af_netlink.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. * Patrick McHardy <kaber@trash.net>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. *
  13. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  14. * added netlink_proto_exit
  15. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  16. * use nlk_sk, as sk->protinfo is on a diet 8)
  17. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  18. * - inc module use count of module that owns
  19. * the kernel socket in case userspace opens
  20. * socket of same protocol
  21. * - remove all module support, since netlink is
  22. * mandatory if CONFIG_NET=y these days
  23. */
  24. #include <linux/module.h>
  25. #include <linux/capability.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/signal.h>
  29. #include <linux/sched.h>
  30. #include <linux/errno.h>
  31. #include <linux/string.h>
  32. #include <linux/stat.h>
  33. #include <linux/socket.h>
  34. #include <linux/un.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/termios.h>
  37. #include <linux/sockios.h>
  38. #include <linux/net.h>
  39. #include <linux/fs.h>
  40. #include <linux/slab.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/skbuff.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/rtnetlink.h>
  45. #include <linux/proc_fs.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/notifier.h>
  48. #include <linux/security.h>
  49. #include <linux/jhash.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/random.h>
  52. #include <linux/bitops.h>
  53. #include <linux/mm.h>
  54. #include <linux/types.h>
  55. #include <linux/audit.h>
  56. #include <linux/mutex.h>
  57. #include <linux/vmalloc.h>
  58. #include <linux/if_arp.h>
  59. #include <linux/rhashtable.h>
  60. #include <asm/cacheflush.h>
  61. #include <linux/hash.h>
  62. #include <linux/genetlink.h>
  63. #include <linux/net_namespace.h>
  64. #include <linux/nospec.h>
  65. #include <net/net_namespace.h>
  66. #include <net/netns/generic.h>
  67. #include <net/sock.h>
  68. #include <net/scm.h>
  69. #include <net/netlink.h>
  70. #include "af_netlink.h"
  71. struct listeners {
  72. struct rcu_head rcu;
  73. unsigned long masks[0];
  74. };
  75. /* state bits */
  76. #define NETLINK_S_CONGESTED 0x0
  77. static inline int netlink_is_kernel(struct sock *sk)
  78. {
  79. return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
  80. }
  81. struct netlink_table *nl_table __read_mostly;
  82. EXPORT_SYMBOL_GPL(nl_table);
  83. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  84. static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS];
  85. static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = {
  86. "nlk_cb_mutex-ROUTE",
  87. "nlk_cb_mutex-1",
  88. "nlk_cb_mutex-USERSOCK",
  89. "nlk_cb_mutex-FIREWALL",
  90. "nlk_cb_mutex-SOCK_DIAG",
  91. "nlk_cb_mutex-NFLOG",
  92. "nlk_cb_mutex-XFRM",
  93. "nlk_cb_mutex-SELINUX",
  94. "nlk_cb_mutex-ISCSI",
  95. "nlk_cb_mutex-AUDIT",
  96. "nlk_cb_mutex-FIB_LOOKUP",
  97. "nlk_cb_mutex-CONNECTOR",
  98. "nlk_cb_mutex-NETFILTER",
  99. "nlk_cb_mutex-IP6_FW",
  100. "nlk_cb_mutex-DNRTMSG",
  101. "nlk_cb_mutex-KOBJECT_UEVENT",
  102. "nlk_cb_mutex-GENERIC",
  103. "nlk_cb_mutex-17",
  104. "nlk_cb_mutex-SCSITRANSPORT",
  105. "nlk_cb_mutex-ECRYPTFS",
  106. "nlk_cb_mutex-RDMA",
  107. "nlk_cb_mutex-CRYPTO",
  108. "nlk_cb_mutex-SMC",
  109. "nlk_cb_mutex-23",
  110. "nlk_cb_mutex-24",
  111. "nlk_cb_mutex-25",
  112. "nlk_cb_mutex-26",
  113. "nlk_cb_mutex-27",
  114. "nlk_cb_mutex-28",
  115. "nlk_cb_mutex-29",
  116. "nlk_cb_mutex-30",
  117. "nlk_cb_mutex-31",
  118. "nlk_cb_mutex-MAX_LINKS"
  119. };
  120. static int netlink_dump(struct sock *sk);
  121. /* nl_table locking explained:
  122. * Lookup and traversal are protected with an RCU read-side lock. Insertion
  123. * and removal are protected with per bucket lock while using RCU list
  124. * modification primitives and may run in parallel to RCU protected lookups.
  125. * Destruction of the Netlink socket may only occur *after* nl_table_lock has
  126. * been acquired * either during or after the socket has been removed from
  127. * the list and after an RCU grace period.
  128. */
  129. DEFINE_RWLOCK(nl_table_lock);
  130. EXPORT_SYMBOL_GPL(nl_table_lock);
  131. static atomic_t nl_table_users = ATOMIC_INIT(0);
  132. #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
  133. static BLOCKING_NOTIFIER_HEAD(netlink_chain);
  134. static const struct rhashtable_params netlink_rhashtable_params;
  135. static inline u32 netlink_group_mask(u32 group)
  136. {
  137. return group ? 1 << (group - 1) : 0;
  138. }
  139. static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb,
  140. gfp_t gfp_mask)
  141. {
  142. unsigned int len = skb_end_offset(skb);
  143. struct sk_buff *new;
  144. new = alloc_skb(len, gfp_mask);
  145. if (new == NULL)
  146. return NULL;
  147. NETLINK_CB(new).portid = NETLINK_CB(skb).portid;
  148. NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group;
  149. NETLINK_CB(new).creds = NETLINK_CB(skb).creds;
  150. skb_put_data(new, skb->data, len);
  151. return new;
  152. }
  153. static unsigned int netlink_tap_net_id;
  154. struct netlink_tap_net {
  155. struct list_head netlink_tap_all;
  156. struct mutex netlink_tap_lock;
  157. };
  158. int netlink_add_tap(struct netlink_tap *nt)
  159. {
  160. struct net *net = dev_net(nt->dev);
  161. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  162. if (unlikely(nt->dev->type != ARPHRD_NETLINK))
  163. return -EINVAL;
  164. mutex_lock(&nn->netlink_tap_lock);
  165. list_add_rcu(&nt->list, &nn->netlink_tap_all);
  166. mutex_unlock(&nn->netlink_tap_lock);
  167. __module_get(nt->module);
  168. return 0;
  169. }
  170. EXPORT_SYMBOL_GPL(netlink_add_tap);
  171. static int __netlink_remove_tap(struct netlink_tap *nt)
  172. {
  173. struct net *net = dev_net(nt->dev);
  174. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  175. bool found = false;
  176. struct netlink_tap *tmp;
  177. mutex_lock(&nn->netlink_tap_lock);
  178. list_for_each_entry(tmp, &nn->netlink_tap_all, list) {
  179. if (nt == tmp) {
  180. list_del_rcu(&nt->list);
  181. found = true;
  182. goto out;
  183. }
  184. }
  185. pr_warn("__netlink_remove_tap: %p not found\n", nt);
  186. out:
  187. mutex_unlock(&nn->netlink_tap_lock);
  188. if (found)
  189. module_put(nt->module);
  190. return found ? 0 : -ENODEV;
  191. }
  192. int netlink_remove_tap(struct netlink_tap *nt)
  193. {
  194. int ret;
  195. ret = __netlink_remove_tap(nt);
  196. synchronize_net();
  197. return ret;
  198. }
  199. EXPORT_SYMBOL_GPL(netlink_remove_tap);
  200. static __net_init int netlink_tap_init_net(struct net *net)
  201. {
  202. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  203. INIT_LIST_HEAD(&nn->netlink_tap_all);
  204. mutex_init(&nn->netlink_tap_lock);
  205. return 0;
  206. }
  207. static void __net_exit netlink_tap_exit_net(struct net *net)
  208. {
  209. }
  210. static struct pernet_operations netlink_tap_net_ops = {
  211. .init = netlink_tap_init_net,
  212. .exit = netlink_tap_exit_net,
  213. .id = &netlink_tap_net_id,
  214. .size = sizeof(struct netlink_tap_net),
  215. };
  216. static bool netlink_filter_tap(const struct sk_buff *skb)
  217. {
  218. struct sock *sk = skb->sk;
  219. /* We take the more conservative approach and
  220. * whitelist socket protocols that may pass.
  221. */
  222. switch (sk->sk_protocol) {
  223. case NETLINK_ROUTE:
  224. case NETLINK_USERSOCK:
  225. case NETLINK_SOCK_DIAG:
  226. case NETLINK_NFLOG:
  227. case NETLINK_XFRM:
  228. case NETLINK_FIB_LOOKUP:
  229. case NETLINK_NETFILTER:
  230. case NETLINK_GENERIC:
  231. return true;
  232. }
  233. return false;
  234. }
  235. static int __netlink_deliver_tap_skb(struct sk_buff *skb,
  236. struct net_device *dev)
  237. {
  238. struct sk_buff *nskb;
  239. struct sock *sk = skb->sk;
  240. int ret = -ENOMEM;
  241. if (!net_eq(dev_net(dev), sock_net(sk)))
  242. return 0;
  243. dev_hold(dev);
  244. if (is_vmalloc_addr(skb->head))
  245. nskb = netlink_to_full_skb(skb, GFP_ATOMIC);
  246. else
  247. nskb = skb_clone(skb, GFP_ATOMIC);
  248. if (nskb) {
  249. nskb->dev = dev;
  250. nskb->protocol = htons((u16) sk->sk_protocol);
  251. nskb->pkt_type = netlink_is_kernel(sk) ?
