af_iucv.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched/signal.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <linux/security.h>
  24. #include <net/sock.h>
  25. #include <asm/ebcdic.h>
  26. #include <asm/cpcmd.h>
  27. #include <linux/kmod.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.2"
  30. static char iucv_userid[80];
  31. static const struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. static struct iucv_interface *pr_iucv;
  38. /* special AF_IUCV IPRM messages */
  39. static const u8 iprm_shutdown[8] =
  40. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  41. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  42. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  43. do { \
  44. DEFINE_WAIT(__wait); \
  45. long __timeo = timeo; \
  46. ret = 0; \
  47. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  48. while (!(condition)) { \
  49. if (!__timeo) { \
  50. ret = -EAGAIN; \
  51. break; \
  52. } \
  53. if (signal_pending(current)) { \
  54. ret = sock_intr_errno(__timeo); \
  55. break; \
  56. } \
  57. release_sock(sk); \
  58. __timeo = schedule_timeout(__timeo); \
  59. lock_sock(sk); \
  60. ret = sock_error(sk); \
  61. if (ret) \
  62. break; \
  63. } \
  64. finish_wait(sk_sleep(sk), &__wait); \
  65. } while (0)
  66. #define iucv_sock_wait(sk, condition, timeo) \
  67. ({ \
  68. int __ret = 0; \
  69. if (!(condition)) \
  70. __iucv_sock_wait(sk, condition, timeo, __ret); \
  71. __ret; \
  72. })
  73. static void iucv_sock_kill(struct sock *sk);
  74. static void iucv_sock_close(struct sock *sk);
  75. static void iucv_sever_path(struct sock *, int);
  76. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  77. struct packet_type *pt, struct net_device *orig_dev);
  78. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  79. struct sk_buff *skb, u8 flags);
  80. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  81. /* Call Back functions */
  82. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  83. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  84. static void iucv_callback_connack(struct iucv_path *, u8 *);
  85. static int iucv_callback_connreq(struct iucv_path *, u8 *, u8 *);
  86. static void iucv_callback_connrej(struct iucv_path *, u8 *);
  87. static void iucv_callback_shutdown(struct iucv_path *, u8 *);
  88. static struct iucv_sock_list iucv_sk_list = {
  89. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  90. .autobind_name = ATOMIC_INIT(0)
  91. };
  92. static struct iucv_handler af_iucv_handler = {
  93. .path_pending = iucv_callback_connreq,
  94. .path_complete = iucv_callback_connack,
  95. .path_severed = iucv_callback_connrej,
  96. .message_pending = iucv_callback_rx,
  97. .message_complete = iucv_callback_txdone,
  98. .path_quiesced = iucv_callback_shutdown,
  99. };
  100. static inline void high_nmcpy(unsigned char *dst, char *src)
  101. {
  102. memcpy(dst, src, 8);
  103. }
  104. static inline void low_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(&dst[8], src, 8);
  107. }
  108. static int afiucv_pm_prepare(struct device *dev)
  109. {
  110. #ifdef CONFIG_PM_DEBUG
  111. printk(KERN_WARNING "afiucv_pm_prepare\n");
  112. #endif
  113. return 0;
  114. }
  115. static void afiucv_pm_complete(struct device *dev)
  116. {
  117. #ifdef CONFIG_PM_DEBUG
  118. printk(KERN_WARNING "afiucv_pm_complete\n");
  119. #endif
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. #ifdef CONFIG_PM_DEBUG
  132. printk(KERN_WARNING "afiucv_pm_freeze\n");
  133. #endif
  134. read_lock(&iucv_sk_list.lock);
  135. sk_for_each(sk, &iucv_sk_list.head) {
  136. iucv = iucv_sk(sk);
  137. switch (sk->sk_state) {
  138. case IUCV_DISCONN:
  139. case IUCV_CLOSING:
  140. case IUCV_CONNECTED:
  141. iucv_sever_path(sk, 0);
  142. break;
  143. case IUCV_OPEN:
  144. case IUCV_BOUND:
  145. case IUCV_LISTEN:
  146. case IUCV_CLOSED:
  147. default:
  148. break;
  149. }
  150. skb_queue_purge(&iucv->send_skb_q);
  151. skb_queue_purge(&iucv->backlog_skb_q);
  152. }
  153. read_unlock(&iucv_sk_list.lock);
  154. return 0;
  155. }
  156. /**
  157. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  158. * @dev: AFIUCV dummy device
  159. *
  160. * socket clean up after freeze
  161. */
  162. static int afiucv_pm_restore_thaw(struct device *dev)
  163. {
  164. struct sock *sk;
  165. #ifdef CONFIG_PM_DEBUG
  166. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  167. #endif
  168. read_lock(&iucv_sk_list.lock);
  169. sk_for_each(sk, &iucv_sk_list.head) {
  170. switch (sk->sk_state) {
  171. case IUCV_CONNECTED:
  172. sk->sk_err = EPIPE;
  173. sk->sk_state = IUCV_DISCONN;
  174. sk->sk_state_change(sk);
  175. break;
  176. case IUCV_DISCONN:
  177. case IUCV_CLOSING:
  178. case IUCV_LISTEN:
  179. case IUCV_BOUND:
  180. case IUCV_OPEN:
  181. default:
  182. break;
  183. }
  184. }
  185. read_unlock(&iucv_sk_list.lock);
  186. return 0;
  187. }
  188. static const struct dev_pm_ops afiucv_pm_ops = {
  189. .prepare = afiucv_pm_prepare,
  190. .complete = afiucv_pm_complete,
  191. .freeze = afiucv_pm_freeze,
  192. .thaw = afiucv_pm_restore_thaw,
  193. .restore = afiucv_pm_restore_thaw,
  194. };
  195. static struct device_driver af_iucv_driver = {
  196. .owner = THIS_MODULE,
  197. .name = "afiucv",
  198. .bus = NULL,
  199. .pm = &afiucv_pm_ops,
  200. };
  201. /* dummy device used as trigger for PM functions */
  202. static struct device *af_iucv_dev;
  203. /**
  204. * iucv_msg_length() - Returns the length of an iucv message.
  205. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  206. *
  207. * The function returns the length of the specified iucv message @msg of data
  208. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  209. *
  210. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  211. * data:
  212. * PRMDATA[0..6] socket data (max 7 bytes);
  213. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  214. *
  215. * The socket data length is computed by subtracting the socket data length
  216. * value from 0xFF.
  217. * If the socket data len is greater 7, then PRMDATA can be used for special
  218. * notifications (see iucv_sock_shutdown); and further,
  219. * if the socket data len is > 7, the function returns 8.
  220. *
  221. * Use this function to allocate socket buffers to store iucv message data.
  222. */
  223. static inline size_t iucv_msg_length(struct iucv_message *msg)
  224. {
  225. size_t datalen;
  226. if (msg->flags & IUCV_IPRMDATA) {
  227. datalen = 0xff - msg->rmmsg[7];
  228. return (datalen < 8) ? datalen : 8;
  229. }
  230. return msg->length;
  231. }
  232. /**
  233. * iucv_sock_in_state() - check for specific states
  234. * @sk: sock structure
  235. * @state: first iucv sk state
  236. * @state: second iucv sk state
  237. *
  238. * Returns true if the socket in either in the first or second state.
  239. */
  240. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  241. {
  242. return (sk->sk_state == state || sk->sk_state == state2);
  243. }
  244. /**
  245. * iucv_below_msglim() - function to check if messages can be sent
  246. * @sk: sock structure
  247. *
  248. * Returns true if the send queue length is lower than the message limit.
  249. * Always returns true if the socket is not connected (no iucv path for
  250. * checking the message limit).
