huge_memory.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <asm/tlb.h>
  35. #include <asm/pgalloc.h>
  36. #include "internal.h"
  37. /*
  38. * By default, transparent hugepage support is disabled in order to avoid
  39. * risking an increased memory footprint for applications that are not
  40. * guaranteed to benefit from it. When transparent hugepage support is
  41. * enabled, it is for all mappings, and khugepaged scans all mappings.
  42. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  43. * for all hugepage allocations.
  44. */
  45. unsigned long transparent_hugepage_flags __read_mostly =
  46. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  47. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  48. #endif
  49. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  50. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  51. #endif
  52. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  53. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  54. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  55. static struct shrinker deferred_split_shrinker;
  56. static atomic_t huge_zero_refcount;
  57. struct page *huge_zero_page __read_mostly;
  58. static struct page *get_huge_zero_page(void)
  59. {
  60. struct page *zero_page;
  61. retry:
  62. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  63. return READ_ONCE(huge_zero_page);
  64. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  65. HPAGE_PMD_ORDER);
  66. if (!zero_page) {
  67. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  68. return NULL;
  69. }
  70. count_vm_event(THP_ZERO_PAGE_ALLOC);
  71. preempt_disable();
  72. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  73. preempt_enable();
  74. __free_pages(zero_page, compound_order(zero_page));
  75. goto retry;
  76. }
  77. /* We take additional reference here. It will be put back by shrinker */
  78. atomic_set(&huge_zero_refcount, 2);
  79. preempt_enable();
  80. return READ_ONCE(huge_zero_page);
  81. }
  82. static void put_huge_zero_page(void)
  83. {
  84. /*
  85. * Counter should never go to zero here. Only shrinker can put
  86. * last reference.
  87. */
  88. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  89. }
  90. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  91. {
  92. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  93. return READ_ONCE(huge_zero_page);
  94. if (!get_huge_zero_page())
  95. return NULL;
  96. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  97. put_huge_zero_page();
  98. return READ_ONCE(huge_zero_page);
  99. }
  100. void mm_put_huge_zero_page(struct mm_struct *mm)
  101. {
  102. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  103. put_huge_zero_page();
  104. }
  105. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  106. struct shrink_control *sc)
  107. {
  108. /* we can free zero page only if last reference remains */
  109. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  110. }
  111. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  112. struct shrink_control *sc)
  113. {
  114. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  115. struct page *zero_page = xchg(&huge_zero_page, NULL);
  116. BUG_ON(zero_page == NULL);
  117. __free_pages(zero_page, compound_order(zero_page));
  118. return HPAGE_PMD_NR;
  119. }
  120. return 0;
  121. }
  122. static struct shrinker huge_zero_page_shrinker = {
  123. .count_objects = shrink_huge_zero_page_count,
  124. .scan_objects = shrink_huge_zero_page_scan,
  125. .seeks = DEFAULT_SEEKS,
  126. };
  127. #ifdef CONFIG_SYSFS
  128. static ssize_t enabled_show(struct kobject *kobj,
  129. struct kobj_attribute *attr, char *buf)
  130. {
  131. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  132. return sprintf(buf, "[always] madvise never\n");
  133. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  134. return sprintf(buf, "always [madvise] never\n");
  135. else
  136. return sprintf(buf, "always madvise [never]\n");
  137. }
  138. static ssize_t enabled_store(struct kobject *kobj,
  139. struct kobj_attribute *attr,
  140. const char *buf, size_t count)
  141. {
  142. ssize_t ret = count;
  143. if (!memcmp("always", buf,
  144. min(sizeof("always")-1, count))) {
  145. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  146. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  147. } else if (!memcmp("madvise", buf,
  148. min(sizeof("madvise")-1, count))) {
  149. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  150. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  151. } else if (!memcmp("never", buf,
  152. min(sizeof("never")-1, count))) {
  153. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  154. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  155. } else
  156. ret = -EINVAL;
  157. if (ret > 0) {
  158. int err = start_stop_khugepaged();
  159. if (err)
  160. ret = err;
  161. }
  162. return ret;
  163. }
  164. static struct kobj_attribute enabled_attr =
  165. __ATTR(enabled, 0644, enabled_show, enabled_store);
  166. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  167. struct kobj_attribute *attr, char *buf,
  168. enum transparent_hugepage_flag flag)
  169. {
  170. return sprintf(buf, "%d\n",
  171. !!test_bit(flag, &transparent_hugepage_flags));
  172. }
  173. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  174. struct kobj_attribute *attr,
  175. const char *buf, size_t count,
  176. enum transparent_hugepage_flag flag)
  177. {
  178. unsigned long value;
  179. int ret;
  180. ret = kstrtoul(buf, 10, &value);
  181. if (ret < 0)
  182. return ret;
  183. if (value > 1)
  184. return -EINVAL;
  185. if (value)
  186. set_bit(flag, &transparent_hugepage_flags);
  187. else
  188. clear_bit(flag, &transparent_hugepage_flags);
  189. return count;
  190. }
  191. static ssize_t defrag_show(struct kobject *kobj,
  192. struct kobj_attribute *attr, char *buf)
  193. {
  194. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  195. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  196. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  197. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  198. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  199. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  200. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  201. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  202. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  203. }
  204. static ssize_t defrag_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. if (!memcmp("always", buf,
  209. min(sizeof("always")-1, count))) {
  210. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  212. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  213. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  214. } else if (!memcmp("defer+madvise", buf,
  215. min(sizeof("defer+madvise")-1, count))) {
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  218. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  219. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  220. } else if (!memcmp("defer", buf,
  221. min(sizeof("defer")-1, count))) {
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  224. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  225. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  226. } else if (!memcmp("madvise", buf,
  227. min(sizeof("madvise")-1, count))) {
  228. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  230. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  231. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  232. } else if (!memcmp("never", buf,
  233. min(sizeof("never")-1, count))) {
  234. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  237. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  238. } else
  239. return -EINVAL;
  240. return count;
  241. }
  242. static struct kobj_attribute defrag_attr =
  243. __ATTR(defrag, 0644, defrag_show, defrag_store);
  244. static ssize_t use_zero_page_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return single_hugepage_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  249. }
  250. static ssize_t use_zero_page_store(struct kobject *kobj,
  251. struct kobj_attribute *attr, const char *buf, size_t count)
  252. {
  253. return single_hugepage_flag_store(kobj, attr, buf, count,
  254. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  255. }
  256. static struct kobj_attribute use_zero_page_attr =
  257. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  258. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  259. struct kobj_attribute *attr, char *buf)
  260. {
  261. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  262. }
  263. static struct kobj_attribute hpage_pmd_size_attr =
  264. __ATTR_RO(hpage_pmd_size);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_hugepage_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_hugepage_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. &use_zero_page_attr.attr,
  286. &hpage_pmd_size_attr.attr,
  287. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  288. &shmem_enabled_attr.attr,
  289. #endif
  290. #ifdef CONFIG_DEBUG_VM
  291. &debug_cow_attr.attr,
  292. #endif
  293. NULL,
  294. };
  295. static const struct attribute_group hugepage_attr_group = {
  296. .attrs = hugepage_attr,
  297. };
  298. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  299. {
  300. int err;
  301. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  302. if (unlikely(!*hugepage_kobj)) {
  303. pr_err("failed to create transparent hugepage kobject\n");
  304. return -ENOMEM;
  305. }
  306. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  307. if (err) {
  308. pr_err("failed to register transparent hugepage group\n");
  309. goto delete_obj;
  310. }
  311. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  312. if (err) {
  313. pr_err("failed to register transparent hugepage group\n");
  314. goto remove_hp_group;
  315. }
  316. return 0;
  317. remove_hp_group:
  318. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  319. delete_obj:
  320. kobject_put(*hugepage_kobj);
  321. return err;
  322. }
  323. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  324. {
  325. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  326. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  327. kobject_put(hugepage_kobj);
  328. }
  329. #else
  330. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  331. {
  332. return 0;
  333. }
  334. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  335. {
  336. }
  337. #endif /* CONFIG_SYSFS */
  338. static int __init hugepage_init(void)
  339. {
  340. int err;
  341. struct kobject *hugepage_kobj;
  342. if (!has_transparent_hugepage()) {
  343. transparent_hugepage_flags = 0;
  344. return -EINVAL;
  345. }
  346. /*
  347. * hugepages can't be allocated by the buddy allocator
  348. */
  349. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  350. /*
  351. * we use page->mapping and page->index in second tail page
  352. * as list_head: assuming THP order >= 2
  353. */
  354. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  355. err = hugepage_init_sysfs(&hugepage_kobj);
  356. if (err)
  357. goto err_sysfs;
  358. err = khugepaged_init();
  359. if (err)
  360. goto err_slab;
  361. err = register_shrinker(&huge_zero_page_shrinker);
  362. if (err)
  363. goto err_hzp_shrinker;
  364. err = register_shrinker(&deferred_split_shrinker);
  365. if (err)
  366. goto err_split_shrinker;
  367. /*
  368. * By default disable transparent hugepages on smaller systems,
  369. * where the extra memory used could hurt more than TLB overhead
  370. * is likely to save. The admin can still enable it through /sys.