  252. PACKET_KERNEL : PACKET_USER;
  253. skb_reset_network_header(nskb);
  254. ret = dev_queue_xmit(nskb);
  255. if (unlikely(ret > 0))
  256. ret = net_xmit_errno(ret);
  257. }
  258. dev_put(dev);
  259. return ret;
  260. }
  261. static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn)
  262. {
  263. int ret;
  264. struct netlink_tap *tmp;
  265. if (!netlink_filter_tap(skb))
  266. return;
  267. list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) {
  268. ret = __netlink_deliver_tap_skb(skb, tmp->dev);
  269. if (unlikely(ret))
  270. break;
  271. }
  272. }
  273. static void netlink_deliver_tap(struct net *net, struct sk_buff *skb)
  274. {
  275. struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id);
  276. rcu_read_lock();
  277. if (unlikely(!list_empty(&nn->netlink_tap_all)))
  278. __netlink_deliver_tap(skb, nn);
  279. rcu_read_unlock();
  280. }
  281. static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
  282. struct sk_buff *skb)
  283. {
  284. if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
  285. netlink_deliver_tap(sock_net(dst), skb);
  286. }
  287. static void netlink_overrun(struct sock *sk)
  288. {
  289. struct netlink_sock *nlk = nlk_sk(sk);
  290. if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
  291. if (!test_and_set_bit(NETLINK_S_CONGESTED,
  292. &nlk_sk(sk)->state)) {
  293. sk->sk_err = ENOBUFS;
  294. sk->sk_error_report(sk);
  295. }
  296. }
  297. atomic_inc(&sk->sk_drops);
  298. }
  299. static void netlink_rcv_wake(struct sock *sk)
  300. {
  301. struct netlink_sock *nlk = nlk_sk(sk);
  302. if (skb_queue_empty(&sk->sk_receive_queue))
  303. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  304. if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
  305. wake_up_interruptible(&nlk->wait);
  306. }
  307. static void netlink_skb_destructor(struct sk_buff *skb)
  308. {
  309. if (is_vmalloc_addr(skb->head)) {
  310. if (!skb->cloned ||
  311. !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
  312. vfree(skb->head);
  313. skb->head = NULL;
  314. }
  315. if (skb->sk != NULL)
  316. sock_rfree(skb);
  317. }
  318. static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
  319. {
  320. WARN_ON(skb->sk != NULL);
  321. skb->sk = sk;
  322. skb->destructor = netlink_skb_destructor;
  323. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  324. sk_mem_charge(sk, skb->truesize);
  325. }
  326. static void netlink_sock_destruct(struct sock *sk)
  327. {
  328. struct netlink_sock *nlk = nlk_sk(sk);
  329. if (nlk->cb_running) {
  330. if (nlk->cb.done)
  331. nlk->cb.done(&nlk->cb);
  332. module_put(nlk->cb.module);
  333. kfree_skb(nlk->cb.skb);
  334. }
  335. skb_queue_purge(&sk->sk_receive_queue);
  336. if (!sock_flag(sk, SOCK_DEAD)) {
  337. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  338. return;
  339. }
  340. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  341. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  342. WARN_ON(nlk_sk(sk)->groups);
  343. }
  344. static void netlink_sock_destruct_work(struct work_struct *work)
  345. {
  346. struct netlink_sock *nlk = container_of(work, struct netlink_sock,
  347. work);
  348. sk_free(&nlk->sk);
  349. }
  350. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  351. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  352. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  353. * this, _but_ remember, it adds useless work on UP machines.
  354. */
  355. void netlink_table_grab(void)
  356. __acquires(nl_table_lock)
  357. {
  358. might_sleep();
  359. write_lock_irq(&nl_table_lock);
  360. if (atomic_read(&nl_table_users)) {
  361. DECLARE_WAITQUEUE(wait, current);
  362. add_wait_queue_exclusive(&nl_table_wait, &wait);
  363. for (;;) {
  364. set_current_state(TASK_UNINTERRUPTIBLE);
  365. if (atomic_read(&nl_table_users) == 0)
  366. break;
  367. write_unlock_irq(&nl_table_lock);
  368. schedule();
  369. write_lock_irq(&nl_table_lock);
  370. }
  371. __set_current_state(TASK_RUNNING);
  372. remove_wait_queue(&nl_table_wait, &wait);
  373. }
  374. }
  375. void netlink_table_ungrab(void)
  376. __releases(nl_table_lock)
  377. {
  378. write_unlock_irq(&nl_table_lock);
  379. wake_up(&nl_table_wait);
  380. }
  381. static inline void
  382. netlink_lock_table(void)
  383. {
  384. /* read_lock() synchronizes us to netlink_table_grab */
  385. read_lock(&nl_table_lock);
  386. atomic_inc(&nl_table_users);
  387. read_unlock(&nl_table_lock);
  388. }
  389. static inline void
  390. netlink_unlock_table(void)
  391. {
  392. if (atomic_dec_and_test(&nl_table_users))
  393. wake_up(&nl_table_wait);
  394. }
  395. struct netlink_compare_arg
  396. {
  397. possible_net_t pnet;
  398. u32 portid;
  399. };
  400. /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
  401. #define netlink_compare_arg_len \
  402. (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
  403. static inline int netlink_compare(struct rhashtable_compare_arg *arg,
  404. const void *ptr)
  405. {
  406. const struct netlink_compare_arg *x = arg->key;
  407. const struct netlink_sock *nlk = ptr;
  408. return nlk->portid != x->portid ||
  409. !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
  410. }
  411. static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
  412. struct net *net, u32 portid)
  413. {
  414. memset(arg, 0, sizeof(*arg));
  415. write_pnet(&arg->pnet, net);
  416. arg->portid = portid;
  417. }
  418. static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
  419. struct net *net)
  420. {
  421. struct netlink_compare_arg arg;
  422. netlink_compare_arg_init(&arg, net, portid);
  423. return rhashtable_lookup_fast(&table->hash, &arg,
  424. netlink_rhashtable_params);
  425. }
  426. static int __netlink_insert(struct netlink_table *table, struct sock *sk)
  427. {
  428. struct netlink_compare_arg arg;
  429. netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
  430. return rhashtable_lookup_insert_key(&table->hash, &arg,
  431. &nlk_sk(sk)->node,
  432. netlink_rhashtable_params);
  433. }
  434. static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
  435. {
  436. struct netlink_table *table = &nl_table[protocol];
  437. struct sock *sk;
  438. rcu_read_lock();
  439. sk = __netlink_lookup(table, portid, net);
  440. if (sk)
  441. sock_hold(sk);
  442. rcu_read_unlock();
  443. return sk;
  444. }
  445. static const struct proto_ops netlink_ops;
  446. static void
  447. netlink_update_listeners(struct sock *sk)
  448. {
  449. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  450. unsigned long mask;
  451. unsigned int i;
  452. struct listeners *listeners;
  453. listeners = nl_deref_protected(tbl->listeners);
  454. if (!listeners)
  455. return;
  456. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  457. mask = 0;
  458. sk_for_each_bound(sk, &tbl->mc_list) {
  459. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  460. mask |= nlk_sk(sk)->groups[i];
  461. }
  462. listeners->masks[i] = mask;
  463. }
  464. /* this function is only called with the netlink table "grabbed", which
  465. * makes sure updates are visible before bind or setsockopt return. */
  466. }
  467. static int netlink_insert(struct sock *sk, u32 portid)
  468. {
  469. struct netlink_table *table = &nl_table[sk->sk_protocol];
  470. int err;
  471. lock_sock(sk);
  472. err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY;
  473. if (nlk_sk(sk)->bound)
  474. goto err;
  475. err = -ENOMEM;
  476. if (BITS_PER_LONG > 32 &&
  477. unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
  478. goto err;
  479. nlk_sk(sk)->portid = portid;
  480. sock_hold(sk);
  481. err = __netlink_insert(table, sk);
  482. if (err) {
  483. /* In case the hashtable backend returns with -EBUSY
  484. * from here, it must not escape to the caller.
  485. */
  486. if (unlikely(err == -EBUSY))
  487. err = -EOVERFLOW;
  488. if (err == -EEXIST)
  489. err = -EADDRINUSE;
  490. sock_put(sk);
  491. goto err;
  492. }
  493. /* We need to ensure that the socket is hashed and visible. */
  494. smp_wmb();
  495. nlk_sk(sk)->bound = portid;
  496. err:
  497. release_sock(sk);
  498. return err;
  499. }
  500. static void netlink_remove(struct sock *sk)
  501. {
  502. struct netlink_table *table;
  503. table = &nl_table[sk->sk_protocol];
  504. if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
  505. netlink_rhashtable_params)) {
  506. WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
  507. __sock_put(sk);
  508. }
  509. netlink_table_grab();
  510. if (nlk_sk(sk)->subscriptions) {
  511. __sk_del_bind_node(sk);
  512. netlink_update_listeners(sk);
  513. }
  514. if (sk->sk_protocol == NETLINK_GENERIC)
  515. atomic_inc(&genl_sk_destructing_cnt);
  516. netlink_table_ungrab();
  517. }
  518. static struct proto netlink_proto = {
  519. .name = "NETLINK",
  520. .owner = THIS_MODULE,
  521. .obj_size = sizeof(struct netlink_sock),
  522. };
  523. static int __netlink_create(struct net *net, struct socket *sock,
  524. struct mutex *cb_mutex, int protocol,
  525. int kern)
  526. {
  527. struct sock *sk;
  528. struct netlink_sock *nlk;
  529. sock->ops = &netlink_ops;
  530. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
  531. if (!sk)
  532. return -ENOMEM;
  533. sock_init_data(sock, sk);
  534. nlk = nlk_sk(sk);
  535. if (cb_mutex) {
  536. nlk->cb_mutex = cb_mutex;
  537. } else {
  538. nlk->cb_mutex = &nlk->cb_def_mutex;
  539. mutex_init(nlk->cb_mutex);
  540. lockdep_set_class_and_name(nlk->cb_mutex,
  541. nlk_cb_mutex_keys + protocol,
  542. nlk_cb_mutex_key_strings[protocol]);
  543. }
  544. init_waitqueue_head(&nlk->wait);
  545. sk->sk_destruct = netlink_sock_destruct;
  546. sk->sk_protocol = protocol;
  547. return 0;
  548. }
  549. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  550. int kern)
  551. {
  552. struct module *module = NULL;
  553. struct mutex *cb_mutex;
  554. struct netlink_sock *nlk;
  555. int (*bind)(struct net *net, int group);
  556. void (*unbind)(struct net *net, int group);
  557. int err = 0;
  558. sock->state = SS_UNCONNECTED;
  559. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  560. return -ESOCKTNOSUPPORT;
  561. if (protocol < 0 || protocol >= MAX_LINKS)
  562. return -EPROTONOSUPPORT;
  563. protocol = array_index_nospec(protocol, MAX_LINKS);
  564. netlink_lock_table();
  565. #ifdef CONFIG_MODULES
  566. if (!nl_table[protocol].registered) {
  567. netlink_unlock_table();
  568. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  569. netlink_lock_table();
  570. }
  571. #endif
  572. if (nl_table[protocol].registered &&
  573. try_module_get(nl_table[protocol].module))
  574. module = nl_table[protocol].module;
  575. else
  576. err = -EPROTONOSUPPORT;
  577. cb_mutex = nl_table[protocol].cb_mutex;
  578. bind = nl_table[protocol].bind;
  579. unbind = nl_table[protocol].unbind;
  580. netlink_unlock_table();
  581. if (err < 0)
  582. goto out;
  583. err = __netlink_create(net, sock, cb_mutex, protocol, kern);
  584. if (err < 0)
  585. goto out_module;
  586. local_bh_disable();
  587. sock_prot_inuse_add(net, &netlink_proto, 1);
  588. local_bh_enable();
  589. nlk = nlk_sk(sock->sk);
  590. nlk->module = module;
  591. nlk->netlink_bind = bind;
  592. nlk->netlink_unbind = unbind;
  593. out:
  594. return err;
  595. out_module:
  596. module_put(module);
  597. goto out;
  598. }
  599. static void deferred_put_nlk_sk(struct rcu_head *head)
  600. {
  601. struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
  602. struct sock *sk = &nlk->sk;
  603. kfree(nlk->groups);
  604. nlk->groups = NULL;
  605. if (!refcount_dec_and_test(&sk->sk_refcnt))
  606. return;
  607. if (nlk->cb_running && nlk->cb.done) {
  608. INIT_WORK(&nlk->work, netlink_sock_destruct_work);
  609. schedule_work(&nlk->work);
  610. return;
  611. }
  612. sk_free(sk);
  613. }
  614. static int netlink_release(struct socket *sock)
  615. {
  616. struct sock *sk = sock->sk;
  617. struct netlink_sock *nlk;
  618. if (!sk)
  619. return 0;
  620. netlink_remove(sk);
  621. sock_orphan(sk);
  622. nlk = nlk_sk(sk);
  623. /*
  624. * OK. Socket is unlinked, any packets that arrive now
  625. * will be purged.
