xhci-ring.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. /*
  23. * Ring initialization rules:
  24. * 1. Each segment is initialized to zero, except for link TRBs.
  25. * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
  26. * Consumer Cycle State (CCS), depending on ring function.
  27. * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
  28. *
  29. * Ring behavior rules:
  30. * 1. A ring is empty if enqueue == dequeue. This means there will always be at
  31. * least one free TRB in the ring. This is useful if you want to turn that
  32. * into a link TRB and expand the ring.
  33. * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
  34. * link TRB, then load the pointer with the address in the link TRB. If the
  35. * link TRB had its toggle bit set, you may need to update the ring cycle
  36. * state (see cycle bit rules). You may have to do this multiple times
  37. * until you reach a non-link TRB.
  38. * 3. A ring is full if enqueue++ (for the definition of increment above)
  39. * equals the dequeue pointer.
  40. *
  41. * Cycle bit rules:
  42. * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
  43. * in a link TRB, it must toggle the ring cycle state.
  44. * 2. When a producer increments an enqueue pointer and encounters a toggle bit
  45. * in a link TRB, it must toggle the ring cycle state.
  46. *
  47. * Producer rules:
  48. * 1. Check if ring is full before you enqueue.
  49. * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
  50. * Update enqueue pointer between each write (which may update the ring
  51. * cycle state).
  52. * 3. Notify consumer. If SW is producer, it rings the doorbell for command
  53. * and endpoint rings. If HC is the producer for the event ring,
  54. * and it generates an interrupt according to interrupt modulation rules.
  55. *
  56. * Consumer rules:
  57. * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
  58. * the TRB is owned by the consumer.
  59. * 2. Update dequeue pointer (which may update the ring cycle state) and
  60. * continue processing TRBs until you reach a TRB which is not owned by you.
  61. * 3. Notify the producer. SW is the consumer for the event ring, and it
  62. * updates event ring dequeue pointer. HC is the consumer for the command and
  63. * endpoint rings; it generates events on the event ring for these.
  64. */
  65. #include <linux/scatterlist.h>
  66. #include <linux/slab.h>
  67. #include <linux/dma-mapping.h>
  68. #include "xhci.h"
  69. #include "xhci-trace.h"
  70. #include "xhci-mtk.h"
  71. /*
  72. * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
  73. * address of the TRB.
  74. */
  75. dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
  76. union xhci_trb *trb)
  77. {
  78. unsigned long segment_offset;
  79. if (!seg || !trb || trb < seg->trbs)
  80. return 0;
  81. /* offset in TRBs */
  82. segment_offset = trb - seg->trbs;
  83. if (segment_offset >= TRBS_PER_SEGMENT)
  84. return 0;
  85. return seg->dma + (segment_offset * sizeof(*trb));
  86. }
  87. static bool trb_is_noop(union xhci_trb *trb)
  88. {
  89. return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
  90. }
  91. static bool trb_is_link(union xhci_trb *trb)
  92. {
  93. return TRB_TYPE_LINK_LE32(trb->link.control);
  94. }
  95. static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
  96. {
  97. return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
  98. }
  99. static bool last_trb_on_ring(struct xhci_ring *ring,
  100. struct xhci_segment *seg, union xhci_trb *trb)
  101. {
  102. return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
  103. }
  104. static bool link_trb_toggles_cycle(union xhci_trb *trb)
  105. {
  106. return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
  107. }
  108. static bool last_td_in_urb(struct xhci_td *td)
  109. {
  110. struct urb_priv *urb_priv = td->urb->hcpriv;
  111. return urb_priv->num_tds_done == urb_priv->num_tds;
  112. }
  113. static void inc_td_cnt(struct urb *urb)
  114. {
  115. struct urb_priv *urb_priv = urb->hcpriv;
  116. urb_priv->num_tds_done++;
  117. }
  118. static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
  119. {
  120. if (trb_is_link(trb)) {
  121. /* unchain chained link TRBs */
  122. trb->link.control &= cpu_to_le32(~TRB_CHAIN);
  123. } else {
  124. trb->generic.field[0] = 0;
  125. trb->generic.field[1] = 0;
  126. trb->generic.field[2] = 0;
  127. /* Preserve only the cycle bit of this TRB */
  128. trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
  129. trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
  130. }
  131. }
  132. /* Updates trb to point to the next TRB in the ring, and updates seg if the next
  133. * TRB is in a new segment. This does not skip over link TRBs, and it does not
  134. * effect the ring dequeue or enqueue pointers.
  135. */
  136. static void next_trb(struct xhci_hcd *xhci,
  137. struct xhci_ring *ring,
  138. struct xhci_segment **seg,
  139. union xhci_trb **trb)
  140. {
  141. if (trb_is_link(*trb)) {
  142. *seg = (*seg)->next;
  143. *trb = ((*seg)->trbs);
  144. } else {
  145. (*trb)++;
  146. }
  147. }
  148. /*
  149. * See Cycle bit rules. SW is the consumer for the event ring only.
  150. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  151. */
  152. static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
  153. {
  154. /* event ring doesn't have link trbs, check for last trb */
  155. if (ring->type == TYPE_EVENT) {
  156. if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
  157. ring->dequeue++;
  158. return;
  159. }
  160. if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
  161. ring->cycle_state ^= 1;
  162. ring->deq_seg = ring->deq_seg->next;
  163. ring->dequeue = ring->deq_seg->trbs;
  164. return;
  165. }
  166. /* All other rings have link trbs */
  167. if (!trb_is_link(ring->dequeue)) {
  168. ring->dequeue++;
  169. ring->num_trbs_free++;
  170. }
  171. while (trb_is_link(ring->dequeue)) {
  172. ring->deq_seg = ring->deq_seg->next;
  173. ring->dequeue = ring->deq_seg->trbs;
  174. }
  175. trace_xhci_inc_deq(ring);
  176. return;
  177. }
  178. /*
  179. * See Cycle bit rules. SW is the consumer for the event ring only.
  180. * Don't make a ring full of link TRBs. That would be dumb and this would loop.
  181. *
  182. * If we've just enqueued a TRB that is in the middle of a TD (meaning the
  183. * chain bit is set), then set the chain bit in all the following link TRBs.
  184. * If we've enqueued the last TRB in a TD, make sure the following link TRBs
  185. * have their chain bit cleared (so that each Link TRB is a separate TD).
  186. *
  187. * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
  188. * set, but other sections talk about dealing with the chain bit set. This was
  189. * fixed in the 0.96 specification errata, but we have to assume that all 0.95
  190. * xHCI hardware can't handle the chain bit being cleared on a link TRB.
  191. *
  192. * @more_trbs_coming: Will you enqueue more TRBs before calling
  193. * prepare_transfer()?
  194. */
  195. static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
  196. bool more_trbs_coming)
  197. {
  198. u32 chain;
  199. union xhci_trb *next;
  200. chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
  201. /* If this is not event ring, there is one less usable TRB */
  202. if (!trb_is_link(ring->enqueue))
  203. ring->num_trbs_free--;
  204. next = ++(ring->enqueue);
  205. /* Update the dequeue pointer further if that was a link TRB */
  206. while (trb_is_link(next)) {
  207. /*
  208. * If the caller doesn't plan on enqueueing more TDs before
  209. * ringing the doorbell, then we don't want to give the link TRB
  210. * to the hardware just yet. We'll give the link TRB back in
  211. * prepare_ring() just before we enqueue the TD at the top of
  212. * the ring.
  213. */
  214. if (!chain && !more_trbs_coming)
  215. break;
  216. /* If we're not dealing with 0.95 hardware or isoc rings on
  217. * AMD 0.96 host, carry over the chain bit of the previous TRB
  218. * (which may mean the chain bit is cleared).
  219. */
  220. if (!(ring->type == TYPE_ISOC &&
  221. (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
  222. !xhci_link_trb_quirk(xhci)) {
  223. next->link.control &= cpu_to_le32(~TRB_CHAIN);
  224. next->link.control |= cpu_to_le32(chain);
  225. }
  226. /* Give this link TRB to the hardware */
  227. wmb();
  228. next->link.control ^= cpu_to_le32(TRB_CYCLE);
  229. /* Toggle the cycle bit after the last ring segment. */
  230. if (link_trb_toggles_cycle(next))
  231. ring->cycle_state ^= 1;
  232. ring->enq_seg = ring->enq_seg->next;
  233. ring->enqueue = ring->enq_seg->trbs;
  234. next = ring->enqueue;
  235. }
  236. trace_xhci_inc_enq(ring);
  237. }
  238. /*
  239. * Check to see if there's room to enqueue num_trbs on the ring and make sure
  240. * enqueue pointer will not advance into dequeue segment. See rules above.
  241. */
  242. static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
  243. unsigned int num_trbs)
  244. {
  245. int num_trbs_in_deq_seg;
  246. if (ring->num_trbs_free < num_trbs)
  247. return 0;
  248. if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
  249. num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
  250. if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
  251. return 0;
  252. }
  253. return 1;
  254. }
  255. /* Ring the host controller doorbell after placing a command on the ring */
  256. void xhci_ring_cmd_db(struct xhci_hcd *xhci)
  257. {
  258. if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
  259. return;
  260. xhci_dbg(xhci, "// Ding dong!\n");
  261. writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
  262. /* Flush PCI posted writes */
  263. readl(&xhci->dba->doorbell[0]);
  264. }
  265. static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
  266. {
  267. return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
  268. }
  269. static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
  270. {
  271. return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
  272. cmd_list);
  273. }
  274. /*
  275. * Turn all commands on command ring with status set to "aborted" to no-op trbs.
  276. * If there are other commands waiting then restart the ring and kick the timer.
  277. * This must be called with command ring stopped and xhci->lock held.
  278. */
  279. static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
  280. struct xhci_command *cur_cmd)
  281. {
  282. struct xhci_command *i_cmd;
  283. /* Turn all aborted commands in list to no-ops, then restart */
  284. list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
  285. if (i_cmd->status != COMP_COMMAND_ABORTED)
  286. continue;
  287. i_cmd->status = COMP_COMMAND_RING_STOPPED;
  288. xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
  289. i_cmd->command_trb);
  290. trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
  291. /*
  292. * caller waiting for completion is called when command
  293. * completion event is received for these no-op commands
  294. */
  295. }
  296. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  297. /* ring command ring doorbell to restart the command ring */
  298. if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
  299. !(xhci->xhc_state & XHCI_STATE_DYING)) {
  300. xhci->current_cmd = cur_cmd;
  301. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  302. xhci_ring_cmd_db(xhci);
  303. }
  304. }
  305. /* Must be called with xhci->lock held, releases and aquires lock back */
  306. static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
  307. {
  308. u64 temp_64;
  309. int ret;
  310. xhci_dbg(xhci, "Abort command ring\n");
  311. reinit_completion(&xhci->cmd_ring_stop_completion);
  312. temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  313. xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
  314. &xhci->op_regs->cmd_ring);
  315. /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
  316. * completion of the Command Abort operation. If CRR is not negated in 5
  317. * seconds then driver handles it as if host died (-ENODEV).
  318. * In the future we should distinguish between -ENODEV and -ETIMEDOUT
  319. * and try to recover a -ETIMEDOUT with a host controller reset.
  320. */
  321. ret = xhci_handshake(&xhci->op_regs->cmd_ring,
  322. CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
  323. if (ret < 0) {
  324. xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
  325. xhci_halt(xhci);
  326. xhci_hc_died(xhci);
  327. return ret;
  328. }
  329. /*
  330. * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
  331. * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
  332. * but the completion event in never sent. Wait 2 secs (arbitrary
  333. * number) to handle those cases after negation of CMD_RING_RUNNING.
  334. */
  335. spin_unlock_irqrestore(&xhci->lock, flags);
  336. ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
  337. msecs_to_jiffies(2000));
  338. spin_lock_irqsave(&xhci->lock, flags);
  339. if (!ret) {
  340. xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
  341. xhci_cleanup_command_queue(xhci);
  342. } else {
  343. xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
  344. }
  345. return 0;
  346. }
  347. void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
  348. unsigned int slot_id,
  349. unsigned int ep_index,
  350. unsigned int stream_id)
  351. {
  352. __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
  353. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  354. unsigned int ep_state = ep->ep_state;
  355. /* Don't ring the doorbell for this endpoint if there are pending
  356. * cancellations because we don't want to interrupt processing.
  357. * We don't want to restart any stream rings if there's a set dequeue
  358. * pointer command pending because the device can choose to start any
  359. * stream once the endpoint is on the HW schedule.
  360. */
  361. if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
  362. (ep_state & EP_HALTED))
  363. return;
  364. writel(DB_VALUE(ep_index, stream_id), db_addr);
  365. /* The CPU has better things to do at this point than wait for a
  366. * write-posting flush. It'll get there soon enough.
  367. */
  368. }
  369. /* Ring the doorbell for any rings with pending URBs */
  370. static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
  371. unsigned int slot_id,
  372. unsigned int ep_index)
  373. {
  374. unsigned int stream_id;
  375. struct xhci_virt_ep *ep;
  376. ep = &xhci->devs[slot_id]->eps[ep_index];
  377. /* A ring has pending URBs if its TD list is not empty */
  378. if (!(ep->ep_state & EP_HAS_STREAMS)) {
  379. if (ep->ring && !(list_empty(&ep->ring->td_list)))
  380. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
  381. return;
  382. }
  383. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  384. stream_id++) {
  385. struct xhci_stream_info *stream_info = ep->stream_info;
  386. if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
  387. xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
  388. stream_id);
  389. }
  390. }
  391. /* Get the right ring for the given slot_id, ep_index and stream_id.