  251. */
  252. static inline int iucv_below_msglim(struct sock *sk)
  253. {
  254. struct iucv_sock *iucv = iucv_sk(sk);
  255. if (sk->sk_state != IUCV_CONNECTED)
  256. return 1;
  257. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  258. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  259. else
  260. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  261. (atomic_read(&iucv->pendings) <= 0));
  262. }
  263. /**
  264. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  265. */
  266. static void iucv_sock_wake_msglim(struct sock *sk)
  267. {
  268. struct socket_wq *wq;
  269. rcu_read_lock();
  270. wq = rcu_dereference(sk->sk_wq);
  271. if (skwq_has_sleeper(wq))
  272. wake_up_interruptible_all(&wq->wait);
  273. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  274. rcu_read_unlock();
  275. }
  276. /**
  277. * afiucv_hs_send() - send a message through HiperSockets transport
  278. */
  279. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  280. struct sk_buff *skb, u8 flags)
  281. {
  282. struct iucv_sock *iucv = iucv_sk(sock);
  283. struct af_iucv_trans_hdr *phs_hdr;
  284. struct sk_buff *nskb;
  285. int err, confirm_recv = 0;
  286. memset(skb->head, 0, ETH_HLEN);
  287. phs_hdr = skb_push(skb, sizeof(struct af_iucv_trans_hdr));
  288. skb_reset_mac_header(skb);
  289. skb_reset_network_header(skb);
  290. skb_push(skb, ETH_HLEN);
  291. skb_reset_mac_header(skb);
  292. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  293. phs_hdr->magic = ETH_P_AF_IUCV;
  294. phs_hdr->version = 1;
  295. phs_hdr->flags = flags;
  296. if (flags == AF_IUCV_FLAG_SYN)
  297. phs_hdr->window = iucv->msglimit;
  298. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  299. confirm_recv = atomic_read(&iucv->msg_recv);
  300. phs_hdr->window = confirm_recv;
  301. if (confirm_recv)
  302. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  303. }
  304. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  305. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  306. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  307. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  308. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  309. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  310. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  311. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  312. if (imsg)
  313. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  314. skb->dev = iucv->hs_dev;
  315. if (!skb->dev)
  316. return -ENODEV;
  317. if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev))
  318. return -ENETDOWN;
  319. if (skb->len > skb->dev->mtu) {
  320. if (sock->sk_type == SOCK_SEQPACKET)
  321. return -EMSGSIZE;
  322. else
  323. skb_trim(skb, skb->dev->mtu);
  324. }
  325. skb->protocol = cpu_to_be16(ETH_P_AF_IUCV);
  326. nskb = skb_clone(skb, GFP_ATOMIC);
  327. if (!nskb)
  328. return -ENOMEM;
  329. skb_queue_tail(&iucv->send_skb_q, nskb);
  330. err = dev_queue_xmit(skb);
  331. if (net_xmit_eval(err)) {
  332. skb_unlink(nskb, &iucv->send_skb_q);
  333. kfree_skb(nskb);
  334. } else {
  335. atomic_sub(confirm_recv, &iucv->msg_recv);
  336. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  337. }
  338. return net_xmit_eval(err);
  339. }
  340. static struct sock *__iucv_get_sock_by_name(char *nm)
  341. {
  342. struct sock *sk;
  343. sk_for_each(sk, &iucv_sk_list.head)
  344. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  345. return sk;
  346. return NULL;
  347. }
  348. static void iucv_sock_destruct(struct sock *sk)
  349. {
  350. skb_queue_purge(&sk->sk_receive_queue);
  351. skb_queue_purge(&sk->sk_error_queue);
  352. sk_mem_reclaim(sk);
  353. if (!sock_flag(sk, SOCK_DEAD)) {
  354. pr_err("Attempt to release alive iucv socket %p\n", sk);
  355. return;
  356. }
  357. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  358. WARN_ON(refcount_read(&sk->sk_wmem_alloc));
  359. WARN_ON(sk->sk_wmem_queued);
  360. WARN_ON(sk->sk_forward_alloc);
  361. }
  362. /* Cleanup Listen */
  363. static void iucv_sock_cleanup_listen(struct sock *parent)
  364. {
  365. struct sock *sk;
  366. /* Close non-accepted connections */
  367. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  368. iucv_sock_close(sk);
  369. iucv_sock_kill(sk);
  370. }
  371. parent->sk_state = IUCV_CLOSED;
  372. }
  373. /* Kill socket (only if zapped and orphaned) */
  374. static void iucv_sock_kill(struct sock *sk)
  375. {
  376. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  377. return;
  378. iucv_sock_unlink(&iucv_sk_list, sk);
  379. sock_set_flag(sk, SOCK_DEAD);
  380. sock_put(sk);
  381. }
  382. /* Terminate an IUCV path */
  383. static void iucv_sever_path(struct sock *sk, int with_user_data)
  384. {
  385. unsigned char user_data[16];
  386. struct iucv_sock *iucv = iucv_sk(sk);
  387. struct iucv_path *path = iucv->path;
  388. if (iucv->path) {
  389. iucv->path = NULL;
  390. if (with_user_data) {
  391. low_nmcpy(user_data, iucv->src_name);
  392. high_nmcpy(user_data, iucv->dst_name);
  393. ASCEBC(user_data, sizeof(user_data));
  394. pr_iucv->path_sever(path, user_data);
  395. } else
  396. pr_iucv->path_sever(path, NULL);
  397. iucv_path_free(path);
  398. }
  399. }
  400. /* Send controlling flags through an IUCV socket for HIPER transport */
  401. static int iucv_send_ctrl(struct sock *sk, u8 flags)
  402. {
  403. int err = 0;
  404. int blen;
  405. struct sk_buff *skb;
  406. u8 shutdown = 0;
  407. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  408. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  409. /* controlling flags should be sent anyway */
  410. shutdown = sk->sk_shutdown;
  411. sk->sk_shutdown &= RCV_SHUTDOWN;
  412. }
  413. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  414. if (skb) {
  415. skb_reserve(skb, blen);
  416. err = afiucv_hs_send(NULL, sk, skb, flags);
  417. }
  418. if (shutdown)
  419. sk->sk_shutdown = shutdown;
  420. return err;
  421. }
  422. /* Close an IUCV socket */
  423. static void iucv_sock_close(struct sock *sk)
  424. {
  425. struct iucv_sock *iucv = iucv_sk(sk);
  426. unsigned long timeo;
  427. int err = 0;
  428. lock_sock(sk);
  429. switch (sk->sk_state) {
  430. case IUCV_LISTEN:
  431. iucv_sock_cleanup_listen(sk);
  432. break;
  433. case IUCV_CONNECTED:
  434. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  435. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  436. sk->sk_state = IUCV_DISCONN;
  437. sk->sk_state_change(sk);
  438. }
  439. case IUCV_DISCONN: /* fall through */
  440. sk->sk_state = IUCV_CLOSING;
  441. sk->sk_state_change(sk);
  442. if (!err && !skb_queue_empty(&iucv->send_skb_q)) {
  443. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  444. timeo = sk->sk_lingertime;
  445. else
  446. timeo = IUCV_DISCONN_TIMEOUT;
  447. iucv_sock_wait(sk,
  448. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  449. timeo);
  450. }
  451. case IUCV_CLOSING: /* fall through */
  452. sk->sk_state = IUCV_CLOSED;
  453. sk->sk_state_change(sk);
  454. sk->sk_err = ECONNRESET;
  455. sk->sk_state_change(sk);
  456. skb_queue_purge(&iucv->send_skb_q);
  457. skb_queue_purge(&iucv->backlog_skb_q);
  458. default: /* fall through */
  459. iucv_sever_path(sk, 1);
  460. }
  461. if (iucv->hs_dev) {
  462. dev_put(iucv->hs_dev);
  463. iucv->hs_dev = NULL;
  464. sk->sk_bound_dev_if = 0;
  465. }
  466. /* mark socket for deletion by iucv_sock_kill() */
  467. sock_set_flag(sk, SOCK_ZAPPED);
  468. release_sock(sk);
  469. }
  470. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  471. {
  472. if (parent) {
  473. sk->sk_type = parent->sk_type;
  474. security_sk_clone(parent, sk);
  475. }
  476. }
  477. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio, int kern)
  478. {
  479. struct sock *sk;
  480. struct iucv_sock *iucv;
  481. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto, kern);
  482. if (!sk)
  483. return NULL;
  484. iucv = iucv_sk(sk);
  485. sock_init_data(sock, sk);
  486. INIT_LIST_HEAD(&iucv->accept_q);
  487. spin_lock_init(&iucv->accept_q_lock);
  488. skb_queue_head_init(&iucv->send_skb_q);
  489. INIT_LIST_HEAD(&iucv->message_q.list);
  490. spin_lock_init(&iucv->message_q.lock);
  491. skb_queue_head_init(&iucv->backlog_skb_q);
  492. iucv->send_tag = 0;
  493. atomic_set(&iucv->pendings, 0);
  494. iucv->flags = 0;
  495. iucv->msglimit = 0;
  496. atomic_set(&iucv->msg_sent, 0);
  497. atomic_set(&iucv->msg_recv, 0);
  498. iucv->path = NULL;
  499. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  500. memset(&iucv->src_user_id , 0, 32);
  501. if (pr_iucv)
  502. iucv->transport = AF_IUCV_TRANS_IUCV;
  503. else
  504. iucv->transport = AF_IUCV_TRANS_HIPER;
  505. sk->sk_destruct = iucv_sock_destruct;
  506. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  507. sk->sk_allocation = GFP_DMA;
  508. sock_reset_flag(sk, SOCK_ZAPPED);
  509. sk->sk_protocol = proto;
  510. sk->sk_state = IUCV_OPEN;
  511. iucv_sock_link(&iucv_sk_list, sk);
  512. return sk;
  513. }
  514. /* Create an IUCV socket */
  515. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  516. int kern)
  517. {
  518. struct sock *sk;
  519. if (protocol && protocol != PF_IUCV)
  520. return -EPROTONOSUPPORT;
  521. sock->state = SS_UNCONNECTED;
  522. switch (sock->type) {
  523. case SOCK_STREAM:
  524. sock->ops = &iucv_sock_ops;
  525. break;
  526. case SOCK_SEQPACKET:
  527. /* currently, proto ops can handle both sk types */
  528. sock->ops = &iucv_sock_ops;
  529. break;
  530. default:
  531. return -ESOCKTNOSUPPORT;
  532. }
  533. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL, kern);
  534. if (!sk)
  535. return -ENOMEM;
  536. iucv_sock_init(sk, NULL);
  537. return 0;
  538. }
  539. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  540. {
  541. write_lock_bh(&l->lock);
  542. sk_add_node(sk, &l->head);
  543. write_unlock_bh(&l->lock);
  544. }
  545. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  546. {
  547. write_lock_bh(&l->lock);
  548. sk_del_node_init(sk);
  549. write_unlock_bh(&l->lock);
  550. }
  551. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  552. {
  553. unsigned long flags;
  554. struct iucv_sock *par = iucv_sk(parent);
  555. sock_hold(sk);
  556. spin_lock_irqsave(&par->accept_q_lock, flags);