  626. */
  627. /* must not acquire netlink_table_lock in any way again before unbind
  628. * and notifying genetlink is done as otherwise it might deadlock
  629. */
  630. if (nlk->netlink_unbind) {
  631. int i;
  632. for (i = 0; i < nlk->ngroups; i++)
  633. if (test_bit(i, nlk->groups))
  634. nlk->netlink_unbind(sock_net(sk), i + 1);
  635. }
  636. if (sk->sk_protocol == NETLINK_GENERIC &&
  637. atomic_dec_return(&genl_sk_destructing_cnt) == 0)
  638. wake_up(&genl_sk_destructing_waitq);
  639. sock->sk = NULL;
  640. wake_up_interruptible_all(&nlk->wait);
  641. skb_queue_purge(&sk->sk_write_queue);
  642. if (nlk->portid && nlk->bound) {
  643. struct netlink_notify n = {
  644. .net = sock_net(sk),
  645. .protocol = sk->sk_protocol,
  646. .portid = nlk->portid,
  647. };
  648. blocking_notifier_call_chain(&netlink_chain,
  649. NETLINK_URELEASE, &n);
  650. }
  651. module_put(nlk->module);
  652. if (netlink_is_kernel(sk)) {
  653. netlink_table_grab();
  654. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  655. if (--nl_table[sk->sk_protocol].registered == 0) {
  656. struct listeners *old;
  657. old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
  658. RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
  659. kfree_rcu(old, rcu);
  660. nl_table[sk->sk_protocol].module = NULL;
  661. nl_table[sk->sk_protocol].bind = NULL;
  662. nl_table[sk->sk_protocol].unbind = NULL;
  663. nl_table[sk->sk_protocol].flags = 0;
  664. nl_table[sk->sk_protocol].registered = 0;
  665. }
  666. netlink_table_ungrab();
  667. }
  668. local_bh_disable();
  669. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  670. local_bh_enable();
  671. call_rcu(&nlk->rcu, deferred_put_nlk_sk);
  672. return 0;
  673. }
  674. static int netlink_autobind(struct socket *sock)
  675. {
  676. struct sock *sk = sock->sk;
  677. struct net *net = sock_net(sk);
  678. struct netlink_table *table = &nl_table[sk->sk_protocol];
  679. s32 portid = task_tgid_vnr(current);
  680. int err;
  681. s32 rover = -4096;
  682. bool ok;
  683. retry:
  684. cond_resched();
  685. rcu_read_lock();
  686. ok = !__netlink_lookup(table, portid, net);
  687. rcu_read_unlock();
  688. if (!ok) {
  689. /* Bind collision, search negative portid values. */
  690. if (rover == -4096)
  691. /* rover will be in range [S32_MIN, -4097] */
  692. rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
  693. else if (rover >= -4096)
  694. rover = -4097;
  695. portid = rover--;
  696. goto retry;
  697. }
  698. err = netlink_insert(sk, portid);
  699. if (err == -EADDRINUSE)
  700. goto retry;
  701. /* If 2 threads race to autobind, that is fine. */
  702. if (err == -EBUSY)
  703. err = 0;
  704. return err;
  705. }
  706. /**
  707. * __netlink_ns_capable - General netlink message capability test
  708. * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
  709. * @user_ns: The user namespace of the capability to use
  710. * @cap: The capability to use
  711. *
  712. * Test to see if the opener of the socket we received the message
  713. * from had when the netlink socket was created and the sender of the
  714. * message has has the capability @cap in the user namespace @user_ns.
  715. */
  716. bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
  717. struct user_namespace *user_ns, int cap)
  718. {
  719. return ((nsp->flags & NETLINK_SKB_DST) ||
  720. file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
  721. ns_capable(user_ns, cap);
  722. }
  723. EXPORT_SYMBOL(__netlink_ns_capable);
  724. /**
  725. * netlink_ns_capable - General netlink message capability test
  726. * @skb: socket buffer holding a netlink command from userspace
  727. * @user_ns: The user namespace of the capability to use
  728. * @cap: The capability to use
  729. *
  730. * Test to see if the opener of the socket we received the message
  731. * from had when the netlink socket was created and the sender of the
  732. * message has has the capability @cap in the user namespace @user_ns.
  733. */
  734. bool netlink_ns_capable(const struct sk_buff *skb,
  735. struct user_namespace *user_ns, int cap)
  736. {
  737. return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
  738. }
  739. EXPORT_SYMBOL(netlink_ns_capable);
  740. /**
  741. * netlink_capable - Netlink global message capability test
  742. * @skb: socket buffer holding a netlink command from userspace
  743. * @cap: The capability to use
  744. *
  745. * Test to see if the opener of the socket we received the message
  746. * from had when the netlink socket was created and the sender of the
  747. * message has has the capability @cap in all user namespaces.
  748. */
  749. bool netlink_capable(const struct sk_buff *skb, int cap)
  750. {
  751. return netlink_ns_capable(skb, &init_user_ns, cap);
  752. }
  753. EXPORT_SYMBOL(netlink_capable);
  754. /**
  755. * netlink_net_capable - Netlink network namespace message capability test
  756. * @skb: socket buffer holding a netlink command from userspace
  757. * @cap: The capability to use
  758. *
  759. * Test to see if the opener of the socket we received the message
  760. * from had when the netlink socket was created and the sender of the
  761. * message has has the capability @cap over the network namespace of
  762. * the socket we received the message from.
  763. */
  764. bool netlink_net_capable(const struct sk_buff *skb, int cap)
  765. {
  766. return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
  767. }
  768. EXPORT_SYMBOL(netlink_net_capable);
  769. static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
  770. {
  771. return (nl_table[sock->sk->sk_protocol].flags & flag) ||
  772. ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
  773. }
  774. static void
  775. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  776. {
  777. struct netlink_sock *nlk = nlk_sk(sk);
  778. if (nlk->subscriptions && !subscriptions)
  779. __sk_del_bind_node(sk);
  780. else if (!nlk->subscriptions && subscriptions)
  781. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  782. nlk->subscriptions = subscriptions;
  783. }
  784. static int netlink_realloc_groups(struct sock *sk)
  785. {
  786. struct netlink_sock *nlk = nlk_sk(sk);
  787. unsigned int groups;
  788. unsigned long *new_groups;
  789. int err = 0;
  790. netlink_table_grab();
  791. groups = nl_table[sk->sk_protocol].groups;
  792. if (!nl_table[sk->sk_protocol].registered) {
  793. err = -ENOENT;
  794. goto out_unlock;
  795. }
  796. if (nlk->ngroups >= groups)
  797. goto out_unlock;
  798. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  799. if (new_groups == NULL) {
  800. err = -ENOMEM;
  801. goto out_unlock;
  802. }
  803. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  804. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  805. nlk->groups = new_groups;
  806. nlk->ngroups = groups;
  807. out_unlock:
  808. netlink_table_ungrab();
  809. return err;
  810. }
  811. static void netlink_undo_bind(int group, long unsigned int groups,
  812. struct sock *sk)
  813. {
  814. struct netlink_sock *nlk = nlk_sk(sk);
  815. int undo;
  816. if (!nlk->netlink_unbind)
  817. return;
  818. for (undo = 0; undo < group; undo++)
  819. if (test_bit(undo, &groups))
  820. nlk->netlink_unbind(sock_net(sk), undo + 1);
  821. }
  822. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  823. int addr_len)
  824. {
  825. struct sock *sk = sock->sk;
  826. struct net *net = sock_net(sk);
  827. struct netlink_sock *nlk = nlk_sk(sk);
  828. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  829. int err = 0;
  830. long unsigned int groups = nladdr->nl_groups;
  831. bool bound;
  832. if (addr_len < sizeof(struct sockaddr_nl))
  833. return -EINVAL;
  834. if (nladdr->nl_family != AF_NETLINK)
  835. return -EINVAL;
  836. /* Only superuser is allowed to listen multicasts */
  837. if (groups) {
  838. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  839. return -EPERM;
  840. err = netlink_realloc_groups(sk);
  841. if (err)
  842. return err;
  843. }
  844. if (nlk->ngroups == 0)
  845. groups = 0;
  846. else if (nlk->ngroups < 8*sizeof(groups))
  847. groups &= (1UL << nlk->ngroups) - 1;
  848. bound = nlk->bound;
  849. if (bound) {
  850. /* Ensure nlk->portid is up-to-date. */
  851. smp_rmb();
  852. if (nladdr->nl_pid != nlk->portid)
  853. return -EINVAL;
  854. }
  855. netlink_lock_table();
  856. if (nlk->netlink_bind && groups) {
  857. int group;
  858. for (group = 0; group < nlk->ngroups; group++) {
  859. if (!test_bit(group, &groups))
  860. continue;
  861. err = nlk->netlink_bind(net, group + 1);
  862. if (!err)
  863. continue;
  864. netlink_undo_bind(group, groups, sk);
  865. goto unlock;
  866. }
  867. }
  868. /* No need for barriers here as we return to user-space without
  869. * using any of the bound attributes.
