizeof(struct fl_flow_key),
  98. .head_offset = offsetof(struct fl_flow_mask, ht_node),
  99. .automatic_shrinking = true,
  100. };
  101. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  102. {
  103. return mask->range.end - mask->range.start;
  104. }
  105. static void fl_mask_update_range(struct fl_flow_mask *mask)
  106. {
  107. const u8 *bytes = (const u8 *) &mask->key;
  108. size_t size = sizeof(mask->key);
  109. size_t i, first = 0, last;
  110. for (i = 0; i < size; i++) {
  111. if (bytes[i]) {
  112. first = i;
  113. break;
  114. }
  115. }
  116. last = first;
  117. for (i = size - 1; i != first; i--) {
  118. if (bytes[i]) {
  119. last = i;
  120. break;
  121. }
  122. }
  123. mask->range.start = rounddown(first, sizeof(long));
  124. mask->range.end = roundup(last + 1, sizeof(long));
  125. }
  126. static void *fl_key_get_start(struct fl_flow_key *key,
  127. const struct fl_flow_mask *mask)
  128. {
  129. return (u8 *) key + mask->range.start;
  130. }
  131. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  132. struct fl_flow_mask *mask)
  133. {
  134. const long *lkey = fl_key_get_start(key, mask);
  135. const long *lmask = fl_key_get_start(&mask->key, mask);
  136. long *lmkey = fl_key_get_start(mkey, mask);
  137. int i;
  138. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  139. *lmkey++ = *lkey++ & *lmask++;
  140. }
  141. static bool fl_mask_fits_tmplt(struct fl_flow_tmplt *tmplt,
  142. struct fl_flow_mask *mask)
  143. {
  144. const long *lmask = fl_key_get_start(&mask->key, mask);
  145. const long *ltmplt;
  146. int i;
  147. if (!tmplt)
  148. return true;
  149. ltmplt = fl_key_get_start(&tmplt->mask, mask);
  150. for (i = 0; i < fl_mask_range(mask); i += sizeof(long)) {
  151. if (~*ltmplt++ & *lmask++)
  152. return false;
  153. }
  154. return true;
  155. }
  156. static void fl_clear_masked_range(struct fl_flow_key *key,
  157. struct fl_flow_mask *mask)
  158. {
  159. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  160. }
  161. static struct cls_fl_filter *fl_lookup(struct fl_flow_mask *mask,
  162. struct fl_flow_key *mkey)
  163. {
  164. return rhashtable_lookup_fast(&mask->ht, fl_key_get_start(mkey, mask),
  165. mask->filter_ht_params);
  166. }
  167. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  168. struct tcf_result *res)
  169. {
  170. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  171. struct cls_fl_filter *f;
  172. struct fl_flow_mask *mask;
  173. struct fl_flow_key skb_key;
  174. struct fl_flow_key skb_mkey;
  175. list_for_each_entry_rcu(mask, &head->masks, list) {
  176. fl_clear_masked_range(&skb_key, mask);
  177. skb_key.indev_ifindex = skb->skb_iif;
  178. /* skb_flow_dissect() does not set n_proto in case an unknown
  179. * protocol, so do it rather here.
  180. */
  181. skb_key.basic.n_proto = skb->protocol;
  182. skb_flow_dissect_tunnel_info(skb, &mask->dissector, &skb_key);
  183. skb_flow_dissect(skb, &mask->dissector, &skb_key, 0);
  184. fl_set_masked_key(&skb_mkey, &skb_key, mask);
  185. f = fl_lookup(mask, &skb_mkey);
  186. if (f && !tc_skip_sw(f->flags)) {
  187. *res = f->res;
  188. return tcf_exts_exec(skb, &f->exts, res);
  189. }
  190. }
  191. return -1;
  192. }
  193. static int fl_init(struct tcf_proto *tp)
  194. {
  195. struct cls_fl_head *head;
  196. head = kzalloc(sizeof(*head), GFP_KERNEL);
  197. if (!head)
  198. return -ENOBUFS;
  199. INIT_LIST_HEAD_RCU(&head->masks);
  200. rcu_assign_pointer(tp->root, head);
  201. idr_init(&head->handle_idr);
  202. return rhashtable_init(&head->ht, &mask_ht_params);
  203. }
  204. static void fl_mask_free(struct fl_flow_mask *mask)
  205. {
  206. rhashtable_destroy(&mask->ht);
  207. kfree(mask);
  208. }
  209. static void fl_mask_free_work(struct work_struct *work)
  210. {
  211. struct fl_flow_mask *mask = container_of(to_rcu_work(work),
  212. struct fl_flow_mask, rwork);
  213. fl_mask_free(mask);
  214. }
  215. static bool fl_mask_put(struct cls_fl_head *head, struct fl_flow_mask *mask,
  216. bool async)
  217. {
  218. if (!list_empty(&mask->filters))
  219. return false;
  220. rhashtable_remove_fast(&head->ht, &mask->ht_node, mask_ht_params);
  221. list_del_rcu(&mask->list);
  222. if (async)
  223. tcf_queue_work(&mask->rwork, fl_mask_free_work);
  224. else
  225. fl_mask_free(mask);
  226. return true;
  227. }
  228. static void __fl_destroy_filter(struct cls_fl_filter *f)
  229. {
  230. tcf_exts_destroy(&f->exts);
  231. tcf_exts_put_net(&f->exts);
  232. kfree(f);
  233. }
  234. static void fl_destroy_filter_work(struct work_struct *work)
  235. {
  236. struct cls_fl_filter *f = container_of(to_rcu_work(work),
  237. struct cls_fl_filter, rwork);
  238. rtnl_lock();
  239. __fl_destroy_filter(f);
  240. rtnl_unlock();
  241. }
  242. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f,
  243. struct netlink_ext_ack *extack)
  244. {
  245. struct tc_cls_flower_offload cls_flower = {};
  246. struct tcf_block *block = tp->chain->block;
  247. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
  248. cls_flower.command = TC_CLSFLOWER_DESTROY;
  249. cls_flower.cookie = (unsigned long) f;
  250. tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  251. &cls_flower, false);
  252. tcf_block_offload_dec(block, &f->flags);
  253. }
  254. static int fl_hw_replace_filter(struct tcf_proto *tp,
  255. struct cls_fl_filter *f,
  256. struct netlink_ext_ack *extack)
  257. {
  258. struct tc_cls_flower_offload cls_flower = {};
  259. struct tcf_block *block = tp->chain->block;
  260. bool skip_sw = tc_skip_sw(f->flags);
  261. int err;
  262. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, extack);
  263. cls_flower.command = TC_CLSFLOWER_REPLACE;
  264. cls_flower.cookie = (unsigned long) f;
  265. cls_flower.dissector = &f->mask->dissector;
  266. cls_flower.mask = &f->mask->key;
  267. cls_flower.key = &f->mkey;
  268. cls_flower.exts = &f->exts;
  269. cls_flower.classid = f->res.classid;
  270. err = tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  271. &cls_flower, skip_sw);
  272. if (err < 0) {
  273. fl_hw_destroy_filter(tp, f, NULL);
  274. return err;
  275. } else if (err > 0) {
  276. f->in_hw_count = err;
  277. tcf_block_offload_inc(block, &f->flags);
  278. }
  279. if (skip_sw && !(f->flags & TCA_CLS_FLAGS_IN_HW))
  280. return -EINVAL;
  281. return 0;
  282. }
  283. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  284. {
  285. struct tc_cls_flower_offload cls_flower = {};
  286. struct tcf_block *block = tp->chain->block;
  287. tc_cls_common_offload_init(&cls_flower.common, tp, f->flags, NULL);
  288. cls_flower.command = TC_CLSFLOWER_STATS;
  289. cls_flower.cookie = (unsigned long) f;
  290. cls_flower.exts = &f->exts;
  291. cls_flower.classid = f->res.classid;
  292. tc_setup_cb_call(block, &f->exts, TC_SETUP_CLSFLOWER,
  293. &cls_flower, false);
  294. }
  295. static bool __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f,
  296. struct netlink_ext_ack *extack)
  297. {
  298. struct cls_fl_head *head = rtnl_dereference(tp->root);
  299. bool async = tcf_exts_get_net(&f->exts);
  300. bool last;
  301. idr_remove(&head->handle_idr, f->handle);
  302. list_del_rcu(&f->list);
  303. last = fl_mask_put(head, f->mask, async);
  304. if (!tc_skip_hw(f->flags))
  305. fl_hw_destroy_filter(tp, f, extack);
  306. tcf_unbind_filter(tp, &f->res);
  307. if (async)