  557. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  558. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  559. iucv_sk(sk)->parent = parent;
  560. sk_acceptq_added(parent);
  561. }
  562. void iucv_accept_unlink(struct sock *sk)
  563. {
  564. unsigned long flags;
  565. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  566. spin_lock_irqsave(&par->accept_q_lock, flags);
  567. list_del_init(&iucv_sk(sk)->accept_q);
  568. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  569. sk_acceptq_removed(iucv_sk(sk)->parent);
  570. iucv_sk(sk)->parent = NULL;
  571. sock_put(sk);
  572. }
  573. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  574. {
  575. struct iucv_sock *isk, *n;
  576. struct sock *sk;
  577. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  578. sk = (struct sock *) isk;
  579. lock_sock(sk);
  580. if (sk->sk_state == IUCV_CLOSED) {
  581. iucv_accept_unlink(sk);
  582. release_sock(sk);
  583. continue;
  584. }
  585. if (sk->sk_state == IUCV_CONNECTED ||
  586. sk->sk_state == IUCV_DISCONN ||
  587. !newsock) {
  588. iucv_accept_unlink(sk);
  589. if (newsock)
  590. sock_graft(sk, newsock);
  591. release_sock(sk);
  592. return sk;
  593. }
  594. release_sock(sk);
  595. }
  596. return NULL;
  597. }
  598. static void __iucv_auto_name(struct iucv_sock *iucv)
  599. {
  600. char name[12];
  601. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  602. while (__iucv_get_sock_by_name(name)) {
  603. sprintf(name, "%08x",
  604. atomic_inc_return(&iucv_sk_list.autobind_name));
  605. }
  606. memcpy(iucv->src_name, name, 8);
  607. }
  608. /* Bind an unbound socket */
  609. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  610. int addr_len)
  611. {
  612. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  613. struct sock *sk = sock->sk;
  614. struct iucv_sock *iucv;
  615. int err = 0;
  616. struct net_device *dev;
  617. char uid[9];
  618. /* Verify the input sockaddr */
  619. if (addr_len < sizeof(struct sockaddr_iucv) ||
  620. addr->sa_family != AF_IUCV)
  621. return -EINVAL;
  622. lock_sock(sk);
  623. if (sk->sk_state != IUCV_OPEN) {
  624. err = -EBADFD;
  625. goto done;
  626. }
  627. write_lock_bh(&iucv_sk_list.lock);
  628. iucv = iucv_sk(sk);
  629. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  630. err = -EADDRINUSE;
  631. goto done_unlock;
  632. }
  633. if (iucv->path)
  634. goto done_unlock;
  635. /* Bind the socket */
  636. if (pr_iucv)
  637. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  638. goto vm_bind; /* VM IUCV transport */
  639. /* try hiper transport */
  640. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  641. ASCEBC(uid, 8);
  642. rcu_read_lock();
  643. for_each_netdev_rcu(&init_net, dev) {
  644. if (!memcmp(dev->perm_addr, uid, 8)) {
  645. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  646. /* Check for unitialized siucv_name */
  647. if (strncmp(sa->siucv_name, " ", 8) == 0)
  648. __iucv_auto_name(iucv);
  649. else
  650. memcpy(iucv->src_name, sa->siucv_name, 8);
  651. sk->sk_bound_dev_if = dev->ifindex;
  652. iucv->hs_dev = dev;
  653. dev_hold(dev);
  654. sk->sk_state = IUCV_BOUND;
  655. iucv->transport = AF_IUCV_TRANS_HIPER;
  656. if (!iucv->msglimit)
  657. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  658. rcu_read_unlock();
  659. goto done_unlock;
  660. }
  661. }
  662. rcu_read_unlock();
  663. vm_bind:
  664. if (pr_iucv) {
  665. /* use local userid for backward compat */
  666. memcpy(iucv->src_name, sa->siucv_name, 8);
  667. memcpy(iucv->src_user_id, iucv_userid, 8);
  668. sk->sk_state = IUCV_BOUND;
  669. iucv->transport = AF_IUCV_TRANS_IUCV;
  670. if (!iucv->msglimit)
  671. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  672. goto done_unlock;
  673. }
  674. /* found no dev to bind */
  675. err = -ENODEV;
  676. done_unlock:
  677. /* Release the socket list lock */
  678. write_unlock_bh(&iucv_sk_list.lock);
  679. done:
  680. release_sock(sk);
  681. return err;
  682. }
  683. /* Automatically bind an unbound socket */
  684. static int iucv_sock_autobind(struct sock *sk)
  685. {
  686. struct iucv_sock *iucv = iucv_sk(sk);
  687. int err = 0;
  688. if (unlikely(!pr_iucv))
  689. return -EPROTO;
  690. memcpy(iucv->src_user_id, iucv_userid, 8);
  691. write_lock_bh(&iucv_sk_list.lock);
  692. __iucv_auto_name(iucv);
  693. write_unlock_bh(&iucv_sk_list.lock);
  694. if (!iucv->msglimit)
  695. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  696. return err;
  697. }
  698. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  699. {
  700. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  701. struct sock *sk = sock->sk;
  702. struct iucv_sock *iucv = iucv_sk(sk);
  703. unsigned char user_data[16];
  704. int err;
  705. high_nmcpy(user_data, sa->siucv_name);
  706. low_nmcpy(user_data, iucv->src_name);
  707. ASCEBC(user_data, sizeof(user_data));
  708. /* Create path. */
  709. iucv->path = iucv_path_alloc(iucv->msglimit,
  710. IUCV_IPRMDATA, GFP_KERNEL);
  711. if (!iucv->path) {
  712. err = -ENOMEM;
  713. goto done;
  714. }
  715. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  716. sa->siucv_user_id, NULL, user_data,
  717. sk);
  718. if (err) {
  719. iucv_path_free(iucv->path);
  720. iucv->path = NULL;
  721. switch (err) {
  722. case 0x0b: /* Target communicator is not logged on */
  723. err = -ENETUNREACH;
  724. break;
  725. case 0x0d: /* Max connections for this guest exceeded */
  726. case 0x0e: /* Max connections for target guest exceeded */
  727. err = -EAGAIN;
  728. break;
  729. case 0x0f: /* Missing IUCV authorization */
  730. err = -EACCES;
  731. break;
  732. default:
  733. err = -ECONNREFUSED;
  734. break;
  735. }
  736. }
  737. done:
  738. return err;
  739. }
  740. /* Connect an unconnected socket */
  741. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  742. int alen, int flags)
  743. {
  744. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  745. struct sock *sk = sock->sk;
  746. struct iucv_sock *iucv = iucv_sk(sk);
  747. int err;
  748. if (alen < sizeof(struct sockaddr_iucv) || addr->sa_family != AF_IUCV)
  749. return -EINVAL;
  750. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  751. return -EBADFD;
  752. if (sk->sk_state == IUCV_OPEN &&
  753. iucv->transport == AF_IUCV_TRANS_HIPER)
  754. return -EBADFD; /* explicit bind required */
  755. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  756. return -EINVAL;
  757. if (sk->sk_state == IUCV_OPEN) {
  758. err = iucv_sock_autobind(sk);
  759. if (unlikely(err))
  760. return err;
  761. }
  762. lock_sock(sk);
  763. /* Set the destination information */
  764. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  765. memcpy(iucv->dst_name, sa->siucv_name, 8);
  766. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  767. err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN);
  768. else
  769. err = afiucv_path_connect(sock, addr);
  770. if (err)
  771. goto done;
  772. if (sk->sk_state != IUCV_CONNECTED)
  773. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  774. IUCV_DISCONN),
  775. sock_sndtimeo(sk, flags & O_NONBLOCK));
  776. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  777. err = -ECONNREFUSED;
  778. if (err && iucv->transport == AF_IUCV_TRANS_IUCV)
  779. iucv_sever_path(sk, 0);
  780. done:
  781. release_sock(sk);
  782. return err;
  783. }
  784. /* Move a socket into listening state. */
  785. static int iucv_sock_listen(struct socket *sock, int backlog)
  786. {
  787. struct sock *sk = sock->sk;
  788. int err;
  789. lock_sock(sk);
  790. err = -EINVAL;
  791. if (sk->sk_state != IUCV_BOUND)
  792. goto done;
  793. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  794. goto done;
  795. sk->sk_max_ack_backlog = backlog;
  796. sk->sk_ack_backlog = 0;
  797. sk->sk_state = IUCV_LISTEN;
  798. err = 0;
  799. done:
  800. release_sock(sk);
  801. return err;
  802. }
  803. /* Accept a pending connection */
  804. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  805. int flags, bool kern)
  806. {
  807. DECLARE_WAITQUEUE(wait, current);
  808. struct sock *sk = sock->sk, *nsk;
  809. long timeo;
  810. int err = 0;
  811. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  812. if (sk->sk_state != IUCV_LISTEN) {
  813. err = -EBADFD;
  814. goto done;
  815. }
  816. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  817. /* Wait for an incoming connection */
  818. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  819. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  820. set_current_state(TASK_INTERRUPTIBLE);
  821. if (!timeo) {
  822. err = -EAGAIN;
  823. break;
  824. }
  825. release_sock(sk);
  826. timeo = schedule_timeout(timeo);
  827. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  828. if (sk->sk_state != IUCV_LISTEN) {
  829. err = -EBADFD;
  830. break;
  831. }
  832. if (signal_pending(current)) {
  833. err = sock_intr_errno(timeo);
  834. break;
  835. }
  836. }
  837. set_current_state(TASK_RUNNING);
  838. remove_wait_queue(sk_sleep(sk), &wait);
  839. if (err)
  840. goto done;
  841. newsock->state = SS_CONNECTED;
  842. done:
  843. release_sock(sk);
  844. return err;
  845. }
  846. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  847. int peer)
  848. {
  849. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  850. struct sock *sk = sock->sk;
  851. struct iucv_sock *iucv = iucv_sk(sk);
  852. addr->sa_family = AF_IUCV;
  853. if (peer) {
  854. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  855. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  856. } else {
  857. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  858. memcpy(siucv->siucv_name, iucv->src_name, 8);
  859. }
  860. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  861. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  862. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  863. return sizeof(struct sockaddr_iucv);
  864. }
  865. /**
  866. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  867. * @path: IUCV path
  868. * @msg: Pointer to a struct iucv_message
  869. * @skb: The socket data to send, skb->len MUST BE <= 7
  870. *
  871. * Send the socket data in the parameter list in the iucv message
  872. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  873. * list and the socket data len at index 7 (last byte).
