tcp_dctcp.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. /* DataCenter TCP (DCTCP) congestion control.
  2. *
  3. * http://simula.stanford.edu/~alizade/Site/DCTCP.html
  4. *
  5. * This is an implementation of DCTCP over Reno, an enhancement to the
  6. * TCP congestion control algorithm designed for data centers. DCTCP
  7. * leverages Explicit Congestion Notification (ECN) in the network to
  8. * provide multi-bit feedback to the end hosts. DCTCP's goal is to meet
  9. * the following three data center transport requirements:
  10. *
  11. * - High burst tolerance (incast due to partition/aggregate)
  12. * - Low latency (short flows, queries)
  13. * - High throughput (continuous data updates, large file transfers)
  14. * with commodity shallow buffered switches
  15. *
  16. * The algorithm is described in detail in the following two papers:
  17. *
  18. * 1) Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
  19. * Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan:
  20. * "Data Center TCP (DCTCP)", Data Center Networks session
  21. * Proc. ACM SIGCOMM, New Delhi, 2010.
  22. * http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
  23. *
  24. * 2) Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar:
  25. * "Analysis of DCTCP: Stability, Convergence, and Fairness"
  26. * Proc. ACM SIGMETRICS, San Jose, 2011.
  27. * http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf
  28. *
  29. * Initial prototype from Abdul Kabbani, Masato Yasuda and Mohammad Alizadeh.
  30. *
  31. * Authors:
  32. *
  33. * Daniel Borkmann <dborkman@redhat.com>
  34. * Florian Westphal <fw@strlen.de>
  35. * Glenn Judd <glenn.judd@morganstanley.com>
  36. *
  37. * This program is free software; you can redistribute it and/or modify
  38. * it under the terms of the GNU General Public License as published by
  39. * the Free Software Foundation; either version 2 of the License, or (at
  40. * your option) any later version.
  41. */
  42. #include <linux/module.h>
  43. #include <linux/mm.h>
  44. #include <net/tcp.h>
  45. #include <linux/inet_diag.h>
  46. #define DCTCP_MAX_ALPHA 1024U
  47. struct dctcp {
  48. u32 acked_bytes_ecn;
  49. u32 acked_bytes_total;
  50. u32 prior_snd_una;
  51. u32 prior_rcv_nxt;
  52. u32 dctcp_alpha;
  53. u32 next_seq;
  54. u32 ce_state;
  55. u32 loss_cwnd;
  56. };
  57. static unsigned int dctcp_shift_g __read_mostly = 4; /* g = 1/2^4 */
  58. module_param(dctcp_shift_g, uint, 0644);
  59. MODULE_PARM_DESC(dctcp_shift_g, "parameter g for updating dctcp_alpha");
  60. static unsigned int dctcp_alpha_on_init __read_mostly = DCTCP_MAX_ALPHA;
  61. module_param(dctcp_alpha_on_init, uint, 0644);
  62. MODULE_PARM_DESC(dctcp_alpha_on_init, "parameter for initial alpha value");
  63. static unsigned int dctcp_clamp_alpha_on_loss __read_mostly;
  64. module_param(dctcp_clamp_alpha_on_loss, uint, 0644);
  65. MODULE_PARM_DESC(dctcp_clamp_alpha_on_loss,
  66. "parameter for clamping alpha on loss");
  67. static struct tcp_congestion_ops dctcp_reno;
  68. static void dctcp_reset(const struct tcp_sock *tp, struct dctcp *ca)
  69. {
  70. ca->next_seq = tp->snd_nxt;
  71. ca->acked_bytes_ecn = 0;
  72. ca->acked_bytes_total = 0;
  73. }
  74. static void dctcp_init(struct sock *sk)
  75. {
  76. const struct tcp_sock *tp = tcp_sk(sk);
  77. if ((tp->ecn_flags & TCP_ECN_OK) ||
  78. (sk->sk_state == TCP_LISTEN ||
  79. sk->sk_state == TCP_CLOSE)) {
  80. struct dctcp *ca = inet_csk_ca(sk);
  81. ca->prior_snd_una = tp->snd_una;
  82. ca->prior_rcv_nxt = tp->rcv_nxt;
  83. ca->dctcp_alpha = min(dctcp_alpha_on_init, DCTCP_MAX_ALPHA);
  84. ca->loss_cwnd = 0;
  85. ca->ce_state = 0;
  86. dctcp_reset(tp, ca);
  87. return;
  88. }
  89. /* No ECN support? Fall back to Reno. Also need to clear
  90. * ECT from sk since it is set during 3WHS for DCTCP.