  308. tcf_queue_work(&f->rwork, fl_destroy_filter_work);
  309. else
  310. __fl_destroy_filter(f);
  311. return last;
  312. }
  313. static void fl_destroy_sleepable(struct work_struct *work)
  314. {
  315. struct cls_fl_head *head = container_of(to_rcu_work(work),
  316. struct cls_fl_head,
  317. rwork);
  318. rhashtable_destroy(&head->ht);
  319. kfree(head);
  320. module_put(THIS_MODULE);
  321. }
  322. static void fl_destroy(struct tcf_proto *tp, struct netlink_ext_ack *extack)
  323. {
  324. struct cls_fl_head *head = rtnl_dereference(tp->root);
  325. struct fl_flow_mask *mask, *next_mask;
  326. struct cls_fl_filter *f, *next;
  327. list_for_each_entry_safe(mask, next_mask, &head->masks, list) {
  328. list_for_each_entry_safe(f, next, &mask->filters, list) {
  329. if (__fl_delete(tp, f, extack))
  330. break;
  331. }
  332. }
  333. idr_destroy(&head->handle_idr);
  334. __module_get(THIS_MODULE);
  335. tcf_queue_work(&head->rwork, fl_destroy_sleepable);
  336. }
  337. static void *fl_get(struct tcf_proto *tp, u32 handle)
  338. {
  339. struct cls_fl_head *head = rtnl_dereference(tp->root);
  340. return idr_find(&head->handle_idr, handle);
  341. }
  342. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  343. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  344. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  345. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  346. .len = IFNAMSIZ },
  347. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  348. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  349. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  350. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  351. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  352. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  353. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  354. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  355. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  356. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  357. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  358. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  359. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  360. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  361. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  362. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  363. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  364. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  365. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  366. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  367. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  368. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  369. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  370. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  371. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  372. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  373. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  374. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  375. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  376. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  377. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  378. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  379. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  380. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  381. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  382. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  383. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  384. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  385. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  386. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  387. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  388. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  389. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  390. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  391. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  392. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  393. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  394. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  395. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  396. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  397. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  398. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  399. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  400. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  401. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  402. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  403. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  404. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  405. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  406. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  407. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  408. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  409. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  410. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  411. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  412. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  413. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  414. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  415. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  416. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  417. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  418. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  419. [TCA_FLOWER_KEY_CVLAN_ID] = { .type = NLA_U16 },
  420. [TCA_FLOWER_KEY_CVLAN_PRIO] = { .type = NLA_U8 },
  421. [TCA_FLOWER_KEY_CVLAN_ETH_TYPE] = { .type = NLA_U16 },
  422. [TCA_FLOWER_KEY_ENC_IP_TOS] = { .type = NLA_U8 },
  423. [TCA_FLOWER_KEY_ENC_IP_TOS_MASK] = { .type = NLA_U8 },
  424. [TCA_FLOWER_KEY_ENC_IP_TTL] = { .type = NLA_U8 },
  425. [TCA_FLOWER_KEY_ENC_IP_TTL_MASK] = { .type = NLA_U8 },
  426. [TCA_FLOWER_KEY_ENC_OPTS] = { .type = NLA_NESTED },
  427. [TCA_FLOWER_KEY_ENC_OPTS_MASK] = { .type = NLA_NESTED },
  428. };
  429. static const struct nla_policy
  430. enc_opts_policy[TCA_FLOWER_KEY_ENC_OPTS_MAX + 1] = {
  431. [TCA_FLOWER_KEY_ENC_OPTS_GENEVE] = { .type = NLA_NESTED },
  432. };
  433. static const struct nla_policy
  434. geneve_opt_policy[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1] = {
  435. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] = { .type = NLA_U16 },
  436. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] = { .type = NLA_U8 },
  437. [TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA] = { .type = NLA_BINARY,
  438. .len = 128 },
  439. };
  440. static void fl_set_key_val(struct nlattr **tb,
  441. void *val, int val_type,
  442. void *mask, int mask_type, int len)
  443. {
  444. if (!tb[val_type])
  445. return;
  446. memcpy(val, nla_data(tb[val_type]), len);
  447. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  448. memset(mask, 0xff, len);
  449. else
  450. memcpy(mask, nla_data(tb[mask_type]), len);
  451. }
  452. static int fl_set_key_mpls(struct nlattr **tb,
  453. struct flow_dissector_key_mpls *key_val,
  454. struct flow_dissector_key_mpls *key_mask)
  455. {
  456. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  457. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  458. key_mask->mpls_ttl = MPLS_TTL_MASK;