  392. * If the endpoint supports streams, boundary check the URB's stream ID.
  393. * If the endpoint doesn't support streams, return the singular endpoint ring.
  394. */
  395. struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
  396. unsigned int slot_id, unsigned int ep_index,
  397. unsigned int stream_id)
  398. {
  399. struct xhci_virt_ep *ep;
  400. ep = &xhci->devs[slot_id]->eps[ep_index];
  401. /* Common case: no streams */
  402. if (!(ep->ep_state & EP_HAS_STREAMS))
  403. return ep->ring;
  404. if (stream_id == 0) {
  405. xhci_warn(xhci,
  406. "WARN: Slot ID %u, ep index %u has streams, "
  407. "but URB has no stream ID.\n",
  408. slot_id, ep_index);
  409. return NULL;
  410. }
  411. if (stream_id < ep->stream_info->num_streams)
  412. return ep->stream_info->stream_rings[stream_id];
  413. xhci_warn(xhci,
  414. "WARN: Slot ID %u, ep index %u has "
  415. "stream IDs 1 to %u allocated, "
  416. "but stream ID %u is requested.\n",
  417. slot_id, ep_index,
  418. ep->stream_info->num_streams - 1,
  419. stream_id);
  420. return NULL;
  421. }
  422. /*
  423. * Get the hw dequeue pointer xHC stopped on, either directly from the
  424. * endpoint context, or if streams are in use from the stream context.
  425. * The returned hw_dequeue contains the lowest four bits with cycle state
  426. * and possbile stream context type.
  427. */
  428. static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
  429. unsigned int ep_index, unsigned int stream_id)
  430. {
  431. struct xhci_ep_ctx *ep_ctx;
  432. struct xhci_stream_ctx *st_ctx;
  433. struct xhci_virt_ep *ep;
  434. ep = &vdev->eps[ep_index];
  435. if (ep->ep_state & EP_HAS_STREAMS) {
  436. st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
  437. return le64_to_cpu(st_ctx->stream_ring);
  438. }
  439. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  440. return le64_to_cpu(ep_ctx->deq);
  441. }
  442. /*
  443. * Move the xHC's endpoint ring dequeue pointer past cur_td.
  444. * Record the new state of the xHC's endpoint ring dequeue segment,
  445. * dequeue pointer, stream id, and new consumer cycle state in state.
  446. * Update our internal representation of the ring's dequeue pointer.
  447. *
  448. * We do this in three jumps:
  449. * - First we update our new ring state to be the same as when the xHC stopped.
  450. * - Then we traverse the ring to find the segment that contains
  451. * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
  452. * any link TRBs with the toggle cycle bit set.
  453. * - Finally we move the dequeue state one TRB further, toggling the cycle bit
  454. * if we've moved it past a link TRB with the toggle cycle bit set.
  455. *
  456. * Some of the uses of xhci_generic_trb are grotty, but if they're done
  457. * with correct __le32 accesses they should work fine. Only users of this are
  458. * in here.
  459. */
  460. void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
  461. unsigned int slot_id, unsigned int ep_index,
  462. unsigned int stream_id, struct xhci_td *cur_td,
  463. struct xhci_dequeue_state *state)
  464. {
  465. struct xhci_virt_device *dev = xhci->devs[slot_id];
  466. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  467. struct xhci_ring *ep_ring;
  468. struct xhci_segment *new_seg;
  469. union xhci_trb *new_deq;
  470. dma_addr_t addr;
  471. u64 hw_dequeue;
  472. bool cycle_found = false;
  473. bool td_last_trb_found = false;
  474. ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
  475. ep_index, stream_id);
  476. if (!ep_ring) {
  477. xhci_warn(xhci, "WARN can't find new dequeue state "
  478. "for invalid stream ID %u.\n",
  479. stream_id);
  480. return;
  481. }
  482. /* Dig out the cycle state saved by the xHC during the stop ep cmd */
  483. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  484. "Finding endpoint context");
  485. hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
  486. new_seg = ep_ring->deq_seg;
  487. new_deq = ep_ring->dequeue;
  488. state->new_cycle_state = hw_dequeue & 0x1;
  489. state->stream_id = stream_id;
  490. /*
  491. * We want to find the pointer, segment and cycle state of the new trb
  492. * (the one after current TD's last_trb). We know the cycle state at
  493. * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
  494. * found.
  495. */
  496. do {
  497. if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
  498. == (dma_addr_t)(hw_dequeue & ~0xf)) {
  499. cycle_found = true;
  500. if (td_last_trb_found)
  501. break;
  502. }
  503. if (new_deq == cur_td->last_trb)
  504. td_last_trb_found = true;
  505. if (cycle_found && trb_is_link(new_deq) &&
  506. link_trb_toggles_cycle(new_deq))
  507. state->new_cycle_state ^= 0x1;
  508. next_trb(xhci, ep_ring, &new_seg, &new_deq);
  509. /* Search wrapped around, bail out */
  510. if (new_deq == ep->ring->dequeue) {
  511. xhci_err(xhci, "Error: Failed finding new dequeue state\n");
  512. state->new_deq_seg = NULL;
  513. state->new_deq_ptr = NULL;
  514. return;
  515. }
  516. } while (!cycle_found || !td_last_trb_found);
  517. state->new_deq_seg = new_seg;
  518. state->new_deq_ptr = new_deq;
  519. /* Don't update the ring cycle state for the producer (us). */
  520. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  521. "Cycle state = 0x%x", state->new_cycle_state);
  522. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  523. "New dequeue segment = %p (virtual)",
  524. state->new_deq_seg);
  525. addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
  526. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  527. "New dequeue pointer = 0x%llx (DMA)",
  528. (unsigned long long) addr);
  529. }
  530. /* flip_cycle means flip the cycle bit of all but the first and last TRB.
  531. * (The last TRB actually points to the ring enqueue pointer, which is not part
  532. * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
  533. */
  534. static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  535. struct xhci_td *td, bool flip_cycle)
  536. {
  537. struct xhci_segment *seg = td->start_seg;
  538. union xhci_trb *trb = td->first_trb;
  539. while (1) {
  540. trb_to_noop(trb, TRB_TR_NOOP);
  541. /* flip cycle if asked to */
  542. if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
  543. trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
  544. if (trb == td->last_trb)
  545. break;
  546. next_trb(xhci, ep_ring, &seg, &trb);
  547. }
  548. }
  549. static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
  550. struct xhci_virt_ep *ep)
  551. {
  552. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  553. /* Can't del_timer_sync in interrupt */
  554. del_timer(&ep->stop_cmd_timer);
  555. }
  556. /*
  557. * Must be called with xhci->lock held in interrupt context,
  558. * releases and re-acquires xhci->lock
  559. */
  560. static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
  561. struct xhci_td *cur_td, int status)
  562. {
  563. struct urb *urb = cur_td->urb;
  564. struct urb_priv *urb_priv = urb->hcpriv;
  565. struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
  566. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
  567. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
  568. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  569. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  570. usb_amd_quirk_pll_enable();
  571. }
  572. }
  573. xhci_urb_free_priv(urb_priv);
  574. usb_hcd_unlink_urb_from_ep(hcd, urb);
  575. spin_unlock(&xhci->lock);
  576. trace_xhci_urb_giveback(urb);
  577. usb_hcd_giveback_urb(hcd, urb, status);
  578. spin_lock(&xhci->lock);
  579. }
  580. static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
  581. struct xhci_ring *ring, struct xhci_td *td)
  582. {
  583. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  584. struct xhci_segment *seg = td->bounce_seg;
  585. struct urb *urb = td->urb;
  586. if (!ring || !seg || !urb)
  587. return;
  588. if (usb_urb_dir_out(urb)) {
  589. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  590. DMA_TO_DEVICE);
  591. return;
  592. }
  593. /* for in tranfers we need to copy the data from bounce to sg */
  594. sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
  595. seg->bounce_len, seg->bounce_offs);
  596. dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
  597. DMA_FROM_DEVICE);
  598. seg->bounce_len = 0;
  599. seg->bounce_offs = 0;
  600. }
  601. /*
  602. * When we get a command completion for a Stop Endpoint Command, we need to
  603. * unlink any cancelled TDs from the ring. There are two ways to do that:
  604. *
  605. * 1. If the HW was in the middle of processing the TD that needs to be
  606. * cancelled, then we must move the ring's dequeue pointer past the last TRB
  607. * in the TD with a Set Dequeue Pointer Command.
  608. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
  609. * bit cleared) so that the HW will skip over them.
  610. */
  611. static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
  612. union xhci_trb *trb, struct xhci_event_cmd *event)
  613. {
  614. unsigned int ep_index;
  615. struct xhci_ring *ep_ring;
  616. struct xhci_virt_ep *ep;
  617. struct xhci_td *cur_td = NULL;
  618. struct xhci_td *last_unlinked_td;
  619. struct xhci_ep_ctx *ep_ctx;
  620. struct xhci_virt_device *vdev;
  621. u64 hw_deq;
  622. struct xhci_dequeue_state deq_state;
  623. if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
  624. if (!xhci->devs[slot_id])
  625. xhci_warn(xhci, "Stop endpoint command "
  626. "completion for disabled slot %u\n",
  627. slot_id);
  628. return;
  629. }
  630. memset(&deq_state, 0, sizeof(deq_state));
  631. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  632. vdev = xhci->devs[slot_id];
  633. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  634. trace_xhci_handle_cmd_stop_ep(ep_ctx);
  635. ep = &xhci->devs[slot_id]->eps[ep_index];
  636. last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
  637. struct xhci_td, cancelled_td_list);
  638. if (list_empty(&ep->cancelled_td_list)) {
  639. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  640. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  641. return;
  642. }
  643. /* Fix up the ep ring first, so HW stops executing cancelled TDs.
  644. * We have the xHCI lock, so nothing can modify this list until we drop
  645. * it. We're also in the event handler, so we can't get re-interrupted
  646. * if another Stop Endpoint command completes
  647. */
  648. list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
  649. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  650. "Removing canceled TD starting at 0x%llx (dma).",
  651. (unsigned long long)xhci_trb_virt_to_dma(
  652. cur_td->start_seg, cur_td->first_trb));
  653. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  654. if (!ep_ring) {
  655. /* This shouldn't happen unless a driver is mucking
  656. * with the stream ID after submission. This will
  657. * leave the TD on the hardware ring, and the hardware
  658. * will try to execute it, and may access a buffer
  659. * that has already been freed. In the best case, the
  660. * hardware will execute it, and the event handler will
  661. * ignore the completion event for that TD, since it was
  662. * removed from the td_list for that endpoint. In
  663. * short, don't muck with the stream ID after
  664. * submission.
  665. */
  666. xhci_warn(xhci, "WARN Cancelled URB %p "
  667. "has invalid stream ID %u.\n",
  668. cur_td->urb,
  669. cur_td->urb->stream_id);
  670. goto remove_finished_td;
  671. }
  672. /*
  673. * If we stopped on the TD we need to cancel, then we have to
  674. * move the xHC endpoint ring dequeue pointer past this TD.
  675. */
  676. hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
  677. cur_td->urb->stream_id);
  678. hw_deq &= ~0xf;
  679. if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
  680. cur_td->last_trb, hw_deq, false)) {
  681. xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
  682. cur_td->urb->stream_id,
  683. cur_td, &deq_state);
  684. } else {
  685. td_to_noop(xhci, ep_ring, cur_td, false);
  686. }
  687. remove_finished_td:
  688. /*
  689. * The event handler won't see a completion for this TD anymore,
  690. * so remove it from the endpoint ring's TD list. Keep it in
  691. * the cancelled TD list for URB completion later.
  692. */
  693. list_del_init(&cur_td->td_list);
  694. }
  695. xhci_stop_watchdog_timer_in_irq(xhci, ep);
  696. /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
  697. if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
  698. xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
  699. &deq_state);
  700. xhci_ring_cmd_db(xhci);
  701. } else {
  702. /* Otherwise ring the doorbell(s) to restart queued transfers */
  703. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  704. }
  705. /*
  706. * Drop the lock and complete the URBs in the cancelled TD list.
  707. * New TDs to be cancelled might be added to the end of the list before
  708. * we can complete all the URBs for the TDs we already unlinked.
  709. * So stop when we've completed the URB for the last TD we unlinked.
  710. */
  711. do {
  712. cur_td = list_first_entry(&ep->cancelled_td_list,
  713. struct xhci_td, cancelled_td_list);
  714. list_del_init(&cur_td->cancelled_td_list);
  715. /* Clean up the cancelled URB */
  716. /* Doesn't matter what we pass for status, since the core will
  717. * just overwrite it (because the URB has been unlinked).
  718. */
  719. ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
  720. xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
  721. inc_td_cnt(cur_td->urb);
  722. if (last_td_in_urb(cur_td))
  723. xhci_giveback_urb_in_irq(xhci, cur_td, 0);
  724. /* Stop processing the cancelled list if the watchdog timer is
  725. * running.