  91. */
  92. inet_csk(sk)->icsk_ca_ops = &dctcp_reno;
  93. INET_ECN_dontxmit(sk);
  94. }
  95. static u32 dctcp_ssthresh(struct sock *sk)
  96. {
  97. struct dctcp *ca = inet_csk_ca(sk);
  98. struct tcp_sock *tp = tcp_sk(sk);
  99. ca->loss_cwnd = tp->snd_cwnd;
  100. return max(tp->snd_cwnd - ((tp->snd_cwnd * ca->dctcp_alpha) >> 11U), 2U);
  101. }
  102. /* Minimal DCTP CE state machine:
  103. *
  104. * S: 0 <- last pkt was non-CE
  105. * 1 <- last pkt was CE
  106. */
  107. static void dctcp_ce_state_0_to_1(struct sock *sk)
  108. {
  109. struct dctcp *ca = inet_csk_ca(sk);
  110. struct tcp_sock *tp = tcp_sk(sk);
  111. if (!ca->ce_state) {
  112. /* State has changed from CE=0 to CE=1, force an immediate
  113. * ACK to reflect the new CE state. If an ACK was delayed,
  114. * send that first to reflect the prior CE state.
  115. */
  116. if (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_TIMER)
  117. __tcp_send_ack(sk, ca->prior_rcv_nxt);
  118. inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
  119. }
  120. ca->prior_rcv_nxt = tp->rcv_nxt;
  121. ca->ce_state = 1;
  122. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  123. }
  124. static void dctcp_ce_state_1_to_0(struct sock *sk)
  125. {
  126. struct dctcp *ca = inet_csk_ca(sk);
  127. struct tcp_sock *tp = tcp_sk(sk);
  128. if (ca->ce_state) {
  129. /* State has changed from CE=1 to CE=0, force an immediate
  130. * ACK to reflect the new CE state. If an ACK was delayed,
  131. * send that first to reflect the prior CE state.
  132. */
  133. if (inet_csk(sk)->icsk_ack.pending & ICSK_ACK_TIMER)
  134. __tcp_send_ack(sk, ca->prior_rcv_nxt);
  135. inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
  136. }
  137. ca->prior_rcv_nxt = tp->rcv_nxt;
  138. ca->ce_state = 0;
  139. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  140. }
  141. static void dctcp_update_alpha(struct sock *sk, u32 flags)
  142. {
  143. const struct tcp_sock *tp = tcp_sk(sk);
  144. struct dctcp *ca = inet_csk_ca(sk);
  145. u32 acked_bytes = tp->snd_una - ca->prior_snd_una;
  146. /* If ack did not advance snd_una, count dupack as MSS size.
  147. * If ack did update window, do not count it at all.
  148. */
  149. if (acked_bytes == 0 && !(flags & CA_ACK_WIN_UPDATE))
  150. acked_bytes = inet_csk(sk)->icsk_ack.rcv_mss;
  151. if (acked_bytes) {
  152. ca->acked_bytes_total += acked_bytes;
  153. ca->prior_snd_una = tp->snd_una;
  154. if (flags & CA_ACK_ECE)
  155. ca->acked_bytes_ecn += acked_bytes;
  156. }
  157. /* Expired RTT */
  158. if (!before(tp->snd_una, ca->next_seq)) {
  159. u64 bytes_ecn = ca->acked_bytes_ecn;
  160. u32 alpha = ca->dctcp_alpha;
  161. /* alpha = (1 - g) * alpha + g * F */
  162. alpha -= min_not_zero(alpha, alpha >> dctcp_shift_g);
  163. if (bytes_ecn) {
  164. /* If dctcp_shift_g == 1, a 32bit value would overflow
  165. * after 8 Mbytes.
  166. */
  167. bytes_ecn <<= (10 - dctcp_shift_g);
  168. do_div(bytes_ecn, max(1U, ca->acked_bytes_total));
  169. alpha = min(alpha + (u32)bytes_ecn, DCTCP_MAX_ALPHA);
  170. }
  171. /* dctcp_alpha can be read from dctcp_get_info() without
  172. * synchro, so we ask compiler to not use dctcp_alpha
  173. * as a temporary variable in prior operations.