  371. */
  372. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  373. transparent_hugepage_flags = 0;
  374. return 0;
  375. }
  376. err = start_stop_khugepaged();
  377. if (err)
  378. goto err_khugepaged;
  379. return 0;
  380. err_khugepaged:
  381. unregister_shrinker(&deferred_split_shrinker);
  382. err_split_shrinker:
  383. unregister_shrinker(&huge_zero_page_shrinker);
  384. err_hzp_shrinker:
  385. khugepaged_destroy();
  386. err_slab:
  387. hugepage_exit_sysfs(hugepage_kobj);
  388. err_sysfs:
  389. return err;
  390. }
  391. subsys_initcall(hugepage_init);
  392. static int __init setup_transparent_hugepage(char *str)
  393. {
  394. int ret = 0;
  395. if (!str)
  396. goto out;
  397. if (!strcmp(str, "always")) {
  398. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  399. &transparent_hugepage_flags);
  400. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  401. &transparent_hugepage_flags);
  402. ret = 1;
  403. } else if (!strcmp(str, "madvise")) {
  404. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  405. &transparent_hugepage_flags);
  406. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  407. &transparent_hugepage_flags);
  408. ret = 1;
  409. } else if (!strcmp(str, "never")) {
  410. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  411. &transparent_hugepage_flags);
  412. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  413. &transparent_hugepage_flags);
  414. ret = 1;
  415. }
  416. out:
  417. if (!ret)
  418. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  419. return ret;
  420. }
  421. __setup("transparent_hugepage=", setup_transparent_hugepage);
  422. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  423. {
  424. if (likely(vma->vm_flags & VM_WRITE))
  425. pmd = pmd_mkwrite(pmd);
  426. return pmd;
  427. }
  428. static inline struct list_head *page_deferred_list(struct page *page)
  429. {
  430. /* ->lru in the tail pages is occupied by compound_head. */
  431. return &page[2].deferred_list;
  432. }
  433. void prep_transhuge_page(struct page *page)
  434. {
  435. /*
  436. * we use page->mapping and page->indexlru in second tail page
  437. * as list_head: assuming THP order >= 2
  438. */
  439. INIT_LIST_HEAD(page_deferred_list(page));
  440. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  441. }
  442. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  443. loff_t off, unsigned long flags, unsigned long size)
  444. {
  445. unsigned long addr;
  446. loff_t off_end = off + len;
  447. loff_t off_align = round_up(off, size);
  448. unsigned long len_pad;
  449. if (off_end <= off_align || (off_end - off_align) < size)
  450. return 0;
  451. len_pad = len + size;
  452. if (len_pad < len || (off + len_pad) < off)
  453. return 0;
  454. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  455. off >> PAGE_SHIFT, flags);
  456. if (IS_ERR_VALUE(addr))
  457. return 0;
  458. addr += (off - addr) & (size - 1);
  459. return addr;
  460. }
  461. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  462. unsigned long len, unsigned long pgoff, unsigned long flags)
  463. {
  464. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  465. if (addr)
  466. goto out;
  467. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  468. goto out;
  469. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  470. if (addr)
  471. return addr;
  472. out:
  473. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  474. }
  475. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  476. static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
  477. struct page *page, gfp_t gfp)
  478. {
  479. struct vm_area_struct *vma = vmf->vma;
  480. struct mem_cgroup *memcg;
  481. pgtable_t pgtable;
  482. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  483. vm_fault_t ret = 0;
  484. VM_BUG_ON_PAGE(!PageCompound(page), page);
  485. if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
  486. put_page(page);
  487. count_vm_event(THP_FAULT_FALLBACK);
  488. return VM_FAULT_FALLBACK;
  489. }
  490. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  491. if (unlikely(!pgtable)) {
  492. ret = VM_FAULT_OOM;
  493. goto release;
  494. }
  495. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  496. /*
  497. * The memory barrier inside __SetPageUptodate makes sure that
  498. * clear_huge_page writes become visible before the set_pmd_at()
  499. * write.
  500. */
  501. __SetPageUptodate(page);
  502. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  503. if (unlikely(!pmd_none(*vmf->pmd))) {
  504. goto unlock_release;
  505. } else {
  506. pmd_t entry;
  507. ret = check_stable_address_space(vma->vm_mm);
  508. if (ret)
  509. goto unlock_release;
  510. /* Deliver the page fault to userland */
  511. if (userfaultfd_missing(vma)) {
  512. vm_fault_t ret2;
  513. spin_unlock(vmf->ptl);
  514. mem_cgroup_cancel_charge(page, memcg, true);
  515. put_page(page);
  516. pte_free(vma->vm_mm, pgtable);
  517. ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
  518. VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
  519. return ret2;
  520. }
  521. entry = mk_huge_pmd(page, vma->vm_page_prot);
  522. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  523. page_add_new_anon_rmap(page, vma, haddr, true);
  524. mem_cgroup_commit_charge(page, memcg, false, true);
  525. lru_cache_add_active_or_unevictable(page, vma);
  526. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  527. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  528. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  529. mm_inc_nr_ptes(vma->vm_mm);
  530. spin_unlock(vmf->ptl);
  531. count_vm_event(THP_FAULT_ALLOC);
  532. }
  533. return 0;
  534. unlock_release:
  535. spin_unlock(vmf->ptl);
  536. release:
  537. if (pgtable)
  538. pte_free(vma->vm_mm, pgtable);
  539. mem_cgroup_cancel_charge(page, memcg, true);
  540. put_page(page);
  541. return ret;
  542. }
  543. /*
  544. * always: directly stall for all thp allocations
  545. * defer: wake kswapd and fail if not immediately available
  546. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  547. * fail if not immediately available
  548. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  549. * available
  550. * never: never stall for any thp allocation
  551. */
  552. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  553. {
  554. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  555. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  556. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  557. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  558. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  559. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  560. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  561. __GFP_KSWAPD_RECLAIM);
  562. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  563. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  564. 0);
  565. return GFP_TRANSHUGE_LIGHT;
  566. }
  567. /* Caller must hold page table lock. */
  568. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  569. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  570. struct page *zero_page)
  571. {
  572. pmd_t entry;
  573. if (!pmd_none(*pmd))
  574. return false;
  575. entry = mk_pmd(zero_page, vma->vm_page_prot);
  576. entry = pmd_mkhuge(entry);
  577. if (pgtable)
  578. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  579. set_pmd_at(mm, haddr, pmd, entry);
  580. mm_inc_nr_ptes(mm);
  581. return true;
  582. }
  583. vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  584. {
  585. struct vm_area_struct *vma = vmf->vma;
  586. gfp_t gfp;
  587. struct page *page;
  588. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  589. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  590. return VM_FAULT_FALLBACK;
  591. if (unlikely(anon_vma_prepare(vma)))
  592. return VM_FAULT_OOM;
  593. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  594. return VM_FAULT_OOM;
  595. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  596. !mm_forbids_zeropage(vma->vm_mm) &&
  597. transparent_hugepage_use_zero_page()) {
  598. pgtable_t pgtable;
  599. struct page *zero_page;
  600. bool set;
  601. vm_fault_t ret;
  602. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  603. if (unlikely(!pgtable))
  604. return VM_FAULT_OOM;
  605. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  606. if (unlikely(!zero_page)) {
  607. pte_free(vma->vm_mm, pgtable);
  608. count_vm_event(THP_FAULT_FALLBACK);
  609. return VM_FAULT_FALLBACK;
  610. }
  611. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  612. ret = 0;
  613. set = false;
  614. if (pmd_none(*vmf->pmd)) {
  615. ret = check_stable_address_space(vma->vm_mm);
  616. if (ret) {
  617. spin_unlock(vmf->ptl);
  618. } else if (userfaultfd_missing(vma)) {
  619. spin_unlock(vmf->ptl);
  620. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  621. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  622. } else {
  623. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  624. haddr, vmf->pmd, zero_page);
  625. spin_unlock(vmf->ptl);
  626. set = true;
  627. }
  628. } else
  629. spin_unlock(vmf->ptl);
  630. if (!set)
  631. pte_free(vma->vm_mm, pgtable);
  632. return ret;
  633. }
  634. gfp = alloc_hugepage_direct_gfpmask(vma);
  635. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  636. if (unlikely(!page)) {
  637. count_vm_event(THP_FAULT_FALLBACK);
  638. return VM_FAULT_FALLBACK;
  639. }
  640. prep_transhuge_page(page);
  641. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  642. }
  643. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  644. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  645. pgtable_t pgtable)
  646. {
  647. struct mm_struct *mm = vma->vm_mm;
  648. pmd_t entry;
  649. spinlock_t *ptl;
  650. ptl = pmd_lock(mm, pmd);
  651. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  652. if (pfn_t_devmap(pfn))
  653. entry = pmd_mkdevmap(entry);
  654. if (write) {
  655. entry = pmd_mkyoung(pmd_mkdirty(entry));
  656. entry = maybe_pmd_mkwrite(entry, vma);
  657. }
  658. if (pgtable) {
  659. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  660. mm_inc_nr_ptes(mm);
  661. }
  662. set_pmd_at(mm, addr, pmd, entry);
  663. update_mmu_cache_pmd(vma, addr, pmd);
  664. spin_unlock(ptl);
  665. }
  666. vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  667. pmd_t *pmd, pfn_t pfn, bool write)
  668. {
  669. pgprot_t pgprot = vma->vm_page_prot;
  670. pgtable_t pgtable = NULL;
  671. /*
  672. * If we had pmd_special, we could avoid all these restrictions,
  673. * but we need to be consistent with PTEs and architectures that
  674. * can't support a 'special' bit.
  675. */
  676. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
  677. !pfn_t_devmap(pfn));
  678. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  679. (VM_PFNMAP|VM_MIXEDMAP));
  680. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  681. if (addr < vma->vm_start || addr >= vma->vm_end)
  682. return VM_FAULT_SIGBUS;
  683. if (arch_needs_pgtable_deposit()) {
  684. pgtable = pte_alloc_one(vma->vm_mm, addr);
  685. if (!pgtable)
  686. return VM_FAULT_OOM;
  687. }
  688. track_pfn_insert(vma, &pgprot, pfn);
  689. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
  690. return VM_FAULT_NOPAGE;
  691. }
  692. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  693. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  694. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  695. {
  696. if (likely(vma->vm_flags & VM_WRITE))
  697. pud = pud_mkwrite(pud);
  698. return pud;
  699. }
  700. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  701. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  702. {
  703. struct mm_struct *mm = vma->vm_mm;
  704. pud_t entry;
  705. spinlock_t *ptl;
  706. ptl = pud_lock(mm, pud);
  707. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  708. if (pfn_t_devmap(pfn))
  709. entry = pud_mkdevmap(entry);
  710. if (write) {
  711. entry = pud_mkyoung(pud_mkdirty(entry));
  712. entry = maybe_pud_mkwrite(entry, vma);
  713. }
  714. set_pud_at(mm, addr, pud, entry);
  715. update_mmu_cache_pud(vma, addr, pud);
  716. spin_unlock(ptl);
  717. }
  718. vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  719. pud_t *pud, pfn_t pfn, bool write)
  720. {
  721. pgprot_t pgprot = vma->vm_page_prot;
  722. /*
  723. * If we had pud_special, we could avoid all these restrictions,
  724. * but we need to be consistent with PTEs and architectures that
  725. * can't support a 'special' bit.
  726. */
  727. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  728. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  729. (VM_PFNMAP|VM_MIXEDMAP));
  730. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  731. BUG_ON(!pfn_t_devmap(pfn));
  732. if (addr < vma->vm_start || addr >= vma->vm_end)
  733. return VM_FAULT_SIGBUS;
  734. track_pfn_insert(vma, &pgprot, pfn);
  735. insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
  736. return VM_FAULT_NOPAGE;
  737. }
  738. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  739. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  740. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  741. pmd_t *pmd, int flags)
  742. {
  743. pmd_t _pmd;
  744. _pmd = pmd_mkyoung(*pmd);
  745. if (flags & FOLL_WRITE)
  746. _pmd = pmd_mkdirty(_pmd);
  747. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  748. pmd, _pmd, flags & FOLL_WRITE))
  749. update_mmu_cache_pmd(vma, addr, pmd);
  750. }
  751. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  752. pmd_t *pmd, int flags)
  753. {
  754. unsigned long pfn = pmd_pfn(*pmd);
  755. struct mm_struct *mm = vma->vm_mm;
  756. struct dev_pagemap *pgmap;
  757. struct page *page;
  758. assert_spin_locked(pmd_lockptr(mm, pmd));
  759. /*
  760. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  761. * not be in this function with `flags & FOLL_COW` set.