  874. * See also iucv_msg_length().
  875. *
  876. * Returns the error code from the iucv_message_send() call.
  877. */
  878. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  879. struct sk_buff *skb)
  880. {
  881. u8 prmdata[8];
  882. memcpy(prmdata, (void *) skb->data, skb->len);
  883. prmdata[7] = 0xff - (u8) skb->len;
  884. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  885. (void *) prmdata, 8);
  886. }
  887. static int iucv_sock_sendmsg(struct socket *sock, struct msghdr *msg,
  888. size_t len)
  889. {
  890. struct sock *sk = sock->sk;
  891. struct iucv_sock *iucv = iucv_sk(sk);
  892. size_t headroom = 0;
  893. size_t linear;
  894. struct sk_buff *skb;
  895. struct iucv_message txmsg = {0};
  896. struct cmsghdr *cmsg;
  897. int cmsg_done;
  898. long timeo;
  899. char user_id[9];
  900. char appl_id[9];
  901. int err;
  902. int noblock = msg->msg_flags & MSG_DONTWAIT;
  903. err = sock_error(sk);
  904. if (err)
  905. return err;
  906. if (msg->msg_flags & MSG_OOB)
  907. return -EOPNOTSUPP;
  908. /* SOCK_SEQPACKET: we do not support segmented records */
  909. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  910. return -EOPNOTSUPP;
  911. lock_sock(sk);
  912. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  913. err = -EPIPE;
  914. goto out;
  915. }
  916. /* Return if the socket is not in connected state */
  917. if (sk->sk_state != IUCV_CONNECTED) {
  918. err = -ENOTCONN;
  919. goto out;
  920. }
  921. /* initialize defaults */
  922. cmsg_done = 0; /* check for duplicate headers */
  923. txmsg.class = 0;
  924. /* iterate over control messages */
  925. for_each_cmsghdr(cmsg, msg) {
  926. if (!CMSG_OK(msg, cmsg)) {
  927. err = -EINVAL;
  928. goto out;
  929. }
  930. if (cmsg->cmsg_level != SOL_IUCV)
  931. continue;
  932. if (cmsg->cmsg_type & cmsg_done) {
  933. err = -EINVAL;
  934. goto out;
  935. }
  936. cmsg_done |= cmsg->cmsg_type;
  937. switch (cmsg->cmsg_type) {
  938. case SCM_IUCV_TRGCLS:
  939. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  940. err = -EINVAL;
  941. goto out;
  942. }
  943. /* set iucv message target class */
  944. memcpy(&txmsg.class,
  945. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  946. break;
  947. default:
  948. err = -EINVAL;
  949. goto out;
  950. }
  951. }
  952. /* allocate one skb for each iucv message:
  953. * this is fine for SOCK_SEQPACKET (unless we want to support
  954. * segmented records using the MSG_EOR flag), but
  955. * for SOCK_STREAM we might want to improve it in future */
  956. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  957. headroom = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  958. linear = len;
  959. } else {
  960. if (len < PAGE_SIZE) {
  961. linear = len;
  962. } else {
  963. /* In nonlinear "classic" iucv skb,
  964. * reserve space for iucv_array
  965. */
  966. headroom = sizeof(struct iucv_array) *
  967. (MAX_SKB_FRAGS + 1);
  968. linear = PAGE_SIZE - headroom;
  969. }
  970. }
  971. skb = sock_alloc_send_pskb(sk, headroom + linear, len - linear,
  972. noblock, &err, 0);
  973. if (!skb)
  974. goto out;
  975. if (headroom)
  976. skb_reserve(skb, headroom);
  977. skb_put(skb, linear);
  978. skb->len = len;
  979. skb->data_len = len - linear;
  980. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
  981. if (err)
  982. goto fail;
  983. /* wait if outstanding messages for iucv path has reached */
  984. timeo = sock_sndtimeo(sk, noblock);
  985. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  986. if (err)
  987. goto fail;
  988. /* return -ECONNRESET if the socket is no longer connected */
  989. if (sk->sk_state != IUCV_CONNECTED) {
  990. err = -ECONNRESET;
  991. goto fail;
  992. }
  993. /* increment and save iucv message tag for msg_completion cbk */
  994. txmsg.tag = iucv->send_tag++;
  995. IUCV_SKB_CB(skb)->tag = txmsg.tag;
  996. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  997. atomic_inc(&iucv->msg_sent);
  998. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  999. if (err) {
  1000. atomic_dec(&iucv->msg_sent);
  1001. goto fail;
  1002. }
  1003. } else { /* Classic VM IUCV transport */
  1004. skb_queue_tail(&iucv->send_skb_q, skb);
  1005. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) &&
  1006. skb->len <= 7) {
  1007. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1008. /* on success: there is no message_complete callback */
  1009. /* for an IPRMDATA msg; remove skb from send queue */
  1010. if (err == 0) {
  1011. skb_unlink(skb, &iucv->send_skb_q);
  1012. kfree_skb(skb);
  1013. }
  1014. /* this error should never happen since the */
  1015. /* IUCV_IPRMDATA path flag is set... sever path */
  1016. if (err == 0x15) {
  1017. pr_iucv->path_sever(iucv->path, NULL);
  1018. skb_unlink(skb, &iucv->send_skb_q);
  1019. err = -EPIPE;
  1020. goto fail;
  1021. }
  1022. } else if (skb_is_nonlinear(skb)) {
  1023. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1024. int i;
  1025. /* skip iucv_array lying in the headroom */
  1026. iba[0].address = (u32)(addr_t)skb->data;
  1027. iba[0].length = (u32)skb_headlen(skb);
  1028. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1029. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1030. iba[i + 1].address =
  1031. (u32)(addr_t)skb_frag_address(frag);
  1032. iba[i + 1].length = (u32)skb_frag_size(frag);
  1033. }
  1034. err = pr_iucv->message_send(iucv->path, &txmsg,
  1035. IUCV_IPBUFLST, 0,
  1036. (void *)iba, skb->len);
  1037. } else { /* non-IPRM Linear skb */
  1038. err = pr_iucv->message_send(iucv->path, &txmsg,
  1039. 0, 0, (void *)skb->data, skb->len);
  1040. }
  1041. if (err) {
  1042. if (err == 3) {
  1043. user_id[8] = 0;
  1044. memcpy(user_id, iucv->dst_user_id, 8);
  1045. appl_id[8] = 0;
  1046. memcpy(appl_id, iucv->dst_name, 8);
  1047. pr_err(
  1048. "Application %s on z/VM guest %s exceeds message limit\n",
  1049. appl_id, user_id);
  1050. err = -EAGAIN;
  1051. } else {
  1052. err = -EPIPE;
  1053. }
  1054. skb_unlink(skb, &iucv->send_skb_q);
  1055. goto fail;
  1056. }
  1057. }
  1058. release_sock(sk);
  1059. return len;
  1060. fail:
  1061. kfree_skb(skb);
  1062. out:
  1063. release_sock(sk);
  1064. return err;
  1065. }
  1066. static struct sk_buff *alloc_iucv_recv_skb(unsigned long len)
  1067. {
  1068. size_t headroom, linear;
  1069. struct sk_buff *skb;
  1070. int err;
  1071. if (len < PAGE_SIZE) {
  1072. headroom = 0;
  1073. linear = len;
  1074. } else {
  1075. headroom = sizeof(struct iucv_array) * (MAX_SKB_FRAGS + 1);
  1076. linear = PAGE_SIZE - headroom;
  1077. }
  1078. skb = alloc_skb_with_frags(headroom + linear, len - linear,
  1079. 0, &err, GFP_ATOMIC | GFP_DMA);
  1080. WARN_ONCE(!skb,
  1081. "alloc of recv iucv skb len=%lu failed with errcode=%d\n",
  1082. len, err);
  1083. if (skb) {
  1084. if (headroom)
  1085. skb_reserve(skb, headroom);
  1086. skb_put(skb, linear);
  1087. skb->len = len;
  1088. skb->data_len = len - linear;
  1089. }
  1090. return skb;
  1091. }
  1092. /* iucv_process_message() - Receive a single outstanding IUCV message
  1093. *
  1094. * Locking: must be called with message_q.lock held
  1095. */
  1096. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1097. struct iucv_path *path,
  1098. struct iucv_message *msg)
  1099. {
  1100. int rc;
  1101. unsigned int len;
  1102. len = iucv_msg_length(msg);
  1103. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1104. /* Note: the first 4 bytes are reserved for msg tag */
  1105. IUCV_SKB_CB(skb)->class = msg->class;
  1106. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1107. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1108. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1109. skb->data = NULL;
  1110. skb->len = 0;
  1111. }
  1112. } else {
  1113. if (skb_is_nonlinear(skb)) {
  1114. struct iucv_array *iba = (struct iucv_array *)skb->head;
  1115. int i;
  1116. iba[0].address = (u32)(addr_t)skb->data;
  1117. iba[0].length = (u32)skb_headlen(skb);
  1118. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1119. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1120. iba[i + 1].address =
  1121. (u32)(addr_t)skb_frag_address(frag);
  1122. iba[i + 1].length = (u32)skb_frag_size(frag);
  1123. }
  1124. rc = pr_iucv->message_receive(path, msg,
  1125. IUCV_IPBUFLST,
  1126. (void *)iba, len, NULL);
  1127. } else {
  1128. rc = pr_iucv->message_receive(path, msg,
  1129. msg->flags & IUCV_IPRMDATA,
  1130. skb->data, len, NULL);
  1131. }
  1132. if (rc) {
  1133. kfree_skb(skb);