  726. */
  727. if (xhci->xhc_state & XHCI_STATE_DYING)
  728. return;
  729. } while (cur_td != last_unlinked_td);
  730. /* Return to the event handler with xhci->lock re-acquired */
  731. }
  732. static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
  733. {
  734. struct xhci_td *cur_td;
  735. struct xhci_td *tmp;
  736. list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
  737. list_del_init(&cur_td->td_list);
  738. if (!list_empty(&cur_td->cancelled_td_list))
  739. list_del_init(&cur_td->cancelled_td_list);
  740. xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
  741. inc_td_cnt(cur_td->urb);
  742. if (last_td_in_urb(cur_td))
  743. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  744. }
  745. }
  746. static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
  747. int slot_id, int ep_index)
  748. {
  749. struct xhci_td *cur_td;
  750. struct xhci_td *tmp;
  751. struct xhci_virt_ep *ep;
  752. struct xhci_ring *ring;
  753. ep = &xhci->devs[slot_id]->eps[ep_index];
  754. if ((ep->ep_state & EP_HAS_STREAMS) ||
  755. (ep->ep_state & EP_GETTING_NO_STREAMS)) {
  756. int stream_id;
  757. for (stream_id = 1; stream_id < ep->stream_info->num_streams;
  758. stream_id++) {
  759. ring = ep->stream_info->stream_rings[stream_id];
  760. if (!ring)
  761. continue;
  762. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  763. "Killing URBs for slot ID %u, ep index %u, stream %u",
  764. slot_id, ep_index, stream_id);
  765. xhci_kill_ring_urbs(xhci, ring);
  766. }
  767. } else {
  768. ring = ep->ring;
  769. if (!ring)
  770. return;
  771. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  772. "Killing URBs for slot ID %u, ep index %u",
  773. slot_id, ep_index);
  774. xhci_kill_ring_urbs(xhci, ring);
  775. }
  776. list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
  777. cancelled_td_list) {
  778. list_del_init(&cur_td->cancelled_td_list);
  779. inc_td_cnt(cur_td->urb);
  780. if (last_td_in_urb(cur_td))
  781. xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
  782. }
  783. }
  784. /*
  785. * host controller died, register read returns 0xffffffff
  786. * Complete pending commands, mark them ABORTED.
  787. * URBs need to be given back as usb core might be waiting with device locks
  788. * held for the URBs to finish during device disconnect, blocking host remove.
  789. *
  790. * Call with xhci->lock held.
  791. * lock is relased and re-acquired while giving back urb.
  792. */
  793. void xhci_hc_died(struct xhci_hcd *xhci)
  794. {
  795. int i, j;
  796. if (xhci->xhc_state & XHCI_STATE_DYING)
  797. return;
  798. xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
  799. xhci->xhc_state |= XHCI_STATE_DYING;
  800. xhci_cleanup_command_queue(xhci);
  801. /* return any pending urbs, remove may be waiting for them */
  802. for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
  803. if (!xhci->devs[i])
  804. continue;
  805. for (j = 0; j < 31; j++)
  806. xhci_kill_endpoint_urbs(xhci, i, j);
  807. }
  808. /* inform usb core hc died if PCI remove isn't already handling it */
  809. if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
  810. usb_hc_died(xhci_to_hcd(xhci));
  811. }
  812. /* Watchdog timer function for when a stop endpoint command fails to complete.
  813. * In this case, we assume the host controller is broken or dying or dead. The
  814. * host may still be completing some other events, so we have to be careful to
  815. * let the event ring handler and the URB dequeueing/enqueueing functions know
  816. * through xhci->state.
  817. *
  818. * The timer may also fire if the host takes a very long time to respond to the
  819. * command, and the stop endpoint command completion handler cannot delete the
  820. * timer before the timer function is called. Another endpoint cancellation may
  821. * sneak in before the timer function can grab the lock, and that may queue
  822. * another stop endpoint command and add the timer back. So we cannot use a
  823. * simple flag to say whether there is a pending stop endpoint command for a
  824. * particular endpoint.
  825. *
  826. * Instead we use a combination of that flag and checking if a new timer is
  827. * pending.
  828. */
  829. void xhci_stop_endpoint_command_watchdog(unsigned long arg)
  830. {
  831. struct xhci_hcd *xhci;
  832. struct xhci_virt_ep *ep;
  833. unsigned long flags;
  834. ep = (struct xhci_virt_ep *) arg;
  835. xhci = ep->xhci;
  836. spin_lock_irqsave(&xhci->lock, flags);
  837. /* bail out if cmd completed but raced with stop ep watchdog timer.*/
  838. if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
  839. timer_pending(&ep->stop_cmd_timer)) {
  840. spin_unlock_irqrestore(&xhci->lock, flags);
  841. xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
  842. return;
  843. }
  844. xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
  845. ep->ep_state &= ~EP_STOP_CMD_PENDING;
  846. xhci_halt(xhci);
  847. /*
  848. * handle a stop endpoint cmd timeout as if host died (-ENODEV).
  849. * In the future we could distinguish between -ENODEV and -ETIMEDOUT
  850. * and try to recover a -ETIMEDOUT with a host controller reset
  851. */
  852. xhci_hc_died(xhci);
  853. spin_unlock_irqrestore(&xhci->lock, flags);
  854. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  855. "xHCI host controller is dead.");
  856. }
  857. static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
  858. struct xhci_virt_device *dev,
  859. struct xhci_ring *ep_ring,
  860. unsigned int ep_index)
  861. {
  862. union xhci_trb *dequeue_temp;
  863. int num_trbs_free_temp;
  864. bool revert = false;
  865. num_trbs_free_temp = ep_ring->num_trbs_free;
  866. dequeue_temp = ep_ring->dequeue;
  867. /* If we get two back-to-back stalls, and the first stalled transfer
  868. * ends just before a link TRB, the dequeue pointer will be left on
  869. * the link TRB by the code in the while loop. So we have to update
  870. * the dequeue pointer one segment further, or we'll jump off
  871. * the segment into la-la-land.
  872. */
  873. if (trb_is_link(ep_ring->dequeue)) {
  874. ep_ring->deq_seg = ep_ring->deq_seg->next;
  875. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  876. }
  877. while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
  878. /* We have more usable TRBs */
  879. ep_ring->num_trbs_free++;
  880. ep_ring->dequeue++;
  881. if (trb_is_link(ep_ring->dequeue)) {
  882. if (ep_ring->dequeue ==
  883. dev->eps[ep_index].queued_deq_ptr)
  884. break;
  885. ep_ring->deq_seg = ep_ring->deq_seg->next;
  886. ep_ring->dequeue = ep_ring->deq_seg->trbs;
  887. }
  888. if (ep_ring->dequeue == dequeue_temp) {
  889. revert = true;
  890. break;
  891. }
  892. }
  893. if (revert) {
  894. xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
  895. ep_ring->num_trbs_free = num_trbs_free_temp;
  896. }
  897. }
  898. /*
  899. * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
  900. * we need to clear the set deq pending flag in the endpoint ring state, so that
  901. * the TD queueing code can ring the doorbell again. We also need to ring the
  902. * endpoint doorbell to restart the ring, but only if there aren't more
  903. * cancellations pending.
  904. */
  905. static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
  906. union xhci_trb *trb, u32 cmd_comp_code)
  907. {
  908. unsigned int ep_index;
  909. unsigned int stream_id;
  910. struct xhci_ring *ep_ring;
  911. struct xhci_virt_device *dev;
  912. struct xhci_virt_ep *ep;
  913. struct xhci_ep_ctx *ep_ctx;
  914. struct xhci_slot_ctx *slot_ctx;
  915. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  916. stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
  917. dev = xhci->devs[slot_id];
  918. ep = &dev->eps[ep_index];
  919. ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
  920. if (!ep_ring) {
  921. xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
  922. stream_id);
  923. /* XXX: Harmless??? */
  924. goto cleanup;
  925. }
  926. ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
  927. slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
  928. trace_xhci_handle_cmd_set_deq(slot_ctx);
  929. trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
  930. if (cmd_comp_code != COMP_SUCCESS) {
  931. unsigned int ep_state;
  932. unsigned int slot_state;
  933. switch (cmd_comp_code) {
  934. case COMP_TRB_ERROR:
  935. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
  936. break;
  937. case COMP_CONTEXT_STATE_ERROR:
  938. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
  939. ep_state = GET_EP_CTX_STATE(ep_ctx);
  940. slot_state = le32_to_cpu(slot_ctx->dev_state);
  941. slot_state = GET_SLOT_STATE(slot_state);
  942. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  943. "Slot state = %u, EP state = %u",
  944. slot_state, ep_state);
  945. break;
  946. case COMP_SLOT_NOT_ENABLED_ERROR:
  947. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
  948. slot_id);
  949. break;
  950. default:
  951. xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
  952. cmd_comp_code);
  953. break;
  954. }
  955. /* OK what do we do now? The endpoint state is hosed, and we
  956. * should never get to this point if the synchronization between
  957. * queueing, and endpoint state are correct. This might happen
  958. * if the device gets disconnected after we've finished
  959. * cancelling URBs, which might not be an error...
  960. */
  961. } else {
  962. u64 deq;
  963. /* 4.6.10 deq ptr is written to the stream ctx for streams */
  964. if (ep->ep_state & EP_HAS_STREAMS) {
  965. struct xhci_stream_ctx *ctx =
  966. &ep->stream_info->stream_ctx_array[stream_id];
  967. deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
  968. } else {
  969. deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
  970. }
  971. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  972. "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
  973. if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
  974. ep->queued_deq_ptr) == deq) {
  975. /* Update the ring's dequeue segment and dequeue pointer
  976. * to reflect the new position.
  977. */
  978. update_ring_for_set_deq_completion(xhci, dev,
  979. ep_ring, ep_index);
  980. } else {
  981. xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
  982. xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
  983. ep->queued_deq_seg, ep->queued_deq_ptr);
  984. }
  985. }
  986. cleanup:
  987. dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
  988. dev->eps[ep_index].queued_deq_seg = NULL;
  989. dev->eps[ep_index].queued_deq_ptr = NULL;
  990. /* Restart any rings with pending URBs */
  991. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  992. }
  993. static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
  994. union xhci_trb *trb, u32 cmd_comp_code)
  995. {
  996. struct xhci_virt_device *vdev;
  997. struct xhci_ep_ctx *ep_ctx;
  998. unsigned int ep_index;
  999. ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
  1000. vdev = xhci->devs[slot_id];
  1001. ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
  1002. trace_xhci_handle_cmd_reset_ep(ep_ctx);
  1003. /* This command will only fail if the endpoint wasn't halted,
  1004. * but we don't care.
  1005. */
  1006. xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
  1007. "Ignoring reset ep completion code of %u", cmd_comp_code);
  1008. /* HW with the reset endpoint quirk needs to have a configure endpoint
  1009. * command complete before the endpoint can be used. Queue that here
  1010. * because the HW can't handle two commands being queued in a row.
  1011. */
  1012. if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
  1013. struct xhci_command *command;
  1014. command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  1015. if (!command)
  1016. return;
  1017. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1018. "Queueing configure endpoint command");
  1019. xhci_queue_configure_endpoint(xhci, command,
  1020. xhci->devs[slot_id]->in_ctx->dma, slot_id,
  1021. false);
  1022. xhci_ring_cmd_db(xhci);
  1023. } else {
  1024. /* Clear our internal halted state */
  1025. xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
  1026. }
  1027. }
  1028. static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
  1029. struct xhci_command *command, u32 cmd_comp_code)
  1030. {
  1031. if (cmd_comp_code == COMP_SUCCESS)
  1032. command->slot_id = slot_id;
  1033. else
  1034. command->slot_id = 0;
  1035. }
  1036. static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
  1037. {
  1038. struct xhci_virt_device *virt_dev;
  1039. struct xhci_slot_ctx *slot_ctx;
  1040. virt_dev = xhci->devs[slot_id];
  1041. if (!virt_dev)
  1042. return;
  1043. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  1044. trace_xhci_handle_cmd_disable_slot(slot_ctx);
  1045. if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
  1046. /* Delete default control endpoint resources */
  1047. xhci_free_device_endpoint_resources(xhci, virt_dev, true);
  1048. xhci_free_virt_device(xhci, slot_id);
  1049. }
  1050. static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
  1051. struct xhci_event_cmd *event, u32 cmd_comp_code)
  1052. {
  1053. struct xhci_virt_device *virt_dev;
  1054. struct xhci_input_control_ctx *ctrl_ctx;
  1055. struct xhci_ep_ctx *ep_ctx;
  1056. unsigned int ep_index;
  1057. unsigned int ep_state;
  1058. u32 add_flags, drop_flags;
  1059. /*
  1060. * Configure endpoint commands can come from the USB core
  1061. * configuration or alt setting changes, or because the HW
  1062. * needed an extra configure endpoint command after a reset
  1063. * endpoint command or streams were being configured.
  1064. * If the command was for a halted endpoint, the xHCI driver
  1065. * is not waiting on the configure endpoint command.
  1066. */
  1067. virt_dev = xhci->devs[slot_id];
  1068. ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
  1069. if (!ctrl_ctx) {
  1070. xhci_warn(xhci, "Could not get input context, bad type.\n");
  1071. return;
  1072. }
  1073. add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1074. drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1075. /* Input ctx add_flags are the endpoint index plus one */
  1076. ep_index = xhci_last_valid_endpoint(add_flags) - 1;
  1077. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
  1078. trace_xhci_handle_cmd_config_ep(ep_ctx);
  1079. /* A usb_set_interface() call directly after clearing a halted
  1080. * condition may race on this quirky hardware. Not worth
  1081. * worrying about, since this is prototype hardware. Not sure
  1082. * if this will work for streams, but streams support was
  1083. * untested on this prototype.