  459. }
  460. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  461. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  462. if (bos & ~MPLS_BOS_MASK)
  463. return -EINVAL;
  464. key_val->mpls_bos = bos;
  465. key_mask->mpls_bos = MPLS_BOS_MASK;
  466. }
  467. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  468. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  469. if (tc & ~MPLS_TC_MASK)
  470. return -EINVAL;
  471. key_val->mpls_tc = tc;
  472. key_mask->mpls_tc = MPLS_TC_MASK;
  473. }
  474. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  475. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  476. if (label & ~MPLS_LABEL_MASK)
  477. return -EINVAL;
  478. key_val->mpls_label = label;
  479. key_mask->mpls_label = MPLS_LABEL_MASK;
  480. }
  481. return 0;
  482. }
  483. static void fl_set_key_vlan(struct nlattr **tb,
  484. __be16 ethertype,
  485. int vlan_id_key, int vlan_prio_key,
  486. struct flow_dissector_key_vlan *key_val,
  487. struct flow_dissector_key_vlan *key_mask)
  488. {
  489. #define VLAN_PRIORITY_MASK 0x7
  490. if (tb[vlan_id_key]) {
  491. key_val->vlan_id =
  492. nla_get_u16(tb[vlan_id_key]) & VLAN_VID_MASK;
  493. key_mask->vlan_id = VLAN_VID_MASK;
  494. }
  495. if (tb[vlan_prio_key]) {
  496. key_val->vlan_priority =
  497. nla_get_u8(tb[vlan_prio_key]) &
  498. VLAN_PRIORITY_MASK;
  499. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  500. }
  501. key_val->vlan_tpid = ethertype;
  502. key_mask->vlan_tpid = cpu_to_be16(~0);
  503. }
  504. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  505. u32 *dissector_key, u32 *dissector_mask,
  506. u32 flower_flag_bit, u32 dissector_flag_bit)
  507. {
  508. if (flower_mask & flower_flag_bit) {
  509. *dissector_mask |= dissector_flag_bit;
  510. if (flower_key & flower_flag_bit)
  511. *dissector_key |= dissector_flag_bit;
  512. }
  513. }
  514. static int fl_set_key_flags(struct nlattr **tb,
  515. u32 *flags_key, u32 *flags_mask)
  516. {
  517. u32 key, mask;
  518. /* mask is mandatory for flags */
  519. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  520. return -EINVAL;
  521. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  522. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  523. *flags_key = 0;
  524. *flags_mask = 0;
  525. fl_set_key_flag(key, mask, flags_key, flags_mask,
  526. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  527. fl_set_key_flag(key, mask, flags_key, flags_mask,
  528. TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
  529. FLOW_DIS_FIRST_FRAG);
  530. return 0;
  531. }
  532. static void fl_set_key_ip(struct nlattr **tb, bool encap,
  533. struct flow_dissector_key_ip *key,
  534. struct flow_dissector_key_ip *mask)
  535. {
  536. int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
  537. int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
  538. int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
  539. int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
  540. fl_set_key_val(tb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos));
  541. fl_set_key_val(tb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl));
  542. }
  543. static int fl_set_geneve_opt(const struct nlattr *nla, struct fl_flow_key *key,
  544. int depth, int option_len,
  545. struct netlink_ext_ack *extack)
  546. {
  547. struct nlattr *tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX + 1];
  548. struct nlattr *class = NULL, *type = NULL, *data = NULL;
  549. struct geneve_opt *opt;
  550. int err, data_len = 0;
  551. if (option_len > sizeof(struct geneve_opt))
  552. data_len = option_len - sizeof(struct geneve_opt);
  553. opt = (struct geneve_opt *)&key->enc_opts.data[key->enc_opts.len];
  554. memset(opt, 0xff, option_len);
  555. opt->length = data_len / 4;
  556. opt->r1 = 0;
  557. opt->r2 = 0;
  558. opt->r3 = 0;
  559. /* If no mask has been prodived we assume an exact match. */
  560. if (!depth)
  561. return sizeof(struct geneve_opt) + data_len;
  562. if (nla_type(nla) != TCA_FLOWER_KEY_ENC_OPTS_GENEVE) {
  563. NL_SET_ERR_MSG(extack, "Non-geneve option type for mask");
  564. return -EINVAL;
  565. }
  566. err = nla_parse_nested(tb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_MAX,
  567. nla, geneve_opt_policy, extack);
  568. if (err < 0)
  569. return err;
  570. /* We are not allowed to omit any of CLASS, TYPE or DATA
  571. * fields from the key.
  572. */
  573. if (!option_len &&
  574. (!tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS] ||
  575. !tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE] ||
  576. !tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA])) {
  577. NL_SET_ERR_MSG(extack, "Missing tunnel key geneve option class, type or data");
  578. return -EINVAL;
  579. }
  580. /* Omitting any of CLASS, TYPE or DATA fields is allowed
  581. * for the mask.
  582. */
  583. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA]) {
  584. int new_len = key->enc_opts.len;
  585. data = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA];
  586. data_len = nla_len(data);
  587. if (data_len < 4) {
  588. NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is less than 4 bytes long");
  589. return -ERANGE;
  590. }
  591. if (data_len % 4) {
  592. NL_SET_ERR_MSG(extack, "Tunnel key geneve option data is not a multiple of 4 bytes long");
  593. return -ERANGE;
  594. }
  595. new_len += sizeof(struct geneve_opt) + data_len;
  596. BUILD_BUG_ON(FLOW_DIS_TUN_OPTS_MAX != IP_TUNNEL_OPTS_MAX);
  597. if (new_len > FLOW_DIS_TUN_OPTS_MAX) {
  598. NL_SET_ERR_MSG(extack, "Tunnel options exceeds max size");
  599. return -ERANGE;
  600. }
  601. opt->length = data_len / 4;
  602. memcpy(opt->opt_data, nla_data(data), data_len);
  603. }
  604. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS]) {
  605. class = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS];
  606. opt->opt_class = nla_get_be16(class);
  607. }
  608. if (tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE]) {
  609. type = tb[TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE];
  610. opt->type = nla_get_u8(type);
  611. }
  612. return sizeof(struct geneve_opt) + data_len;
  613. }
  614. static int fl_set_enc_opt(struct nlattr **tb, struct fl_flow_key *key,
  615. struct fl_flow_key *mask,
  616. struct netlink_ext_ack *extack)
  617. {
  618. const struct nlattr *nla_enc_key, *nla_opt_key, *nla_opt_msk = NULL;
  619. int option_len, key_depth, msk_depth = 0;
  620. nla_enc_key = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS]);
  621. if (tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]) {
  622. nla_opt_msk = nla_data(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
  623. msk_depth = nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS_MASK]);
  624. }
  625. nla_for_each_attr(nla_opt_key, nla_enc_key,
  626. nla_len(tb[TCA_FLOWER_KEY_ENC_OPTS]), key_depth) {
  627. switch (nla_type(nla_opt_key)) {
  628. case TCA_FLOWER_KEY_ENC_OPTS_GENEVE:
  629. option_len = 0;
  630. key->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
  631. option_len = fl_set_geneve_opt(nla_opt_key, key,
  632. key_depth, option_len,
  633. extack);
  634. if (option_len < 0)
  635. return option_len;
  636. key->enc_opts.len += option_len;
  637. /* At the same time we need to parse through the mask
  638. * in order to verify exact and mask attribute lengths.