  870. */
  871. if (!bound) {
  872. err = nladdr->nl_pid ?
  873. netlink_insert(sk, nladdr->nl_pid) :
  874. netlink_autobind(sock);
  875. if (err) {
  876. netlink_undo_bind(nlk->ngroups, groups, sk);
  877. goto unlock;
  878. }
  879. }
  880. if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  881. goto unlock;
  882. netlink_unlock_table();
  883. netlink_table_grab();
  884. netlink_update_subscriptions(sk, nlk->subscriptions +
  885. hweight32(groups) -
  886. hweight32(nlk->groups[0]));
  887. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
  888. netlink_update_listeners(sk);
  889. netlink_table_ungrab();
  890. return 0;
  891. unlock:
  892. netlink_unlock_table();
  893. return err;
  894. }
  895. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  896. int alen, int flags)
  897. {
  898. int err = 0;
  899. struct sock *sk = sock->sk;
  900. struct netlink_sock *nlk = nlk_sk(sk);
  901. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  902. if (alen < sizeof(addr->sa_family))
  903. return -EINVAL;
  904. if (addr->sa_family == AF_UNSPEC) {
  905. sk->sk_state = NETLINK_UNCONNECTED;
  906. nlk->dst_portid = 0;
  907. nlk->dst_group = 0;
  908. return 0;
  909. }
  910. if (addr->sa_family != AF_NETLINK)
  911. return -EINVAL;
  912. if (alen < sizeof(struct sockaddr_nl))
  913. return -EINVAL;
  914. if ((nladdr->nl_groups || nladdr->nl_pid) &&
  915. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  916. return -EPERM;
  917. /* No need for barriers here as we return to user-space without
  918. * using any of the bound attributes.
  919. */
  920. if (!nlk->bound)
  921. err = netlink_autobind(sock);
  922. if (err == 0) {
  923. sk->sk_state = NETLINK_CONNECTED;
  924. nlk->dst_portid = nladdr->nl_pid;
  925. nlk->dst_group = ffs(nladdr->nl_groups);
  926. }
  927. return err;
  928. }
  929. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  930. int peer)
  931. {
  932. struct sock *sk = sock->sk;
  933. struct netlink_sock *nlk = nlk_sk(sk);
  934. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  935. nladdr->nl_family = AF_NETLINK;
  936. nladdr->nl_pad = 0;
  937. if (peer) {
  938. nladdr->nl_pid = nlk->dst_portid;
  939. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  940. } else {
  941. nladdr->nl_pid = nlk->portid;
  942. netlink_lock_table();
  943. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  944. netlink_unlock_table();
  945. }
  946. return sizeof(*nladdr);
  947. }
  948. static int netlink_ioctl(struct socket *sock, unsigned int cmd,
  949. unsigned long arg)
  950. {
  951. /* try to hand this ioctl down to the NIC drivers.
  952. */
  953. return -ENOIOCTLCMD;
  954. }
  955. static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
  956. {
  957. struct sock *sock;
  958. struct netlink_sock *nlk;
  959. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
  960. if (!sock)
  961. return ERR_PTR(-ECONNREFUSED);
  962. /* Don't bother queuing skb if kernel socket has no input function */
  963. nlk = nlk_sk(sock);
  964. if (sock->sk_state == NETLINK_CONNECTED &&
  965. nlk->dst_portid != nlk_sk(ssk)->portid) {
  966. sock_put(sock);
  967. return ERR_PTR(-ECONNREFUSED);
  968. }
  969. return sock;
  970. }
  971. struct sock *netlink_getsockbyfilp(struct file *filp)
  972. {
  973. struct inode *inode = file_inode(filp);
  974. struct sock *sock;
  975. if (!S_ISSOCK(inode->i_mode))
  976. return ERR_PTR(-ENOTSOCK);
  977. sock = SOCKET_I(inode)->sk;
  978. if (sock->sk_family != AF_NETLINK)
  979. return ERR_PTR(-EINVAL);
  980. sock_hold(sock);
  981. return sock;
  982. }
  983. static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
  984. int broadcast)
  985. {
  986. struct sk_buff *skb;
  987. void *data;
  988. if (size <= NLMSG_GOODSIZE || broadcast)
  989. return alloc_skb(size, GFP_KERNEL);
  990. size = SKB_DATA_ALIGN(size) +
  991. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  992. data = vmalloc(size);
  993. if (data == NULL)
  994. return NULL;
  995. skb = __build_skb(data, size);
  996. if (skb == NULL)
  997. vfree(data);
  998. else
  999. skb->destructor = netlink_skb_destructor;
  1000. return skb;
  1001. }
  1002. /*
  1003. * Attach a skb to a netlink socket.
  1004. * The caller must hold a reference to the destination socket. On error, the
  1005. * reference is dropped. The skb is not send to the destination, just all
  1006. * all error checks are performed and memory in the queue is reserved.
  1007. * Return values:
  1008. * < 0: error. skb freed, reference to sock dropped.
  1009. * 0: continue
  1010. * 1: repeat lookup - reference dropped while waiting for socket memory.
  1011. */
  1012. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  1013. long *timeo, struct sock *ssk)
  1014. {
  1015. struct netlink_sock *nlk;
  1016. nlk = nlk_sk(sk);
  1017. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1018. test_bit(NETLINK_S_CONGESTED, &nlk->state))) {
  1019. DECLARE_WAITQUEUE(wait, current);
  1020. if (!*timeo) {
  1021. if (!ssk || netlink_is_kernel(ssk))
  1022. netlink_overrun(sk);
  1023. sock_put(sk);
  1024. kfree_skb(skb);
  1025. return -EAGAIN;
  1026. }
  1027. __set_current_state(TASK_INTERRUPTIBLE);
  1028. add_wait_queue(&nlk->wait, &wait);
  1029. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  1030. test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
  1031. !sock_flag(sk, SOCK_DEAD))
  1032. *timeo = schedule_timeout(*timeo);
  1033. __set_current_state(TASK_RUNNING);
  1034. remove_wait_queue(&nlk->wait, &wait);
  1035. sock_put(sk);
  1036. if (signal_pending(current)) {
  1037. kfree_skb(skb);
  1038. return sock_intr_errno(*timeo);
  1039. }
  1040. return 1;
  1041. }
  1042. netlink_skb_set_owner_r(skb, sk);
  1043. return 0;
  1044. }
  1045. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1046. {
  1047. int len = skb->len;
  1048. netlink_deliver_tap(sock_net(sk), skb);
  1049. skb_queue_tail(&sk->sk_receive_queue, skb);
  1050. sk->sk_data_ready(sk);
  1051. return len;
  1052. }
  1053. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  1054. {
  1055. int len = __netlink_sendskb(sk, skb);
  1056. sock_put(sk);
  1057. return len;
  1058. }
  1059. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  1060. {
  1061. kfree_skb(skb);
  1062. sock_put(sk);
  1063. }
  1064. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  1065. {
  1066. int delta;
  1067. WARN_ON(skb->sk != NULL);
  1068. delta = skb->end - skb->tail;
  1069. if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
  1070. return skb;
  1071. if (skb_shared(skb)) {
  1072. struct sk_buff *nskb = skb_clone(skb, allocation);
  1073. if (!nskb)
  1074. return skb;
  1075. consume_skb(skb);
  1076. skb = nskb;
  1077. }
  1078. pskb_expand_head(skb, 0, -delta,
  1079. (allocation & ~__GFP_DIRECT_RECLAIM) |
  1080. __GFP_NOWARN | __GFP_NORETRY);
  1081. return skb;
  1082. }
  1083. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
  1084. struct sock *ssk)
  1085. {
  1086. int ret;
  1087. struct netlink_sock *nlk = nlk_sk(sk);
  1088. ret = -ECONNREFUSED;
  1089. if (nlk->netlink_rcv != NULL) {
  1090. ret = skb->len;
  1091. netlink_skb_set_owner_r(skb, sk);
  1092. NETLINK_CB(skb).sk = ssk;
  1093. netlink_deliver_tap_kernel(sk, ssk, skb);
  1094. nlk->netlink_rcv(skb);
  1095. consume_skb(skb);
  1096. } else {
  1097. kfree_skb(skb);
  1098. }
  1099. sock_put(sk);
  1100. return ret;
  1101. }
  1102. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  1103. u32 portid, int nonblock)
  1104. {
  1105. struct sock *sk;
  1106. int err;
  1107. long timeo;
  1108. skb = netlink_trim(skb, gfp_any());
  1109. timeo = sock_sndtimeo(ssk, nonblock);
  1110. retry:
  1111. sk = netlink_getsockbyportid(ssk, portid);
  1112. if (IS_ERR(sk)) {
  1113. kfree_skb(skb);
  1114. return PTR_ERR(sk);
  1115. }
  1116. if (netlink_is_kernel(sk))
  1117. return netlink_unicast_kernel(sk, skb, ssk);
  1118. if (sk_filter(sk, skb)) {
  1119. err = skb->len;
  1120. kfree_skb(skb);
  1121. sock_put(sk);
  1122. return err;
  1123. }
  1124. err = netlink_attachskb(sk, skb, &timeo, ssk);
  1125. if (err == 1)
  1126. goto retry;
  1127. if (err)
  1128. return err;
  1129. return netlink_sendskb(sk, skb);
  1130. }
  1131. EXPORT_SYMBOL(netlink_unicast);
  1132. int netlink_has_listeners(struct sock *sk, unsigned int group)
  1133. {
  1134. int res = 0;
  1135. struct listeners *listeners;
  1136. BUG_ON(!netlink_is_kernel(sk));
  1137. rcu_read_lock();
  1138. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  1139. if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
  1140. res = test_bit(group - 1, listeners->masks);
  1141. rcu_read_unlock();
  1142. return res;
  1143. }
  1144. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  1145. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  1146. {
  1147. struct netlink_sock *nlk = nlk_sk(sk);
  1148. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  1149. !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
  1150. netlink_skb_set_owner_r(skb, sk);
  1151. __netlink_sendskb(sk, skb);
  1152. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  1153. }
  1154. return -1;
  1155. }
  1156. struct netlink_broadcast_data {
  1157. struct sock *exclude_sk;
  1158. struct net *net;
  1159. u32 portid;
  1160. u32 group;
  1161. int failure;
  1162. int delivery_failure;
  1163. int congested;
  1164. int delivered;
  1165. gfp_t allocation;
  1166. struct sk_buff *skb, *skb2;
  1167. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  1168. void *tx_data;
  1169. };
  1170. static void do_one_broadcast(struct sock *sk,
  1171. struct netlink_broadcast_data *p)
  1172. {
  1173. struct netlink_sock *nlk = nlk_sk(sk);
  1174. int val;
  1175. if (p->exclude_sk == sk)
  1176. return;
  1177. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1178. !test_bit(p->group - 1, nlk->groups))
  1179. return;
  1180. if (!net_eq(sock_net(sk), p->net)) {
  1181. if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
  1182. return;
  1183. if (!peernet_has_id(sock_net(sk), p->net))
  1184. return;
  1185. if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
  1186. CAP_NET_BROADCAST))
  1187. return;
  1188. }
  1189. if (p->failure) {
  1190. netlink_overrun(sk);
  1191. return;
  1192. }
  1193. sock_hold(sk);
  1194. if (p->skb2 == NULL) {
  1195. if (skb_shared(p->skb)) {
  1196. p->skb2 = skb_clone(p->skb, p->allocation);
  1197. } else {
  1198. p->skb2 = skb_get(p->skb);
  1199. /*
  1200. * skb ownership may have been set when
  1201. * delivered to a previous socket.