  1084. */
  1085. if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
  1086. ep_index != (unsigned int) -1 &&
  1087. add_flags - SLOT_FLAG == drop_flags) {
  1088. ep_state = virt_dev->eps[ep_index].ep_state;
  1089. if (!(ep_state & EP_HALTED))
  1090. return;
  1091. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1092. "Completed config ep cmd - "
  1093. "last ep index = %d, state = %d",
  1094. ep_index, ep_state);
  1095. /* Clear internal halted state and restart ring(s) */
  1096. virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
  1097. ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
  1098. return;
  1099. }
  1100. return;
  1101. }
  1102. static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
  1103. {
  1104. struct xhci_virt_device *vdev;
  1105. struct xhci_slot_ctx *slot_ctx;
  1106. vdev = xhci->devs[slot_id];
  1107. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1108. trace_xhci_handle_cmd_addr_dev(slot_ctx);
  1109. }
  1110. static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
  1111. struct xhci_event_cmd *event)
  1112. {
  1113. struct xhci_virt_device *vdev;
  1114. struct xhci_slot_ctx *slot_ctx;
  1115. vdev = xhci->devs[slot_id];
  1116. slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
  1117. trace_xhci_handle_cmd_reset_dev(slot_ctx);
  1118. xhci_dbg(xhci, "Completed reset device command.\n");
  1119. if (!xhci->devs[slot_id])
  1120. xhci_warn(xhci, "Reset device command completion "
  1121. "for disabled slot %u\n", slot_id);
  1122. }
  1123. static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
  1124. struct xhci_event_cmd *event)
  1125. {
  1126. if (!(xhci->quirks & XHCI_NEC_HOST)) {
  1127. xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
  1128. return;
  1129. }
  1130. xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
  1131. "NEC firmware version %2x.%02x",
  1132. NEC_FW_MAJOR(le32_to_cpu(event->status)),
  1133. NEC_FW_MINOR(le32_to_cpu(event->status)));
  1134. }
  1135. static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
  1136. {
  1137. list_del(&cmd->cmd_list);
  1138. if (cmd->completion) {
  1139. cmd->status = status;
  1140. complete(cmd->completion);
  1141. } else {
  1142. kfree(cmd);
  1143. }
  1144. }
  1145. void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
  1146. {
  1147. struct xhci_command *cur_cmd, *tmp_cmd;
  1148. xhci->current_cmd = NULL;
  1149. list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
  1150. xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
  1151. }
  1152. void xhci_handle_command_timeout(struct work_struct *work)
  1153. {
  1154. struct xhci_hcd *xhci;
  1155. unsigned long flags;
  1156. u64 hw_ring_state;
  1157. xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
  1158. spin_lock_irqsave(&xhci->lock, flags);
  1159. /*
  1160. * If timeout work is pending, or current_cmd is NULL, it means we
  1161. * raced with command completion. Command is handled so just return.
  1162. */
  1163. if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
  1164. spin_unlock_irqrestore(&xhci->lock, flags);
  1165. return;
  1166. }
  1167. /* mark this command to be cancelled */
  1168. xhci->current_cmd->status = COMP_COMMAND_ABORTED;
  1169. /* Make sure command ring is running before aborting it */
  1170. hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1171. if (hw_ring_state == ~(u64)0) {
  1172. xhci_hc_died(xhci);
  1173. goto time_out_completed;
  1174. }
  1175. if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
  1176. (hw_ring_state & CMD_RING_RUNNING)) {
  1177. /* Prevent new doorbell, and start command abort */
  1178. xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
  1179. xhci_dbg(xhci, "Command timeout\n");
  1180. xhci_abort_cmd_ring(xhci, flags);
  1181. goto time_out_completed;
  1182. }
  1183. /* host removed. Bail out */
  1184. if (xhci->xhc_state & XHCI_STATE_REMOVING) {
  1185. xhci_dbg(xhci, "host removed, ring start fail?\n");
  1186. xhci_cleanup_command_queue(xhci);
  1187. goto time_out_completed;
  1188. }
  1189. /* command timeout on stopped ring, ring can't be aborted */
  1190. xhci_dbg(xhci, "Command timeout on stopped ring\n");
  1191. xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
  1192. time_out_completed:
  1193. spin_unlock_irqrestore(&xhci->lock, flags);
  1194. return;
  1195. }
  1196. static void handle_cmd_completion(struct xhci_hcd *xhci,
  1197. struct xhci_event_cmd *event)
  1198. {
  1199. int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1200. u64 cmd_dma;
  1201. dma_addr_t cmd_dequeue_dma;
  1202. u32 cmd_comp_code;
  1203. union xhci_trb *cmd_trb;
  1204. struct xhci_command *cmd;
  1205. u32 cmd_type;
  1206. cmd_dma = le64_to_cpu(event->cmd_trb);
  1207. cmd_trb = xhci->cmd_ring->dequeue;
  1208. trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
  1209. cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  1210. cmd_trb);
  1211. /*
  1212. * Check whether the completion event is for our internal kept
  1213. * command.
  1214. */
  1215. if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
  1216. xhci_warn(xhci,
  1217. "ERROR mismatched command completion event\n");
  1218. return;
  1219. }
  1220. cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
  1221. cancel_delayed_work(&xhci->cmd_timer);
  1222. cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
  1223. /* If CMD ring stopped we own the trbs between enqueue and dequeue */
  1224. if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
  1225. complete_all(&xhci->cmd_ring_stop_completion);
  1226. return;
  1227. }
  1228. if (cmd->command_trb != xhci->cmd_ring->dequeue) {
  1229. xhci_err(xhci,
  1230. "Command completion event does not match command\n");
  1231. return;
  1232. }
  1233. /*
  1234. * Host aborted the command ring, check if the current command was
  1235. * supposed to be aborted, otherwise continue normally.
  1236. * The command ring is stopped now, but the xHC will issue a Command
  1237. * Ring Stopped event which will cause us to restart it.
  1238. */
  1239. if (cmd_comp_code == COMP_COMMAND_ABORTED) {
  1240. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  1241. if (cmd->status == COMP_COMMAND_ABORTED) {
  1242. if (xhci->current_cmd == cmd)
  1243. xhci->current_cmd = NULL;
  1244. goto event_handled;
  1245. }
  1246. }
  1247. cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
  1248. switch (cmd_type) {
  1249. case TRB_ENABLE_SLOT:
  1250. xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
  1251. break;
  1252. case TRB_DISABLE_SLOT:
  1253. xhci_handle_cmd_disable_slot(xhci, slot_id);
  1254. break;
  1255. case TRB_CONFIG_EP:
  1256. if (!cmd->completion)
  1257. xhci_handle_cmd_config_ep(xhci, slot_id, event,
  1258. cmd_comp_code);
  1259. break;
  1260. case TRB_EVAL_CONTEXT:
  1261. break;
  1262. case TRB_ADDR_DEV:
  1263. xhci_handle_cmd_addr_dev(xhci, slot_id);
  1264. break;
  1265. case TRB_STOP_RING:
  1266. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1267. le32_to_cpu(cmd_trb->generic.field[3])));
  1268. xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
  1269. break;
  1270. case TRB_SET_DEQ:
  1271. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1272. le32_to_cpu(cmd_trb->generic.field[3])));
  1273. xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
  1274. break;
  1275. case TRB_CMD_NOOP:
  1276. /* Is this an aborted command turned to NO-OP? */
  1277. if (cmd->status == COMP_COMMAND_RING_STOPPED)
  1278. cmd_comp_code = COMP_COMMAND_RING_STOPPED;
  1279. break;
  1280. case TRB_RESET_EP:
  1281. WARN_ON(slot_id != TRB_TO_SLOT_ID(
  1282. le32_to_cpu(cmd_trb->generic.field[3])));
  1283. xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
  1284. break;
  1285. case TRB_RESET_DEV:
  1286. /* SLOT_ID field in reset device cmd completion event TRB is 0.
  1287. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
  1288. */
  1289. slot_id = TRB_TO_SLOT_ID(
  1290. le32_to_cpu(cmd_trb->generic.field[3]));
  1291. xhci_handle_cmd_reset_dev(xhci, slot_id, event);
  1292. break;
  1293. case TRB_NEC_GET_FW:
  1294. xhci_handle_cmd_nec_get_fw(xhci, event);
  1295. break;
  1296. default:
  1297. /* Skip over unknown commands on the event ring */
  1298. xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
  1299. break;
  1300. }
  1301. /* restart timer if this wasn't the last command */
  1302. if (!list_is_singular(&xhci->cmd_list)) {
  1303. xhci->current_cmd = list_first_entry(&cmd->cmd_list,
  1304. struct xhci_command, cmd_list);
  1305. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  1306. } else if (xhci->current_cmd == cmd) {
  1307. xhci->current_cmd = NULL;
  1308. }
  1309. event_handled:
  1310. xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
  1311. inc_deq(xhci, xhci->cmd_ring);
  1312. }
  1313. static void handle_vendor_event(struct xhci_hcd *xhci,
  1314. union xhci_trb *event)
  1315. {
  1316. u32 trb_type;
  1317. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
  1318. xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
  1319. if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
  1320. handle_cmd_completion(xhci, &event->event_cmd);
  1321. }
  1322. /* @port_id: the one-based port ID from the hardware (indexed from array of all
  1323. * port registers -- USB 3.0 and USB 2.0).
  1324. *
  1325. * Returns a zero-based port number, which is suitable for indexing into each of
  1326. * the split roothubs' port arrays and bus state arrays.
  1327. * Add one to it in order to call xhci_find_slot_id_by_port.
  1328. */
  1329. static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
  1330. struct xhci_hcd *xhci, u32 port_id)
  1331. {
  1332. unsigned int i;
  1333. unsigned int num_similar_speed_ports = 0;
  1334. /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
  1335. * and usb2_ports are 0-based indexes. Count the number of similar
  1336. * speed ports, up to 1 port before this port.
  1337. */
  1338. for (i = 0; i < (port_id - 1); i++) {
  1339. u8 port_speed = xhci->port_array[i];
  1340. /*
  1341. * Skip ports that don't have known speeds, or have duplicate
  1342. * Extended Capabilities port speed entries.
  1343. */
  1344. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  1345. continue;
  1346. /*
  1347. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  1348. * 1.1 ports are under the USB 2.0 hub. If the port speed
  1349. * matches the device speed, it's a similar speed port.
  1350. */
  1351. if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
  1352. num_similar_speed_ports++;
  1353. }
  1354. return num_similar_speed_ports;
  1355. }
  1356. static void handle_device_notification(struct xhci_hcd *xhci,
  1357. union xhci_trb *event)
  1358. {
  1359. u32 slot_id;
  1360. struct usb_device *udev;
  1361. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
  1362. if (!xhci->devs[slot_id]) {
  1363. xhci_warn(xhci, "Device Notification event for "
  1364. "unused slot %u\n", slot_id);
  1365. return;
  1366. }
  1367. xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
  1368. slot_id);
  1369. udev = xhci->devs[slot_id]->udev;
  1370. if (udev && udev->parent)
  1371. usb_wakeup_notification(udev->parent, udev->portnum);
  1372. }
  1373. static void handle_port_status(struct xhci_hcd *xhci,
  1374. union xhci_trb *event)
  1375. {
  1376. struct usb_hcd *hcd;
  1377. u32 port_id;
  1378. u32 portsc, cmd_reg;
  1379. int max_ports;
  1380. int slot_id;
  1381. unsigned int faked_port_index;
  1382. u8 major_revision;
  1383. struct xhci_bus_state *bus_state;
  1384. __le32 __iomem **port_array;
  1385. bool bogus_port_status = false;
  1386. /* Port status change events always have a successful completion code */
  1387. if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
  1388. xhci_warn(xhci,
  1389. "WARN: xHC returned failed port status event\n");
  1390. port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
  1391. xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
  1392. max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1393. if ((port_id <= 0) || (port_id > max_ports)) {
  1394. xhci_warn(xhci, "Invalid port id %d\n", port_id);
  1395. inc_deq(xhci, xhci->event_ring);
  1396. return;
  1397. }
  1398. /* Figure out which usb_hcd this port is attached to:
  1399. * is it a USB 3.0 port or a USB 2.0/1.1 port?
  1400. */
  1401. major_revision = xhci->port_array[port_id - 1];
  1402. /* Find the right roothub. */
  1403. hcd = xhci_to_hcd(xhci);
  1404. if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
  1405. hcd = xhci->shared_hcd;
  1406. if (major_revision == 0) {
  1407. xhci_warn(xhci, "Event for port %u not in "
  1408. "Extended Capabilities, ignoring.\n",
  1409. port_id);
  1410. bogus_port_status = true;
  1411. goto cleanup;
  1412. }
  1413. if (major_revision == DUPLICATE_ENTRY) {
  1414. xhci_warn(xhci, "Event for port %u duplicated in"
  1415. "Extended Capabilities, ignoring.\n",
  1416. port_id);
  1417. bogus_port_status = true;
  1418. goto cleanup;
  1419. }
  1420. /*
  1421. * Hardware port IDs reported by a Port Status Change Event include USB
  1422. * 3.0 and USB 2.0 ports. We want to check if the port has reported a
  1423. * resume event, but we first need to translate the hardware port ID
  1424. * into the index into the ports on the correct split roothub, and the
  1425. * correct bus_state structure.