  639. */
  640. mask->enc_opts.dst_opt_type = TUNNEL_GENEVE_OPT;
  641. option_len = fl_set_geneve_opt(nla_opt_msk, mask,
  642. msk_depth, option_len,
  643. extack);
  644. if (option_len < 0)
  645. return option_len;
  646. mask->enc_opts.len += option_len;
  647. if (key->enc_opts.len != mask->enc_opts.len) {
  648. NL_SET_ERR_MSG(extack, "Key and mask miss aligned");
  649. return -EINVAL;
  650. }
  651. if (msk_depth)
  652. nla_opt_msk = nla_next(nla_opt_msk, &msk_depth);
  653. break;
  654. default:
  655. NL_SET_ERR_MSG(extack, "Unknown tunnel option type");
  656. return -EINVAL;
  657. }
  658. }
  659. return 0;
  660. }
  661. static int fl_set_key(struct net *net, struct nlattr **tb,
  662. struct fl_flow_key *key, struct fl_flow_key *mask,
  663. struct netlink_ext_ack *extack)
  664. {
  665. __be16 ethertype;
  666. int ret = 0;
  667. #ifdef CONFIG_NET_CLS_IND
  668. if (tb[TCA_FLOWER_INDEV]) {
  669. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV], extack);
  670. if (err < 0)
  671. return err;
  672. key->indev_ifindex = err;
  673. mask->indev_ifindex = 0xffffffff;
  674. }
  675. #endif
  676. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  677. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  678. sizeof(key->eth.dst));
  679. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  680. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  681. sizeof(key->eth.src));
  682. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  683. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  684. if (eth_type_vlan(ethertype)) {
  685. fl_set_key_vlan(tb, ethertype, TCA_FLOWER_KEY_VLAN_ID,
  686. TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan,
  687. &mask->vlan);
  688. if (tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]) {
  689. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_VLAN_ETH_TYPE]);
  690. if (eth_type_vlan(ethertype)) {
  691. fl_set_key_vlan(tb, ethertype,
  692. TCA_FLOWER_KEY_CVLAN_ID,
  693. TCA_FLOWER_KEY_CVLAN_PRIO,
  694. &key->cvlan, &mask->cvlan);
  695. fl_set_key_val(tb, &key->basic.n_proto,
  696. TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
  697. &mask->basic.n_proto,
  698. TCA_FLOWER_UNSPEC,
  699. sizeof(key->basic.n_proto));
  700. } else {
  701. key->basic.n_proto = ethertype;
  702. mask->basic.n_proto = cpu_to_be16(~0);
  703. }
  704. }
  705. } else {
  706. key->basic.n_proto = ethertype;
  707. mask->basic.n_proto = cpu_to_be16(~0);
  708. }
  709. }
  710. if (key->basic.n_proto == htons(ETH_P_IP) ||
  711. key->basic.n_proto == htons(ETH_P_IPV6)) {
  712. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  713. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  714. sizeof(key->basic.ip_proto));
  715. fl_set_key_ip(tb, false, &key->ip, &mask->ip);
  716. }
  717. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  718. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  719. mask->control.addr_type = ~0;
  720. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  721. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  722. sizeof(key->ipv4.src));
  723. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  724. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  725. sizeof(key->ipv4.dst));
  726. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  727. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  728. mask->control.addr_type = ~0;
  729. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  730. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  731. sizeof(key->ipv6.src));
  732. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  733. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  734. sizeof(key->ipv6.dst));
  735. }
  736. if (key->basic.ip_proto == IPPROTO_TCP) {
  737. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  738. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  739. sizeof(key->tp.src));
  740. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  741. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  742. sizeof(key->tp.dst));
  743. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  744. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  745. sizeof(key->tcp.flags));
  746. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  747. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  748. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  749. sizeof(key->tp.src));
  750. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  751. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  752. sizeof(key->tp.dst));
  753. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  754. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  755. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  756. sizeof(key->tp.src));
  757. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  758. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  759. sizeof(key->tp.dst));
  760. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  761. key->basic.ip_proto == IPPROTO_ICMP) {
  762. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  763. &mask->icmp.type,
  764. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  765. sizeof(key->icmp.type));
  766. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  767. &mask->icmp.code,
  768. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  769. sizeof(key->icmp.code));
  770. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  771. key->basic.ip_proto == IPPROTO_ICMPV6) {
  772. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  773. &mask->icmp.type,
  774. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  775. sizeof(key->icmp.type));
  776. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  777. &mask->icmp.code,
  778. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  779. sizeof(key->icmp.code));
  780. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  781. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  782. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  783. if (ret)
  784. return ret;
  785. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  786. key->basic.n_proto == htons(ETH_P_RARP)) {
  787. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  788. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  789. sizeof(key->arp.sip));
  790. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  791. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  792. sizeof(key->arp.tip));
  793. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  794. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  795. sizeof(key->arp.op));
  796. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  797. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  798. sizeof(key->arp.sha));
  799. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  800. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  801. sizeof(key->arp.tha));
  802. }
  803. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  804. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  805. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  806. mask->enc_control.addr_type = ~0;
  807. fl_set_key_val(tb, &key->enc_ipv4.src,
  808. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  809. &mask->enc_ipv4.src,
  810. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  811. sizeof(key->enc_ipv4.src));
  812. fl_set_key_val(tb, &key->enc_ipv4.dst,
  813. TCA_FLOWER_KEY_ENC_IPV4_DST,
  814. &mask->enc_ipv4.dst,
  815. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  816. sizeof(key->enc_ipv4.dst));
  817. }
  818. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  819. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  820. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  821. mask->enc_control.addr_type = ~0;
  822. fl_set_key_val(tb, &key->enc_ipv6.src,
  823. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  824. &mask->enc_ipv6.src,
  825. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  826. sizeof(key->enc_ipv6.src));
  827. fl_set_key_val(tb, &key->enc_ipv6.dst,
  828. TCA_FLOWER_KEY_ENC_IPV6_DST,
  829. &mask->enc_ipv6.dst,
  830. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  831. sizeof(key->enc_ipv6.dst));
  832. }
  833. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  834. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  835. sizeof(key->enc_key_id.keyid));
  836. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  837. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  838. sizeof(key->enc_tp.src));
  839. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  840. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  841. sizeof(key->enc_tp.dst));
  842. fl_set_key_ip(tb, true, &key->enc_ip, &mask->enc_ip);
  843. if (tb[TCA_FLOWER_KEY_ENC_OPTS]) {
  844. ret = fl_set_enc_opt(tb, key, mask, extack);
  845. if (ret)
  846. return ret;
  847. }
  848. if (tb[TCA_FLOWER_KEY_FLAGS])
  849. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  850. return ret;
  851. }
  852. static void fl_mask_copy(struct fl_flow_mask *dst,
  853. struct fl_flow_mask *src)
  854. {
  855. const void *psrc = fl_key_get_start(&src->key, src);
  856. void *pdst = fl_key_get_start(&dst->key, src);
  857. memcpy(pdst, psrc, fl_mask_range(src));
  858. dst->range = src->range;
  859. }
  860. static const struct rhashtable_params fl_ht_params = {
  861. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  862. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  863. .automatic_shrinking = true,
  864. };
  865. static int fl_init_mask_hashtable(struct fl_flow_mask *mask)
  866. {
  867. mask->filter_ht_params = fl_ht_params;
  868. mask->filter_ht_params.key_len = fl_mask_range(mask);
  869. mask->filter_ht_params.key_offset += mask->range.start;
  870. return rhashtable_init(&mask->ht, &mask->filter_ht_params);
  871. }
  872. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  873. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  874. #define FL_KEY_IS_MASKED(mask, member) \
  875. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  876. 0, FL_KEY_MEMBER_SIZE(member)) \
  877. #define FL_KEY_SET(keys, cnt, id, member) \