  1202. */
  1203. skb_orphan(p->skb2);
  1204. }
  1205. }
  1206. if (p->skb2 == NULL) {
  1207. netlink_overrun(sk);
  1208. /* Clone failed. Notify ALL listeners. */
  1209. p->failure = 1;
  1210. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1211. p->delivery_failure = 1;
  1212. goto out;
  1213. }
  1214. if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  1215. kfree_skb(p->skb2);
  1216. p->skb2 = NULL;
  1217. goto out;
  1218. }
  1219. if (sk_filter(sk, p->skb2)) {
  1220. kfree_skb(p->skb2);
  1221. p->skb2 = NULL;
  1222. goto out;
  1223. }
  1224. NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
  1225. if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED)
  1226. NETLINK_CB(p->skb2).nsid_is_set = true;
  1227. val = netlink_broadcast_deliver(sk, p->skb2);
  1228. if (val < 0) {
  1229. netlink_overrun(sk);
  1230. if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
  1231. p->delivery_failure = 1;
  1232. } else {
  1233. p->congested |= val;
  1234. p->delivered = 1;
  1235. p->skb2 = NULL;
  1236. }
  1237. out:
  1238. sock_put(sk);
  1239. }
  1240. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1241. u32 group, gfp_t allocation,
  1242. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  1243. void *filter_data)
  1244. {
  1245. struct net *net = sock_net(ssk);
  1246. struct netlink_broadcast_data info;
  1247. struct sock *sk;
  1248. skb = netlink_trim(skb, allocation);
  1249. info.exclude_sk = ssk;
  1250. info.net = net;
  1251. info.portid = portid;
  1252. info.group = group;
  1253. info.failure = 0;
  1254. info.delivery_failure = 0;
  1255. info.congested = 0;
  1256. info.delivered = 0;
  1257. info.allocation = allocation;
  1258. info.skb = skb;
  1259. info.skb2 = NULL;
  1260. info.tx_filter = filter;
  1261. info.tx_data = filter_data;
  1262. /* While we sleep in clone, do not allow to change socket list */
  1263. netlink_lock_table();
  1264. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1265. do_one_broadcast(sk, &info);
  1266. consume_skb(skb);
  1267. netlink_unlock_table();
  1268. if (info.delivery_failure) {
  1269. kfree_skb(info.skb2);
  1270. return -ENOBUFS;
  1271. }
  1272. consume_skb(info.skb2);
  1273. if (info.delivered) {
  1274. if (info.congested && gfpflags_allow_blocking(allocation))
  1275. yield();
  1276. return 0;
  1277. }
  1278. return -ESRCH;
  1279. }
  1280. EXPORT_SYMBOL(netlink_broadcast_filtered);
  1281. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
  1282. u32 group, gfp_t allocation)
  1283. {
  1284. return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
  1285. NULL, NULL);
  1286. }
  1287. EXPORT_SYMBOL(netlink_broadcast);
  1288. struct netlink_set_err_data {
  1289. struct sock *exclude_sk;
  1290. u32 portid;
  1291. u32 group;
  1292. int code;
  1293. };
  1294. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  1295. {
  1296. struct netlink_sock *nlk = nlk_sk(sk);
  1297. int ret = 0;
  1298. if (sk == p->exclude_sk)
  1299. goto out;
  1300. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  1301. goto out;
  1302. if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
  1303. !test_bit(p->group - 1, nlk->groups))
  1304. goto out;
  1305. if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
  1306. ret = 1;
  1307. goto out;
  1308. }
  1309. sk->sk_err = p->code;
  1310. sk->sk_error_report(sk);
  1311. out:
  1312. return ret;
  1313. }
  1314. /**
  1315. * netlink_set_err - report error to broadcast listeners
  1316. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  1317. * @portid: the PORTID of a process that we want to skip (if any)
  1318. * @group: the broadcast group that will notice the error
  1319. * @code: error code, must be negative (as usual in kernelspace)
  1320. *
  1321. * This function returns the number of broadcast listeners that have set the
  1322. * NETLINK_NO_ENOBUFS socket option.
  1323. */
  1324. int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
  1325. {
  1326. struct netlink_set_err_data info;
  1327. struct sock *sk;
  1328. int ret = 0;
  1329. info.exclude_sk = ssk;
  1330. info.portid = portid;
  1331. info.group = group;
  1332. /* sk->sk_err wants a positive error value */
  1333. info.code = -code;
  1334. read_lock(&nl_table_lock);
  1335. sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
  1336. ret += do_one_set_err(sk, &info);
  1337. read_unlock(&nl_table_lock);
  1338. return ret;
  1339. }
  1340. EXPORT_SYMBOL(netlink_set_err);
  1341. /* must be called with netlink table grabbed */
  1342. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  1343. unsigned int group,
  1344. int is_new)
  1345. {
  1346. int old, new = !!is_new, subscriptions;
  1347. old = test_bit(group - 1, nlk->groups);
  1348. subscriptions = nlk->subscriptions - old + new;
  1349. if (new)
  1350. __set_bit(group - 1, nlk->groups);
  1351. else
  1352. __clear_bit(group - 1, nlk->groups);
  1353. netlink_update_subscriptions(&nlk->sk, subscriptions);
  1354. netlink_update_listeners(&nlk->sk);
  1355. }
  1356. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  1357. char __user *optval, unsigned int optlen)
  1358. {
  1359. struct sock *sk = sock->sk;
  1360. struct netlink_sock *nlk = nlk_sk(sk);
  1361. unsigned int val = 0;
  1362. int err;
  1363. if (level != SOL_NETLINK)
  1364. return -ENOPROTOOPT;
  1365. if (optlen >= sizeof(int) &&
  1366. get_user(val, (unsigned int __user *)optval))
  1367. return -EFAULT;
  1368. switch (optname) {
  1369. case NETLINK_PKTINFO:
  1370. if (val)
  1371. nlk->flags |= NETLINK_F_RECV_PKTINFO;
  1372. else
  1373. nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
  1374. err = 0;
  1375. break;
  1376. case NETLINK_ADD_MEMBERSHIP:
  1377. case NETLINK_DROP_MEMBERSHIP: {
  1378. if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
  1379. return -EPERM;
  1380. err = netlink_realloc_groups(sk);
  1381. if (err)
  1382. return err;
  1383. if (!val || val - 1 >= nlk->ngroups)
  1384. return -EINVAL;
  1385. if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
  1386. err = nlk->netlink_bind(sock_net(sk), val);
  1387. if (err)
  1388. return err;
  1389. }
  1390. netlink_table_grab();
  1391. netlink_update_socket_mc(nlk, val,
  1392. optname == NETLINK_ADD_MEMBERSHIP);
  1393. netlink_table_ungrab();
  1394. if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
  1395. nlk->netlink_unbind(sock_net(sk), val);
  1396. err = 0;
  1397. break;
  1398. }
  1399. case NETLINK_BROADCAST_ERROR:
  1400. if (val)
  1401. nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
  1402. else
  1403. nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
  1404. err = 0;
  1405. break;
  1406. case NETLINK_NO_ENOBUFS:
  1407. if (val) {
  1408. nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
  1409. clear_bit(NETLINK_S_CONGESTED, &nlk->state);
  1410. wake_up_interruptible(&nlk->wait);
  1411. } else {
  1412. nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
  1413. }
  1414. err = 0;
  1415. break;
  1416. case NETLINK_LISTEN_ALL_NSID:
  1417. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
  1418. return -EPERM;
  1419. if (val)
  1420. nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
  1421. else
  1422. nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
  1423. err = 0;
  1424. break;
  1425. case NETLINK_CAP_ACK:
  1426. if (val)
  1427. nlk->flags |= NETLINK_F_CAP_ACK;
  1428. else
  1429. nlk->flags &= ~NETLINK_F_CAP_ACK;
  1430. err = 0;
  1431. break;
  1432. case NETLINK_EXT_ACK:
  1433. if (val)
  1434. nlk->flags |= NETLINK_F_EXT_ACK;
  1435. else
  1436. nlk->flags &= ~NETLINK_F_EXT_ACK;
  1437. err = 0;
  1438. break;
  1439. default:
  1440. err = -ENOPROTOOPT;
  1441. }
  1442. return err;
  1443. }
  1444. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1445. char __user *optval, int __user *optlen)
  1446. {
  1447. struct sock *sk = sock->sk;
  1448. struct netlink_sock *nlk = nlk_sk(sk);
  1449. int len, val, err;
  1450. if (level != SOL_NETLINK)
  1451. return -ENOPROTOOPT;
  1452. if (get_user(len, optlen))
  1453. return -EFAULT;
  1454. if (len < 0)
  1455. return -EINVAL;
  1456. switch (optname) {
  1457. case NETLINK_PKTINFO:
  1458. if (len < sizeof(int))
  1459. return -EINVAL;
  1460. len = sizeof(int);
  1461. val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
  1462. if (put_user(len, optlen) ||
  1463. put_user(val, optval))
  1464. return -EFAULT;
  1465. err = 0;
  1466. break;
  1467. case NETLINK_BROADCAST_ERROR:
  1468. if (len < sizeof(int))
  1469. return -EINVAL;
  1470. len = sizeof(int);
  1471. val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
  1472. if (put_user(len, optlen) ||
  1473. put_user(val, optval))
  1474. return -EFAULT;
  1475. err = 0;
  1476. break;
  1477. case NETLINK_NO_ENOBUFS:
  1478. if (len < sizeof(int))
  1479. return -EINVAL;
  1480. len = sizeof(int);
  1481. val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
  1482. if (put_user(len, optlen) ||
  1483. put_user(val, optval))
  1484. return -EFAULT;
  1485. err = 0;
  1486. break;
  1487. case NETLINK_LIST_MEMBERSHIPS: {
  1488. int pos, idx, shift;
  1489. err = 0;
  1490. netlink_lock_table();
  1491. for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
  1492. if (len - pos < sizeof(u32))
  1493. break;
  1494. idx = pos / sizeof(unsigned long);
  1495. shift = (pos % sizeof(unsigned long)) * 8;
  1496. if (put_user((u32)(nlk->groups[idx] >> shift),
  1497. (u32 __user *)(optval + pos))) {
  1498. err = -EFAULT;
  1499. break;
  1500. }
  1501. }
  1502. if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
  1503. err = -EFAULT;
  1504. netlink_unlock_table();