  762. */
  763. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  764. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  765. return NULL;
  766. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  767. /* pass */;
  768. else
  769. return NULL;
  770. if (flags & FOLL_TOUCH)
  771. touch_pmd(vma, addr, pmd, flags);
  772. /*
  773. * device mapped pages can only be returned if the
  774. * caller will manage the page reference count.
  775. */
  776. if (!(flags & FOLL_GET))
  777. return ERR_PTR(-EEXIST);
  778. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  779. pgmap = get_dev_pagemap(pfn, NULL);
  780. if (!pgmap)
  781. return ERR_PTR(-EFAULT);
  782. page = pfn_to_page(pfn);
  783. get_page(page);
  784. put_dev_pagemap(pgmap);
  785. return page;
  786. }
  787. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  788. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  789. struct vm_area_struct *vma)
  790. {
  791. spinlock_t *dst_ptl, *src_ptl;
  792. struct page *src_page;
  793. pmd_t pmd;
  794. pgtable_t pgtable = NULL;
  795. int ret = -ENOMEM;
  796. /* Skip if can be re-fill on fault */
  797. if (!vma_is_anonymous(vma))
  798. return 0;
  799. pgtable = pte_alloc_one(dst_mm, addr);
  800. if (unlikely(!pgtable))
  801. goto out;
  802. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  803. src_ptl = pmd_lockptr(src_mm, src_pmd);
  804. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  805. ret = -EAGAIN;
  806. pmd = *src_pmd;
  807. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  808. if (unlikely(is_swap_pmd(pmd))) {
  809. swp_entry_t entry = pmd_to_swp_entry(pmd);
  810. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  811. if (is_write_migration_entry(entry)) {
  812. make_migration_entry_read(&entry);
  813. pmd = swp_entry_to_pmd(entry);
  814. if (pmd_swp_soft_dirty(*src_pmd))
  815. pmd = pmd_swp_mksoft_dirty(pmd);
  816. set_pmd_at(src_mm, addr, src_pmd, pmd);
  817. }
  818. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  819. mm_inc_nr_ptes(dst_mm);
  820. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  821. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  822. ret = 0;
  823. goto out_unlock;
  824. }
  825. #endif
  826. if (unlikely(!pmd_trans_huge(pmd))) {
  827. pte_free(dst_mm, pgtable);
  828. goto out_unlock;
  829. }
  830. /*
  831. * When page table lock is held, the huge zero pmd should not be
  832. * under splitting since we don't split the page itself, only pmd to
  833. * a page table.
  834. */
  835. if (is_huge_zero_pmd(pmd)) {
  836. struct page *zero_page;
  837. /*
  838. * get_huge_zero_page() will never allocate a new page here,
  839. * since we already have a zero page to copy. It just takes a
  840. * reference.
  841. */
  842. zero_page = mm_get_huge_zero_page(dst_mm);
  843. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  844. zero_page);
  845. ret = 0;
  846. goto out_unlock;
  847. }
  848. src_page = pmd_page(pmd);
  849. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  850. get_page(src_page);
  851. page_dup_rmap(src_page, true);
  852. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  853. mm_inc_nr_ptes(dst_mm);
  854. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  855. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  856. pmd = pmd_mkold(pmd_wrprotect(pmd));
  857. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  858. ret = 0;
  859. out_unlock:
  860. spin_unlock(src_ptl);
  861. spin_unlock(dst_ptl);
  862. out:
  863. return ret;
  864. }
  865. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  866. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  867. pud_t *pud, int flags)
  868. {
  869. pud_t _pud;
  870. _pud = pud_mkyoung(*pud);
  871. if (flags & FOLL_WRITE)
  872. _pud = pud_mkdirty(_pud);
  873. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  874. pud, _pud, flags & FOLL_WRITE))
  875. update_mmu_cache_pud(vma, addr, pud);
  876. }
  877. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  878. pud_t *pud, int flags)
  879. {
  880. unsigned long pfn = pud_pfn(*pud);
  881. struct mm_struct *mm = vma->vm_mm;
  882. struct dev_pagemap *pgmap;
  883. struct page *page;
  884. assert_spin_locked(pud_lockptr(mm, pud));
  885. if (flags & FOLL_WRITE && !pud_write(*pud))
  886. return NULL;
  887. if (pud_present(*pud) && pud_devmap(*pud))
  888. /* pass */;
  889. else
  890. return NULL;
  891. if (flags & FOLL_TOUCH)
  892. touch_pud(vma, addr, pud, flags);
  893. /*
  894. * device mapped pages can only be returned if the
  895. * caller will manage the page reference count.
  896. */
  897. if (!(flags & FOLL_GET))
  898. return ERR_PTR(-EEXIST);
  899. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  900. pgmap = get_dev_pagemap(pfn, NULL);
  901. if (!pgmap)
  902. return ERR_PTR(-EFAULT);
  903. page = pfn_to_page(pfn);
  904. get_page(page);
  905. put_dev_pagemap(pgmap);
  906. return page;
  907. }
  908. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  909. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  910. struct vm_area_struct *vma)
  911. {
  912. spinlock_t *dst_ptl, *src_ptl;
  913. pud_t pud;
  914. int ret;
  915. dst_ptl = pud_lock(dst_mm, dst_pud);
  916. src_ptl = pud_lockptr(src_mm, src_pud);
  917. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  918. ret = -EAGAIN;
  919. pud = *src_pud;
  920. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  921. goto out_unlock;
  922. /*
  923. * When page table lock is held, the huge zero pud should not be
  924. * under splitting since we don't split the page itself, only pud to
  925. * a page table.
  926. */
  927. if (is_huge_zero_pud(pud)) {
  928. /* No huge zero pud yet */
  929. }
  930. pudp_set_wrprotect(src_mm, addr, src_pud);
  931. pud = pud_mkold(pud_wrprotect(pud));
  932. set_pud_at(dst_mm, addr, dst_pud, pud);
  933. ret = 0;
  934. out_unlock:
  935. spin_unlock(src_ptl);
  936. spin_unlock(dst_ptl);
  937. return ret;
  938. }
  939. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  940. {
  941. pud_t entry;
  942. unsigned long haddr;
  943. bool write = vmf->flags & FAULT_FLAG_WRITE;
  944. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  945. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  946. goto unlock;
  947. entry = pud_mkyoung(orig_pud);
  948. if (write)
  949. entry = pud_mkdirty(entry);
  950. haddr = vmf->address & HPAGE_PUD_MASK;
  951. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  952. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  953. unlock:
  954. spin_unlock(vmf->ptl);
  955. }
  956. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  957. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  958. {
  959. pmd_t entry;
  960. unsigned long haddr;
  961. bool write = vmf->flags & FAULT_FLAG_WRITE;
  962. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  963. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  964. goto unlock;
  965. entry = pmd_mkyoung(orig_pmd);
  966. if (write)
  967. entry = pmd_mkdirty(entry);
  968. haddr = vmf->address & HPAGE_PMD_MASK;
  969. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  970. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  971. unlock:
  972. spin_unlock(vmf->ptl);
  973. }
  974. static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
  975. pmd_t orig_pmd, struct page *page)
  976. {
  977. struct vm_area_struct *vma = vmf->vma;
  978. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  979. struct mem_cgroup *memcg;
  980. pgtable_t pgtable;
  981. pmd_t _pmd;
  982. int i;
  983. vm_fault_t ret = 0;
  984. struct page **pages;
  985. unsigned long mmun_start; /* For mmu_notifiers */
  986. unsigned long mmun_end; /* For mmu_notifiers */
  987. pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
  988. GFP_KERNEL);
  989. if (unlikely(!pages)) {
  990. ret |= VM_FAULT_OOM;
  991. goto out;
  992. }
  993. for (i = 0; i < HPAGE_PMD_NR; i++) {
  994. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  995. vmf->address, page_to_nid(page));
  996. if (unlikely(!pages[i] ||
  997. mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
  998. GFP_KERNEL, &memcg, false))) {
  999. if (pages[i])
  1000. put_page(pages[i]);
  1001. while (--i >= 0) {
  1002. memcg = (void *)page_private(pages[i]);
  1003. set_page_private(pages[i], 0);
  1004. mem_cgroup_cancel_charge(pages[i], memcg,
  1005. false);
  1006. put_page(pages[i]);
  1007. }
  1008. kfree(pages);
  1009. ret |= VM_FAULT_OOM;
  1010. goto out;
  1011. }
  1012. set_page_private(pages[i], (unsigned long)memcg);
  1013. }
  1014. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1015. copy_user_highpage(pages[i], page + i,
  1016. haddr + PAGE_SIZE * i, vma);
  1017. __SetPageUptodate(pages[i]);
  1018. cond_resched();
  1019. }
  1020. mmun_start = haddr;
  1021. mmun_end = haddr + HPAGE_PMD_SIZE;
  1022. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1023. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1024. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1025. goto out_free_pages;
  1026. VM_BUG_ON_PAGE(!PageHead(page), page);
  1027. /*
  1028. * Leave pmd empty until pte is filled note we must notify here as
  1029. * concurrent CPU thread might write to new page before the call to
  1030. * mmu_notifier_invalidate_range_end() happens which can lead to a
  1031. * device seeing memory write in different order than CPU.
  1032. *
  1033. * See Documentation/vm/mmu_notifier.rst
  1034. */
  1035. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1036. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1037. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1038. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1039. pte_t entry;
  1040. entry = mk_pte(pages[i], vma->vm_page_prot);
  1041. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1042. memcg = (void *)page_private(pages[i]);
  1043. set_page_private(pages[i], 0);
  1044. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1045. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1046. lru_cache_add_active_or_unevictable(pages[i], vma);
  1047. vmf->pte = pte_offset_map(&_pmd, haddr);
  1048. VM_BUG_ON(!pte_none(*vmf->pte));
  1049. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1050. pte_unmap(vmf->pte);
  1051. }
  1052. kfree(pages);
  1053. smp_wmb(); /* make pte visible before pmd */
  1054. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1055. page_remove_rmap(page, true);
  1056. spin_unlock(vmf->ptl);
  1057. /*
  1058. * No need to double call mmu_notifier->invalidate_range() callback as
  1059. * the above pmdp_huge_clear_flush_notify() did already call it.