  878. do { \
  879. keys[cnt].key_id = id; \
  880. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  881. cnt++; \
  882. } while(0);
  883. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  884. do { \
  885. if (FL_KEY_IS_MASKED(mask, member)) \
  886. FL_KEY_SET(keys, cnt, id, member); \
  887. } while(0);
  888. static void fl_init_dissector(struct flow_dissector *dissector,
  889. struct fl_flow_key *mask)
  890. {
  891. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  892. size_t cnt = 0;
  893. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  894. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  895. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  896. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  897. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  898. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  899. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  900. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  901. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  902. FLOW_DISSECTOR_KEY_PORTS, tp);
  903. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  904. FLOW_DISSECTOR_KEY_IP, ip);
  905. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  906. FLOW_DISSECTOR_KEY_TCP, tcp);
  907. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  908. FLOW_DISSECTOR_KEY_ICMP, icmp);
  909. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  910. FLOW_DISSECTOR_KEY_ARP, arp);
  911. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  912. FLOW_DISSECTOR_KEY_MPLS, mpls);
  913. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  914. FLOW_DISSECTOR_KEY_VLAN, vlan);
  915. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  916. FLOW_DISSECTOR_KEY_CVLAN, cvlan);
  917. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  918. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  919. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  920. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  921. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  922. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  923. if (FL_KEY_IS_MASKED(mask, enc_ipv4) ||
  924. FL_KEY_IS_MASKED(mask, enc_ipv6))
  925. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  926. enc_control);
  927. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  928. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  929. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  930. FLOW_DISSECTOR_KEY_ENC_IP, enc_ip);
  931. FL_KEY_SET_IF_MASKED(mask, keys, cnt,
  932. FLOW_DISSECTOR_KEY_ENC_OPTS, enc_opts);
  933. skb_flow_dissector_init(dissector, keys, cnt);
  934. }
  935. static struct fl_flow_mask *fl_create_new_mask(struct cls_fl_head *head,
  936. struct fl_flow_mask *mask)
  937. {
  938. struct fl_flow_mask *newmask;
  939. int err;
  940. newmask = kzalloc(sizeof(*newmask), GFP_KERNEL);
  941. if (!newmask)
  942. return ERR_PTR(-ENOMEM);
  943. fl_mask_copy(newmask, mask);
  944. err = fl_init_mask_hashtable(newmask);
  945. if (err)
  946. goto errout_free;
  947. fl_init_dissector(&newmask->dissector, &newmask->key);
  948. INIT_LIST_HEAD_RCU(&newmask->filters);
  949. err = rhashtable_insert_fast(&head->ht, &newmask->ht_node,
  950. mask_ht_params);
  951. if (err)
  952. goto errout_destroy;
  953. list_add_tail_rcu(&newmask->list, &head->masks);
  954. return newmask;
  955. errout_destroy:
  956. rhashtable_destroy(&newmask->ht);
  957. errout_free:
  958. kfree(newmask);
  959. return ERR_PTR(err);
  960. }
  961. static int fl_check_assign_mask(struct cls_fl_head *head,
  962. struct cls_fl_filter *fnew,
  963. struct cls_fl_filter *fold,
  964. struct fl_flow_mask *mask)
  965. {
  966. struct fl_flow_mask *newmask;
  967. fnew->mask = rhashtable_lookup_fast(&head->ht, mask, mask_ht_params);
  968. if (!fnew->mask) {
  969. if (fold)
  970. return -EINVAL;
  971. newmask = fl_create_new_mask(head, mask);
  972. if (IS_ERR(newmask))
  973. return PTR_ERR(newmask);
  974. fnew->mask = newmask;
  975. } else if (fold && fold->mask != fnew->mask) {
  976. return -EINVAL;
  977. }
  978. return 0;
  979. }
  980. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  981. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  982. unsigned long base, struct nlattr **tb,
  983. struct nlattr *est, bool ovr,
  984. struct fl_flow_tmplt *tmplt,
  985. struct netlink_ext_ack *extack)
  986. {
  987. int err;
  988. err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr, extack);
  989. if (err < 0)
  990. return err;
  991. if (tb[TCA_FLOWER_CLASSID]) {
  992. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  993. tcf_bind_filter(tp, &f->res, base);
  994. }
  995. err = fl_set_key(net, tb, &f->key, &mask->key, extack);
  996. if (err)
  997. return err;
  998. fl_mask_update_range(mask);
  999. fl_set_masked_key(&f->mkey, &f->key, mask);
  1000. if (!fl_mask_fits_tmplt(tmplt, mask)) {
  1001. NL_SET_ERR_MSG_MOD(extack, "Mask does not fit the template");
  1002. return -EINVAL;
  1003. }
  1004. return 0;
  1005. }
  1006. static int fl_change(struct net *net, struct sk_buff *in_skb,
  1007. struct tcf_proto *tp, unsigned long base,
  1008. u32 handle, struct nlattr **tca,
  1009. void **arg, bool ovr, struct netlink_ext_ack *extack)
  1010. {
  1011. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1012. struct cls_fl_filter *fold = *arg;
  1013. struct cls_fl_filter *fnew;
  1014. struct nlattr **tb;
  1015. struct fl_flow_mask mask = {};
  1016. int err;
  1017. if (!tca[TCA_OPTIONS])
  1018. return -EINVAL;
  1019. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  1020. if (!tb)
  1021. return -ENOBUFS;
  1022. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  1023. fl_policy, NULL);
  1024. if (err < 0)
  1025. goto errout_tb;
  1026. if (fold && handle && fold->handle != handle) {
  1027. err = -EINVAL;
  1028. goto errout_tb;
  1029. }
  1030. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  1031. if (!fnew) {
  1032. err = -ENOBUFS;
  1033. goto errout_tb;
  1034. }
  1035. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  1036. if (err < 0)
  1037. goto errout;
  1038. if (!handle) {
  1039. handle = 1;
  1040. err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
  1041. INT_MAX, GFP_KERNEL);
  1042. } else if (!fold) {
  1043. /* user specifies a handle and it doesn't exist */
  1044. err = idr_alloc_u32(&head->handle_idr, fnew, &handle,
  1045. handle, GFP_KERNEL);
  1046. }
  1047. if (err)
  1048. goto errout;
  1049. fnew->handle = handle;
  1050. if (tb[TCA_FLOWER_FLAGS]) {
  1051. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  1052. if (!tc_flags_valid(fnew->flags)) {
  1053. err = -EINVAL;
  1054. goto errout_idr;
  1055. }
  1056. }
  1057. err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr,
  1058. tp->chain->tmplt_priv, extack);
  1059. if (err)
  1060. goto errout_idr;
  1061. err = fl_check_assign_mask(head, fnew, fold, &mask);
  1062. if (err)
  1063. goto errout_idr;
  1064. if (!tc_skip_sw(fnew->flags)) {
  1065. if (!fold && fl_lookup(fnew->mask, &fnew->mkey)) {
  1066. err = -EEXIST;
  1067. goto errout_mask;
  1068. }
  1069. err = rhashtable_insert_fast(&fnew->mask->ht, &fnew->ht_node,
  1070. fnew->mask->filter_ht_params);
  1071. if (err)
  1072. goto errout_mask;
  1073. }
  1074. if (!tc_skip_hw(fnew->flags)) {
  1075. err = fl_hw_replace_filter(tp, fnew, extack);
  1076. if (err)
  1077. goto errout_mask;
  1078. }
  1079. if (!tc_in_hw(fnew->flags))
  1080. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  1081. if (fold) {
  1082. if (!tc_skip_sw(fold->flags))
  1083. rhashtable_remove_fast(&fold->mask->ht,
  1084. &fold->ht_node,
  1085. fold->mask->filter_ht_params);
  1086. if (!tc_skip_hw(fold->flags))
  1087. fl_hw_destroy_filter(tp, fold, NULL);
  1088. }
  1089. *arg = fnew;
  1090. if (fold) {
  1091. idr_replace(&head->handle_idr, fnew, fnew->handle);
  1092. list_replace_rcu(&fold->list, &fnew->list);
  1093. tcf_unbind_filter(tp, &fold->res);
  1094. tcf_exts_get_net(&fold->exts);
  1095. tcf_queue_work(&fold->rwork, fl_destroy_filter_work);
  1096. } else {
  1097. list_add_tail_rcu(&fnew->list, &fnew->mask->filters);
  1098. }
  1099. kfree(tb);
  1100. return 0;
  1101. errout_mask:
  1102. fl_mask_put(head, fnew->mask, false);
  1103. errout_idr:
  1104. if (!fold)
  1105. idr_remove(&head->handle_idr, fnew->handle);
  1106. errout:
  1107. tcf_exts_destroy(&fnew->exts);
  1108. kfree(fnew);
  1109. errout_tb:
  1110. kfree(tb);
  1111. return err;
  1112. }
  1113. static int fl_delete(struct tcf_proto *tp, void *arg, bool *last,
  1114. struct netlink_ext_ack *extack)
  1115. {
  1116. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1117. struct cls_fl_filter *f = arg;
  1118. if (!tc_skip_sw(f->flags))
  1119. rhashtable_remove_fast(&f->mask->ht, &f->ht_node,
  1120. f->mask->filter_ht_params);
  1121. __fl_delete(tp, f, extack);
  1122. *last = list_empty(&head->masks);
  1123. return 0;
  1124. }
  1125. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  1126. {
  1127. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1128. struct cls_fl_filter *f;
  1129. arg->count = arg->skip;
  1130. while ((f = idr_get_next_ul(&head->handle_idr,
  1131. &arg->cookie)) != NULL) {
  1132. if (arg->fn(tp, f, arg) < 0) {
  1133. arg->stop = 1;
  1134. break;
  1135. }
  1136. arg->cookie = f->handle + 1;
  1137. arg->count++;
  1138. }
  1139. }
  1140. static int fl_reoffload(struct tcf_proto *tp, bool add, tc_setup_cb_t *cb,
  1141. void *cb_priv, struct netlink_ext_ack *extack)
  1142. {
  1143. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1144. struct tc_cls_flower_offload cls_flower = {};
  1145. struct tcf_block *block = tp->chain->block;
  1146. struct fl_flow_mask *mask;
  1147. struct cls_fl_filter *f;
  1148. int err;
  1149. list_for_each_entry(mask, &head->masks, list) {
  1150. list_for_each_entry(f, &mask->filters, list) {
  1151. if (tc_skip_hw(f->flags))
  1152. continue;
  1153. tc_cls_common_offload_init(&cls_flower.common, tp,
  1154. f->flags, extack);
  1155. cls_flower.command = add ?