  1505. break;
  1506. }
  1507. case NETLINK_CAP_ACK:
  1508. if (len < sizeof(int))
  1509. return -EINVAL;
  1510. len = sizeof(int);
  1511. val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
  1512. if (put_user(len, optlen) ||
  1513. put_user(val, optval))
  1514. return -EFAULT;
  1515. err = 0;
  1516. break;
  1517. case NETLINK_EXT_ACK:
  1518. if (len < sizeof(int))
  1519. return -EINVAL;
  1520. len = sizeof(int);
  1521. val = nlk->flags & NETLINK_F_EXT_ACK ? 1 : 0;
  1522. if (put_user(len, optlen) || put_user(val, optval))
  1523. return -EFAULT;
  1524. err = 0;
  1525. break;
  1526. default:
  1527. err = -ENOPROTOOPT;
  1528. }
  1529. return err;
  1530. }
  1531. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1532. {
  1533. struct nl_pktinfo info;
  1534. info.group = NETLINK_CB(skb).dst_group;
  1535. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1536. }
  1537. static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
  1538. struct sk_buff *skb)
  1539. {
  1540. if (!NETLINK_CB(skb).nsid_is_set)
  1541. return;
  1542. put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
  1543. &NETLINK_CB(skb).nsid);
  1544. }
  1545. static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
  1546. {
  1547. struct sock *sk = sock->sk;
  1548. struct netlink_sock *nlk = nlk_sk(sk);
  1549. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1550. u32 dst_portid;
  1551. u32 dst_group;
  1552. struct sk_buff *skb;
  1553. int err;
  1554. struct scm_cookie scm;
  1555. u32 netlink_skb_flags = 0;
  1556. if (msg->msg_flags&MSG_OOB)
  1557. return -EOPNOTSUPP;
  1558. err = scm_send(sock, msg, &scm, true);
  1559. if (err < 0)
  1560. return err;
  1561. if (msg->msg_namelen) {
  1562. err = -EINVAL;
  1563. if (msg->msg_namelen < sizeof(struct sockaddr_nl))
  1564. goto out;
  1565. if (addr->nl_family != AF_NETLINK)
  1566. goto out;
  1567. dst_portid = addr->nl_pid;
  1568. dst_group = ffs(addr->nl_groups);
  1569. err = -EPERM;
  1570. if ((dst_group || dst_portid) &&
  1571. !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
  1572. goto out;
  1573. netlink_skb_flags |= NETLINK_SKB_DST;
  1574. } else {
  1575. dst_portid = nlk->dst_portid;
  1576. dst_group = nlk->dst_group;
  1577. }
  1578. if (!nlk->bound) {
  1579. err = netlink_autobind(sock);
  1580. if (err)
  1581. goto out;
  1582. } else {
  1583. /* Ensure nlk is hashed and visible. */
  1584. smp_rmb();
  1585. }
  1586. err = -EMSGSIZE;
  1587. if (len > sk->sk_sndbuf - 32)
  1588. goto out;
  1589. err = -ENOBUFS;
  1590. skb = netlink_alloc_large_skb(len, dst_group);
  1591. if (skb == NULL)
  1592. goto out;
  1593. NETLINK_CB(skb).portid = nlk->portid;
  1594. NETLINK_CB(skb).dst_group = dst_group;
  1595. NETLINK_CB(skb).creds = scm.creds;
  1596. NETLINK_CB(skb).flags = netlink_skb_flags;
  1597. err = -EFAULT;
  1598. if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
  1599. kfree_skb(skb);
  1600. goto out;
  1601. }
  1602. err = security_netlink_send(sk, skb);
  1603. if (err) {
  1604. kfree_skb(skb);
  1605. goto out;
  1606. }
  1607. if (dst_group) {
  1608. refcount_inc(&skb->users);
  1609. netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
  1610. }
  1611. err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
  1612. out:
  1613. scm_destroy(&scm);
  1614. return err;
  1615. }
  1616. static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
  1617. int flags)
  1618. {
  1619. struct scm_cookie scm;
  1620. struct sock *sk = sock->sk;
  1621. struct netlink_sock *nlk = nlk_sk(sk);
  1622. int noblock = flags&MSG_DONTWAIT;
  1623. size_t copied;
  1624. struct sk_buff *skb, *data_skb;
  1625. int err, ret;
  1626. if (flags&MSG_OOB)
  1627. return -EOPNOTSUPP;
  1628. copied = 0;
  1629. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1630. if (skb == NULL)
  1631. goto out;
  1632. data_skb = skb;
  1633. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1634. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1635. /*
  1636. * If this skb has a frag_list, then here that means that we
  1637. * will have to use the frag_list skb's data for compat tasks
  1638. * and the regular skb's data for normal (non-compat) tasks.
  1639. *
  1640. * If we need to send the compat skb, assign it to the
  1641. * 'data_skb' variable so that it will be used below for data
  1642. * copying. We keep 'skb' for everything else, including
  1643. * freeing both later.
  1644. */
  1645. if (flags & MSG_CMSG_COMPAT)
  1646. data_skb = skb_shinfo(skb)->frag_list;
  1647. }
  1648. #endif
  1649. /* Record the max length of recvmsg() calls for future allocations */
  1650. nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
  1651. nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
  1652. SKB_WITH_OVERHEAD(32768));
  1653. copied = data_skb->len;
  1654. if (len < copied) {
  1655. msg->msg_flags |= MSG_TRUNC;
  1656. copied = len;
  1657. }
  1658. skb_reset_transport_header(data_skb);
  1659. err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
  1660. if (msg->msg_name) {
  1661. DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
  1662. addr->nl_family = AF_NETLINK;
  1663. addr->nl_pad = 0;
  1664. addr->nl_pid = NETLINK_CB(skb).portid;
  1665. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1666. msg->msg_namelen = sizeof(*addr);
  1667. }
  1668. if (nlk->flags & NETLINK_F_RECV_PKTINFO)
  1669. netlink_cmsg_recv_pktinfo(msg, skb);
  1670. if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
  1671. netlink_cmsg_listen_all_nsid(sk, msg, skb);
  1672. memset(&scm, 0, sizeof(scm));
  1673. scm.creds = *NETLINK_CREDS(skb);
  1674. if (flags & MSG_TRUNC)
  1675. copied = data_skb->len;
  1676. skb_free_datagram(sk, skb);
  1677. if (nlk->cb_running &&
  1678. atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1679. ret = netlink_dump(sk);
  1680. if (ret) {
  1681. sk->sk_err = -ret;
  1682. sk->sk_error_report(sk);
  1683. }
  1684. }
  1685. scm_recv(sock, msg, &scm, flags);
  1686. out:
  1687. netlink_rcv_wake(sk);
  1688. return err ? : copied;
  1689. }
  1690. static void netlink_data_ready(struct sock *sk)
  1691. {
  1692. BUG();
  1693. }
  1694. /*
  1695. * We export these functions to other modules. They provide a
  1696. * complete set of kernel non-blocking support for message
  1697. * queueing.
  1698. */
  1699. struct sock *
  1700. __netlink_kernel_create(struct net *net, int unit, struct module *module,
  1701. struct netlink_kernel_cfg *cfg)
  1702. {
  1703. struct socket *sock;
  1704. struct sock *sk;
  1705. struct netlink_sock *nlk;
  1706. struct listeners *listeners = NULL;
  1707. struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
  1708. unsigned int groups;
  1709. BUG_ON(!nl_table);
  1710. if (unit < 0 || unit >= MAX_LINKS)
  1711. return NULL;
  1712. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1713. return NULL;
  1714. if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
  1715. goto out_sock_release_nosk;
  1716. sk = sock->sk;
  1717. if (!cfg || cfg->groups < 32)
  1718. groups = 32;
  1719. else
  1720. groups = cfg->groups;
  1721. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1722. if (!listeners)
  1723. goto out_sock_release;
  1724. sk->sk_data_ready = netlink_data_ready;
  1725. if (cfg && cfg->input)
  1726. nlk_sk(sk)->netlink_rcv = cfg->input;
  1727. if (netlink_insert(sk, 0))
  1728. goto out_sock_release;
  1729. nlk = nlk_sk(sk);
  1730. nlk->flags |= NETLINK_F_KERNEL_SOCKET;
  1731. netlink_table_grab();
  1732. if (!nl_table[unit].registered) {
  1733. nl_table[unit].groups = groups;
  1734. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1735. nl_table[unit].cb_mutex = cb_mutex;
  1736. nl_table[unit].module = module;
  1737. if (cfg) {
  1738. nl_table[unit].bind = cfg->bind;
  1739. nl_table[unit].unbind = cfg->unbind;
  1740. nl_table[unit].flags = cfg->flags;
  1741. if (cfg->compare)
  1742. nl_table[unit].compare = cfg->compare;
  1743. }
  1744. nl_table[unit].registered = 1;
  1745. } else {
  1746. kfree(listeners);
  1747. nl_table[unit].registered++;
  1748. }
  1749. netlink_table_ungrab();
  1750. return sk;
  1751. out_sock_release:
  1752. kfree(listeners);
  1753. netlink_kernel_release(sk);
  1754. return NULL;
  1755. out_sock_release_nosk:
  1756. sock_release(sock);
  1757. return NULL;
  1758. }
  1759. EXPORT_SYMBOL(__netlink_kernel_create);
  1760. void
  1761. netlink_kernel_release(struct sock *sk)
  1762. {
  1763. if (sk == NULL || sk->sk_socket == NULL)
  1764. return;
  1765. sock_release(sk->sk_socket);
  1766. }
  1767. EXPORT_SYMBOL(netlink_kernel_release);
  1768. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1769. {
  1770. struct listeners *new, *old;
  1771. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1772. if (groups < 32)
  1773. groups = 32;
  1774. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1775. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1776. if (!new)
  1777. return -ENOMEM;
  1778. old = nl_deref_protected(tbl->listeners);
  1779. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1780. rcu_assign_pointer(tbl->listeners, new);
  1781. kfree_rcu(old, rcu);
  1782. }
  1783. tbl->groups = groups;
  1784. return 0;
  1785. }
  1786. /**
  1787. * netlink_change_ngroups - change number of multicast groups
  1788. *
  1789. * This changes the number of multicast groups that are available
  1790. * on a certain netlink family. Note that it is not possible to
  1791. * change the number of groups to below 32. Also note that it does
  1792. * not implicitly call netlink_clear_multicast_users() when the
  1793. * number of groups is reduced.