  1134. return;
  1135. }
  1136. WARN_ON_ONCE(skb->len != len);
  1137. }
  1138. IUCV_SKB_CB(skb)->offset = 0;
  1139. if (sk_filter(sk, skb)) {
  1140. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1141. kfree_skb(skb);
  1142. return;
  1143. }
  1144. if (__sock_queue_rcv_skb(sk, skb)) /* handle rcv queue full */
  1145. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1146. }
  1147. /* iucv_process_message_q() - Process outstanding IUCV messages
  1148. *
  1149. * Locking: must be called with message_q.lock held
  1150. */
  1151. static void iucv_process_message_q(struct sock *sk)
  1152. {
  1153. struct iucv_sock *iucv = iucv_sk(sk);
  1154. struct sk_buff *skb;
  1155. struct sock_msg_q *p, *n;
  1156. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1157. skb = alloc_iucv_recv_skb(iucv_msg_length(&p->msg));
  1158. if (!skb)
  1159. break;
  1160. iucv_process_message(sk, skb, p->path, &p->msg);
  1161. list_del(&p->list);
  1162. kfree(p);
  1163. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1164. break;
  1165. }
  1166. }
  1167. static int iucv_sock_recvmsg(struct socket *sock, struct msghdr *msg,
  1168. size_t len, int flags)
  1169. {
  1170. int noblock = flags & MSG_DONTWAIT;
  1171. struct sock *sk = sock->sk;
  1172. struct iucv_sock *iucv = iucv_sk(sk);
  1173. unsigned int copied, rlen;
  1174. struct sk_buff *skb, *rskb, *cskb;
  1175. int err = 0;
  1176. u32 offset;
  1177. if ((sk->sk_state == IUCV_DISCONN) &&
  1178. skb_queue_empty(&iucv->backlog_skb_q) &&
  1179. skb_queue_empty(&sk->sk_receive_queue) &&
  1180. list_empty(&iucv->message_q.list))
  1181. return 0;
  1182. if (flags & (MSG_OOB))
  1183. return -EOPNOTSUPP;
  1184. /* receive/dequeue next skb:
  1185. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1186. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1187. if (!skb) {
  1188. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1189. return 0;
  1190. return err;
  1191. }
  1192. offset = IUCV_SKB_CB(skb)->offset;
  1193. rlen = skb->len - offset; /* real length of skb */
  1194. copied = min_t(unsigned int, rlen, len);
  1195. if (!rlen)
  1196. sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN;
  1197. cskb = skb;
  1198. if (skb_copy_datagram_msg(cskb, offset, msg, copied)) {
  1199. if (!(flags & MSG_PEEK))
  1200. skb_queue_head(&sk->sk_receive_queue, skb);
  1201. return -EFAULT;
  1202. }
  1203. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1204. if (sk->sk_type == SOCK_SEQPACKET) {
  1205. if (copied < rlen)
  1206. msg->msg_flags |= MSG_TRUNC;
  1207. /* each iucv message contains a complete record */
  1208. msg->msg_flags |= MSG_EOR;
  1209. }
  1210. /* create control message to store iucv msg target class:
  1211. * get the trgcls from the control buffer of the skb due to
  1212. * fragmentation of original iucv message. */
  1213. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1214. sizeof(IUCV_SKB_CB(skb)->class),
  1215. (void *)&IUCV_SKB_CB(skb)->class);
  1216. if (err) {
  1217. if (!(flags & MSG_PEEK))
  1218. skb_queue_head(&sk->sk_receive_queue, skb);
  1219. return err;
  1220. }
  1221. /* Mark read part of skb as used */
  1222. if (!(flags & MSG_PEEK)) {
  1223. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1224. if (sk->sk_type == SOCK_STREAM) {
  1225. if (copied < rlen) {
  1226. IUCV_SKB_CB(skb)->offset = offset + copied;
  1227. skb_queue_head(&sk->sk_receive_queue, skb);
  1228. goto done;
  1229. }
  1230. }
  1231. kfree_skb(skb);
  1232. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1233. atomic_inc(&iucv->msg_recv);
  1234. if (atomic_read(&iucv->msg_recv) > iucv->msglimit) {
  1235. WARN_ON(1);
  1236. iucv_sock_close(sk);
  1237. return -EFAULT;
  1238. }
  1239. }
  1240. /* Queue backlog skbs */
  1241. spin_lock_bh(&iucv->message_q.lock);
  1242. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1243. while (rskb) {
  1244. IUCV_SKB_CB(rskb)->offset = 0;
  1245. if (__sock_queue_rcv_skb(sk, rskb)) {
  1246. /* handle rcv queue full */
  1247. skb_queue_head(&iucv->backlog_skb_q,
  1248. rskb);
  1249. break;
  1250. }
  1251. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1252. }
  1253. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1254. if (!list_empty(&iucv->message_q.list))
  1255. iucv_process_message_q(sk);
  1256. if (atomic_read(&iucv->msg_recv) >=
  1257. iucv->msglimit / 2) {
  1258. err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN);
  1259. if (err) {
  1260. sk->sk_state = IUCV_DISCONN;
  1261. sk->sk_state_change(sk);
  1262. }
  1263. }
  1264. }
  1265. spin_unlock_bh(&iucv->message_q.lock);
  1266. }
  1267. done:
  1268. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1269. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1270. copied = rlen;
  1271. return copied;
  1272. }
  1273. static inline __poll_t iucv_accept_poll(struct sock *parent)
  1274. {
  1275. struct iucv_sock *isk, *n;
  1276. struct sock *sk;
  1277. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1278. sk = (struct sock *) isk;
  1279. if (sk->sk_state == IUCV_CONNECTED)
  1280. return EPOLLIN | EPOLLRDNORM;
  1281. }
  1282. return 0;
  1283. }
  1284. __poll_t iucv_sock_poll(struct file *file, struct socket *sock,
  1285. poll_table *wait)
  1286. {
  1287. struct sock *sk = sock->sk;
  1288. __poll_t mask = 0;
  1289. sock_poll_wait(file, wait);
  1290. if (sk->sk_state == IUCV_LISTEN)
  1291. return iucv_accept_poll(sk);
  1292. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1293. mask |= EPOLLERR |
  1294. (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
  1295. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1296. mask |= EPOLLRDHUP;
  1297. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1298. mask |= EPOLLHUP;
  1299. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1300. (sk->sk_shutdown & RCV_SHUTDOWN))
  1301. mask |= EPOLLIN | EPOLLRDNORM;
  1302. if (sk->sk_state == IUCV_CLOSED)
  1303. mask |= EPOLLHUP;
  1304. if (sk->sk_state == IUCV_DISCONN)
  1305. mask |= EPOLLIN;
  1306. if (sock_writeable(sk) && iucv_below_msglim(sk))
  1307. mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
  1308. else
  1309. sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
  1310. return mask;
  1311. }
  1312. static int iucv_sock_shutdown(struct socket *sock, int how)
  1313. {
  1314. struct sock *sk = sock->sk;
  1315. struct iucv_sock *iucv = iucv_sk(sk);
  1316. struct iucv_message txmsg;
  1317. int err = 0;
  1318. how++;
  1319. if ((how & ~SHUTDOWN_MASK) || !how)
  1320. return -EINVAL;
  1321. lock_sock(sk);
  1322. switch (sk->sk_state) {
  1323. case IUCV_LISTEN:
  1324. case IUCV_DISCONN:
  1325. case IUCV_CLOSING:
  1326. case IUCV_CLOSED:
  1327. err = -ENOTCONN;
  1328. goto fail;
  1329. default:
  1330. break;
  1331. }
  1332. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1333. if (iucv->transport == AF_IUCV_TRANS_IUCV) {
  1334. txmsg.class = 0;
  1335. txmsg.tag = 0;
  1336. err = pr_iucv->message_send(iucv->path, &txmsg,
  1337. IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8);
  1338. if (err) {
  1339. switch (err) {
  1340. case 1:
  1341. err = -ENOTCONN;
  1342. break;
  1343. case 2:
  1344. err = -ECONNRESET;
  1345. break;
  1346. default:
  1347. err = -ENOTCONN;
  1348. break;
  1349. }
  1350. }
  1351. } else
  1352. iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT);
  1353. }
  1354. sk->sk_shutdown |= how;
  1355. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1356. if ((iucv->transport == AF_IUCV_TRANS_IUCV) &&
  1357. iucv->path) {
  1358. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1359. if (err)
  1360. err = -ENOTCONN;
  1361. /* skb_queue_purge(&sk->sk_receive_queue); */
  1362. }
  1363. skb_queue_purge(&sk->sk_receive_queue);
  1364. }
  1365. /* Wake up anyone sleeping in poll */
  1366. sk->sk_state_change(sk);
  1367. fail:
  1368. release_sock(sk);
  1369. return err;
  1370. }
  1371. static int iucv_sock_release(struct socket *sock)
  1372. {
  1373. struct sock *sk = sock->sk;
  1374. int err = 0;
  1375. if (!sk)
  1376. return 0;
  1377. iucv_sock_close(sk);
  1378. sock_orphan(sk);
  1379. iucv_sock_kill(sk);
  1380. return err;
  1381. }
  1382. /* getsockopt and setsockopt */
  1383. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1384. char __user *optval, unsigned int optlen)
  1385. {
  1386. struct sock *sk = sock->sk;
  1387. struct iucv_sock *iucv = iucv_sk(sk);
  1388. int val;
  1389. int rc;
  1390. if (level != SOL_IUCV)
  1391. return -ENOPROTOOPT;
  1392. if (optlen < sizeof(int))