  174. */
  175. WRITE_ONCE(ca->dctcp_alpha, alpha);
  176. dctcp_reset(tp, ca);
  177. }
  178. }
  179. static void dctcp_state(struct sock *sk, u8 new_state)
  180. {
  181. if (dctcp_clamp_alpha_on_loss && new_state == TCP_CA_Loss) {
  182. struct dctcp *ca = inet_csk_ca(sk);
  183. /* If this extension is enabled, we clamp dctcp_alpha to
  184. * max on packet loss; the motivation is that dctcp_alpha
  185. * is an indicator to the extend of congestion and packet
  186. * loss is an indicator of extreme congestion; setting
  187. * this in practice turned out to be beneficial, and
  188. * effectively assumes total congestion which reduces the
  189. * window by half.
  190. */
  191. ca->dctcp_alpha = DCTCP_MAX_ALPHA;
  192. }
  193. }
  194. static void dctcp_cwnd_event(struct sock *sk, enum tcp_ca_event ev)
  195. {
  196. switch (ev) {
  197. case CA_EVENT_ECN_IS_CE:
  198. dctcp_ce_state_0_to_1(sk);
  199. break;
  200. case CA_EVENT_ECN_NO_CE:
  201. dctcp_ce_state_1_to_0(sk);
  202. break;
  203. default:
  204. /* Don't care for the rest. */
  205. break;
  206. }
  207. }
  208. static size_t dctcp_get_info(struct sock *sk, u32 ext, int *attr,
  209. union tcp_cc_info *info)
  210. {
  211. const struct dctcp *ca = inet_csk_ca(sk);
  212. /* Fill it also in case of VEGASINFO due to req struct limits.
  213. * We can still correctly retrieve it later.
  214. */
  215. if (ext & (1 << (INET_DIAG_DCTCPINFO - 1)) ||
  216. ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
  217. memset(&info->dctcp, 0, sizeof(info->dctcp));
  218. if (inet_csk(sk)->icsk_ca_ops != &dctcp_reno) {
  219. info->dctcp.dctcp_enabled = 1;
  220. info->dctcp.dctcp_ce_state = (u16) ca->ce_state;
  221. info->dctcp.dctcp_alpha = ca->dctcp_alpha;
  222. info->dctcp.dctcp_ab_ecn = ca->acked_bytes_ecn;
  223. info->dctcp.dctcp_ab_tot = ca->acked_bytes_total;
  224. }
  225. *attr = INET_DIAG_DCTCPINFO;
  226. return sizeof(info->dctcp);
  227. }
  228. return 0;
  229. }
  230. static u32 dctcp_cwnd_undo(struct sock *sk)
  231. {
  232. const struct dctcp *ca = inet_csk_ca(sk);
  233. return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
  234. }
  235. static struct tcp_congestion_ops dctcp __read_mostly = {
  236. .init = dctcp_init,
  237. .in_ack_event = dctcp_update_alpha,
  238. .cwnd_event = dctcp_cwnd_event,
  239. .ssthresh = dctcp_ssthresh,
  240. .cong_avoid = tcp_reno_cong_avoid,
  241. .undo_cwnd = dctcp_cwnd_undo,
  242. .set_state = dctcp_state,
  243. .get_info = dctcp_get_info,
  244. .flags = TCP_CONG_NEEDS_ECN,
  245. .owner = THIS_MODULE,
  246. .name = "dctcp",
  247. };
  248. static struct tcp_congestion_ops dctcp_reno __read_mostly = {
  249. .ssthresh = tcp_reno_ssthresh,
  250. .cong_avoid = tcp_reno_cong_avoid,
  251. .undo_cwnd = tcp_reno_undo_cwnd,
  252. .get_info = dctcp_get_info,
  253. .owner = THIS_MODULE,
  254. .name = "dctcp-reno",
  255. };
  256. static int __init dctcp_register(void)
  257. {
  258. BUILD_BUG_ON(sizeof(struct dctcp) > ICSK_CA_PRIV_SIZE);
  259. return tcp_register_congestion_control(&dctcp);
  260. }
  261. static void __exit dctcp_unregister(void)
  262. {
  263. tcp_unregister_congestion_control(&dctcp);
  264. }
  265. module_init(dctcp_register);
  266. module_exit(dctcp_unregister);
  267. MODULE_AUTHOR("Daniel Borkmann <dborkman@redhat.com>");
  268. MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
  269. MODULE_AUTHOR("Glenn Judd <glenn.judd@morganstanley.com>");
  270. MODULE_LICENSE("GPL v2");
  271. MODULE_DESCRIPTION("DataCenter TCP (DCTCP)");