  1426. */
  1427. bus_state = &xhci->bus_state[hcd_index(hcd)];
  1428. if (hcd->speed >= HCD_USB3)
  1429. port_array = xhci->usb3_ports;
  1430. else
  1431. port_array = xhci->usb2_ports;
  1432. /* Find the faked port hub number */
  1433. faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
  1434. port_id);
  1435. portsc = readl(port_array[faked_port_index]);
  1436. trace_xhci_handle_port_status(faked_port_index, portsc);
  1437. if (hcd->state == HC_STATE_SUSPENDED) {
  1438. xhci_dbg(xhci, "resume root hub\n");
  1439. usb_hcd_resume_root_hub(hcd);
  1440. }
  1441. if (hcd->speed >= HCD_USB3 && (portsc & PORT_PLS_MASK) == XDEV_INACTIVE)
  1442. bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
  1443. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
  1444. xhci_dbg(xhci, "port resume event for port %d\n", port_id);
  1445. cmd_reg = readl(&xhci->op_regs->command);
  1446. if (!(cmd_reg & CMD_RUN)) {
  1447. xhci_warn(xhci, "xHC is not running.\n");
  1448. goto cleanup;
  1449. }
  1450. if (DEV_SUPERSPEED_ANY(portsc)) {
  1451. xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
  1452. /* Set a flag to say the port signaled remote wakeup,
  1453. * so we can tell the difference between the end of
  1454. * device and host initiated resume.
  1455. */
  1456. bus_state->port_remote_wakeup |= 1 << faked_port_index;
  1457. xhci_test_and_clear_bit(xhci, port_array,
  1458. faked_port_index, PORT_PLC);
  1459. xhci_set_link_state(xhci, port_array, faked_port_index,
  1460. XDEV_U0);
  1461. /* Need to wait until the next link state change
  1462. * indicates the device is actually in U0.
  1463. */
  1464. bogus_port_status = true;
  1465. goto cleanup;
  1466. } else if (!test_bit(faked_port_index,
  1467. &bus_state->resuming_ports)) {
  1468. xhci_dbg(xhci, "resume HS port %d\n", port_id);
  1469. bus_state->resume_done[faked_port_index] = jiffies +
  1470. msecs_to_jiffies(USB_RESUME_TIMEOUT);
  1471. set_bit(faked_port_index, &bus_state->resuming_ports);
  1472. mod_timer(&hcd->rh_timer,
  1473. bus_state->resume_done[faked_port_index]);
  1474. /* Do the rest in GetPortStatus */
  1475. }
  1476. }
  1477. if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_U0 &&
  1478. DEV_SUPERSPEED_ANY(portsc)) {
  1479. xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
  1480. /* We've just brought the device into U0 through either the
  1481. * Resume state after a device remote wakeup, or through the
  1482. * U3Exit state after a host-initiated resume. If it's a device
  1483. * initiated remote wake, don't pass up the link state change,
  1484. * so the roothub behavior is consistent with external
  1485. * USB 3.0 hub behavior.
  1486. */
  1487. slot_id = xhci_find_slot_id_by_port(hcd, xhci,
  1488. faked_port_index + 1);
  1489. if (slot_id && xhci->devs[slot_id])
  1490. xhci_ring_device(xhci, slot_id);
  1491. if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
  1492. bus_state->port_remote_wakeup &=
  1493. ~(1 << faked_port_index);
  1494. xhci_test_and_clear_bit(xhci, port_array,
  1495. faked_port_index, PORT_PLC);
  1496. usb_wakeup_notification(hcd->self.root_hub,
  1497. faked_port_index + 1);
  1498. bogus_port_status = true;
  1499. goto cleanup;
  1500. }
  1501. }
  1502. /*
  1503. * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
  1504. * RExit to a disconnect state). If so, let the the driver know it's
  1505. * out of the RExit state.
  1506. */
  1507. if (!DEV_SUPERSPEED_ANY(portsc) &&
  1508. test_and_clear_bit(faked_port_index,
  1509. &bus_state->rexit_ports)) {
  1510. complete(&bus_state->rexit_done[faked_port_index]);
  1511. bogus_port_status = true;
  1512. goto cleanup;
  1513. }
  1514. if (hcd->speed < HCD_USB3)
  1515. xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
  1516. PORT_PLC);
  1517. cleanup:
  1518. /* Update event ring dequeue pointer before dropping the lock */
  1519. inc_deq(xhci, xhci->event_ring);
  1520. /* Don't make the USB core poll the roothub if we got a bad port status
  1521. * change event. Besides, at that point we can't tell which roothub
  1522. * (USB 2.0 or USB 3.0) to kick.
  1523. */
  1524. if (bogus_port_status)
  1525. return;
  1526. /*
  1527. * xHCI port-status-change events occur when the "or" of all the
  1528. * status-change bits in the portsc register changes from 0 to 1.
  1529. * New status changes won't cause an event if any other change
  1530. * bits are still set. When an event occurs, switch over to
  1531. * polling to avoid losing status changes.
  1532. */
  1533. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  1534. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  1535. spin_unlock(&xhci->lock);
  1536. /* Pass this up to the core */
  1537. usb_hcd_poll_rh_status(hcd);
  1538. spin_lock(&xhci->lock);
  1539. }
  1540. /*
  1541. * This TD is defined by the TRBs starting at start_trb in start_seg and ending
  1542. * at end_trb, which may be in another segment. If the suspect DMA address is a
  1543. * TRB in this TD, this function returns that TRB's segment. Otherwise it
  1544. * returns 0.
  1545. */
  1546. struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
  1547. struct xhci_segment *start_seg,
  1548. union xhci_trb *start_trb,
  1549. union xhci_trb *end_trb,
  1550. dma_addr_t suspect_dma,
  1551. bool debug)
  1552. {
  1553. dma_addr_t start_dma;
  1554. dma_addr_t end_seg_dma;
  1555. dma_addr_t end_trb_dma;
  1556. struct xhci_segment *cur_seg;
  1557. start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
  1558. cur_seg = start_seg;
  1559. do {
  1560. if (start_dma == 0)
  1561. return NULL;
  1562. /* We may get an event for a Link TRB in the middle of a TD */
  1563. end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
  1564. &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
  1565. /* If the end TRB isn't in this segment, this is set to 0 */
  1566. end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
  1567. if (debug)
  1568. xhci_warn(xhci,
  1569. "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
  1570. (unsigned long long)suspect_dma,
  1571. (unsigned long long)start_dma,
  1572. (unsigned long long)end_trb_dma,
  1573. (unsigned long long)cur_seg->dma,
  1574. (unsigned long long)end_seg_dma);
  1575. if (end_trb_dma > 0) {
  1576. /* The end TRB is in this segment, so suspect should be here */
  1577. if (start_dma <= end_trb_dma) {
  1578. if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
  1579. return cur_seg;
  1580. } else {
  1581. /* Case for one segment with
  1582. * a TD wrapped around to the top
  1583. */
  1584. if ((suspect_dma >= start_dma &&
  1585. suspect_dma <= end_seg_dma) ||
  1586. (suspect_dma >= cur_seg->dma &&
  1587. suspect_dma <= end_trb_dma))
  1588. return cur_seg;
  1589. }
  1590. return NULL;
  1591. } else {
  1592. /* Might still be somewhere in this segment */
  1593. if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
  1594. return cur_seg;
  1595. }
  1596. cur_seg = cur_seg->next;
  1597. start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
  1598. } while (cur_seg != start_seg);
  1599. return NULL;
  1600. }
  1601. static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
  1602. unsigned int slot_id, unsigned int ep_index,
  1603. unsigned int stream_id,
  1604. struct xhci_td *td, union xhci_trb *ep_trb,
  1605. enum xhci_ep_reset_type reset_type)
  1606. {
  1607. struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
  1608. struct xhci_command *command;
  1609. command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  1610. if (!command)
  1611. return;
  1612. ep->ep_state |= EP_HALTED;
  1613. xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
  1614. if (reset_type == EP_HARD_RESET)
  1615. xhci_cleanup_stalled_ring(xhci, ep_index, stream_id, td);
  1616. xhci_ring_cmd_db(xhci);
  1617. }
  1618. /* Check if an error has halted the endpoint ring. The class driver will
  1619. * cleanup the halt for a non-default control endpoint if we indicate a stall.
  1620. * However, a babble and other errors also halt the endpoint ring, and the class
  1621. * driver won't clear the halt in that case, so we need to issue a Set Transfer
  1622. * Ring Dequeue Pointer command manually.
  1623. */
  1624. static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
  1625. struct xhci_ep_ctx *ep_ctx,
  1626. unsigned int trb_comp_code)
  1627. {
  1628. /* TRB completion codes that may require a manual halt cleanup */
  1629. if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
  1630. trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
  1631. trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
  1632. /* The 0.95 spec says a babbling control endpoint
  1633. * is not halted. The 0.96 spec says it is. Some HW
  1634. * claims to be 0.95 compliant, but it halts the control
  1635. * endpoint anyway. Check if a babble halted the
  1636. * endpoint.
  1637. */
  1638. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
  1639. return 1;
  1640. return 0;
  1641. }
  1642. int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
  1643. {
  1644. if (trb_comp_code >= 224 && trb_comp_code <= 255) {
  1645. /* Vendor defined "informational" completion code,
  1646. * treat as not-an-error.
  1647. */
  1648. xhci_dbg(xhci, "Vendor defined info completion code %u\n",
  1649. trb_comp_code);
  1650. xhci_dbg(xhci, "Treating code as success.\n");
  1651. return 1;
  1652. }
  1653. return 0;
  1654. }
  1655. static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
  1656. struct xhci_ring *ep_ring, int *status)
  1657. {
  1658. struct urb_priv *urb_priv;
  1659. struct urb *urb = NULL;
  1660. /* Clean up the endpoint's TD list */
  1661. urb = td->urb;
  1662. urb_priv = urb->hcpriv;
  1663. /* if a bounce buffer was used to align this td then unmap it */
  1664. xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
  1665. /* Do one last check of the actual transfer length.
  1666. * If the host controller said we transferred more data than the buffer
  1667. * length, urb->actual_length will be a very big number (since it's
  1668. * unsigned). Play it safe and say we didn't transfer anything.
  1669. */
  1670. if (urb->actual_length > urb->transfer_buffer_length) {
  1671. xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
  1672. urb->transfer_buffer_length, urb->actual_length);
  1673. urb->actual_length = 0;
  1674. *status = 0;
  1675. }
  1676. list_del_init(&td->td_list);
  1677. /* Was this TD slated to be cancelled but completed anyway? */
  1678. if (!list_empty(&td->cancelled_td_list))
  1679. list_del_init(&td->cancelled_td_list);
  1680. inc_td_cnt(urb);
  1681. /* Giveback the urb when all the tds are completed */
  1682. if (last_td_in_urb(td)) {
  1683. if ((urb->actual_length != urb->transfer_buffer_length &&
  1684. (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
  1685. (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
  1686. xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
  1687. urb, urb->actual_length,
  1688. urb->transfer_buffer_length, *status);
  1689. /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
  1690. if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
  1691. *status = 0;
  1692. xhci_giveback_urb_in_irq(xhci, td, *status);
  1693. }
  1694. return 0;
  1695. }
  1696. static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1697. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1698. struct xhci_virt_ep *ep, int *status)
  1699. {
  1700. struct xhci_virt_device *xdev;
  1701. struct xhci_ep_ctx *ep_ctx;
  1702. struct xhci_ring *ep_ring;
  1703. unsigned int slot_id;
  1704. u32 trb_comp_code;
  1705. int ep_index;
  1706. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1707. xdev = xhci->devs[slot_id];
  1708. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1709. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1710. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1711. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1712. if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
  1713. trb_comp_code == COMP_STOPPED ||
  1714. trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
  1715. /* The Endpoint Stop Command completion will take care of any
  1716. * stopped TDs. A stopped TD may be restarted, so don't update
  1717. * the ring dequeue pointer or take this TD off any lists yet.
  1718. */
  1719. return 0;
  1720. }
  1721. if (trb_comp_code == COMP_STALL_ERROR ||
  1722. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  1723. trb_comp_code)) {
  1724. /* Issue a reset endpoint command to clear the host side
  1725. * halt, followed by a set dequeue command to move the
  1726. * dequeue pointer past the TD.
  1727. * The class driver clears the device side halt later.
  1728. */
  1729. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
  1730. ep_ring->stream_id, td, ep_trb,
  1731. EP_HARD_RESET);
  1732. } else {
  1733. /* Update ring dequeue pointer */
  1734. while (ep_ring->dequeue != td->last_trb)
  1735. inc_deq(xhci, ep_ring);
  1736. inc_deq(xhci, ep_ring);
  1737. }
  1738. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1739. }
  1740. /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
  1741. static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
  1742. union xhci_trb *stop_trb)
  1743. {
  1744. u32 sum;
  1745. union xhci_trb *trb = ring->dequeue;
  1746. struct xhci_segment *seg = ring->deq_seg;
  1747. for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
  1748. if (!trb_is_noop(trb) && !trb_is_link(trb))
  1749. sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
  1750. }
  1751. return sum;
  1752. }
  1753. /*
  1754. * Process control tds, update urb status and actual_length.