  1393. return -EINVAL;
  1394. if (get_user(val, (int __user *) optval))
  1395. return -EFAULT;
  1396. rc = 0;
  1397. lock_sock(sk);
  1398. switch (optname) {
  1399. case SO_IPRMDATA_MSG:
  1400. if (val)
  1401. iucv->flags |= IUCV_IPRMDATA;
  1402. else
  1403. iucv->flags &= ~IUCV_IPRMDATA;
  1404. break;
  1405. case SO_MSGLIMIT:
  1406. switch (sk->sk_state) {
  1407. case IUCV_OPEN:
  1408. case IUCV_BOUND:
  1409. if (val < 1 || val > (u16)(~0))
  1410. rc = -EINVAL;
  1411. else
  1412. iucv->msglimit = val;
  1413. break;
  1414. default:
  1415. rc = -EINVAL;
  1416. break;
  1417. }
  1418. break;
  1419. default:
  1420. rc = -ENOPROTOOPT;
  1421. break;
  1422. }
  1423. release_sock(sk);
  1424. return rc;
  1425. }
  1426. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1427. char __user *optval, int __user *optlen)
  1428. {
  1429. struct sock *sk = sock->sk;
  1430. struct iucv_sock *iucv = iucv_sk(sk);
  1431. unsigned int val;
  1432. int len;
  1433. if (level != SOL_IUCV)
  1434. return -ENOPROTOOPT;
  1435. if (get_user(len, optlen))
  1436. return -EFAULT;
  1437. if (len < 0)
  1438. return -EINVAL;
  1439. len = min_t(unsigned int, len, sizeof(int));
  1440. switch (optname) {
  1441. case SO_IPRMDATA_MSG:
  1442. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1443. break;
  1444. case SO_MSGLIMIT:
  1445. lock_sock(sk);
  1446. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1447. : iucv->msglimit; /* default */
  1448. release_sock(sk);
  1449. break;
  1450. case SO_MSGSIZE:
  1451. if (sk->sk_state == IUCV_OPEN)
  1452. return -EBADFD;
  1453. val = (iucv->hs_dev) ? iucv->hs_dev->mtu -
  1454. sizeof(struct af_iucv_trans_hdr) - ETH_HLEN :
  1455. 0x7fffffff;
  1456. break;
  1457. default:
  1458. return -ENOPROTOOPT;
  1459. }
  1460. if (put_user(len, optlen))
  1461. return -EFAULT;
  1462. if (copy_to_user(optval, &val, len))
  1463. return -EFAULT;
  1464. return 0;
  1465. }
  1466. /* Callback wrappers - called from iucv base support */
  1467. static int iucv_callback_connreq(struct iucv_path *path,
  1468. u8 ipvmid[8], u8 ipuser[16])
  1469. {
  1470. unsigned char user_data[16];
  1471. unsigned char nuser_data[16];
  1472. unsigned char src_name[8];
  1473. struct sock *sk, *nsk;
  1474. struct iucv_sock *iucv, *niucv;
  1475. int err;
  1476. memcpy(src_name, ipuser, 8);
  1477. EBCASC(src_name, 8);
  1478. /* Find out if this path belongs to af_iucv. */
  1479. read_lock(&iucv_sk_list.lock);
  1480. iucv = NULL;
  1481. sk = NULL;
  1482. sk_for_each(sk, &iucv_sk_list.head)
  1483. if (sk->sk_state == IUCV_LISTEN &&
  1484. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1485. /*
  1486. * Found a listening socket with
  1487. * src_name == ipuser[0-7].
  1488. */
  1489. iucv = iucv_sk(sk);
  1490. break;
  1491. }
  1492. read_unlock(&iucv_sk_list.lock);
  1493. if (!iucv)
  1494. /* No socket found, not one of our paths. */
  1495. return -EINVAL;
  1496. bh_lock_sock(sk);
  1497. /* Check if parent socket is listening */
  1498. low_nmcpy(user_data, iucv->src_name);
  1499. high_nmcpy(user_data, iucv->dst_name);
  1500. ASCEBC(user_data, sizeof(user_data));
  1501. if (sk->sk_state != IUCV_LISTEN) {
  1502. err = pr_iucv->path_sever(path, user_data);
  1503. iucv_path_free(path);
  1504. goto fail;
  1505. }
  1506. /* Check for backlog size */
  1507. if (sk_acceptq_is_full(sk)) {
  1508. err = pr_iucv->path_sever(path, user_data);
  1509. iucv_path_free(path);
  1510. goto fail;
  1511. }
  1512. /* Create the new socket */
  1513. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1514. if (!nsk) {
  1515. err = pr_iucv->path_sever(path, user_data);
  1516. iucv_path_free(path);
  1517. goto fail;
  1518. }
  1519. niucv = iucv_sk(nsk);
  1520. iucv_sock_init(nsk, sk);
  1521. /* Set the new iucv_sock */
  1522. memcpy(niucv->dst_name, ipuser + 8, 8);
  1523. EBCASC(niucv->dst_name, 8);
  1524. memcpy(niucv->dst_user_id, ipvmid, 8);
  1525. memcpy(niucv->src_name, iucv->src_name, 8);
  1526. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1527. niucv->path = path;
  1528. /* Call iucv_accept */
  1529. high_nmcpy(nuser_data, ipuser + 8);
  1530. memcpy(nuser_data + 8, niucv->src_name, 8);
  1531. ASCEBC(nuser_data + 8, 8);
  1532. /* set message limit for path based on msglimit of accepting socket */
  1533. niucv->msglimit = iucv->msglimit;
  1534. path->msglim = iucv->msglimit;
  1535. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1536. if (err) {
  1537. iucv_sever_path(nsk, 1);
  1538. iucv_sock_kill(nsk);
  1539. goto fail;
  1540. }
  1541. iucv_accept_enqueue(sk, nsk);
  1542. /* Wake up accept */
  1543. nsk->sk_state = IUCV_CONNECTED;
  1544. sk->sk_data_ready(sk);
  1545. err = 0;
  1546. fail:
  1547. bh_unlock_sock(sk);
  1548. return 0;
  1549. }
  1550. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1551. {
  1552. struct sock *sk = path->private;
  1553. sk->sk_state = IUCV_CONNECTED;
  1554. sk->sk_state_change(sk);
  1555. }
  1556. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1557. {
  1558. struct sock *sk = path->private;
  1559. struct iucv_sock *iucv = iucv_sk(sk);
  1560. struct sk_buff *skb;
  1561. struct sock_msg_q *save_msg;
  1562. int len;
  1563. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1564. pr_iucv->message_reject(path, msg);
  1565. return;
  1566. }
  1567. spin_lock(&iucv->message_q.lock);
  1568. if (!list_empty(&iucv->message_q.list) ||
  1569. !skb_queue_empty(&iucv->backlog_skb_q))
  1570. goto save_message;
  1571. len = atomic_read(&sk->sk_rmem_alloc);
  1572. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1573. if (len > sk->sk_rcvbuf)
  1574. goto save_message;
  1575. skb = alloc_iucv_recv_skb(iucv_msg_length(msg));
  1576. if (!skb)
  1577. goto save_message;
  1578. iucv_process_message(sk, skb, path, msg);
  1579. goto out_unlock;
  1580. save_message:
  1581. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1582. if (!save_msg)
  1583. goto out_unlock;
  1584. save_msg->path = path;
  1585. save_msg->msg = *msg;
  1586. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1587. out_unlock:
  1588. spin_unlock(&iucv->message_q.lock);
  1589. }
  1590. static void iucv_callback_txdone(struct iucv_path *path,
  1591. struct iucv_message *msg)
  1592. {
  1593. struct sock *sk = path->private;
  1594. struct sk_buff *this = NULL;
  1595. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1596. struct sk_buff *list_skb = list->next;
  1597. unsigned long flags;
  1598. bh_lock_sock(sk);
  1599. if (!skb_queue_empty(list)) {
  1600. spin_lock_irqsave(&list->lock, flags);
  1601. while (list_skb != (struct sk_buff *)list) {
  1602. if (msg->tag == IUCV_SKB_CB(list_skb)->tag) {
  1603. this = list_skb;
  1604. break;
  1605. }
  1606. list_skb = list_skb->next;
  1607. }
  1608. if (this)
  1609. __skb_unlink(this, list);
  1610. spin_unlock_irqrestore(&list->lock, flags);
  1611. if (this) {
  1612. kfree_skb(this);
  1613. /* wake up any process waiting for sending */
  1614. iucv_sock_wake_msglim(sk);
  1615. }
  1616. }
  1617. if (sk->sk_state == IUCV_CLOSING) {
  1618. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1619. sk->sk_state = IUCV_CLOSED;
  1620. sk->sk_state_change(sk);
  1621. }
  1622. }
  1623. bh_unlock_sock(sk);
  1624. }
  1625. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1626. {
  1627. struct sock *sk = path->private;
  1628. if (sk->sk_state == IUCV_CLOSED)
  1629. return;
  1630. bh_lock_sock(sk);
  1631. iucv_sever_path(sk, 1);
  1632. sk->sk_state = IUCV_DISCONN;
  1633. sk->sk_state_change(sk);
  1634. bh_unlock_sock(sk);
  1635. }
  1636. /* called if the other communication side shuts down its RECV direction;
  1637. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1638. */
  1639. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1640. {
  1641. struct sock *sk = path->private;
  1642. bh_lock_sock(sk);
  1643. if (sk->sk_state != IUCV_CLOSED) {
  1644. sk->sk_shutdown |= SEND_SHUTDOWN;
  1645. sk->sk_state_change(sk);
  1646. }
  1647. bh_unlock_sock(sk);
  1648. }
  1649. /***************** HiperSockets transport callbacks ********************/
  1650. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1651. {
  1652. struct af_iucv_trans_hdr *trans_hdr =
  1653. (struct af_iucv_trans_hdr *)skb->data;
  1654. char tmpID[8];
  1655. char tmpName[8];