  1060. */
  1061. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1062. mmun_end);
  1063. ret |= VM_FAULT_WRITE;
  1064. put_page(page);
  1065. out:
  1066. return ret;
  1067. out_free_pages:
  1068. spin_unlock(vmf->ptl);
  1069. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1070. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1071. memcg = (void *)page_private(pages[i]);
  1072. set_page_private(pages[i], 0);
  1073. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1074. put_page(pages[i]);
  1075. }
  1076. kfree(pages);
  1077. goto out;
  1078. }
  1079. vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1080. {
  1081. struct vm_area_struct *vma = vmf->vma;
  1082. struct page *page = NULL, *new_page;
  1083. struct mem_cgroup *memcg;
  1084. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1085. unsigned long mmun_start; /* For mmu_notifiers */
  1086. unsigned long mmun_end; /* For mmu_notifiers */
  1087. gfp_t huge_gfp; /* for allocation and charge */
  1088. vm_fault_t ret = 0;
  1089. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1090. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1091. if (is_huge_zero_pmd(orig_pmd))
  1092. goto alloc;
  1093. spin_lock(vmf->ptl);
  1094. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1095. goto out_unlock;
  1096. page = pmd_page(orig_pmd);
  1097. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1098. /*
  1099. * We can only reuse the page if nobody else maps the huge page or it's
  1100. * part.
  1101. */
  1102. if (!trylock_page(page)) {
  1103. get_page(page);
  1104. spin_unlock(vmf->ptl);
  1105. lock_page(page);
  1106. spin_lock(vmf->ptl);
  1107. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1108. unlock_page(page);
  1109. put_page(page);
  1110. goto out_unlock;
  1111. }
  1112. put_page(page);
  1113. }
  1114. if (reuse_swap_page(page, NULL)) {
  1115. pmd_t entry;
  1116. entry = pmd_mkyoung(orig_pmd);
  1117. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1118. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1119. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1120. ret |= VM_FAULT_WRITE;
  1121. unlock_page(page);
  1122. goto out_unlock;
  1123. }
  1124. unlock_page(page);
  1125. get_page(page);
  1126. spin_unlock(vmf->ptl);
  1127. alloc:
  1128. if (transparent_hugepage_enabled(vma) &&
  1129. !transparent_hugepage_debug_cow()) {
  1130. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1131. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1132. } else
  1133. new_page = NULL;
  1134. if (likely(new_page)) {
  1135. prep_transhuge_page(new_page);
  1136. } else {
  1137. if (!page) {
  1138. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1139. ret |= VM_FAULT_FALLBACK;
  1140. } else {
  1141. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1142. if (ret & VM_FAULT_OOM) {
  1143. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1144. ret |= VM_FAULT_FALLBACK;
  1145. }
  1146. put_page(page);
  1147. }
  1148. count_vm_event(THP_FAULT_FALLBACK);
  1149. goto out;
  1150. }
  1151. if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
  1152. huge_gfp, &memcg, true))) {
  1153. put_page(new_page);
  1154. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1155. if (page)
  1156. put_page(page);
  1157. ret |= VM_FAULT_FALLBACK;
  1158. count_vm_event(THP_FAULT_FALLBACK);
  1159. goto out;
  1160. }
  1161. count_vm_event(THP_FAULT_ALLOC);
  1162. if (!page)
  1163. clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
  1164. else
  1165. copy_user_huge_page(new_page, page, vmf->address,
  1166. vma, HPAGE_PMD_NR);
  1167. __SetPageUptodate(new_page);
  1168. mmun_start = haddr;
  1169. mmun_end = haddr + HPAGE_PMD_SIZE;
  1170. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1171. spin_lock(vmf->ptl);
  1172. if (page)
  1173. put_page(page);
  1174. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1175. spin_unlock(vmf->ptl);
  1176. mem_cgroup_cancel_charge(new_page, memcg, true);
  1177. put_page(new_page);
  1178. goto out_mn;
  1179. } else {
  1180. pmd_t entry;
  1181. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1182. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1183. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1184. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1185. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1186. lru_cache_add_active_or_unevictable(new_page, vma);
  1187. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1188. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1189. if (!page) {
  1190. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1191. } else {
  1192. VM_BUG_ON_PAGE(!PageHead(page), page);
  1193. page_remove_rmap(page, true);
  1194. put_page(page);
  1195. }
  1196. ret |= VM_FAULT_WRITE;
  1197. }
  1198. spin_unlock(vmf->ptl);
  1199. out_mn:
  1200. /*
  1201. * No need to double call mmu_notifier->invalidate_range() callback as
  1202. * the above pmdp_huge_clear_flush_notify() did already call it.
  1203. */
  1204. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1205. mmun_end);
  1206. out:
  1207. return ret;
  1208. out_unlock:
  1209. spin_unlock(vmf->ptl);
  1210. return ret;
  1211. }
  1212. /*
  1213. * FOLL_FORCE can write to even unwritable pmd's, but only
  1214. * after we've gone through a COW cycle and they are dirty.
  1215. */
  1216. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1217. {
  1218. return pmd_write(pmd) ||
  1219. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1220. }
  1221. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1222. unsigned long addr,
  1223. pmd_t *pmd,
  1224. unsigned int flags)
  1225. {
  1226. struct mm_struct *mm = vma->vm_mm;
  1227. struct page *page = NULL;
  1228. assert_spin_locked(pmd_lockptr(mm, pmd));
  1229. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1230. goto out;
  1231. /* Avoid dumping huge zero page */
  1232. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1233. return ERR_PTR(-EFAULT);
  1234. /* Full NUMA hinting faults to serialise migration in fault paths */
  1235. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1236. goto out;
  1237. page = pmd_page(*pmd);
  1238. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1239. if (flags & FOLL_TOUCH)
  1240. touch_pmd(vma, addr, pmd, flags);
  1241. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1242. /*
  1243. * We don't mlock() pte-mapped THPs. This way we can avoid
  1244. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1245. *
  1246. * For anon THP:
  1247. *
  1248. * In most cases the pmd is the only mapping of the page as we
  1249. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1250. * writable private mappings in populate_vma_page_range().
  1251. *
  1252. * The only scenario when we have the page shared here is if we
  1253. * mlocking read-only mapping shared over fork(). We skip
  1254. * mlocking such pages.
  1255. *
  1256. * For file THP:
  1257. *
  1258. * We can expect PageDoubleMap() to be stable under page lock:
  1259. * for file pages we set it in page_add_file_rmap(), which
  1260. * requires page to be locked.
  1261. */
  1262. if (PageAnon(page) && compound_mapcount(page) != 1)
  1263. goto skip_mlock;
  1264. if (PageDoubleMap(page) || !page->mapping)
  1265. goto skip_mlock;
  1266. if (!trylock_page(page))
  1267. goto skip_mlock;
  1268. lru_add_drain();
  1269. if (page->mapping && !PageDoubleMap(page))
  1270. mlock_vma_page(page);
  1271. unlock_page(page);
  1272. }
  1273. skip_mlock:
  1274. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1275. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1276. if (flags & FOLL_GET)
  1277. get_page(page);
  1278. out:
  1279. return page;
  1280. }
  1281. /* NUMA hinting page fault entry point for trans huge pmds */
  1282. vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1283. {
  1284. struct vm_area_struct *vma = vmf->vma;
  1285. struct anon_vma *anon_vma = NULL;
  1286. struct page *page;
  1287. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1288. int page_nid = -1, this_nid = numa_node_id();
  1289. int target_nid, last_cpupid = -1;
  1290. bool page_locked;
  1291. bool migrated = false;
  1292. bool was_writable;
  1293. int flags = 0;
  1294. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1295. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1296. goto out_unlock;
  1297. /*
  1298. * If there are potential migrations, wait for completion and retry
  1299. * without disrupting NUMA hinting information. Do not relock and
  1300. * check_same as the page may no longer be mapped.
  1301. */
  1302. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1303. page = pmd_page(*vmf->pmd);
  1304. if (!get_page_unless_zero(page))
  1305. goto out_unlock;
  1306. spin_unlock(vmf->ptl);
  1307. wait_on_page_locked(page);
  1308. put_page(page);
  1309. goto out;
  1310. }
  1311. page = pmd_page(pmd);
  1312. BUG_ON(is_huge_zero_page(page));
  1313. page_nid = page_to_nid(page);
  1314. last_cpupid = page_cpupid_last(page);
  1315. count_vm_numa_event(NUMA_HINT_FAULTS);
  1316. if (page_nid == this_nid) {
  1317. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1318. flags |= TNF_FAULT_LOCAL;
  1319. }
  1320. /* See similar comment in do_numa_page for explanation */
  1321. if (!pmd_savedwrite(pmd))
  1322. flags |= TNF_NO_GROUP;
  1323. /*
  1324. * Acquire the page lock to serialise THP migrations but avoid dropping
  1325. * page_table_lock if at all possible
  1326. */
  1327. page_locked = trylock_page(page);
  1328. target_nid = mpol_misplaced(page, vma, haddr);
  1329. if (target_nid == -1) {
  1330. /* If the page was locked, there are no parallel migrations */
  1331. if (page_locked)
  1332. goto clear_pmdnuma;
  1333. }
  1334. /* Migration could have started since the pmd_trans_migrating check */
  1335. if (!page_locked) {
  1336. page_nid = -1;
  1337. if (!get_page_unless_zero(page))
  1338. goto out_unlock;
  1339. spin_unlock(vmf->ptl);
  1340. wait_on_page_locked(page);
  1341. put_page(page);
  1342. goto out;
  1343. }
  1344. /*
  1345. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1346. * to serialises splits
  1347. */
  1348. get_page(page);
  1349. spin_unlock(vmf->ptl);
  1350. anon_vma = page_lock_anon_vma_read(page);
  1351. /* Confirm the PMD did not change while page_table_lock was released */
  1352. spin_lock(vmf->ptl);
  1353. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1354. unlock_page(page);
  1355. put_page(page);
  1356. page_nid = -1;
  1357. goto out_unlock;
  1358. }
  1359. /* Bail if we fail to protect against THP splits for any reason */
  1360. if (unlikely(!anon_vma)) {
  1361. put_page(page);
  1362. page_nid = -1;
  1363. goto clear_pmdnuma;
  1364. }
  1365. /*
  1366. * Since we took the NUMA fault, we must have observed the !accessible
  1367. * bit. Make sure all other CPUs agree with that, to avoid them
  1368. * modifying the page we're about to migrate.
  1369. *
  1370. * Must be done under PTL such that we'll observe the relevant
  1371. * inc_tlb_flush_pending().
  1372. *
  1373. * We are not sure a pending tlb flush here is for a huge page
  1374. * mapping or not. Hence use the tlb range variant
  1375. */
  1376. if (mm_tlb_flush_pending(vma->vm_mm))
  1377. flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
  1378. /*
  1379. * Migrate the THP to the requested node, returns with page unlocked
  1380. * and access rights restored.