  1755. */
  1756. static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1757. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1758. struct xhci_virt_ep *ep, int *status)
  1759. {
  1760. struct xhci_virt_device *xdev;
  1761. struct xhci_ring *ep_ring;
  1762. unsigned int slot_id;
  1763. int ep_index;
  1764. struct xhci_ep_ctx *ep_ctx;
  1765. u32 trb_comp_code;
  1766. u32 remaining, requested;
  1767. u32 trb_type;
  1768. trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
  1769. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  1770. xdev = xhci->devs[slot_id];
  1771. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  1772. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1773. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  1774. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1775. requested = td->urb->transfer_buffer_length;
  1776. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1777. switch (trb_comp_code) {
  1778. case COMP_SUCCESS:
  1779. if (trb_type != TRB_STATUS) {
  1780. xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
  1781. (trb_type == TRB_DATA) ? "data" : "setup");
  1782. *status = -ESHUTDOWN;
  1783. break;
  1784. }
  1785. *status = 0;
  1786. break;
  1787. case COMP_SHORT_PACKET:
  1788. *status = 0;
  1789. break;
  1790. case COMP_STOPPED_SHORT_PACKET:
  1791. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1792. td->urb->actual_length = remaining;
  1793. else
  1794. xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
  1795. goto finish_td;
  1796. case COMP_STOPPED:
  1797. switch (trb_type) {
  1798. case TRB_SETUP:
  1799. td->urb->actual_length = 0;
  1800. goto finish_td;
  1801. case TRB_DATA:
  1802. case TRB_NORMAL:
  1803. td->urb->actual_length = requested - remaining;
  1804. goto finish_td;
  1805. case TRB_STATUS:
  1806. td->urb->actual_length = requested;
  1807. goto finish_td;
  1808. default:
  1809. xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
  1810. trb_type);
  1811. goto finish_td;
  1812. }
  1813. case COMP_STOPPED_LENGTH_INVALID:
  1814. goto finish_td;
  1815. default:
  1816. if (!xhci_requires_manual_halt_cleanup(xhci,
  1817. ep_ctx, trb_comp_code))
  1818. break;
  1819. xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
  1820. trb_comp_code, ep_index);
  1821. /* else fall through */
  1822. case COMP_STALL_ERROR:
  1823. /* Did we transfer part of the data (middle) phase? */
  1824. if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
  1825. td->urb->actual_length = requested - remaining;
  1826. else if (!td->urb_length_set)
  1827. td->urb->actual_length = 0;
  1828. goto finish_td;
  1829. }
  1830. /* stopped at setup stage, no data transferred */
  1831. if (trb_type == TRB_SETUP)
  1832. goto finish_td;
  1833. /*
  1834. * if on data stage then update the actual_length of the URB and flag it
  1835. * as set, so it won't be overwritten in the event for the last TRB.
  1836. */
  1837. if (trb_type == TRB_DATA ||
  1838. trb_type == TRB_NORMAL) {
  1839. td->urb_length_set = true;
  1840. td->urb->actual_length = requested - remaining;
  1841. xhci_dbg(xhci, "Waiting for status stage event\n");
  1842. return 0;
  1843. }
  1844. /* at status stage */
  1845. if (!td->urb_length_set)
  1846. td->urb->actual_length = requested;
  1847. finish_td:
  1848. return finish_td(xhci, td, ep_trb, event, ep, status);
  1849. }
  1850. /*
  1851. * Process isochronous tds, update urb packet status and actual_length.
  1852. */
  1853. static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1854. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1855. struct xhci_virt_ep *ep, int *status)
  1856. {
  1857. struct xhci_ring *ep_ring;
  1858. struct urb_priv *urb_priv;
  1859. int idx;
  1860. struct usb_iso_packet_descriptor *frame;
  1861. u32 trb_comp_code;
  1862. bool sum_trbs_for_length = false;
  1863. u32 remaining, requested, ep_trb_len;
  1864. int short_framestatus;
  1865. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1866. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1867. urb_priv = td->urb->hcpriv;
  1868. idx = urb_priv->num_tds_done;
  1869. frame = &td->urb->iso_frame_desc[idx];
  1870. requested = frame->length;
  1871. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1872. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1873. short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
  1874. -EREMOTEIO : 0;
  1875. /* handle completion code */
  1876. switch (trb_comp_code) {
  1877. case COMP_SUCCESS:
  1878. if (remaining) {
  1879. frame->status = short_framestatus;
  1880. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  1881. sum_trbs_for_length = true;
  1882. break;
  1883. }
  1884. frame->status = 0;
  1885. break;
  1886. case COMP_SHORT_PACKET:
  1887. frame->status = short_framestatus;
  1888. sum_trbs_for_length = true;
  1889. break;
  1890. case COMP_BANDWIDTH_OVERRUN_ERROR:
  1891. frame->status = -ECOMM;
  1892. break;
  1893. case COMP_ISOCH_BUFFER_OVERRUN:
  1894. case COMP_BABBLE_DETECTED_ERROR:
  1895. frame->status = -EOVERFLOW;
  1896. break;
  1897. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  1898. case COMP_STALL_ERROR:
  1899. frame->status = -EPROTO;
  1900. break;
  1901. case COMP_USB_TRANSACTION_ERROR:
  1902. frame->status = -EPROTO;
  1903. if (ep_trb != td->last_trb)
  1904. return 0;
  1905. break;
  1906. case COMP_STOPPED:
  1907. sum_trbs_for_length = true;
  1908. break;
  1909. case COMP_STOPPED_SHORT_PACKET:
  1910. /* field normally containing residue now contains tranferred */
  1911. frame->status = short_framestatus;
  1912. requested = remaining;
  1913. break;
  1914. case COMP_STOPPED_LENGTH_INVALID:
  1915. requested = 0;
  1916. remaining = 0;
  1917. break;
  1918. default:
  1919. sum_trbs_for_length = true;
  1920. frame->status = -1;
  1921. break;
  1922. }
  1923. if (sum_trbs_for_length)
  1924. frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
  1925. ep_trb_len - remaining;
  1926. else
  1927. frame->actual_length = requested;
  1928. td->urb->actual_length += frame->actual_length;
  1929. return finish_td(xhci, td, ep_trb, event, ep, status);
  1930. }
  1931. static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1932. struct xhci_transfer_event *event,
  1933. struct xhci_virt_ep *ep, int *status)
  1934. {
  1935. struct xhci_ring *ep_ring;
  1936. struct urb_priv *urb_priv;
  1937. struct usb_iso_packet_descriptor *frame;
  1938. int idx;
  1939. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1940. urb_priv = td->urb->hcpriv;
  1941. idx = urb_priv->num_tds_done;
  1942. frame = &td->urb->iso_frame_desc[idx];
  1943. /* The transfer is partly done. */
  1944. frame->status = -EXDEV;
  1945. /* calc actual length */
  1946. frame->actual_length = 0;
  1947. /* Update ring dequeue pointer */
  1948. while (ep_ring->dequeue != td->last_trb)
  1949. inc_deq(xhci, ep_ring);
  1950. inc_deq(xhci, ep_ring);
  1951. return xhci_td_cleanup(xhci, td, ep_ring, status);
  1952. }
  1953. /*
  1954. * Process bulk and interrupt tds, update urb status and actual_length.
  1955. */
  1956. static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
  1957. union xhci_trb *ep_trb, struct xhci_transfer_event *event,
  1958. struct xhci_virt_ep *ep, int *status)
  1959. {
  1960. struct xhci_ring *ep_ring;
  1961. u32 trb_comp_code;
  1962. u32 remaining, requested, ep_trb_len;
  1963. ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
  1964. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  1965. remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
  1966. ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
  1967. requested = td->urb->transfer_buffer_length;
  1968. switch (trb_comp_code) {
  1969. case COMP_SUCCESS:
  1970. /* handle success with untransferred data as short packet */
  1971. if (ep_trb != td->last_trb || remaining) {
  1972. xhci_warn(xhci, "WARN Successful completion on short TX\n");
  1973. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1974. td->urb->ep->desc.bEndpointAddress,
  1975. requested, remaining);
  1976. }
  1977. *status = 0;
  1978. break;
  1979. case COMP_SHORT_PACKET:
  1980. xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
  1981. td->urb->ep->desc.bEndpointAddress,
  1982. requested, remaining);
  1983. *status = 0;
  1984. break;
  1985. case COMP_STOPPED_SHORT_PACKET:
  1986. td->urb->actual_length = remaining;
  1987. goto finish_td;
  1988. case COMP_STOPPED_LENGTH_INVALID:
  1989. /* stopped on ep trb with invalid length, exclude it */
  1990. ep_trb_len = 0;
  1991. remaining = 0;
  1992. break;
  1993. default:
  1994. /* do nothing */
  1995. break;
  1996. }
  1997. if (ep_trb == td->last_trb)
  1998. td->urb->actual_length = requested - remaining;
  1999. else
  2000. td->urb->actual_length =
  2001. sum_trb_lengths(xhci, ep_ring, ep_trb) +
  2002. ep_trb_len - remaining;
  2003. finish_td:
  2004. if (remaining > requested) {
  2005. xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
  2006. remaining);
  2007. td->urb->actual_length = 0;
  2008. }
  2009. return finish_td(xhci, td, ep_trb, event, ep, status);
  2010. }
  2011. /*
  2012. * If this function returns an error condition, it means it got a Transfer
  2013. * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
  2014. * At this point, the host controller is probably hosed and should be reset.
  2015. */
  2016. static int handle_tx_event(struct xhci_hcd *xhci,
  2017. struct xhci_transfer_event *event)
  2018. {
  2019. struct xhci_virt_device *xdev;
  2020. struct xhci_virt_ep *ep;
  2021. struct xhci_ring *ep_ring;
  2022. unsigned int slot_id;
  2023. int ep_index;
  2024. struct xhci_td *td = NULL;
  2025. dma_addr_t ep_trb_dma;
  2026. struct xhci_segment *ep_seg;
  2027. union xhci_trb *ep_trb;
  2028. int status = -EINPROGRESS;
  2029. struct xhci_ep_ctx *ep_ctx;
  2030. struct list_head *tmp;
  2031. u32 trb_comp_code;
  2032. int td_num = 0;
  2033. bool handling_skipped_tds = false;
  2034. slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
  2035. ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
  2036. trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
  2037. ep_trb_dma = le64_to_cpu(event->buffer);
  2038. xdev = xhci->devs[slot_id];
  2039. if (!xdev) {
  2040. xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
  2041. slot_id);
  2042. goto err_out;
  2043. }
  2044. ep = &xdev->eps[ep_index];
  2045. ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
  2046. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2047. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
  2048. xhci_err(xhci,
  2049. "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
  2050. slot_id, ep_index);
  2051. goto err_out;
  2052. }
  2053. /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
  2054. if (!ep_ring) {
  2055. switch (trb_comp_code) {
  2056. case COMP_STALL_ERROR:
  2057. case COMP_USB_TRANSACTION_ERROR:
  2058. case COMP_INVALID_STREAM_TYPE_ERROR:
  2059. case COMP_INVALID_STREAM_ID_ERROR:
  2060. xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
  2061. NULL, NULL, EP_SOFT_RESET);
  2062. goto cleanup;
  2063. case COMP_RING_UNDERRUN:
  2064. case COMP_RING_OVERRUN:
  2065. goto cleanup;
  2066. default:
  2067. xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
  2068. slot_id, ep_index);
  2069. goto err_out;
  2070. }
  2071. }
  2072. /* Count current td numbers if ep->skip is set */
  2073. if (ep->skip) {
  2074. list_for_each(tmp, &ep_ring->td_list)
  2075. td_num++;
  2076. }
  2077. /* Look for common error cases */
  2078. switch (trb_comp_code) {
  2079. /* Skip codes that require special handling depending on
  2080. * transfer type
  2081. */
  2082. case COMP_SUCCESS:
  2083. if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
  2084. break;
  2085. if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
  2086. trb_comp_code = COMP_SHORT_PACKET;
  2087. else
  2088. xhci_warn_ratelimited(xhci,
  2089. "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
  2090. slot_id, ep_index);
  2091. case COMP_SHORT_PACKET:
  2092. break;
  2093. /* Completion codes for endpoint stopped state */
  2094. case COMP_STOPPED:
  2095. xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
  2096. slot_id, ep_index);
  2097. break;
  2098. case COMP_STOPPED_LENGTH_INVALID:
  2099. xhci_dbg(xhci,
  2100. "Stopped on No-op or Link TRB for slot %u ep %u\n",
  2101. slot_id, ep_index);
  2102. break;
  2103. case COMP_STOPPED_SHORT_PACKET:
  2104. xhci_dbg(xhci,
  2105. "Stopped with short packet transfer detected for slot %u ep %u\n",
  2106. slot_id, ep_index);
  2107. break;
  2108. /* Completion codes for endpoint halted state */
  2109. case COMP_STALL_ERROR:
  2110. xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
  2111. ep_index);
  2112. ep->ep_state |= EP_HALTED;
  2113. status = -EPIPE;
  2114. break;
  2115. case COMP_SPLIT_TRANSACTION_ERROR:
  2116. case COMP_USB_TRANSACTION_ERROR:
  2117. xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
  2118. slot_id, ep_index);
  2119. status = -EPROTO;
  2120. break;
  2121. case COMP_BABBLE_DETECTED_ERROR:
  2122. xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
  2123. slot_id, ep_index);
  2124. status = -EOVERFLOW;
  2125. break;
  2126. /* Completion codes for endpoint error state */
  2127. case COMP_TRB_ERROR:
  2128. xhci_warn(xhci,
  2129. "WARN: TRB error for slot %u ep %u on endpoint\n",
  2130. slot_id, ep_index);
  2131. status = -EILSEQ;
  2132. break;
  2133. /* completion codes not indicating endpoint state change */
  2134. case COMP_DATA_BUFFER_ERROR:
  2135. xhci_warn(xhci,
  2136. "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
  2137. slot_id, ep_index);
  2138. status = -ENOSR;
  2139. break;
  2140. case COMP_BANDWIDTH_OVERRUN_ERROR:
  2141. xhci_warn(xhci,
  2142. "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
  2143. slot_id, ep_index);
  2144. break;
  2145. case COMP_ISOCH_BUFFER_OVERRUN:
  2146. xhci_warn(xhci,
  2147. "WARN: buffer overrun event for slot %u ep %u on endpoint",
  2148. slot_id, ep_index);
  2149. break;
  2150. case COMP_RING_UNDERRUN:
  2151. /*
  2152. * When the Isoch ring is empty, the xHC will generate
  2153. * a Ring Overrun Event for IN Isoch endpoint or Ring
  2154. * Underrun Event for OUT Isoch endpoint.