  1656. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1657. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1658. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1659. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1660. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1661. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1662. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1663. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1664. memcpy(trans_hdr->destUserID, tmpID, 8);
  1665. memcpy(trans_hdr->destAppName, tmpName, 8);
  1666. skb_push(skb, ETH_HLEN);
  1667. memset(skb->data, 0, ETH_HLEN);
  1668. }
  1669. /**
  1670. * afiucv_hs_callback_syn - react on received SYN
  1671. **/
  1672. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1673. {
  1674. struct sock *nsk;
  1675. struct iucv_sock *iucv, *niucv;
  1676. struct af_iucv_trans_hdr *trans_hdr;
  1677. int err;
  1678. iucv = iucv_sk(sk);
  1679. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1680. if (!iucv) {
  1681. /* no sock - connection refused */
  1682. afiucv_swap_src_dest(skb);
  1683. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1684. err = dev_queue_xmit(skb);
  1685. goto out;
  1686. }
  1687. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC, 0);
  1688. bh_lock_sock(sk);
  1689. if ((sk->sk_state != IUCV_LISTEN) ||
  1690. sk_acceptq_is_full(sk) ||
  1691. !nsk) {
  1692. /* error on server socket - connection refused */
  1693. afiucv_swap_src_dest(skb);
  1694. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1695. err = dev_queue_xmit(skb);
  1696. iucv_sock_kill(nsk);
  1697. bh_unlock_sock(sk);
  1698. goto out;
  1699. }
  1700. niucv = iucv_sk(nsk);
  1701. iucv_sock_init(nsk, sk);
  1702. niucv->transport = AF_IUCV_TRANS_HIPER;
  1703. niucv->msglimit = iucv->msglimit;
  1704. if (!trans_hdr->window)
  1705. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1706. else
  1707. niucv->msglimit_peer = trans_hdr->window;
  1708. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1709. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1710. memcpy(niucv->src_name, iucv->src_name, 8);
  1711. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1712. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1713. niucv->hs_dev = iucv->hs_dev;
  1714. dev_hold(niucv->hs_dev);
  1715. afiucv_swap_src_dest(skb);
  1716. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1717. trans_hdr->window = niucv->msglimit;
  1718. /* if receiver acks the xmit connection is established */
  1719. err = dev_queue_xmit(skb);
  1720. if (!err) {
  1721. iucv_accept_enqueue(sk, nsk);
  1722. nsk->sk_state = IUCV_CONNECTED;
  1723. sk->sk_data_ready(sk);
  1724. } else
  1725. iucv_sock_kill(nsk);
  1726. bh_unlock_sock(sk);
  1727. out:
  1728. return NET_RX_SUCCESS;
  1729. }
  1730. /**
  1731. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1732. **/
  1733. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1734. {
  1735. struct iucv_sock *iucv = iucv_sk(sk);
  1736. struct af_iucv_trans_hdr *trans_hdr =
  1737. (struct af_iucv_trans_hdr *)skb->data;
  1738. if (!iucv)
  1739. goto out;
  1740. if (sk->sk_state != IUCV_BOUND)
  1741. goto out;
  1742. bh_lock_sock(sk);
  1743. iucv->msglimit_peer = trans_hdr->window;
  1744. sk->sk_state = IUCV_CONNECTED;
  1745. sk->sk_state_change(sk);
  1746. bh_unlock_sock(sk);
  1747. out:
  1748. kfree_skb(skb);
  1749. return NET_RX_SUCCESS;
  1750. }
  1751. /**
  1752. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1753. **/
  1754. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1755. {
  1756. struct iucv_sock *iucv = iucv_sk(sk);
  1757. if (!iucv)
  1758. goto out;
  1759. if (sk->sk_state != IUCV_BOUND)
  1760. goto out;
  1761. bh_lock_sock(sk);
  1762. sk->sk_state = IUCV_DISCONN;
  1763. sk->sk_state_change(sk);
  1764. bh_unlock_sock(sk);
  1765. out:
  1766. kfree_skb(skb);
  1767. return NET_RX_SUCCESS;
  1768. }
  1769. /**
  1770. * afiucv_hs_callback_fin() - react on received FIN
  1771. **/
  1772. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1773. {
  1774. struct iucv_sock *iucv = iucv_sk(sk);
  1775. /* other end of connection closed */
  1776. if (!iucv)
  1777. goto out;
  1778. bh_lock_sock(sk);
  1779. if (sk->sk_state == IUCV_CONNECTED) {
  1780. sk->sk_state = IUCV_DISCONN;
  1781. sk->sk_state_change(sk);
  1782. }
  1783. bh_unlock_sock(sk);
  1784. out:
  1785. kfree_skb(skb);
  1786. return NET_RX_SUCCESS;
  1787. }
  1788. /**
  1789. * afiucv_hs_callback_win() - react on received WIN
  1790. **/
  1791. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1792. {
  1793. struct iucv_sock *iucv = iucv_sk(sk);
  1794. struct af_iucv_trans_hdr *trans_hdr =
  1795. (struct af_iucv_trans_hdr *)skb->data;
  1796. if (!iucv)
  1797. return NET_RX_SUCCESS;
  1798. if (sk->sk_state != IUCV_CONNECTED)
  1799. return NET_RX_SUCCESS;
  1800. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1801. iucv_sock_wake_msglim(sk);
  1802. return NET_RX_SUCCESS;
  1803. }
  1804. /**
  1805. * afiucv_hs_callback_rx() - react on received data
  1806. **/
  1807. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1808. {
  1809. struct iucv_sock *iucv = iucv_sk(sk);
  1810. if (!iucv) {
  1811. kfree_skb(skb);
  1812. return NET_RX_SUCCESS;
  1813. }
  1814. if (sk->sk_state != IUCV_CONNECTED) {
  1815. kfree_skb(skb);
  1816. return NET_RX_SUCCESS;
  1817. }
  1818. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1819. kfree_skb(skb);
  1820. return NET_RX_SUCCESS;
  1821. }
  1822. /* write stuff from iucv_msg to skb cb */
  1823. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1824. skb_reset_transport_header(skb);
  1825. skb_reset_network_header(skb);
  1826. IUCV_SKB_CB(skb)->offset = 0;
  1827. if (sk_filter(sk, skb)) {
  1828. atomic_inc(&sk->sk_drops); /* skb rejected by filter */
  1829. kfree_skb(skb);
  1830. return NET_RX_SUCCESS;
  1831. }
  1832. spin_lock(&iucv->message_q.lock);
  1833. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1834. if (__sock_queue_rcv_skb(sk, skb))
  1835. /* handle rcv queue full */
  1836. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1837. } else
  1838. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1839. spin_unlock(&iucv->message_q.lock);
  1840. return NET_RX_SUCCESS;
  1841. }
  1842. /**
  1843. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1844. * transport
  1845. * called from netif RX softirq
  1846. **/
  1847. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1848. struct packet_type *pt, struct net_device *orig_dev)
  1849. {
  1850. struct sock *sk;
  1851. struct iucv_sock *iucv;
  1852. struct af_iucv_trans_hdr *trans_hdr;
  1853. char nullstring[8];
  1854. int err = 0;
  1855. if (skb->len < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr))) {
  1856. WARN_ONCE(1, "AF_IUCV too short skb, len=%d, min=%d",
  1857. (int)skb->len,
  1858. (int)(ETH_HLEN + sizeof(struct af_iucv_trans_hdr)));
  1859. kfree_skb(skb);
  1860. return NET_RX_SUCCESS;
  1861. }
  1862. if (skb_headlen(skb) < (ETH_HLEN + sizeof(struct af_iucv_trans_hdr)))
  1863. if (skb_linearize(skb)) {
  1864. WARN_ONCE(1, "AF_IUCV skb_linearize failed, len=%d",
  1865. (int)skb->len);
  1866. kfree_skb(skb);
  1867. return NET_RX_SUCCESS;
  1868. }
  1869. skb_pull(skb, ETH_HLEN);
  1870. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1871. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1872. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1873. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1874. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1875. memset(nullstring, 0, sizeof(nullstring));
  1876. iucv = NULL;
  1877. sk = NULL;
  1878. read_lock(&iucv_sk_list.lock);
  1879. sk_for_each(sk, &iucv_sk_list.head) {
  1880. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1881. if ((!memcmp(&iucv_sk(sk)->src_name,
  1882. trans_hdr->destAppName, 8)) &&
  1883. (!memcmp(&iucv_sk(sk)->src_user_id,
  1884. trans_hdr->destUserID, 8)) &&
  1885. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1886. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1887. nullstring, 8))) {
  1888. iucv = iucv_sk(sk);
  1889. break;
  1890. }
  1891. } else {
  1892. if ((!memcmp(&iucv_sk(sk)->src_name,
  1893. trans_hdr->destAppName, 8)) &&
  1894. (!memcmp(&iucv_sk(sk)->src_user_id,
  1895. trans_hdr->destUserID, 8)) &&
  1896. (!memcmp(&iucv_sk(sk)->dst_name,
  1897. trans_hdr->srcAppName, 8)) &&
  1898. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1899. trans_hdr->srcUserID, 8))) {
  1900. iucv = iucv_sk(sk);
  1901. break;
  1902. }
  1903. }
  1904. }
  1905. read_unlock(&iucv_sk_list.lock);
  1906. if (!iucv)
  1907. sk = NULL;
  1908. /* no sock
  1909. how should we send with no sock
  1910. 1) send without sock no send rc checking?