  1794. *
  1795. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1796. * @groups: The new number of groups.
  1797. */
  1798. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1799. {
  1800. int err;
  1801. netlink_table_grab();
  1802. err = __netlink_change_ngroups(sk, groups);
  1803. netlink_table_ungrab();
  1804. return err;
  1805. }
  1806. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1807. {
  1808. struct sock *sk;
  1809. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1810. sk_for_each_bound(sk, &tbl->mc_list)
  1811. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1812. }
  1813. struct nlmsghdr *
  1814. __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
  1815. {
  1816. struct nlmsghdr *nlh;
  1817. int size = nlmsg_msg_size(len);
  1818. nlh = skb_put(skb, NLMSG_ALIGN(size));
  1819. nlh->nlmsg_type = type;
  1820. nlh->nlmsg_len = size;
  1821. nlh->nlmsg_flags = flags;
  1822. nlh->nlmsg_pid = portid;
  1823. nlh->nlmsg_seq = seq;
  1824. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1825. memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1826. return nlh;
  1827. }
  1828. EXPORT_SYMBOL(__nlmsg_put);
  1829. /*
  1830. * It looks a bit ugly.
  1831. * It would be better to create kernel thread.
  1832. */
  1833. static int netlink_dump(struct sock *sk)
  1834. {
  1835. struct netlink_sock *nlk = nlk_sk(sk);
  1836. struct netlink_callback *cb;
  1837. struct sk_buff *skb = NULL;
  1838. struct nlmsghdr *nlh;
  1839. struct module *module;
  1840. int err = -ENOBUFS;
  1841. int alloc_min_size;
  1842. int alloc_size;
  1843. mutex_lock(nlk->cb_mutex);
  1844. if (!nlk->cb_running) {
  1845. err = -EINVAL;
  1846. goto errout_skb;
  1847. }
  1848. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  1849. goto errout_skb;
  1850. /* NLMSG_GOODSIZE is small to avoid high order allocations being
  1851. * required, but it makes sense to _attempt_ a 16K bytes allocation
  1852. * to reduce number of system calls on dump operations, if user
  1853. * ever provided a big enough buffer.
  1854. */
  1855. cb = &nlk->cb;
  1856. alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1857. if (alloc_min_size < nlk->max_recvmsg_len) {
  1858. alloc_size = nlk->max_recvmsg_len;
  1859. skb = alloc_skb(alloc_size,
  1860. (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) |
  1861. __GFP_NOWARN | __GFP_NORETRY);
  1862. }
  1863. if (!skb) {
  1864. alloc_size = alloc_min_size;
  1865. skb = alloc_skb(alloc_size, GFP_KERNEL);
  1866. }
  1867. if (!skb)
  1868. goto errout_skb;
  1869. /* Trim skb to allocated size. User is expected to provide buffer as
  1870. * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at
  1871. * netlink_recvmsg())). dump will pack as many smaller messages as
  1872. * could fit within the allocated skb. skb is typically allocated
  1873. * with larger space than required (could be as much as near 2x the
  1874. * requested size with align to next power of 2 approach). Allowing
  1875. * dump to use the excess space makes it difficult for a user to have a
  1876. * reasonable static buffer based on the expected largest dump of a
  1877. * single netdev. The outcome is MSG_TRUNC error.
  1878. */
  1879. skb_reserve(skb, skb_tailroom(skb) - alloc_size);
  1880. netlink_skb_set_owner_r(skb, sk);
  1881. if (nlk->dump_done_errno > 0)
  1882. nlk->dump_done_errno = cb->dump(skb, cb);
  1883. if (nlk->dump_done_errno > 0 ||
  1884. skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) {
  1885. mutex_unlock(nlk->cb_mutex);
  1886. if (sk_filter(sk, skb))
  1887. kfree_skb(skb);
  1888. else
  1889. __netlink_sendskb(sk, skb);
  1890. return 0;
  1891. }
  1892. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE,
  1893. sizeof(nlk->dump_done_errno), NLM_F_MULTI);
  1894. if (WARN_ON(!nlh))
  1895. goto errout_skb;
  1896. nl_dump_check_consistent(cb, nlh);
  1897. memcpy(nlmsg_data(nlh), &nlk->dump_done_errno,
  1898. sizeof(nlk->dump_done_errno));
  1899. if (sk_filter(sk, skb))
  1900. kfree_skb(skb);
  1901. else
  1902. __netlink_sendskb(sk, skb);
  1903. if (cb->done)
  1904. cb->done(cb);
  1905. nlk->cb_running = false;
  1906. module = cb->module;
  1907. skb = cb->skb;
  1908. mutex_unlock(nlk->cb_mutex);
  1909. module_put(module);
  1910. consume_skb(skb);
  1911. return 0;
  1912. errout_skb:
  1913. mutex_unlock(nlk->cb_mutex);
  1914. kfree_skb(skb);
  1915. return err;
  1916. }
  1917. int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1918. const struct nlmsghdr *nlh,
  1919. struct netlink_dump_control *control)
  1920. {
  1921. struct netlink_callback *cb;
  1922. struct sock *sk;
  1923. struct netlink_sock *nlk;
  1924. int ret;
  1925. refcount_inc(&skb->users);
  1926. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
  1927. if (sk == NULL) {
  1928. ret = -ECONNREFUSED;
  1929. goto error_free;
  1930. }
  1931. nlk = nlk_sk(sk);
  1932. mutex_lock(nlk->cb_mutex);
  1933. /* A dump is in progress... */
  1934. if (nlk->cb_running) {
  1935. ret = -EBUSY;
  1936. goto error_unlock;
  1937. }
  1938. /* add reference of module which cb->dump belongs to */
  1939. if (!try_module_get(control->module)) {
  1940. ret = -EPROTONOSUPPORT;
  1941. goto error_unlock;
  1942. }
  1943. cb = &nlk->cb;
  1944. memset(cb, 0, sizeof(*cb));
  1945. cb->dump = control->dump;
  1946. cb->done = control->done;
  1947. cb->nlh = nlh;
  1948. cb->data = control->data;
  1949. cb->module = control->module;
  1950. cb->min_dump_alloc = control->min_dump_alloc;
  1951. cb->skb = skb;
  1952. if (control->start) {
  1953. ret = control->start(cb);
  1954. if (ret)
  1955. goto error_put;
  1956. }
  1957. nlk->cb_running = true;
  1958. nlk->dump_done_errno = INT_MAX;
  1959. mutex_unlock(nlk->cb_mutex);
  1960. ret = netlink_dump(sk);
  1961. sock_put(sk);
  1962. if (ret)
  1963. return ret;
  1964. /* We successfully started a dump, by returning -EINTR we
  1965. * signal not to send ACK even if it was requested.
  1966. */
  1967. return -EINTR;
  1968. error_put:
  1969. module_put(control->module);
  1970. error_unlock:
  1971. sock_put(sk);
  1972. mutex_unlock(nlk->cb_mutex);
  1973. error_free:
  1974. kfree_skb(skb);
  1975. return ret;
  1976. }
  1977. EXPORT_SYMBOL(__netlink_dump_start);
  1978. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err,
  1979. const struct netlink_ext_ack *extack)
  1980. {
  1981. struct sk_buff *skb;
  1982. struct nlmsghdr *rep;
  1983. struct nlmsgerr *errmsg;
  1984. size_t payload = sizeof(*errmsg);
  1985. size_t tlvlen = 0;
  1986. struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
  1987. unsigned int flags = 0;
  1988. bool nlk_has_extack = nlk->flags & NETLINK_F_EXT_ACK;
  1989. /* Error messages get the original request appened, unless the user
  1990. * requests to cap the error message, and get extra error data if
  1991. * requested.