  2155. */
  2156. xhci_dbg(xhci, "underrun event on endpoint\n");
  2157. if (!list_empty(&ep_ring->td_list))
  2158. xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
  2159. "still with TDs queued?\n",
  2160. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2161. ep_index);
  2162. goto cleanup;
  2163. case COMP_RING_OVERRUN:
  2164. xhci_dbg(xhci, "overrun event on endpoint\n");
  2165. if (!list_empty(&ep_ring->td_list))
  2166. xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
  2167. "still with TDs queued?\n",
  2168. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2169. ep_index);
  2170. goto cleanup;
  2171. case COMP_MISSED_SERVICE_ERROR:
  2172. /*
  2173. * When encounter missed service error, one or more isoc tds
  2174. * may be missed by xHC.
  2175. * Set skip flag of the ep_ring; Complete the missed tds as
  2176. * short transfer when process the ep_ring next time.
  2177. */
  2178. ep->skip = true;
  2179. xhci_dbg(xhci,
  2180. "Miss service interval error for slot %u ep %u, set skip flag\n",
  2181. slot_id, ep_index);
  2182. goto cleanup;
  2183. case COMP_NO_PING_RESPONSE_ERROR:
  2184. ep->skip = true;
  2185. xhci_dbg(xhci,
  2186. "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
  2187. slot_id, ep_index);
  2188. goto cleanup;
  2189. case COMP_INCOMPATIBLE_DEVICE_ERROR:
  2190. /* needs disable slot command to recover */
  2191. xhci_warn(xhci,
  2192. "WARN: detect an incompatible device for slot %u ep %u",
  2193. slot_id, ep_index);
  2194. status = -EPROTO;
  2195. break;
  2196. default:
  2197. if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
  2198. status = 0;
  2199. break;
  2200. }
  2201. xhci_warn(xhci,
  2202. "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
  2203. trb_comp_code, slot_id, ep_index);
  2204. goto cleanup;
  2205. }
  2206. do {
  2207. /* This TRB should be in the TD at the head of this ring's
  2208. * TD list.
  2209. */
  2210. if (list_empty(&ep_ring->td_list)) {
  2211. /*
  2212. * A stopped endpoint may generate an extra completion
  2213. * event if the device was suspended. Don't print
  2214. * warnings.
  2215. */
  2216. if (!(trb_comp_code == COMP_STOPPED ||
  2217. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2218. xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
  2219. TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
  2220. ep_index);
  2221. }
  2222. if (ep->skip) {
  2223. ep->skip = false;
  2224. xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
  2225. slot_id, ep_index);
  2226. }
  2227. goto cleanup;
  2228. }
  2229. /* We've skipped all the TDs on the ep ring when ep->skip set */
  2230. if (ep->skip && td_num == 0) {
  2231. ep->skip = false;
  2232. xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
  2233. slot_id, ep_index);
  2234. goto cleanup;
  2235. }
  2236. td = list_first_entry(&ep_ring->td_list, struct xhci_td,
  2237. td_list);
  2238. if (ep->skip)
  2239. td_num--;
  2240. /* Is this a TRB in the currently executing TD? */
  2241. ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
  2242. td->last_trb, ep_trb_dma, false);
  2243. /*
  2244. * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
  2245. * is not in the current TD pointed by ep_ring->dequeue because
  2246. * that the hardware dequeue pointer still at the previous TRB
  2247. * of the current TD. The previous TRB maybe a Link TD or the
  2248. * last TRB of the previous TD. The command completion handle
  2249. * will take care the rest.
  2250. */
  2251. if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
  2252. trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
  2253. goto cleanup;
  2254. }
  2255. if (!ep_seg) {
  2256. if (!ep->skip ||
  2257. !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
  2258. /* Some host controllers give a spurious
  2259. * successful event after a short transfer.
  2260. * Ignore it.
  2261. */
  2262. if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
  2263. ep_ring->last_td_was_short) {
  2264. ep_ring->last_td_was_short = false;
  2265. goto cleanup;
  2266. }
  2267. /* HC is busted, give up! */
  2268. xhci_err(xhci,
  2269. "ERROR Transfer event TRB DMA ptr not "
  2270. "part of current TD ep_index %d "
  2271. "comp_code %u\n", ep_index,
  2272. trb_comp_code);
  2273. trb_in_td(xhci, ep_ring->deq_seg,
  2274. ep_ring->dequeue, td->last_trb,
  2275. ep_trb_dma, true);
  2276. return -ESHUTDOWN;
  2277. }
  2278. skip_isoc_td(xhci, td, event, ep, &status);
  2279. goto cleanup;
  2280. }
  2281. if (trb_comp_code == COMP_SHORT_PACKET)
  2282. ep_ring->last_td_was_short = true;
  2283. else
  2284. ep_ring->last_td_was_short = false;
  2285. if (ep->skip) {
  2286. xhci_dbg(xhci,
  2287. "Found td. Clear skip flag for slot %u ep %u.\n",
  2288. slot_id, ep_index);
  2289. ep->skip = false;
  2290. }
  2291. ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
  2292. sizeof(*ep_trb)];
  2293. trace_xhci_handle_transfer(ep_ring,
  2294. (struct xhci_generic_trb *) ep_trb);
  2295. /*
  2296. * No-op TRB could trigger interrupts in a case where
  2297. * a URB was killed and a STALL_ERROR happens right
  2298. * after the endpoint ring stopped. Reset the halted
  2299. * endpoint. Otherwise, the endpoint remains stalled
  2300. * indefinitely.
  2301. */
  2302. if (trb_is_noop(ep_trb)) {
  2303. if (trb_comp_code == COMP_STALL_ERROR ||
  2304. xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
  2305. trb_comp_code))
  2306. xhci_cleanup_halted_endpoint(xhci, slot_id,
  2307. ep_index,
  2308. ep_ring->stream_id,
  2309. td, ep_trb,
  2310. EP_HARD_RESET);
  2311. goto cleanup;
  2312. }
  2313. /* update the urb's actual_length and give back to the core */
  2314. if (usb_endpoint_xfer_control(&td->urb->ep->desc))
  2315. process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
  2316. else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
  2317. process_isoc_td(xhci, td, ep_trb, event, ep, &status);
  2318. else
  2319. process_bulk_intr_td(xhci, td, ep_trb, event, ep,
  2320. &status);
  2321. cleanup:
  2322. handling_skipped_tds = ep->skip &&
  2323. trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
  2324. trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
  2325. /*
  2326. * Do not update event ring dequeue pointer if we're in a loop
  2327. * processing missed tds.
  2328. */
  2329. if (!handling_skipped_tds)
  2330. inc_deq(xhci, xhci->event_ring);
  2331. /*
  2332. * If ep->skip is set, it means there are missed tds on the
  2333. * endpoint ring need to take care of.
  2334. * Process them as short transfer until reach the td pointed by
  2335. * the event.
  2336. */
  2337. } while (handling_skipped_tds);
  2338. return 0;
  2339. err_out:
  2340. xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
  2341. (unsigned long long) xhci_trb_virt_to_dma(
  2342. xhci->event_ring->deq_seg,
  2343. xhci->event_ring->dequeue),
  2344. lower_32_bits(le64_to_cpu(event->buffer)),
  2345. upper_32_bits(le64_to_cpu(event->buffer)),
  2346. le32_to_cpu(event->transfer_len),
  2347. le32_to_cpu(event->flags));
  2348. return -ENODEV;
  2349. }
  2350. /*
  2351. * This function handles all OS-owned events on the event ring. It may drop
  2352. * xhci->lock between event processing (e.g. to pass up port status changes).
  2353. * Returns >0 for "possibly more events to process" (caller should call again),
  2354. * otherwise 0 if done. In future, <0 returns should indicate error code.
  2355. */
  2356. static int xhci_handle_event(struct xhci_hcd *xhci)
  2357. {
  2358. union xhci_trb *event;
  2359. int update_ptrs = 1;
  2360. int ret;
  2361. /* Event ring hasn't been allocated yet. */
  2362. if (!xhci->event_ring || !xhci->event_ring->dequeue) {
  2363. xhci_err(xhci, "ERROR event ring not ready\n");
  2364. return -ENOMEM;
  2365. }
  2366. event = xhci->event_ring->dequeue;
  2367. /* Does the HC or OS own the TRB? */
  2368. if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
  2369. xhci->event_ring->cycle_state)
  2370. return 0;
  2371. trace_xhci_handle_event(xhci->event_ring, &event->generic);
  2372. /*
  2373. * Barrier between reading the TRB_CYCLE (valid) flag above and any
  2374. * speculative reads of the event's flags/data below.
  2375. */
  2376. rmb();
  2377. /* FIXME: Handle more event types. */
  2378. switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
  2379. case TRB_TYPE(TRB_COMPLETION):
  2380. handle_cmd_completion(xhci, &event->event_cmd);
  2381. break;
  2382. case TRB_TYPE(TRB_PORT_STATUS):
  2383. handle_port_status(xhci, event);
  2384. update_ptrs = 0;
  2385. break;
  2386. case TRB_TYPE(TRB_TRANSFER):
  2387. ret = handle_tx_event(xhci, &event->trans_event);
  2388. if (ret >= 0)
  2389. update_ptrs = 0;
  2390. break;
  2391. case TRB_TYPE(TRB_DEV_NOTE):
  2392. handle_device_notification(xhci, event);
  2393. break;
  2394. default:
  2395. if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
  2396. TRB_TYPE(48))
  2397. handle_vendor_event(xhci, event);
  2398. else
  2399. xhci_warn(xhci, "ERROR unknown event type %d\n",
  2400. TRB_FIELD_TO_TYPE(
  2401. le32_to_cpu(event->event_cmd.flags)));
  2402. }
  2403. /* Any of the above functions may drop and re-acquire the lock, so check
  2404. * to make sure a watchdog timer didn't mark the host as non-responsive.
  2405. */
  2406. if (xhci->xhc_state & XHCI_STATE_DYING) {
  2407. xhci_dbg(xhci, "xHCI host dying, returning from "
  2408. "event handler.\n");
  2409. return 0;
  2410. }
  2411. if (update_ptrs)
  2412. /* Update SW event ring dequeue pointer */
  2413. inc_deq(xhci, xhci->event_ring);
  2414. /* Are there more items on the event ring? Caller will call us again to
  2415. * check.
  2416. */
  2417. return 1;
  2418. }
  2419. /*
  2420. * xHCI spec says we can get an interrupt, and if the HC has an error condition,
  2421. * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
  2422. * indicators of an event TRB error, but we check the status *first* to be safe.
  2423. */
  2424. irqreturn_t xhci_irq(struct usb_hcd *hcd)
  2425. {
  2426. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  2427. union xhci_trb *event_ring_deq;
  2428. irqreturn_t ret = IRQ_NONE;
  2429. unsigned long flags;
  2430. dma_addr_t deq;
  2431. u64 temp_64;
  2432. u32 status;
  2433. spin_lock_irqsave(&xhci->lock, flags);
  2434. /* Check if the xHC generated the interrupt, or the irq is shared */
  2435. status = readl(&xhci->op_regs->status);
  2436. if (status == ~(u32)0) {
  2437. xhci_hc_died(xhci);
  2438. ret = IRQ_HANDLED;
  2439. goto out;
  2440. }
  2441. if (!(status & STS_EINT))
  2442. goto out;
  2443. if (status & STS_FATAL) {
  2444. xhci_warn(xhci, "WARNING: Host System Error\n");
  2445. xhci_halt(xhci);
  2446. ret = IRQ_HANDLED;
  2447. goto out;
  2448. }
  2449. /*
  2450. * Clear the op reg interrupt status first,
  2451. * so we can receive interrupts from other MSI-X interrupters.
  2452. * Write 1 to clear the interrupt status.
  2453. */
  2454. status |= STS_EINT;
  2455. writel(status, &xhci->op_regs->status);
  2456. if (!hcd->msi_enabled) {
  2457. u32 irq_pending;
  2458. irq_pending = readl(&xhci->ir_set->irq_pending);
  2459. irq_pending |= IMAN_IP;
  2460. writel(irq_pending, &xhci->ir_set->irq_pending);
  2461. }
  2462. if (xhci->xhc_state & XHCI_STATE_DYING ||
  2463. xhci->xhc_state & XHCI_STATE_HALTED) {
  2464. xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
  2465. "Shouldn't IRQs be disabled?\n");
  2466. /* Clear the event handler busy flag (RW1C);
  2467. * the event ring should be empty.
  2468. */
  2469. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2470. xhci_write_64(xhci, temp_64 | ERST_EHB,
  2471. &xhci->ir_set->erst_dequeue);
  2472. ret = IRQ_HANDLED;
  2473. goto out;
  2474. }
  2475. event_ring_deq = xhci->event_ring->dequeue;
  2476. /* FIXME this should be a delayed service routine
  2477. * that clears the EHB.