  1156. TC_CLSFLOWER_REPLACE : TC_CLSFLOWER_DESTROY;
  1157. cls_flower.cookie = (unsigned long)f;
  1158. cls_flower.dissector = &mask->dissector;
  1159. cls_flower.mask = &mask->key;
  1160. cls_flower.key = &f->mkey;
  1161. cls_flower.exts = &f->exts;
  1162. cls_flower.classid = f->res.classid;
  1163. err = cb(TC_SETUP_CLSFLOWER, &cls_flower, cb_priv);
  1164. if (err) {
  1165. if (add && tc_skip_sw(f->flags))
  1166. return err;
  1167. continue;
  1168. }
  1169. tc_cls_offload_cnt_update(block, &f->in_hw_count,
  1170. &f->flags, add);
  1171. }
  1172. }
  1173. return 0;
  1174. }
  1175. static void fl_hw_create_tmplt(struct tcf_chain *chain,
  1176. struct fl_flow_tmplt *tmplt)
  1177. {
  1178. struct tc_cls_flower_offload cls_flower = {};
  1179. struct tcf_block *block = chain->block;
  1180. struct tcf_exts dummy_exts = { 0, };
  1181. cls_flower.common.chain_index = chain->index;
  1182. cls_flower.command = TC_CLSFLOWER_TMPLT_CREATE;
  1183. cls_flower.cookie = (unsigned long) tmplt;
  1184. cls_flower.dissector = &tmplt->dissector;
  1185. cls_flower.mask = &tmplt->mask;
  1186. cls_flower.key = &tmplt->dummy_key;
  1187. cls_flower.exts = &dummy_exts;
  1188. /* We don't care if driver (any of them) fails to handle this
  1189. * call. It serves just as a hint for it.
  1190. */
  1191. tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
  1192. &cls_flower, false);
  1193. }
  1194. static void fl_hw_destroy_tmplt(struct tcf_chain *chain,
  1195. struct fl_flow_tmplt *tmplt)
  1196. {
  1197. struct tc_cls_flower_offload cls_flower = {};
  1198. struct tcf_block *block = chain->block;
  1199. cls_flower.common.chain_index = chain->index;
  1200. cls_flower.command = TC_CLSFLOWER_TMPLT_DESTROY;
  1201. cls_flower.cookie = (unsigned long) tmplt;
  1202. tc_setup_cb_call(block, NULL, TC_SETUP_CLSFLOWER,
  1203. &cls_flower, false);
  1204. }
  1205. static void *fl_tmplt_create(struct net *net, struct tcf_chain *chain,
  1206. struct nlattr **tca,
  1207. struct netlink_ext_ack *extack)
  1208. {
  1209. struct fl_flow_tmplt *tmplt;
  1210. struct nlattr **tb;
  1211. int err;
  1212. if (!tca[TCA_OPTIONS])
  1213. return ERR_PTR(-EINVAL);
  1214. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  1215. if (!tb)
  1216. return ERR_PTR(-ENOBUFS);
  1217. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  1218. fl_policy, NULL);
  1219. if (err)
  1220. goto errout_tb;
  1221. tmplt = kzalloc(sizeof(*tmplt), GFP_KERNEL);
  1222. if (!tmplt) {
  1223. err = -ENOMEM;
  1224. goto errout_tb;
  1225. }
  1226. tmplt->chain = chain;
  1227. err = fl_set_key(net, tb, &tmplt->dummy_key, &tmplt->mask, extack);
  1228. if (err)
  1229. goto errout_tmplt;
  1230. kfree(tb);
  1231. fl_init_dissector(&tmplt->dissector, &tmplt->mask);
  1232. fl_hw_create_tmplt(chain, tmplt);
  1233. return tmplt;
  1234. errout_tmplt:
  1235. kfree(tmplt);
  1236. errout_tb:
  1237. kfree(tb);
  1238. return ERR_PTR(err);
  1239. }
  1240. static void fl_tmplt_destroy(void *tmplt_priv)
  1241. {
  1242. struct fl_flow_tmplt *tmplt = tmplt_priv;
  1243. fl_hw_destroy_tmplt(tmplt->chain, tmplt);
  1244. kfree(tmplt);
  1245. }
  1246. static int fl_dump_key_val(struct sk_buff *skb,
  1247. void *val, int val_type,
  1248. void *mask, int mask_type, int len)
  1249. {
  1250. int err;
  1251. if (!memchr_inv(mask, 0, len))
  1252. return 0;
  1253. err = nla_put(skb, val_type, len, val);
  1254. if (err)
  1255. return err;
  1256. if (mask_type != TCA_FLOWER_UNSPEC) {
  1257. err = nla_put(skb, mask_type, len, mask);
  1258. if (err)
  1259. return err;
  1260. }
  1261. return 0;
  1262. }
  1263. static int fl_dump_key_mpls(struct sk_buff *skb,
  1264. struct flow_dissector_key_mpls *mpls_key,
  1265. struct flow_dissector_key_mpls *mpls_mask)
  1266. {
  1267. int err;
  1268. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  1269. return 0;
  1270. if (mpls_mask->mpls_ttl) {
  1271. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  1272. mpls_key->mpls_ttl);
  1273. if (err)
  1274. return err;
  1275. }
  1276. if (mpls_mask->mpls_tc) {
  1277. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  1278. mpls_key->mpls_tc);
  1279. if (err)
  1280. return err;
  1281. }
  1282. if (mpls_mask->mpls_label) {
  1283. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  1284. mpls_key->mpls_label);
  1285. if (err)
  1286. return err;
  1287. }
  1288. if (mpls_mask->mpls_bos) {
  1289. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  1290. mpls_key->mpls_bos);
  1291. if (err)
  1292. return err;
  1293. }
  1294. return 0;
  1295. }
  1296. static int fl_dump_key_ip(struct sk_buff *skb, bool encap,
  1297. struct flow_dissector_key_ip *key,
  1298. struct flow_dissector_key_ip *mask)
  1299. {
  1300. int tos_key = encap ? TCA_FLOWER_KEY_ENC_IP_TOS : TCA_FLOWER_KEY_IP_TOS;
  1301. int ttl_key = encap ? TCA_FLOWER_KEY_ENC_IP_TTL : TCA_FLOWER_KEY_IP_TTL;
  1302. int tos_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TOS_MASK : TCA_FLOWER_KEY_IP_TOS_MASK;
  1303. int ttl_mask = encap ? TCA_FLOWER_KEY_ENC_IP_TTL_MASK : TCA_FLOWER_KEY_IP_TTL_MASK;
  1304. if (fl_dump_key_val(skb, &key->tos, tos_key, &mask->tos, tos_mask, sizeof(key->tos)) ||
  1305. fl_dump_key_val(skb, &key->ttl, ttl_key, &mask->ttl, ttl_mask, sizeof(key->ttl)))
  1306. return -1;
  1307. return 0;
  1308. }
  1309. static int fl_dump_key_vlan(struct sk_buff *skb,
  1310. int vlan_id_key, int vlan_prio_key,
  1311. struct flow_dissector_key_vlan *vlan_key,
  1312. struct flow_dissector_key_vlan *vlan_mask)
  1313. {
  1314. int err;
  1315. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  1316. return 0;
  1317. if (vlan_mask->vlan_id) {
  1318. err = nla_put_u16(skb, vlan_id_key,
  1319. vlan_key->vlan_id);
  1320. if (err)
  1321. return err;
  1322. }
  1323. if (vlan_mask->vlan_priority) {
  1324. err = nla_put_u8(skb, vlan_prio_key,
  1325. vlan_key->vlan_priority);
  1326. if (err)
  1327. return err;
  1328. }
  1329. return 0;
  1330. }
  1331. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  1332. u32 *flower_key, u32 *flower_mask,
  1333. u32 flower_flag_bit, u32 dissector_flag_bit)
  1334. {
  1335. if (dissector_mask & dissector_flag_bit) {
  1336. *flower_mask |= flower_flag_bit;
  1337. if (dissector_key & dissector_flag_bit)
  1338. *flower_key |= flower_flag_bit;
  1339. }
  1340. }
  1341. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  1342. {
  1343. u32 key, mask;
  1344. __be32 _key, _mask;
  1345. int err;
  1346. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  1347. return 0;
  1348. key = 0;
  1349. mask = 0;
  1350. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1351. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  1352. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1353. TCA_FLOWER_KEY_FLAGS_FRAG_IS_FIRST,