  1381. */
  1382. spin_unlock(vmf->ptl);
  1383. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1384. vmf->pmd, pmd, vmf->address, page, target_nid);
  1385. if (migrated) {
  1386. flags |= TNF_MIGRATED;
  1387. page_nid = target_nid;
  1388. } else
  1389. flags |= TNF_MIGRATE_FAIL;
  1390. goto out;
  1391. clear_pmdnuma:
  1392. BUG_ON(!PageLocked(page));
  1393. was_writable = pmd_savedwrite(pmd);
  1394. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1395. pmd = pmd_mkyoung(pmd);
  1396. if (was_writable)
  1397. pmd = pmd_mkwrite(pmd);
  1398. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1399. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1400. unlock_page(page);
  1401. out_unlock:
  1402. spin_unlock(vmf->ptl);
  1403. out:
  1404. if (anon_vma)
  1405. page_unlock_anon_vma_read(anon_vma);
  1406. if (page_nid != -1)
  1407. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1408. flags);
  1409. return 0;
  1410. }
  1411. /*
  1412. * Return true if we do MADV_FREE successfully on entire pmd page.
  1413. * Otherwise, return false.
  1414. */
  1415. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1416. pmd_t *pmd, unsigned long addr, unsigned long next)
  1417. {
  1418. spinlock_t *ptl;
  1419. pmd_t orig_pmd;
  1420. struct page *page;
  1421. struct mm_struct *mm = tlb->mm;
  1422. bool ret = false;
  1423. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1424. ptl = pmd_trans_huge_lock(pmd, vma);
  1425. if (!ptl)
  1426. goto out_unlocked;
  1427. orig_pmd = *pmd;
  1428. if (is_huge_zero_pmd(orig_pmd))
  1429. goto out;
  1430. if (unlikely(!pmd_present(orig_pmd))) {
  1431. VM_BUG_ON(thp_migration_supported() &&
  1432. !is_pmd_migration_entry(orig_pmd));
  1433. goto out;
  1434. }
  1435. page = pmd_page(orig_pmd);
  1436. /*
  1437. * If other processes are mapping this page, we couldn't discard
  1438. * the page unless they all do MADV_FREE so let's skip the page.
  1439. */
  1440. if (page_mapcount(page) != 1)
  1441. goto out;
  1442. if (!trylock_page(page))
  1443. goto out;
  1444. /*
  1445. * If user want to discard part-pages of THP, split it so MADV_FREE
  1446. * will deactivate only them.
  1447. */
  1448. if (next - addr != HPAGE_PMD_SIZE) {
  1449. get_page(page);
  1450. spin_unlock(ptl);
  1451. split_huge_page(page);
  1452. unlock_page(page);
  1453. put_page(page);
  1454. goto out_unlocked;
  1455. }
  1456. if (PageDirty(page))
  1457. ClearPageDirty(page);
  1458. unlock_page(page);
  1459. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1460. pmdp_invalidate(vma, addr, pmd);
  1461. orig_pmd = pmd_mkold(orig_pmd);
  1462. orig_pmd = pmd_mkclean(orig_pmd);
  1463. set_pmd_at(mm, addr, pmd, orig_pmd);
  1464. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1465. }
  1466. mark_page_lazyfree(page);
  1467. ret = true;
  1468. out:
  1469. spin_unlock(ptl);
  1470. out_unlocked:
  1471. return ret;
  1472. }
  1473. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1474. {
  1475. pgtable_t pgtable;
  1476. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1477. pte_free(mm, pgtable);
  1478. mm_dec_nr_ptes(mm);
  1479. }
  1480. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1481. pmd_t *pmd, unsigned long addr)
  1482. {
  1483. pmd_t orig_pmd;
  1484. spinlock_t *ptl;
  1485. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1486. ptl = __pmd_trans_huge_lock(pmd, vma);
  1487. if (!ptl)
  1488. return 0;
  1489. /*
  1490. * For architectures like ppc64 we look at deposited pgtable
  1491. * when calling pmdp_huge_get_and_clear. So do the
  1492. * pgtable_trans_huge_withdraw after finishing pmdp related
  1493. * operations.
  1494. */
  1495. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1496. tlb->fullmm);
  1497. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1498. if (vma_is_dax(vma)) {
  1499. if (arch_needs_pgtable_deposit())
  1500. zap_deposited_table(tlb->mm, pmd);
  1501. spin_unlock(ptl);
  1502. if (is_huge_zero_pmd(orig_pmd))
  1503. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1504. } else if (is_huge_zero_pmd(orig_pmd)) {
  1505. zap_deposited_table(tlb->mm, pmd);
  1506. spin_unlock(ptl);
  1507. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1508. } else {
  1509. struct page *page = NULL;
  1510. int flush_needed = 1;
  1511. if (pmd_present(orig_pmd)) {
  1512. page = pmd_page(orig_pmd);
  1513. page_remove_rmap(page, true);
  1514. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1515. VM_BUG_ON_PAGE(!PageHead(page), page);
  1516. } else if (thp_migration_supported()) {
  1517. swp_entry_t entry;
  1518. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1519. entry = pmd_to_swp_entry(orig_pmd);
  1520. page = pfn_to_page(swp_offset(entry));
  1521. flush_needed = 0;
  1522. } else
  1523. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1524. if (PageAnon(page)) {
  1525. zap_deposited_table(tlb->mm, pmd);
  1526. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1527. } else {
  1528. if (arch_needs_pgtable_deposit())
  1529. zap_deposited_table(tlb->mm, pmd);
  1530. add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1531. }
  1532. spin_unlock(ptl);
  1533. if (flush_needed)
  1534. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1535. }
  1536. return 1;
  1537. }
  1538. #ifndef pmd_move_must_withdraw
  1539. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1540. spinlock_t *old_pmd_ptl,
  1541. struct vm_area_struct *vma)
  1542. {
  1543. /*
  1544. * With split pmd lock we also need to move preallocated
  1545. * PTE page table if new_pmd is on different PMD page table.
  1546. *
  1547. * We also don't deposit and withdraw tables for file pages.
  1548. */
  1549. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1550. }
  1551. #endif
  1552. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1553. {
  1554. #ifdef CONFIG_MEM_SOFT_DIRTY
  1555. if (unlikely(is_pmd_migration_entry(pmd)))
  1556. pmd = pmd_swp_mksoft_dirty(pmd);
  1557. else if (pmd_present(pmd))
  1558. pmd = pmd_mksoft_dirty(pmd);
  1559. #endif
  1560. return pmd;
  1561. }
  1562. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1563. unsigned long new_addr, unsigned long old_end,
  1564. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1565. {
  1566. spinlock_t *old_ptl, *new_ptl;
  1567. pmd_t pmd;
  1568. struct mm_struct *mm = vma->vm_mm;
  1569. bool force_flush = false;
  1570. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1571. (new_addr & ~HPAGE_PMD_MASK) ||
  1572. old_end - old_addr < HPAGE_PMD_SIZE)
  1573. return false;
  1574. /*
  1575. * The destination pmd shouldn't be established, free_pgtables()
  1576. * should have release it.
  1577. */
  1578. if (WARN_ON(!pmd_none(*new_pmd))) {
  1579. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1580. return false;
  1581. }
  1582. /*
  1583. * We don't have to worry about the ordering of src and dst
  1584. * ptlocks because exclusive mmap_sem prevents deadlock.
  1585. */
  1586. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1587. if (old_ptl) {
  1588. new_ptl = pmd_lockptr(mm, new_pmd);
  1589. if (new_ptl != old_ptl)
  1590. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1591. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1592. if (pmd_present(pmd) && pmd_dirty(pmd))
  1593. force_flush = true;
  1594. VM_BUG_ON(!pmd_none(*new_pmd));
  1595. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1596. pgtable_t pgtable;
  1597. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1598. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1599. }
  1600. pmd = move_soft_dirty_pmd(pmd);
  1601. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1602. if (new_ptl != old_ptl)
  1603. spin_unlock(new_ptl);
  1604. if (force_flush)
  1605. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1606. else
  1607. *need_flush = true;
  1608. spin_unlock(old_ptl);
  1609. return true;
  1610. }
  1611. return false;
  1612. }
  1613. /*
  1614. * Returns
  1615. * - 0 if PMD could not be locked
  1616. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1617. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1618. */
  1619. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1620. unsigned long addr, pgprot_t newprot, int prot_numa)
  1621. {
  1622. struct mm_struct *mm = vma->vm_mm;
  1623. spinlock_t *ptl;
  1624. pmd_t entry;
  1625. bool preserve_write;
  1626. int ret;
  1627. ptl = __pmd_trans_huge_lock(pmd, vma);
  1628. if (!ptl)
  1629. return 0;
  1630. preserve_write = prot_numa && pmd_write(*pmd);
  1631. ret = 1;
  1632. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1633. if (is_swap_pmd(*pmd)) {
  1634. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1635. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1636. if (is_write_migration_entry(entry)) {
  1637. pmd_t newpmd;
  1638. /*
  1639. * A protection check is difficult so
  1640. * just be safe and disable write
  1641. */
  1642. make_migration_entry_read(&entry);
  1643. newpmd = swp_entry_to_pmd(entry);
  1644. if (pmd_swp_soft_dirty(*pmd))
  1645. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1646. set_pmd_at(mm, addr, pmd, newpmd);
  1647. }
  1648. goto unlock;
  1649. }
  1650. #endif
  1651. /*
  1652. * Avoid trapping faults against the zero page. The read-only
  1653. * data is likely to be read-cached on the local CPU and
  1654. * local/remote hits to the zero page are not interesting.
  1655. */
  1656. if (prot_numa && is_huge_zero_pmd(*pmd))
  1657. goto unlock;
  1658. if (prot_numa && pmd_protnone(*pmd))
  1659. goto unlock;
  1660. /*
  1661. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1662. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1663. * which is also under down_read(mmap_sem):
  1664. *
  1665. * CPU0: CPU1:
  1666. * change_huge_pmd(prot_numa=1)
  1667. * pmdp_huge_get_and_clear_notify()
  1668. * madvise_dontneed()
  1669. * zap_pmd_range()
  1670. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1671. * // skip the pmd
  1672. * set_pmd_at();
  1673. * // pmd is re-established
  1674. *
  1675. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1676. * which may break userspace.
  1677. *
  1678. * pmdp_invalidate() is required to make sure we don't miss
  1679. * dirty/young flags set by hardware.
  1680. */
  1681. entry = pmdp_invalidate(vma, addr, pmd);
  1682. entry = pmd_modify(entry, newprot);
  1683. if (preserve_write)
  1684. entry = pmd_mk_savedwrite(entry);
  1685. ret = HPAGE_PMD_NR;
  1686. set_pmd_at(mm, addr, pmd, entry);
  1687. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1688. unlock:
  1689. spin_unlock(ptl);
  1690. return ret;
  1691. }
  1692. /*
  1693. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1694. *
  1695. * Note that if it returns page table lock pointer, this routine returns without
  1696. * unlocking page table lock. So callers must unlock it.