  1992. */
  1993. if (nlk_has_extack && extack && extack->_msg)
  1994. tlvlen += nla_total_size(strlen(extack->_msg) + 1);
  1995. if (err) {
  1996. if (!(nlk->flags & NETLINK_F_CAP_ACK))
  1997. payload += nlmsg_len(nlh);
  1998. else
  1999. flags |= NLM_F_CAPPED;
  2000. if (nlk_has_extack && extack && extack->bad_attr)
  2001. tlvlen += nla_total_size(sizeof(u32));
  2002. } else {
  2003. flags |= NLM_F_CAPPED;
  2004. if (nlk_has_extack && extack && extack->cookie_len)
  2005. tlvlen += nla_total_size(extack->cookie_len);
  2006. }
  2007. if (tlvlen)
  2008. flags |= NLM_F_ACK_TLVS;
  2009. skb = nlmsg_new(payload + tlvlen, GFP_KERNEL);
  2010. if (!skb) {
  2011. NETLINK_CB(in_skb).sk->sk_err = ENOBUFS;
  2012. NETLINK_CB(in_skb).sk->sk_error_report(NETLINK_CB(in_skb).sk);
  2013. return;
  2014. }
  2015. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
  2016. NLMSG_ERROR, payload, flags);
  2017. errmsg = nlmsg_data(rep);
  2018. errmsg->error = err;
  2019. memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
  2020. if (nlk_has_extack && extack) {
  2021. if (extack->_msg) {
  2022. WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG,
  2023. extack->_msg));
  2024. }
  2025. if (err) {
  2026. if (extack->bad_attr &&
  2027. !WARN_ON((u8 *)extack->bad_attr < in_skb->data ||
  2028. (u8 *)extack->bad_attr >= in_skb->data +
  2029. in_skb->len))
  2030. WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS,
  2031. (u8 *)extack->bad_attr -
  2032. in_skb->data));
  2033. } else {
  2034. if (extack->cookie_len)
  2035. WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE,
  2036. extack->cookie_len,
  2037. extack->cookie));
  2038. }
  2039. }
  2040. nlmsg_end(skb, rep);
  2041. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
  2042. }
  2043. EXPORT_SYMBOL(netlink_ack);
  2044. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  2045. struct nlmsghdr *,
  2046. struct netlink_ext_ack *))
  2047. {
  2048. struct netlink_ext_ack extack;
  2049. struct nlmsghdr *nlh;
  2050. int err;
  2051. while (skb->len >= nlmsg_total_size(0)) {
  2052. int msglen;
  2053. memset(&extack, 0, sizeof(extack));
  2054. nlh = nlmsg_hdr(skb);
  2055. err = 0;
  2056. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  2057. return 0;
  2058. /* Only requests are handled by the kernel */
  2059. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  2060. goto ack;
  2061. /* Skip control messages */
  2062. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  2063. goto ack;
  2064. err = cb(skb, nlh, &extack);
  2065. if (err == -EINTR)
  2066. goto skip;
  2067. ack:
  2068. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  2069. netlink_ack(skb, nlh, err, &extack);
  2070. skip:
  2071. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  2072. if (msglen > skb->len)
  2073. msglen = skb->len;
  2074. skb_pull(skb, msglen);
  2075. }
  2076. return 0;
  2077. }
  2078. EXPORT_SYMBOL(netlink_rcv_skb);
  2079. /**
  2080. * nlmsg_notify - send a notification netlink message
  2081. * @sk: netlink socket to use
  2082. * @skb: notification message
  2083. * @portid: destination netlink portid for reports or 0
  2084. * @group: destination multicast group or 0
  2085. * @report: 1 to report back, 0 to disable
  2086. * @flags: allocation flags
  2087. */
  2088. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
  2089. unsigned int group, int report, gfp_t flags)
  2090. {
  2091. int err = 0;
  2092. if (group) {
  2093. int exclude_portid = 0;
  2094. if (report) {
  2095. refcount_inc(&skb->users);
  2096. exclude_portid = portid;
  2097. }
  2098. /* errors reported via destination sk->sk_err, but propagate
  2099. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  2100. err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
  2101. }
  2102. if (report) {
  2103. int err2;
  2104. err2 = nlmsg_unicast(sk, skb, portid);
  2105. if (!err || err == -ESRCH)
  2106. err = err2;
  2107. }
  2108. return err;
  2109. }
  2110. EXPORT_SYMBOL(nlmsg_notify);
  2111. #ifdef CONFIG_PROC_FS
  2112. struct nl_seq_iter {
  2113. struct seq_net_private p;
  2114. struct rhashtable_iter hti;
  2115. int link;
  2116. };
  2117. static int netlink_walk_start(struct nl_seq_iter *iter)
  2118. {
  2119. int err;
  2120. err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti,
  2121. GFP_KERNEL);
  2122. if (err) {
  2123. iter->link = MAX_LINKS;
  2124. return err;
  2125. }
  2126. rhashtable_walk_start(&iter->hti);
  2127. return 0;
  2128. }
  2129. static void netlink_walk_stop(struct nl_seq_iter *iter)
  2130. {
  2131. rhashtable_walk_stop(&iter->hti);
  2132. rhashtable_walk_exit(&iter->hti);
  2133. }
  2134. static void *__netlink_seq_next(struct seq_file *seq)
  2135. {
  2136. struct nl_seq_iter *iter = seq->private;
  2137. struct netlink_sock *nlk;
  2138. do {
  2139. for (;;) {
  2140. int err;
  2141. nlk = rhashtable_walk_next(&iter->hti);
  2142. if (IS_ERR(nlk)) {
  2143. if (PTR_ERR(nlk) == -EAGAIN)
  2144. continue;
  2145. return nlk;
  2146. }
  2147. if (nlk)
  2148. break;
  2149. netlink_walk_stop(iter);
  2150. if (++iter->link >= MAX_LINKS)
  2151. return NULL;
  2152. err = netlink_walk_start(iter);
  2153. if (err)
  2154. return ERR_PTR(err);
  2155. }
  2156. } while (sock_net(&nlk->sk) != seq_file_net(seq));
  2157. return nlk;
  2158. }
  2159. static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
  2160. {
  2161. struct nl_seq_iter *iter = seq->private;
  2162. void *obj = SEQ_START_TOKEN;
  2163. loff_t pos;
  2164. int err;
  2165. iter->link = 0;
  2166. err = netlink_walk_start(iter);
  2167. if (err)
  2168. return ERR_PTR(err);
  2169. for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
  2170. obj = __netlink_seq_next(seq);
  2171. return obj;
  2172. }
  2173. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2174. {
  2175. ++*pos;
  2176. return __netlink_seq_next(seq);
  2177. }
  2178. static void netlink_seq_stop(struct seq_file *seq, void *v)
  2179. {
  2180. struct nl_seq_iter *iter = seq->private;
  2181. if (iter->link >= MAX_LINKS)
  2182. return;
  2183. netlink_walk_stop(iter);
  2184. }
  2185. static int netlink_seq_show(struct seq_file *seq, void *v)
  2186. {
  2187. if (v == SEQ_START_TOKEN) {
  2188. seq_puts(seq,
  2189. "sk Eth Pid Groups "
  2190. "Rmem Wmem Dump Locks Drops Inode\n");
  2191. } else {
  2192. struct sock *s = v;
  2193. struct netlink_sock *nlk = nlk_sk(s);
  2194. seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8d %-8lu\n",
  2195. s,
  2196. s->sk_protocol,
  2197. nlk->portid,
  2198. nlk->groups ? (u32)nlk->groups[0] : 0,
  2199. sk_rmem_alloc_get(s),
  2200. sk_wmem_alloc_get(s),
  2201. nlk->cb_running,
  2202. refcount_read(&s->sk_refcnt),
  2203. atomic_read(&s->sk_drops),
  2204. sock_i_ino(s)
  2205. );
  2206. }
  2207. return 0;
  2208. }
  2209. static const struct seq_operations netlink_seq_ops = {
  2210. .start = netlink_seq_start,
  2211. .next = netlink_seq_next,
  2212. .stop = netlink_seq_stop,
  2213. .show = netlink_seq_show,
  2214. };
  2215. #endif
  2216. int netlink_register_notifier(struct notifier_block *nb)
  2217. {
  2218. return blocking_notifier_chain_register(&netlink_chain, nb);
  2219. }
  2220. EXPORT_SYMBOL(netlink_register_notifier);
  2221. int netlink_unregister_notifier(struct notifier_block *nb)
  2222. {
  2223. return blocking_notifier_chain_unregister(&netlink_chain, nb);
  2224. }
  2225. EXPORT_SYMBOL(netlink_unregister_notifier);
  2226. static const struct proto_ops netlink_ops = {
  2227. .family = PF_NETLINK,
  2228. .owner = THIS_MODULE,
  2229. .release = netlink_release,
  2230. .bind = netlink_bind,
  2231. .connect = netlink_connect,
  2232. .socketpair = sock_no_socketpair,
  2233. .accept = sock_no_accept,
  2234. .getname = netlink_getname,
  2235. .poll = datagram_poll,
  2236. .ioctl = netlink_ioctl,
  2237. .listen = sock_no_listen,
  2238. .shutdown = sock_no_shutdown,
  2239. .setsockopt = netlink_setsockopt,
  2240. .getsockopt = netlink_getsockopt,
  2241. .sendmsg = netlink_sendmsg,
  2242. .recvmsg = netlink_recvmsg,
  2243. .mmap = sock_no_mmap,
  2244. .sendpage = sock_no_sendpage,
  2245. };
  2246. static const struct net_proto_family netlink_family_ops = {
  2247. .family = PF_NETLINK,
  2248. .create = netlink_create,
  2249. .owner = THIS_MODULE, /* for consistency 8) */
  2250. };
  2251. static int __net_init netlink_net_init(struct net *net)
  2252. {
  2253. #ifdef CONFIG_PROC_FS
  2254. if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops,
  2255. sizeof(struct nl_seq_iter)))
  2256. return -ENOMEM;
  2257. #endif
  2258. return 0;
  2259. }
  2260. static void __net_exit netlink_net_exit(struct net *net)
  2261. {
  2262. #ifdef CONFIG_PROC_FS
  2263. remove_proc_entry("netlink", net->proc_net);
  2264. #endif
  2265. }
  2266. static void __init netlink_add_usersock_entry(void)
  2267. {
  2268. struct listeners *listeners;
  2269. int groups = 32;
  2270. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  2271. if (!listeners)
  2272. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  2273. netlink_table_grab();
  2274. nl_table[NETLINK_USERSOCK].groups = groups;
  2275. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  2276. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  2277. nl_table[NETLINK_USERSOCK].registered = 1;
  2278. nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
  2279. netlink_table_ungrab();
  2280. }
  2281. static struct pernet_operations __net_initdata netlink_net_ops = {
  2282. .init = netlink_net_init,
  2283. .exit = netlink_net_exit,
  2284. };
  2285. static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
  2286. {
  2287. const struct netlink_sock *nlk = data;
  2288. struct netlink_compare_arg arg;
  2289. netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
  2290. return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
  2291. }
  2292. static const struct rhashtable_params netlink_rhashtable_params = {
  2293. .head_offset = offsetof(struct netlink_sock, node),
  2294. .key_len = netlink_compare_arg_len,
  2295. .obj_hashfn = netlink_hash,
  2296. .obj_cmpfn = netlink_compare,
  2297. .automatic_shrinking = true,
  2298. };
  2299. static int __init netlink_proto_init(void)
  2300. {
  2301. int i;
  2302. int err = proto_register(&netlink_proto, 0);
  2303. if (err != 0)
  2304. goto out;
  2305. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
  2306. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  2307. if (!nl_table)
  2308. goto panic;
  2309. for (i = 0; i < MAX_LINKS; i++) {
  2310. if (rhashtable_init(&nl_table[i].hash,
  2311. &netlink_rhashtable_params) < 0) {
  2312. while (--i > 0)
  2313. rhashtable_destroy(&nl_table[i].hash);
  2314. kfree(nl_table);
  2315. goto panic;
  2316. }
  2317. }
  2318. netlink_add_usersock_entry();
  2319. sock_register(&netlink_family_ops);
  2320. register_pernet_subsys(&netlink_net_ops);
  2321. register_pernet_subsys(&netlink_tap_net_ops);
  2322. /* The netlink device handler may be needed early. */
  2323. rtnetlink_init();
  2324. out:
  2325. return err;
  2326. panic:
  2327. panic("netlink_init: Cannot allocate nl_table\n");
  2328. }
  2329. core_initcall(netlink_proto_init);