  1354. FLOW_DIS_FIRST_FRAG);
  1355. _key = cpu_to_be32(key);
  1356. _mask = cpu_to_be32(mask);
  1357. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  1358. if (err)
  1359. return err;
  1360. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1361. }
  1362. static int fl_dump_key_geneve_opt(struct sk_buff *skb,
  1363. struct flow_dissector_key_enc_opts *enc_opts)
  1364. {
  1365. struct geneve_opt *opt;
  1366. struct nlattr *nest;
  1367. int opt_off = 0;
  1368. nest = nla_nest_start(skb, TCA_FLOWER_KEY_ENC_OPTS_GENEVE);
  1369. if (!nest)
  1370. goto nla_put_failure;
  1371. while (enc_opts->len > opt_off) {
  1372. opt = (struct geneve_opt *)&enc_opts->data[opt_off];
  1373. if (nla_put_be16(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_CLASS,
  1374. opt->opt_class))
  1375. goto nla_put_failure;
  1376. if (nla_put_u8(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_TYPE,
  1377. opt->type))
  1378. goto nla_put_failure;
  1379. if (nla_put(skb, TCA_FLOWER_KEY_ENC_OPT_GENEVE_DATA,
  1380. opt->length * 4, opt->opt_data))
  1381. goto nla_put_failure;
  1382. opt_off += sizeof(struct geneve_opt) + opt->length * 4;
  1383. }
  1384. nla_nest_end(skb, nest);
  1385. return 0;
  1386. nla_put_failure:
  1387. nla_nest_cancel(skb, nest);
  1388. return -EMSGSIZE;
  1389. }
  1390. static int fl_dump_key_options(struct sk_buff *skb, int enc_opt_type,
  1391. struct flow_dissector_key_enc_opts *enc_opts)
  1392. {
  1393. struct nlattr *nest;
  1394. int err;
  1395. if (!enc_opts->len)
  1396. return 0;
  1397. nest = nla_nest_start(skb, enc_opt_type);
  1398. if (!nest)
  1399. goto nla_put_failure;
  1400. switch (enc_opts->dst_opt_type) {
  1401. case TUNNEL_GENEVE_OPT:
  1402. err = fl_dump_key_geneve_opt(skb, enc_opts);
  1403. if (err)
  1404. goto nla_put_failure;
  1405. break;
  1406. default:
  1407. goto nla_put_failure;
  1408. }
  1409. nla_nest_end(skb, nest);
  1410. return 0;
  1411. nla_put_failure:
  1412. nla_nest_cancel(skb, nest);
  1413. return -EMSGSIZE;
  1414. }
  1415. static int fl_dump_key_enc_opt(struct sk_buff *skb,
  1416. struct flow_dissector_key_enc_opts *key_opts,
  1417. struct flow_dissector_key_enc_opts *msk_opts)
  1418. {
  1419. int err;
  1420. err = fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS, key_opts);
  1421. if (err)
  1422. return err;
  1423. return fl_dump_key_options(skb, TCA_FLOWER_KEY_ENC_OPTS_MASK, msk_opts);
  1424. }
  1425. static int fl_dump_key(struct sk_buff *skb, struct net *net,
  1426. struct fl_flow_key *key, struct fl_flow_key *mask)
  1427. {
  1428. if (mask->indev_ifindex) {
  1429. struct net_device *dev;
  1430. dev = __dev_get_by_index(net, key->indev_ifindex);
  1431. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1432. goto nla_put_failure;
  1433. }
  1434. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1435. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1436. sizeof(key->eth.dst)) ||
  1437. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1438. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1439. sizeof(key->eth.src)) ||
  1440. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1441. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1442. sizeof(key->basic.n_proto)))
  1443. goto nla_put_failure;
  1444. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1445. goto nla_put_failure;
  1446. if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_VLAN_ID,
  1447. TCA_FLOWER_KEY_VLAN_PRIO, &key->vlan, &mask->vlan))
  1448. goto nla_put_failure;
  1449. if (fl_dump_key_vlan(skb, TCA_FLOWER_KEY_CVLAN_ID,
  1450. TCA_FLOWER_KEY_CVLAN_PRIO,
  1451. &key->cvlan, &mask->cvlan) ||
  1452. (mask->cvlan.vlan_tpid &&
  1453. nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  1454. key->cvlan.vlan_tpid)))
  1455. goto nla_put_failure;
  1456. if (mask->basic.n_proto) {
  1457. if (mask->cvlan.vlan_tpid) {
  1458. if (nla_put_be16(skb, TCA_FLOWER_KEY_CVLAN_ETH_TYPE,
  1459. key->basic.n_proto))
  1460. goto nla_put_failure;
  1461. } else if (mask->vlan.vlan_tpid) {
  1462. if (nla_put_be16(skb, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  1463. key->basic.n_proto))
  1464. goto nla_put_failure;
  1465. }
  1466. }
  1467. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1468. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1469. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1470. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1471. sizeof(key->basic.ip_proto)) ||
  1472. fl_dump_key_ip(skb, false, &key->ip, &mask->ip)))
  1473. goto nla_put_failure;
  1474. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1475. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1476. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1477. sizeof(key->ipv4.src)) ||
  1478. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1479. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1480. sizeof(key->ipv4.dst))))
  1481. goto nla_put_failure;
  1482. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1483. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1484. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1485. sizeof(key->ipv6.src)) ||
  1486. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1487. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1488. sizeof(key->ipv6.dst))))
  1489. goto nla_put_failure;
  1490. if (key->basic.ip_proto == IPPROTO_TCP &&
  1491. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1492. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1493. sizeof(key->tp.src)) ||
  1494. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1495. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1496. sizeof(key->tp.dst)) ||
  1497. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1498. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1499. sizeof(key->tcp.flags))))
  1500. goto nla_put_failure;
  1501. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1502. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1503. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1504. sizeof(key->tp.src)) ||
  1505. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1506. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1507. sizeof(key->tp.dst))))
  1508. goto nla_put_failure;
  1509. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1510. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1511. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1512. sizeof(key->tp.src)) ||
  1513. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1514. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1515. sizeof(key->tp.dst))))
  1516. goto nla_put_failure;
  1517. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1518. key->basic.ip_proto == IPPROTO_ICMP &&
  1519. (fl_dump_key_val(skb, &key->icmp.type,