  1697. */
  1698. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1699. {
  1700. spinlock_t *ptl;
  1701. ptl = pmd_lock(vma->vm_mm, pmd);
  1702. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1703. pmd_devmap(*pmd)))
  1704. return ptl;
  1705. spin_unlock(ptl);
  1706. return NULL;
  1707. }
  1708. /*
  1709. * Returns true if a given pud maps a thp, false otherwise.
  1710. *
  1711. * Note that if it returns true, this routine returns without unlocking page
  1712. * table lock. So callers must unlock it.
  1713. */
  1714. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1715. {
  1716. spinlock_t *ptl;
  1717. ptl = pud_lock(vma->vm_mm, pud);
  1718. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1719. return ptl;
  1720. spin_unlock(ptl);
  1721. return NULL;
  1722. }
  1723. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1724. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1725. pud_t *pud, unsigned long addr)
  1726. {
  1727. pud_t orig_pud;
  1728. spinlock_t *ptl;
  1729. ptl = __pud_trans_huge_lock(pud, vma);
  1730. if (!ptl)
  1731. return 0;
  1732. /*
  1733. * For architectures like ppc64 we look at deposited pgtable
  1734. * when calling pudp_huge_get_and_clear. So do the
  1735. * pgtable_trans_huge_withdraw after finishing pudp related
  1736. * operations.
  1737. */
  1738. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1739. tlb->fullmm);
  1740. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1741. if (vma_is_dax(vma)) {
  1742. spin_unlock(ptl);
  1743. /* No zero page support yet */
  1744. } else {
  1745. /* No support for anonymous PUD pages yet */
  1746. BUG();
  1747. }
  1748. return 1;
  1749. }
  1750. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1751. unsigned long haddr)
  1752. {
  1753. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1754. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1755. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1756. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1757. count_vm_event(THP_SPLIT_PUD);
  1758. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1759. }
  1760. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1761. unsigned long address)
  1762. {
  1763. spinlock_t *ptl;
  1764. struct mm_struct *mm = vma->vm_mm;
  1765. unsigned long haddr = address & HPAGE_PUD_MASK;
  1766. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1767. ptl = pud_lock(mm, pud);
  1768. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1769. goto out;
  1770. __split_huge_pud_locked(vma, pud, haddr);
  1771. out:
  1772. spin_unlock(ptl);
  1773. /*
  1774. * No need to double call mmu_notifier->invalidate_range() callback as
  1775. * the above pudp_huge_clear_flush_notify() did already call it.
  1776. */
  1777. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1778. HPAGE_PUD_SIZE);
  1779. }
  1780. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1781. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1782. unsigned long haddr, pmd_t *pmd)
  1783. {
  1784. struct mm_struct *mm = vma->vm_mm;
  1785. pgtable_t pgtable;
  1786. pmd_t _pmd;
  1787. int i;
  1788. /*
  1789. * Leave pmd empty until pte is filled note that it is fine to delay
  1790. * notification until mmu_notifier_invalidate_range_end() as we are
  1791. * replacing a zero pmd write protected page with a zero pte write
  1792. * protected page.
  1793. *
  1794. * See Documentation/vm/mmu_notifier.rst
  1795. */
  1796. pmdp_huge_clear_flush(vma, haddr, pmd);
  1797. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1798. pmd_populate(mm, &_pmd, pgtable);
  1799. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1800. pte_t *pte, entry;
  1801. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1802. entry = pte_mkspecial(entry);
  1803. pte = pte_offset_map(&_pmd, haddr);
  1804. VM_BUG_ON(!pte_none(*pte));
  1805. set_pte_at(mm, haddr, pte, entry);
  1806. pte_unmap(pte);
  1807. }
  1808. smp_wmb(); /* make pte visible before pmd */
  1809. pmd_populate(mm, pmd, pgtable);
  1810. }
  1811. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1812. unsigned long haddr, bool freeze)
  1813. {
  1814. struct mm_struct *mm = vma->vm_mm;
  1815. struct page *page;
  1816. pgtable_t pgtable;
  1817. pmd_t old_pmd, _pmd;
  1818. bool young, write, soft_dirty, pmd_migration = false;
  1819. unsigned long addr;
  1820. int i;
  1821. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1822. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1823. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1824. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1825. && !pmd_devmap(*pmd));
  1826. count_vm_event(THP_SPLIT_PMD);
  1827. if (!vma_is_anonymous(vma)) {
  1828. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1829. /*
  1830. * We are going to unmap this huge page. So
  1831. * just go ahead and zap it
  1832. */
  1833. if (arch_needs_pgtable_deposit())
  1834. zap_deposited_table(mm, pmd);
  1835. if (vma_is_dax(vma))
  1836. return;
  1837. page = pmd_page(_pmd);
  1838. if (!PageDirty(page) && pmd_dirty(_pmd))
  1839. set_page_dirty(page);
  1840. if (!PageReferenced(page) && pmd_young(_pmd))
  1841. SetPageReferenced(page);
  1842. page_remove_rmap(page, true);
  1843. put_page(page);
  1844. add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
  1845. return;
  1846. } else if (is_huge_zero_pmd(*pmd)) {
  1847. /*
  1848. * FIXME: Do we want to invalidate secondary mmu by calling
  1849. * mmu_notifier_invalidate_range() see comments below inside
  1850. * __split_huge_pmd() ?
  1851. *
  1852. * We are going from a zero huge page write protected to zero
  1853. * small page also write protected so it does not seems useful
  1854. * to invalidate secondary mmu at this time.
  1855. */
  1856. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1857. }
  1858. /*
  1859. * Up to this point the pmd is present and huge and userland has the
  1860. * whole access to the hugepage during the split (which happens in
  1861. * place). If we overwrite the pmd with the not-huge version pointing
  1862. * to the pte here (which of course we could if all CPUs were bug
  1863. * free), userland could trigger a small page size TLB miss on the
  1864. * small sized TLB while the hugepage TLB entry is still established in
  1865. * the huge TLB. Some CPU doesn't like that.
  1866. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1867. * 383 on page 93. Intel should be safe but is also warns that it's
  1868. * only safe if the permission and cache attributes of the two entries
  1869. * loaded in the two TLB is identical (which should be the case here).
  1870. * But it is generally safer to never allow small and huge TLB entries
  1871. * for the same virtual address to be loaded simultaneously. So instead
  1872. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1873. * current pmd notpresent (atomically because here the pmd_trans_huge
  1874. * must remain set at all times on the pmd until the split is complete
  1875. * for this pmd), then we flush the SMP TLB and finally we write the
  1876. * non-huge version of the pmd entry with pmd_populate.
  1877. */
  1878. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1879. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1880. pmd_migration = is_pmd_migration_entry(old_pmd);
  1881. if (pmd_migration) {
  1882. swp_entry_t entry;
  1883. entry = pmd_to_swp_entry(old_pmd);
  1884. page = pfn_to_page(swp_offset(entry));
  1885. } else
  1886. #endif
  1887. page = pmd_page(old_pmd);
  1888. VM_BUG_ON_PAGE(!page_count(page), page);
  1889. page_ref_add(page, HPAGE_PMD_NR - 1);
  1890. if (pmd_dirty(old_pmd))
  1891. SetPageDirty(page);
  1892. write = pmd_write(old_pmd);
  1893. young = pmd_young(old_pmd);
  1894. soft_dirty = pmd_soft_dirty(old_pmd);
  1895. /*
  1896. * Withdraw the table only after we mark the pmd entry invalid.
  1897. * This's critical for some architectures (Power).
  1898. */
  1899. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1900. pmd_populate(mm, &_pmd, pgtable);
  1901. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1902. pte_t entry, *pte;
  1903. /*
  1904. * Note that NUMA hinting access restrictions are not
  1905. * transferred to avoid any possibility of altering
  1906. * permissions across VMAs.
  1907. */
  1908. if (freeze || pmd_migration) {
  1909. swp_entry_t swp_entry;
  1910. swp_entry = make_migration_entry(page + i, write);
  1911. entry = swp_entry_to_pte(swp_entry);
  1912. if (soft_dirty)
  1913. entry = pte_swp_mksoft_dirty(entry);
  1914. } else {
  1915. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1916. entry = maybe_mkwrite(entry, vma);
  1917. if (!write)
  1918. entry = pte_wrprotect(entry);
  1919. if (!young)
  1920. entry = pte_mkold(entry);
  1921. if (soft_dirty)
  1922. entry = pte_mksoft_dirty(entry);
  1923. }
  1924. pte = pte_offset_map(&_pmd, addr);
  1925. BUG_ON(!pte_none(*pte));
  1926. set_pte_at(mm, addr, pte, entry);
  1927. atomic_inc(&page[i]._mapcount);
  1928. pte_unmap(pte);
  1929. }
  1930. /*
  1931. * Set PG_double_map before dropping compound_mapcount to avoid
  1932. * false-negative page_mapped().
  1933. */
  1934. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1935. for (i = 0; i < HPAGE_PMD_NR; i++)
  1936. atomic_inc(&page[i]._mapcount);
  1937. }
  1938. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1939. /* Last compound_mapcount is gone. */
  1940. __dec_node_page_state(page, NR_ANON_THPS);
  1941. if (TestClearPageDoubleMap(page)) {
  1942. /* No need in mapcount reference anymore */
  1943. for (i = 0; i < HPAGE_PMD_NR; i++)
  1944. atomic_dec(&page[i]._mapcount);
  1945. }
  1946. }
  1947. smp_wmb(); /* make pte visible before pmd */
  1948. pmd_populate(mm, pmd, pgtable);
  1949. if (freeze) {
  1950. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1951. page_remove_rmap(page + i, false);
  1952. put_page(page + i);
  1953. }
  1954. }
  1955. }
  1956. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1957. unsigned long address, bool freeze, struct page *page)
  1958. {
  1959. spinlock_t *ptl;
  1960. struct mm_struct *mm = vma->vm_mm;
  1961. unsigned long haddr = address & HPAGE_PMD_MASK;
  1962. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1963. ptl = pmd_lock(mm, pmd);
  1964. /*
  1965. * If caller asks to setup a migration entries, we need a page to check
  1966. * pmd against. Otherwise we can end up replacing wrong page.
  1967. */
  1968. VM_BUG_ON(freeze && !page);
  1969. if (page && page != pmd_page(*pmd))
  1970. goto out;
  1971. if (pmd_trans_huge(*pmd)) {
  1972. page = pmd_page(*pmd);
  1973. if (PageMlocked(page))
  1974. clear_page_mlock(page);
  1975. } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
  1976. goto out;
  1977. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1978. out:
  1979. spin_unlock(ptl);
  1980. /*
  1981. * No need to double call mmu_notifier->invalidate_range() callback.
  1982. * They are 3 cases to consider inside __split_huge_pmd_locked():
  1983. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  1984. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  1985. * fault will trigger a flush_notify before pointing to a new page
  1986. * (it is fine if the secondary mmu keeps pointing to the old zero
  1987. * page in the meantime)
  1988. * 3) Split a huge pmd into pte pointing to the same page. No need
  1989. * to invalidate secondary tlb entry they are all still valid.