  1911. 2) introduce default sock to handle this cases
  1912. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1913. data -> send FIN
  1914. SYN|ACK, SYN|FIN, FIN -> no action? */
  1915. switch (trans_hdr->flags) {
  1916. case AF_IUCV_FLAG_SYN:
  1917. /* connect request */
  1918. err = afiucv_hs_callback_syn(sk, skb);
  1919. break;
  1920. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1921. /* connect request confirmed */
  1922. err = afiucv_hs_callback_synack(sk, skb);
  1923. break;
  1924. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1925. /* connect request refused */
  1926. err = afiucv_hs_callback_synfin(sk, skb);
  1927. break;
  1928. case (AF_IUCV_FLAG_FIN):
  1929. /* close request */
  1930. err = afiucv_hs_callback_fin(sk, skb);
  1931. break;
  1932. case (AF_IUCV_FLAG_WIN):
  1933. err = afiucv_hs_callback_win(sk, skb);
  1934. if (skb->len == sizeof(struct af_iucv_trans_hdr)) {
  1935. kfree_skb(skb);
  1936. break;
  1937. }
  1938. /* fall through and receive non-zero length data */
  1939. case (AF_IUCV_FLAG_SHT):
  1940. /* shutdown request */
  1941. /* fall through and receive zero length data */
  1942. case 0:
  1943. /* plain data frame */
  1944. IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class;
  1945. err = afiucv_hs_callback_rx(sk, skb);
  1946. break;
  1947. default:
  1948. ;
  1949. }
  1950. return err;
  1951. }
  1952. /**
  1953. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1954. * transport
  1955. **/
  1956. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1957. enum iucv_tx_notify n)
  1958. {
  1959. struct sock *isk = skb->sk;
  1960. struct sock *sk = NULL;
  1961. struct iucv_sock *iucv = NULL;
  1962. struct sk_buff_head *list;
  1963. struct sk_buff *list_skb;
  1964. struct sk_buff *nskb;
  1965. unsigned long flags;
  1966. read_lock_irqsave(&iucv_sk_list.lock, flags);
  1967. sk_for_each(sk, &iucv_sk_list.head)
  1968. if (sk == isk) {
  1969. iucv = iucv_sk(sk);
  1970. break;
  1971. }
  1972. read_unlock_irqrestore(&iucv_sk_list.lock, flags);
  1973. if (!iucv || sock_flag(sk, SOCK_ZAPPED))
  1974. return;
  1975. list = &iucv->send_skb_q;
  1976. spin_lock_irqsave(&list->lock, flags);
  1977. if (skb_queue_empty(list))
  1978. goto out_unlock;
  1979. list_skb = list->next;
  1980. nskb = list_skb->next;
  1981. while (list_skb != (struct sk_buff *)list) {
  1982. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1983. switch (n) {
  1984. case TX_NOTIFY_OK:
  1985. __skb_unlink(list_skb, list);
  1986. kfree_skb(list_skb);
  1987. iucv_sock_wake_msglim(sk);
  1988. break;
  1989. case TX_NOTIFY_PENDING:
  1990. atomic_inc(&iucv->pendings);
  1991. break;
  1992. case TX_NOTIFY_DELAYED_OK:
  1993. __skb_unlink(list_skb, list);
  1994. atomic_dec(&iucv->pendings);
  1995. if (atomic_read(&iucv->pendings) <= 0)
  1996. iucv_sock_wake_msglim(sk);
  1997. kfree_skb(list_skb);
  1998. break;
  1999. case TX_NOTIFY_UNREACHABLE:
  2000. case TX_NOTIFY_DELAYED_UNREACHABLE:
  2001. case TX_NOTIFY_TPQFULL: /* not yet used */
  2002. case TX_NOTIFY_GENERALERROR:
  2003. case TX_NOTIFY_DELAYED_GENERALERROR:
  2004. __skb_unlink(list_skb, list);
  2005. kfree_skb(list_skb);
  2006. if (sk->sk_state == IUCV_CONNECTED) {
  2007. sk->sk_state = IUCV_DISCONN;
  2008. sk->sk_state_change(sk);
  2009. }
  2010. break;
  2011. }
  2012. break;
  2013. }
  2014. list_skb = nskb;
  2015. nskb = nskb->next;
  2016. }
  2017. out_unlock:
  2018. spin_unlock_irqrestore(&list->lock, flags);
  2019. if (sk->sk_state == IUCV_CLOSING) {
  2020. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  2021. sk->sk_state = IUCV_CLOSED;
  2022. sk->sk_state_change(sk);
  2023. }
  2024. }
  2025. }
  2026. /*
  2027. * afiucv_netdev_event: handle netdev notifier chain events
  2028. */
  2029. static int afiucv_netdev_event(struct notifier_block *this,
  2030. unsigned long event, void *ptr)
  2031. {
  2032. struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
  2033. struct sock *sk;
  2034. struct iucv_sock *iucv;
  2035. switch (event) {
  2036. case NETDEV_REBOOT:
  2037. case NETDEV_GOING_DOWN:
  2038. sk_for_each(sk, &iucv_sk_list.head) {
  2039. iucv = iucv_sk(sk);
  2040. if ((iucv->hs_dev == event_dev) &&
  2041. (sk->sk_state == IUCV_CONNECTED)) {
  2042. if (event == NETDEV_GOING_DOWN)
  2043. iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN);
  2044. sk->sk_state = IUCV_DISCONN;
  2045. sk->sk_state_change(sk);
  2046. }
  2047. }
  2048. break;
  2049. case NETDEV_DOWN:
  2050. case NETDEV_UNREGISTER:
  2051. default:
  2052. break;
  2053. }
  2054. return NOTIFY_DONE;
  2055. }
  2056. static struct notifier_block afiucv_netdev_notifier = {
  2057. .notifier_call = afiucv_netdev_event,
  2058. };
  2059. static const struct proto_ops iucv_sock_ops = {
  2060. .family = PF_IUCV,
  2061. .owner = THIS_MODULE,
  2062. .release = iucv_sock_release,
  2063. .bind = iucv_sock_bind,
  2064. .connect = iucv_sock_connect,
  2065. .listen = iucv_sock_listen,
  2066. .accept = iucv_sock_accept,
  2067. .getname = iucv_sock_getname,
  2068. .sendmsg = iucv_sock_sendmsg,
  2069. .recvmsg = iucv_sock_recvmsg,
  2070. .poll = iucv_sock_poll,
  2071. .ioctl = sock_no_ioctl,
  2072. .mmap = sock_no_mmap,
  2073. .socketpair = sock_no_socketpair,
  2074. .shutdown = iucv_sock_shutdown,
  2075. .setsockopt = iucv_sock_setsockopt,
  2076. .getsockopt = iucv_sock_getsockopt,
  2077. };
  2078. static const struct net_proto_family iucv_sock_family_ops = {
  2079. .family = AF_IUCV,
  2080. .owner = THIS_MODULE,
  2081. .create = iucv_sock_create,
  2082. };
  2083. static struct packet_type iucv_packet_type = {
  2084. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2085. .func = afiucv_hs_rcv,
  2086. };
  2087. static int afiucv_iucv_init(void)
  2088. {
  2089. int err;
  2090. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2091. if (err)
  2092. goto out;
  2093. /* establish dummy device */
  2094. af_iucv_driver.bus = pr_iucv->bus;
  2095. err = driver_register(&af_iucv_driver);
  2096. if (err)
  2097. goto out_iucv;
  2098. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2099. if (!af_iucv_dev) {
  2100. err = -ENOMEM;
  2101. goto out_driver;
  2102. }
  2103. dev_set_name(af_iucv_dev, "af_iucv");
  2104. af_iucv_dev->bus = pr_iucv->bus;
  2105. af_iucv_dev->parent = pr_iucv->root;
  2106. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2107. af_iucv_dev->driver = &af_iucv_driver;
  2108. err = device_register(af_iucv_dev);
  2109. if (err)
  2110. goto out_iucv_dev;
  2111. return 0;
  2112. out_iucv_dev:
  2113. put_device(af_iucv_dev);
  2114. out_driver:
  2115. driver_unregister(&af_iucv_driver);
  2116. out_iucv:
  2117. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2118. out:
  2119. return err;
  2120. }
  2121. static int __init afiucv_init(void)
  2122. {
  2123. int err;
  2124. if (MACHINE_IS_VM) {
  2125. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2126. if (unlikely(err)) {
  2127. WARN_ON(err);
  2128. err = -EPROTONOSUPPORT;
  2129. goto out;
  2130. }
  2131. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2132. if (!pr_iucv) {
  2133. printk(KERN_WARNING "iucv_if lookup failed\n");
  2134. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2135. }
  2136. } else {
  2137. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2138. pr_iucv = NULL;
  2139. }
  2140. err = proto_register(&iucv_proto, 0);
  2141. if (err)
  2142. goto out;
  2143. err = sock_register(&iucv_sock_family_ops);
  2144. if (err)
  2145. goto out_proto;
  2146. if (pr_iucv) {
  2147. err = afiucv_iucv_init();
  2148. if (err)
  2149. goto out_sock;
  2150. } else
  2151. register_netdevice_notifier(&afiucv_netdev_notifier);
  2152. dev_add_pack(&iucv_packet_type);
  2153. return 0;
  2154. out_sock:
  2155. sock_unregister(PF_IUCV);
  2156. out_proto:
  2157. proto_unregister(&iucv_proto);
  2158. out:
  2159. if (pr_iucv)
  2160. symbol_put(iucv_if);
  2161. return err;
  2162. }
  2163. static void __exit afiucv_exit(void)
  2164. {
  2165. if (pr_iucv) {
  2166. device_unregister(af_iucv_dev);
  2167. driver_unregister(&af_iucv_driver);
  2168. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2169. symbol_put(iucv_if);
  2170. } else
  2171. unregister_netdevice_notifier(&afiucv_netdev_notifier);
  2172. dev_remove_pack(&iucv_packet_type);
  2173. sock_unregister(PF_IUCV);
  2174. proto_unregister(&iucv_proto);
  2175. }
  2176. module_init(afiucv_init);
  2177. module_exit(afiucv_exit);
  2178. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2179. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2180. MODULE_VERSION(VERSION);
  2181. MODULE_LICENSE("GPL");
  2182. MODULE_ALIAS_NETPROTO(PF_IUCV);