  1520. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1521. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1522. sizeof(key->icmp.type)) ||
  1523. fl_dump_key_val(skb, &key->icmp.code,
  1524. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1525. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1526. sizeof(key->icmp.code))))
  1527. goto nla_put_failure;
  1528. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1529. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1530. (fl_dump_key_val(skb, &key->icmp.type,
  1531. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1532. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1533. sizeof(key->icmp.type)) ||
  1534. fl_dump_key_val(skb, &key->icmp.code,
  1535. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1536. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1537. sizeof(key->icmp.code))))
  1538. goto nla_put_failure;
  1539. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1540. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1541. (fl_dump_key_val(skb, &key->arp.sip,
  1542. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1543. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1544. sizeof(key->arp.sip)) ||
  1545. fl_dump_key_val(skb, &key->arp.tip,
  1546. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1547. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1548. sizeof(key->arp.tip)) ||
  1549. fl_dump_key_val(skb, &key->arp.op,
  1550. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1551. TCA_FLOWER_KEY_ARP_OP_MASK,
  1552. sizeof(key->arp.op)) ||
  1553. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1554. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1555. sizeof(key->arp.sha)) ||
  1556. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1557. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1558. sizeof(key->arp.tha))))
  1559. goto nla_put_failure;
  1560. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1561. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1562. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1563. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1564. sizeof(key->enc_ipv4.src)) ||
  1565. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1566. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1567. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1568. sizeof(key->enc_ipv4.dst))))
  1569. goto nla_put_failure;
  1570. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1571. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1572. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1573. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1574. sizeof(key->enc_ipv6.src)) ||
  1575. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1576. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1577. &mask->enc_ipv6.dst,
  1578. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1579. sizeof(key->enc_ipv6.dst))))
  1580. goto nla_put_failure;
  1581. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1582. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1583. sizeof(key->enc_key_id)) ||
  1584. fl_dump_key_val(skb, &key->enc_tp.src,
  1585. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1586. &mask->enc_tp.src,
  1587. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1588. sizeof(key->enc_tp.src)) ||
  1589. fl_dump_key_val(skb, &key->enc_tp.dst,
  1590. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1591. &mask->enc_tp.dst,
  1592. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1593. sizeof(key->enc_tp.dst)) ||
  1594. fl_dump_key_ip(skb, true, &key->enc_ip, &mask->enc_ip) ||
  1595. fl_dump_key_enc_opt(skb, &key->enc_opts, &mask->enc_opts))
  1596. goto nla_put_failure;
  1597. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1598. goto nla_put_failure;
  1599. return 0;
  1600. nla_put_failure:
  1601. return -EMSGSIZE;
  1602. }
  1603. static int fl_dump(struct net *net, struct tcf_proto *tp, void *fh,
  1604. struct sk_buff *skb, struct tcmsg *t)
  1605. {
  1606. struct cls_fl_filter *f = fh;
  1607. struct nlattr *nest;
  1608. struct fl_flow_key *key, *mask;
  1609. if (!f)
  1610. return skb->len;
  1611. t->tcm_handle = f->handle;
  1612. nest = nla_nest_start(skb, TCA_OPTIONS);
  1613. if (!nest)
  1614. goto nla_put_failure;
  1615. if (f->res.classid &&
  1616. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1617. goto nla_put_failure;
  1618. key = &f->key;
  1619. mask = &f->mask->key;
  1620. if (fl_dump_key(skb, net, key, mask))
  1621. goto nla_put_failure;
  1622. if (!tc_skip_hw(f->flags))
  1623. fl_hw_update_stats(tp, f);
  1624. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1625. goto nla_put_failure;
  1626. if (tcf_exts_dump(skb, &f->exts))
  1627. goto nla_put_failure;
  1628. nla_nest_end(skb, nest);
  1629. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1630. goto nla_put_failure;
  1631. return skb->len;
  1632. nla_put_failure:
  1633. nla_nest_cancel(skb, nest);
  1634. return -1;
  1635. }
  1636. static int fl_tmplt_dump(struct sk_buff *skb, struct net *net, void *tmplt_priv)
  1637. {
  1638. struct fl_flow_tmplt *tmplt = tmplt_priv;
  1639. struct fl_flow_key *key, *mask;
  1640. struct nlattr *nest;
  1641. nest = nla_nest_start(skb, TCA_OPTIONS);
  1642. if (!nest)
  1643. goto nla_put_failure;
  1644. key = &tmplt->dummy_key;
  1645. mask = &tmplt->mask;
  1646. if (fl_dump_key(skb, net, key, mask))
  1647. goto nla_put_failure;
  1648. nla_nest_end(skb, nest);
  1649. return skb->len;
  1650. nla_put_failure:
  1651. nla_nest_cancel(skb, nest);
  1652. return -EMSGSIZE;
  1653. }
  1654. static void fl_bind_class(void *fh, u32 classid, unsigned long cl)
  1655. {
  1656. struct cls_fl_filter *f = fh;
  1657. if (f && f->res.classid == classid)
  1658. f->res.class = cl;
  1659. }
  1660. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1661. .kind = "flower",
  1662. .classify = fl_classify,
  1663. .init = fl_init,
  1664. .destroy = fl_destroy,
  1665. .get = fl_get,
  1666. .change = fl_change,
  1667. .delete = fl_delete,
  1668. .walk = fl_walk,
  1669. .reoffload = fl_reoffload,
  1670. .dump = fl_dump,
  1671. .bind_class = fl_bind_class,
  1672. .tmplt_create = fl_tmplt_create,
  1673. .tmplt_destroy = fl_tmplt_destroy,
  1674. .tmplt_dump = fl_tmplt_dump,
  1675. .owner = THIS_MODULE,
  1676. };
  1677. static int __init cls_fl_init(void)
  1678. {
  1679. return register_tcf_proto_ops(&cls_fl_ops);
  1680. }
  1681. static void __exit cls_fl_exit(void)
  1682. {
  1683. unregister_tcf_proto_ops(&cls_fl_ops);
  1684. }
  1685. module_init(cls_fl_init);
  1686. module_exit(cls_fl_exit);
  1687. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1688. MODULE_DESCRIPTION("Flower classifier");
  1689. MODULE_LICENSE("GPL v2");