  1990. * any further changes to individual pte will notify. So no need
  1991. * to call mmu_notifier->invalidate_range()
  1992. */
  1993. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1994. HPAGE_PMD_SIZE);
  1995. }
  1996. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1997. bool freeze, struct page *page)
  1998. {
  1999. pgd_t *pgd;
  2000. p4d_t *p4d;
  2001. pud_t *pud;
  2002. pmd_t *pmd;
  2003. pgd = pgd_offset(vma->vm_mm, address);
  2004. if (!pgd_present(*pgd))
  2005. return;
  2006. p4d = p4d_offset(pgd, address);
  2007. if (!p4d_present(*p4d))
  2008. return;
  2009. pud = pud_offset(p4d, address);
  2010. if (!pud_present(*pud))
  2011. return;
  2012. pmd = pmd_offset(pud, address);
  2013. __split_huge_pmd(vma, pmd, address, freeze, page);
  2014. }
  2015. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2016. unsigned long start,
  2017. unsigned long end,
  2018. long adjust_next)
  2019. {
  2020. /*
  2021. * If the new start address isn't hpage aligned and it could
  2022. * previously contain an hugepage: check if we need to split
  2023. * an huge pmd.
  2024. */
  2025. if (start & ~HPAGE_PMD_MASK &&
  2026. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2027. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2028. split_huge_pmd_address(vma, start, false, NULL);
  2029. /*
  2030. * If the new end address isn't hpage aligned and it could
  2031. * previously contain an hugepage: check if we need to split
  2032. * an huge pmd.
  2033. */
  2034. if (end & ~HPAGE_PMD_MASK &&
  2035. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2036. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2037. split_huge_pmd_address(vma, end, false, NULL);
  2038. /*
  2039. * If we're also updating the vma->vm_next->vm_start, if the new
  2040. * vm_next->vm_start isn't page aligned and it could previously
  2041. * contain an hugepage: check if we need to split an huge pmd.
  2042. */
  2043. if (adjust_next > 0) {
  2044. struct vm_area_struct *next = vma->vm_next;
  2045. unsigned long nstart = next->vm_start;
  2046. nstart += adjust_next << PAGE_SHIFT;
  2047. if (nstart & ~HPAGE_PMD_MASK &&
  2048. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2049. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2050. split_huge_pmd_address(next, nstart, false, NULL);
  2051. }
  2052. }
  2053. static void freeze_page(struct page *page)
  2054. {
  2055. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  2056. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  2057. bool unmap_success;
  2058. VM_BUG_ON_PAGE(!PageHead(page), page);
  2059. if (PageAnon(page))
  2060. ttu_flags |= TTU_SPLIT_FREEZE;
  2061. unmap_success = try_to_unmap(page, ttu_flags);
  2062. VM_BUG_ON_PAGE(!unmap_success, page);
  2063. }
  2064. static void unfreeze_page(struct page *page)
  2065. {
  2066. int i;
  2067. if (PageTransHuge(page)) {
  2068. remove_migration_ptes(page, page, true);
  2069. } else {
  2070. for (i = 0; i < HPAGE_PMD_NR; i++)
  2071. remove_migration_ptes(page + i, page + i, true);
  2072. }
  2073. }
  2074. static void __split_huge_page_tail(struct page *head, int tail,
  2075. struct lruvec *lruvec, struct list_head *list)
  2076. {
  2077. struct page *page_tail = head + tail;
  2078. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2079. /*
  2080. * Clone page flags before unfreezing refcount.
  2081. *
  2082. * After successful get_page_unless_zero() might follow flags change,
  2083. * for exmaple lock_page() which set PG_waiters.
  2084. */
  2085. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2086. page_tail->flags |= (head->flags &
  2087. ((1L << PG_referenced) |
  2088. (1L << PG_swapbacked) |
  2089. (1L << PG_swapcache) |
  2090. (1L << PG_mlocked) |
  2091. (1L << PG_uptodate) |
  2092. (1L << PG_active) |
  2093. (1L << PG_locked) |
  2094. (1L << PG_unevictable) |
  2095. (1L << PG_dirty)));
  2096. /* Page flags must be visible before we make the page non-compound. */
  2097. smp_wmb();
  2098. /*
  2099. * Clear PageTail before unfreezing page refcount.
  2100. *
  2101. * After successful get_page_unless_zero() might follow put_page()
  2102. * which needs correct compound_head().
  2103. */
  2104. clear_compound_head(page_tail);
  2105. /* Finally unfreeze refcount. Additional reference from page cache. */
  2106. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2107. PageSwapCache(head)));
  2108. if (page_is_young(head))
  2109. set_page_young(page_tail);
  2110. if (page_is_idle(head))
  2111. set_page_idle(page_tail);
  2112. /* ->mapping in first tail page is compound_mapcount */
  2113. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2114. page_tail);
  2115. page_tail->mapping = head->mapping;
  2116. page_tail->index = head->index + tail;
  2117. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2118. /*
  2119. * always add to the tail because some iterators expect new
  2120. * pages to show after the currently processed elements - e.g.
  2121. * migrate_pages
  2122. */
  2123. lru_add_page_tail(head, page_tail, lruvec, list);
  2124. }
  2125. static void __split_huge_page(struct page *page, struct list_head *list,
  2126. unsigned long flags)
  2127. {
  2128. struct page *head = compound_head(page);
  2129. struct zone *zone = page_zone(head);
  2130. struct lruvec *lruvec;
  2131. pgoff_t end = -1;
  2132. int i;
  2133. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  2134. /* complete memcg works before add pages to LRU */
  2135. mem_cgroup_split_huge_fixup(head);
  2136. if (!PageAnon(page))
  2137. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  2138. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  2139. __split_huge_page_tail(head, i, lruvec, list);
  2140. /* Some pages can be beyond i_size: drop them from page cache */
  2141. if (head[i].index >= end) {
  2142. ClearPageDirty(head + i);
  2143. __delete_from_page_cache(head + i, NULL);
  2144. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  2145. shmem_uncharge(head->mapping->host, 1);
  2146. put_page(head + i);
  2147. }
  2148. }
  2149. ClearPageCompound(head);
  2150. /* See comment in __split_huge_page_tail() */
  2151. if (PageAnon(head)) {
  2152. /* Additional pin to radix tree of swap cache */
  2153. if (PageSwapCache(head))
  2154. page_ref_add(head, 2);
  2155. else
  2156. page_ref_inc(head);
  2157. } else {
  2158. /* Additional pin to radix tree */
  2159. page_ref_add(head, 2);
  2160. xa_unlock(&head->mapping->i_pages);
  2161. }
  2162. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2163. unfreeze_page(head);
  2164. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2165. struct page *subpage = head + i;
  2166. if (subpage == page)
  2167. continue;
  2168. unlock_page(subpage);
  2169. /*
  2170. * Subpages may be freed if there wasn't any mapping
  2171. * like if add_to_swap() is running on a lru page that
  2172. * had its mapping zapped. And freeing these pages
  2173. * requires taking the lru_lock so we do the put_page
  2174. * of the tail pages after the split is complete.
  2175. */
  2176. put_page(subpage);
  2177. }
  2178. }
  2179. int total_mapcount(struct page *page)
  2180. {
  2181. int i, compound, ret;
  2182. VM_BUG_ON_PAGE(PageTail(page), page);
  2183. if (likely(!PageCompound(page)))
  2184. return atomic_read(&page->_mapcount) + 1;
  2185. compound = compound_mapcount(page);
  2186. if (PageHuge(page))
  2187. return compound;
  2188. ret = compound;
  2189. for (i = 0; i < HPAGE_PMD_NR; i++)
  2190. ret += atomic_read(&page[i]._mapcount) + 1;
  2191. /* File pages has compound_mapcount included in _mapcount */
  2192. if (!PageAnon(page))
  2193. return ret - compound * HPAGE_PMD_NR;
  2194. if (PageDoubleMap(page))
  2195. ret -= HPAGE_PMD_NR;
  2196. return ret;
  2197. }
  2198. /*
  2199. * This calculates accurately how many mappings a transparent hugepage
  2200. * has (unlike page_mapcount() which isn't fully accurate). This full
  2201. * accuracy is primarily needed to know if copy-on-write faults can
  2202. * reuse the page and change the mapping to read-write instead of
  2203. * copying them. At the same time this returns the total_mapcount too.
  2204. *
  2205. * The function returns the highest mapcount any one of the subpages
  2206. * has. If the return value is one, even if different processes are
  2207. * mapping different subpages of the transparent hugepage, they can
  2208. * all reuse it, because each process is reusing a different subpage.
  2209. *
  2210. * The total_mapcount is instead counting all virtual mappings of the
  2211. * subpages. If the total_mapcount is equal to "one", it tells the
  2212. * caller all mappings belong to the same "mm" and in turn the
  2213. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2214. * local one as no other process may be mapping any of the subpages.
  2215. *
  2216. * It would be more accurate to replace page_mapcount() with
  2217. * page_trans_huge_mapcount(), however we only use
  2218. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2219. * need full accuracy to avoid breaking page pinning, because
  2220. * page_trans_huge_mapcount() is slower than page_mapcount().
  2221. */
  2222. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2223. {
  2224. int i, ret, _total_mapcount, mapcount;
  2225. /* hugetlbfs shouldn't call it */
  2226. VM_BUG_ON_PAGE(PageHuge(page), page);
  2227. if (likely(!PageTransCompound(page))) {
  2228. mapcount = atomic_read(&page->_mapcount) + 1;
  2229. if (total_mapcount)
  2230. *total_mapcount = mapcount;
  2231. return mapcount;
  2232. }
  2233. page = compound_head(page);
  2234. _total_mapcount = ret = 0;
  2235. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2236. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2237. ret = max(ret, mapcount);
  2238. _total_mapcount += mapcount;
  2239. }
  2240. if (PageDoubleMap(page)) {
  2241. ret -= 1;
  2242. _total_mapcount -= HPAGE_PMD_NR;
  2243. }
  2244. mapcount = compound_mapcount(page);
  2245. ret += mapcount;
  2246. _total_mapcount += mapcount;
  2247. if (total_mapcount)
  2248. *total_mapcount = _total_mapcount;
  2249. return ret;
  2250. }
  2251. /* Racy check whether the huge page can be split */
  2252. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2253. {
  2254. int extra_pins;
  2255. /* Additional pins from radix tree */
  2256. if (PageAnon(page))
  2257. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2258. else
  2259. extra_pins = HPAGE_PMD_NR;
  2260. if (pextra_pins)
  2261. *pextra_pins = extra_pins;
  2262. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2263. }
  2264. /*
  2265. * This function splits huge page into normal pages. @page can point to any
  2266. * subpage of huge page to split. Split doesn't change the position of @page.
  2267. *
  2268. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2269. * The huge page must be locked.
  2270. *
  2271. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2272. *
  2273. * Both head page and tail pages will inherit mapping, flags, and so on from
  2274. * the hugepage.
  2275. *
  2276. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2277. * they are not mapped.
  2278. *
  2279. * Returns 0 if the hugepage is split successfully.
  2280. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2281. * us.
  2282. */
  2283. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2284. {
  2285. struct page *head = compound_head(page);
  2286. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2287. struct anon_vma *anon_vma = NULL;
  2288. struct address_space *mapping = NULL;
  2289. int count, mapcount, extra_pins, ret;
  2290. bool mlocked;
  2291. unsigned long flags;
  2292. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2293. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2294. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2295. if (PageWriteback(page))
  2296. return -EBUSY;
  2297. if (PageAnon(head)) {
  2298. /*
  2299. * The caller does not necessarily hold an mmap_sem that would
  2300. * prevent the anon_vma disappearing so we first we take a
  2301. * reference to it and then lock the anon_vma for write. This
  2302. * is similar to page_lock_anon_vma_read except the write lock
  2303. * is taken to serialise against parallel split or collapse
  2304. * operations.
  2305. */
  2306. anon_vma = page_get_anon_vma(head);
  2307. if (!anon_vma) {
  2308. ret = -EBUSY;
  2309. goto out;
  2310. }
  2311. mapping = NULL;
  2312. anon_vma_lock_write(anon_vma);
  2313. } else {
  2314. mapping = head->mapping;
  2315. /* Truncated ? */
  2316. if (!mapping) {
  2317. ret = -EBUSY;
  2318. goto out;
  2319. }
  2320. anon_vma = NULL;
  2321. i_mmap_lock_read(mapping);
  2322. }
  2323. /*
  2324. * Racy check if we can split the page, before freeze_page() will
  2325. * split PMDs
  2326. */
  2327. if (!can_split_huge_page(head, &extra_pins)) {
  2328. ret = -EBUSY;
  2329. goto out_unlock;
  2330. }
  2331. mlocked = PageMlocked(page);
  2332. freeze_page(head);
  2333. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2334. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2335. if (mlocked)
  2336. lru_add_drain();
  2337. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2338. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2339. if (mapping) {
  2340. void **pslot;
  2341. xa_lock(&mapping->i_pages);
  2342. pslot = radix_tree_lookup_slot(&mapping->i_pages,
  2343. page_index(head));
  2344. /*
  2345. * Check if the head page is present in radix tree.
  2346. * We assume all tail are present too, if head is there.
  2347. */
  2348. if (radix_tree_deref_slot_protected(pslot,
  2349. &mapping->i_pages.xa_lock) != head)
  2350. goto fail;
  2351. }
  2352. /* Prevent deferred_split_scan() touching ->_refcount */
  2353. spin_lock(&pgdata->split_queue_lock);
  2354. count = page_count(head);
  2355. mapcount = total_mapcount(head);
  2356. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2357. if (!list_empty(page_deferred_list(head))) {
  2358. pgdata->split_queue_len--;
  2359. list_del(page_deferred_list(head));
  2360. }
  2361. if (mapping)
  2362. __dec_node_page_state(page, NR_SHMEM_THPS);
  2363. spin_unlock(&pgdata->split_queue_lock);
  2364. __split_huge_page(page, list, flags);
  2365. if (PageSwapCache(head)) {
  2366. swp_entry_t entry = { .val = page_private(head) };
  2367. ret = split_swap_cluster(entry);
  2368. } else
  2369. ret = 0;
  2370. } else {
  2371. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2372. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2373. mapcount, count);
  2374. if (PageTail(page))
  2375. dump_page(head, NULL);
  2376. dump_page(page, "total_mapcount(head) > 0");
  2377. BUG();
  2378. }
  2379. spin_unlock(&pgdata->split_queue_lock);
  2380. fail: if (mapping)
  2381. xa_unlock(&mapping->i_pages);
  2382. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2383. unfreeze_page(head);
  2384. ret = -EBUSY;
  2385. }
  2386. out_unlock:
  2387. if (anon_vma) {
  2388. anon_vma_unlock_write(anon_vma);
  2389. put_anon_vma(anon_vma);
  2390. }
  2391. if (mapping)
  2392. i_mmap_unlock_read(mapping);
  2393. out:
  2394. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2395. return ret;
  2396. }
  2397. void free_transhuge_page(struct page *page)
  2398. {
  2399. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2400. unsigned long flags;
  2401. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2402. if (!list_empty(page_deferred_list(page))) {
  2403. pgdata->split_queue_len--;
  2404. list_del(page_deferred_list(page));
  2405. }
  2406. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2407. free_compound_page(page);
  2408. }
  2409. void deferred_split_huge_page(struct page *page)
  2410. {
  2411. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2412. unsigned long flags;
  2413. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2414. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2415. if (list_empty(page_deferred_list(page))) {
  2416. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2417. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2418. pgdata->split_queue_len++;
  2419. }
  2420. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2421. }
  2422. static unsigned long deferred_split_count(struct shrinker *shrink,
  2423. struct shrink_control *sc)
  2424. {
  2425. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2426. return READ_ONCE(pgdata->split_queue_len);
  2427. }
  2428. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2429. struct shrink_control *sc)
  2430. {
  2431. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2432. unsigned long flags;
  2433. LIST_HEAD(list), *pos, *next;
  2434. struct page *page;
  2435. int split = 0;
  2436. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2437. /* Take pin on all head pages to avoid freeing them under us */
  2438. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2439. page = list_entry((void *)pos, struct page, mapping);
  2440. page = compound_head(page);
  2441. if (get_page_unless_zero(page)) {
  2442. list_move(page_deferred_list(page), &list);
  2443. } else {
  2444. /* We lost race with put_compound_page() */
  2445. list_del_init(page_deferred_list(page));
  2446. pgdata->split_queue_len--;
  2447. }
  2448. if (!--sc->nr_to_scan)
  2449. break;
  2450. }
  2451. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2452. list_for_each_safe(pos, next, &list) {
  2453. page = list_entry((void *)pos, struct page, mapping);
  2454. if (!trylock_page(page))
  2455. goto next;
  2456. /* split_huge_page() removes page from list on success */
  2457. if (!split_huge_page(page))
  2458. split++;
  2459. unlock_page(page);
  2460. next:
  2461. put_page(page);
  2462. }
  2463. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2464. list_splice_tail(&list, &pgdata->split_queue);
  2465. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2466. /*
  2467. * Stop shrinker if we didn't split any page, but the queue is empty.
  2468. * This can happen if pages were freed under us.
  2469. */
  2470. if (!split && list_empty(&pgdata->split_queue))
  2471. return SHRINK_STOP;
  2472. return split;
  2473. }
  2474. static struct shrinker deferred_split_shrinker = {
  2475. .count_objects = deferred_split_count,
  2476. .scan_objects = deferred_split_scan,
  2477. .seeks = DEFAULT_SEEKS,
  2478. .flags = SHRINKER_NUMA_AWARE,
  2479. };
  2480. #ifdef CONFIG_DEBUG_FS
  2481. static int split_huge_pages_set(void *data, u64 val)
  2482. {
  2483. struct zone *zone;
  2484. struct page *page;
  2485. unsigned long pfn, max_zone_pfn;
  2486. unsigned long total = 0, split = 0;
  2487. if (val != 1)
  2488. return -EINVAL;
  2489. for_each_populated_zone(zone) {
  2490. max_zone_pfn = zone_end_pfn(zone);
  2491. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2492. if (!pfn_valid(pfn))
  2493. continue;
  2494. page = pfn_to_page(pfn);
  2495. if (!get_page_unless_zero(page))
  2496. continue;
  2497. if (zone != page_zone(page))
  2498. goto next;
  2499. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2500. goto next;
  2501. total++;
  2502. lock_page(page);
  2503. if (!split_huge_page(page))
  2504. split++;
  2505. unlock_page(page);
  2506. next:
  2507. put_page(page);
  2508. }
  2509. }
  2510. pr_info("%lu of %lu THP split\n", split, total);
  2511. return 0;
  2512. }
  2513. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2514. "%llu\n");
  2515. static int __init split_huge_pages_debugfs(void)
  2516. {
  2517. void *ret;
  2518. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2519. &split_huge_pages_fops);
  2520. if (!ret)
  2521. pr_warn("Failed to create split_huge_pages in debugfs");
  2522. return 0;
  2523. }
  2524. late_initcall(split_huge_pages_debugfs);
  2525. #endif
  2526. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2527. void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2528. struct page *page)
  2529. {
  2530. struct vm_area_struct *vma = pvmw->vma;
  2531. struct mm_struct *mm = vma->vm_mm;
  2532. unsigned long address = pvmw->address;
  2533. pmd_t pmdval;
  2534. swp_entry_t entry;
  2535. pmd_t pmdswp;
  2536. if (!(pvmw->pmd && !pvmw->pte))
  2537. return;
  2538. mmu_notifier_invalidate_range_start(mm, address,
  2539. address + HPAGE_PMD_SIZE);
  2540. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2541. pmdval = *pvmw->pmd;
  2542. pmdp_invalidate(vma, address, pvmw->pmd);
  2543. if (pmd_dirty(pmdval))
  2544. set_page_dirty(page);
  2545. entry = make_migration_entry(page, pmd_write(pmdval));
  2546. pmdswp = swp_entry_to_pmd(entry);
  2547. if (pmd_soft_dirty(pmdval))
  2548. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2549. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2550. page_remove_rmap(page, true);
  2551. put_page(page);
  2552. mmu_notifier_invalidate_range_end(mm, address,
  2553. address + HPAGE_PMD_SIZE);
  2554. }
  2555. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2556. {
  2557. struct vm_area_struct *vma = pvmw->vma;
  2558. struct mm_struct *mm = vma->vm_mm;
  2559. unsigned long address = pvmw->address;
  2560. unsigned long mmun_start = address & HPAGE_PMD_MASK;
  2561. pmd_t pmde;
  2562. swp_entry_t entry;
  2563. if (!(pvmw->pmd && !pvmw->pte))
  2564. return;
  2565. entry = pmd_to_swp_entry(*pvmw->pmd);
  2566. get_page(new);
  2567. pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
  2568. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2569. pmde = pmd_mksoft_dirty(pmde);
  2570. if (is_write_migration_entry(entry))
  2571. pmde = maybe_pmd_mkwrite(pmde, vma);
  2572. flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
  2573. if (PageAnon(new))
  2574. page_add_anon_rmap(new, vma, mmun_start, true);
  2575. else
  2576. page_add_file_rmap(new, true);
  2577. set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
  2578. if (vma->vm_flags & VM_LOCKED)
  2579. mlock_vma_page(new);
  2580. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2581. }
  2582. #endif