  2478. */
  2479. while (xhci_handle_event(xhci) > 0) {}
  2480. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  2481. /* If necessary, update the HW's version of the event ring deq ptr. */
  2482. if (event_ring_deq != xhci->event_ring->dequeue) {
  2483. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  2484. xhci->event_ring->dequeue);
  2485. if (deq == 0)
  2486. xhci_warn(xhci, "WARN something wrong with SW event "
  2487. "ring dequeue ptr.\n");
  2488. /* Update HC event ring dequeue pointer */
  2489. temp_64 &= ERST_PTR_MASK;
  2490. temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
  2491. }
  2492. /* Clear the event handler busy flag (RW1C); event ring is empty. */
  2493. temp_64 |= ERST_EHB;
  2494. xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
  2495. ret = IRQ_HANDLED;
  2496. out:
  2497. spin_unlock_irqrestore(&xhci->lock, flags);
  2498. return ret;
  2499. }
  2500. irqreturn_t xhci_msi_irq(int irq, void *hcd)
  2501. {
  2502. return xhci_irq(hcd);
  2503. }
  2504. /**** Endpoint Ring Operations ****/
  2505. /*
  2506. * Generic function for queueing a TRB on a ring.
  2507. * The caller must have checked to make sure there's room on the ring.
  2508. *
  2509. * @more_trbs_coming: Will you enqueue more TRBs before calling
  2510. * prepare_transfer()?
  2511. */
  2512. static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
  2513. bool more_trbs_coming,
  2514. u32 field1, u32 field2, u32 field3, u32 field4)
  2515. {
  2516. struct xhci_generic_trb *trb;
  2517. trb = &ring->enqueue->generic;
  2518. trb->field[0] = cpu_to_le32(field1);
  2519. trb->field[1] = cpu_to_le32(field2);
  2520. trb->field[2] = cpu_to_le32(field3);
  2521. trb->field[3] = cpu_to_le32(field4);
  2522. trace_xhci_queue_trb(ring, trb);
  2523. inc_enq(xhci, ring, more_trbs_coming);
  2524. }
  2525. /*
  2526. * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
  2527. * FIXME allocate segments if the ring is full.
  2528. */
  2529. static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
  2530. u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
  2531. {
  2532. unsigned int num_trbs_needed;
  2533. /* Make sure the endpoint has been added to xHC schedule */
  2534. switch (ep_state) {
  2535. case EP_STATE_DISABLED:
  2536. /*
  2537. * USB core changed config/interfaces without notifying us,
  2538. * or hardware is reporting the wrong state.
  2539. */
  2540. xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
  2541. return -ENOENT;
  2542. case EP_STATE_ERROR:
  2543. xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
  2544. /* FIXME event handling code for error needs to clear it */
  2545. /* XXX not sure if this should be -ENOENT or not */
  2546. return -EINVAL;
  2547. case EP_STATE_HALTED:
  2548. xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
  2549. case EP_STATE_STOPPED:
  2550. case EP_STATE_RUNNING:
  2551. break;
  2552. default:
  2553. xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
  2554. /*
  2555. * FIXME issue Configure Endpoint command to try to get the HC
  2556. * back into a known state.
  2557. */
  2558. return -EINVAL;
  2559. }
  2560. while (1) {
  2561. if (room_on_ring(xhci, ep_ring, num_trbs))
  2562. break;
  2563. if (ep_ring == xhci->cmd_ring) {
  2564. xhci_err(xhci, "Do not support expand command ring\n");
  2565. return -ENOMEM;
  2566. }
  2567. xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
  2568. "ERROR no room on ep ring, try ring expansion");
  2569. num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
  2570. if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
  2571. mem_flags)) {
  2572. xhci_err(xhci, "Ring expansion failed\n");
  2573. return -ENOMEM;
  2574. }
  2575. }
  2576. while (trb_is_link(ep_ring->enqueue)) {
  2577. /* If we're not dealing with 0.95 hardware or isoc rings
  2578. * on AMD 0.96 host, clear the chain bit.
  2579. */
  2580. if (!xhci_link_trb_quirk(xhci) &&
  2581. !(ep_ring->type == TYPE_ISOC &&
  2582. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  2583. ep_ring->enqueue->link.control &=
  2584. cpu_to_le32(~TRB_CHAIN);
  2585. else
  2586. ep_ring->enqueue->link.control |=
  2587. cpu_to_le32(TRB_CHAIN);
  2588. wmb();
  2589. ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
  2590. /* Toggle the cycle bit after the last ring segment. */
  2591. if (link_trb_toggles_cycle(ep_ring->enqueue))
  2592. ep_ring->cycle_state ^= 1;
  2593. ep_ring->enq_seg = ep_ring->enq_seg->next;
  2594. ep_ring->enqueue = ep_ring->enq_seg->trbs;
  2595. }
  2596. return 0;
  2597. }
  2598. static int prepare_transfer(struct xhci_hcd *xhci,
  2599. struct xhci_virt_device *xdev,
  2600. unsigned int ep_index,
  2601. unsigned int stream_id,
  2602. unsigned int num_trbs,
  2603. struct urb *urb,
  2604. unsigned int td_index,
  2605. gfp_t mem_flags)
  2606. {
  2607. int ret;
  2608. struct urb_priv *urb_priv;
  2609. struct xhci_td *td;
  2610. struct xhci_ring *ep_ring;
  2611. struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  2612. ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
  2613. if (!ep_ring) {
  2614. xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
  2615. stream_id);
  2616. return -EINVAL;
  2617. }
  2618. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  2619. num_trbs, mem_flags);
  2620. if (ret)
  2621. return ret;
  2622. urb_priv = urb->hcpriv;
  2623. td = &urb_priv->td[td_index];
  2624. INIT_LIST_HEAD(&td->td_list);
  2625. INIT_LIST_HEAD(&td->cancelled_td_list);
  2626. if (td_index == 0) {
  2627. ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
  2628. if (unlikely(ret))
  2629. return ret;
  2630. }
  2631. td->urb = urb;
  2632. /* Add this TD to the tail of the endpoint ring's TD list */
  2633. list_add_tail(&td->td_list, &ep_ring->td_list);
  2634. td->start_seg = ep_ring->enq_seg;
  2635. td->first_trb = ep_ring->enqueue;
  2636. return 0;
  2637. }
  2638. static unsigned int count_trbs(u64 addr, u64 len)
  2639. {
  2640. unsigned int num_trbs;
  2641. num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
  2642. TRB_MAX_BUFF_SIZE);
  2643. if (num_trbs == 0)
  2644. num_trbs++;
  2645. return num_trbs;
  2646. }
  2647. static inline unsigned int count_trbs_needed(struct urb *urb)
  2648. {
  2649. return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
  2650. }
  2651. static unsigned int count_sg_trbs_needed(struct urb *urb)
  2652. {
  2653. struct scatterlist *sg;
  2654. unsigned int i, len, full_len, num_trbs = 0;
  2655. full_len = urb->transfer_buffer_length;
  2656. for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
  2657. len = sg_dma_len(sg);
  2658. num_trbs += count_trbs(sg_dma_address(sg), len);
  2659. len = min_t(unsigned int, len, full_len);
  2660. full_len -= len;
  2661. if (full_len == 0)
  2662. break;
  2663. }
  2664. return num_trbs;
  2665. }
  2666. static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
  2667. {
  2668. u64 addr, len;
  2669. addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
  2670. len = urb->iso_frame_desc[i].length;
  2671. return count_trbs(addr, len);
  2672. }
  2673. static void check_trb_math(struct urb *urb, int running_total)
  2674. {
  2675. if (unlikely(running_total != urb->transfer_buffer_length))
  2676. dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
  2677. "queued %#x (%d), asked for %#x (%d)\n",
  2678. __func__,
  2679. urb->ep->desc.bEndpointAddress,
  2680. running_total, running_total,
  2681. urb->transfer_buffer_length,
  2682. urb->transfer_buffer_length);
  2683. }
  2684. static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
  2685. unsigned int ep_index, unsigned int stream_id, int start_cycle,
  2686. struct xhci_generic_trb *start_trb)
  2687. {
  2688. /*
  2689. * Pass all the TRBs to the hardware at once and make sure this write
  2690. * isn't reordered.
  2691. */
  2692. wmb();
  2693. if (start_cycle)
  2694. start_trb->field[3] |= cpu_to_le32(start_cycle);
  2695. else
  2696. start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
  2697. xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
  2698. }
  2699. static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
  2700. struct xhci_ep_ctx *ep_ctx)
  2701. {
  2702. int xhci_interval;
  2703. int ep_interval;
  2704. xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
  2705. ep_interval = urb->interval;
  2706. /* Convert to microframes */
  2707. if (urb->dev->speed == USB_SPEED_LOW ||
  2708. urb->dev->speed == USB_SPEED_FULL)
  2709. ep_interval *= 8;
  2710. /* FIXME change this to a warning and a suggestion to use the new API
  2711. * to set the polling interval (once the API is added).
  2712. */
  2713. if (xhci_interval != ep_interval) {
  2714. dev_dbg_ratelimited(&urb->dev->dev,
  2715. "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
  2716. ep_interval, ep_interval == 1 ? "" : "s",
  2717. xhci_interval, xhci_interval == 1 ? "" : "s");
  2718. urb->interval = xhci_interval;
  2719. /* Convert back to frames for LS/FS devices */
  2720. if (urb->dev->speed == USB_SPEED_LOW ||
  2721. urb->dev->speed == USB_SPEED_FULL)
  2722. urb->interval /= 8;
  2723. }
  2724. }
  2725. /*
  2726. * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
  2727. * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
  2728. * (comprised of sg list entries) can take several service intervals to
  2729. * transmit.
  2730. */
  2731. int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2732. struct urb *urb, int slot_id, unsigned int ep_index)
  2733. {
  2734. struct xhci_ep_ctx *ep_ctx;
  2735. ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
  2736. check_interval(xhci, urb, ep_ctx);
  2737. return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
  2738. }
  2739. /*
  2740. * For xHCI 1.0 host controllers, TD size is the number of max packet sized
  2741. * packets remaining in the TD (*not* including this TRB).
  2742. *
  2743. * Total TD packet count = total_packet_count =
  2744. * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
  2745. *
  2746. * Packets transferred up to and including this TRB = packets_transferred =
  2747. * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
  2748. *
  2749. * TD size = total_packet_count - packets_transferred
  2750. *
  2751. * For xHCI 0.96 and older, TD size field should be the remaining bytes
  2752. * including this TRB, right shifted by 10
  2753. *
  2754. * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
  2755. * This is taken care of in the TRB_TD_SIZE() macro
  2756. *
  2757. * The last TRB in a TD must have the TD size set to zero.
  2758. */
  2759. static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
  2760. int trb_buff_len, unsigned int td_total_len,
  2761. struct urb *urb, bool more_trbs_coming)
  2762. {
  2763. u32 maxp, total_packet_count;
  2764. /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
  2765. if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
  2766. return ((td_total_len - transferred) >> 10);
  2767. /* One TRB with a zero-length data packet. */
  2768. if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
  2769. trb_buff_len == td_total_len)
  2770. return 0;
  2771. /* for MTK xHCI, TD size doesn't include this TRB */
  2772. if (xhci->quirks & XHCI_MTK_HOST)
  2773. trb_buff_len = 0;
  2774. maxp = usb_endpoint_maxp(&urb->ep->desc);
  2775. total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
  2776. /* Queueing functions don't count the current TRB into transferred */
  2777. return (total_packet_count - ((transferred + trb_buff_len) / maxp));
  2778. }
  2779. static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
  2780. u32 *trb_buff_len, struct xhci_segment *seg)
  2781. {
  2782. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2783. unsigned int unalign;
  2784. unsigned int max_pkt;
  2785. u32 new_buff_len;
  2786. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  2787. unalign = (enqd_len + *trb_buff_len) % max_pkt;
  2788. /* we got lucky, last normal TRB data on segment is packet aligned */
  2789. if (unalign == 0)
  2790. return 0;
  2791. xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
  2792. unalign, *trb_buff_len);
  2793. /* is the last nornal TRB alignable by splitting it */
  2794. if (*trb_buff_len > unalign) {
  2795. *trb_buff_len -= unalign;
  2796. xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
  2797. return 0;
  2798. }
  2799. /*
  2800. * We want enqd_len + trb_buff_len to sum up to a number aligned to
  2801. * number which is divisible by the endpoint's wMaxPacketSize. IOW:
  2802. * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
  2803. */
  2804. new_buff_len = max_pkt - (enqd_len % max_pkt);
  2805. if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
  2806. new_buff_len = (urb->transfer_buffer_length - enqd_len);
  2807. /* create a max max_pkt sized bounce buffer pointed to by last trb */
  2808. if (usb_urb_dir_out(urb)) {
  2809. sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
  2810. seg->bounce_buf, new_buff_len, enqd_len);
  2811. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2812. max_pkt, DMA_TO_DEVICE);
  2813. } else {
  2814. seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
  2815. max_pkt, DMA_FROM_DEVICE);
  2816. }
  2817. if (dma_mapping_error(dev, seg->bounce_dma)) {
  2818. /* try without aligning. Some host controllers survive */
  2819. xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
  2820. return 0;
  2821. }
  2822. *trb_buff_len = new_buff_len;
  2823. seg->bounce_len = new_buff_len;
  2824. seg->bounce_offs = enqd_len;
  2825. xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
  2826. return 1;
  2827. }
  2828. /* This is very similar to what ehci-q.c qtd_fill() does */
  2829. int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2830. struct urb *urb, int slot_id, unsigned int ep_index)
  2831. {
  2832. struct xhci_ring *ring;
  2833. struct urb_priv *urb_priv;
  2834. struct xhci_td *td;
  2835. struct xhci_generic_trb *start_trb;
  2836. struct scatterlist *sg = NULL;
  2837. bool more_trbs_coming = true;
  2838. bool need_zero_pkt = false;
  2839. bool first_trb = true;
  2840. unsigned int num_trbs;
  2841. unsigned int start_cycle, num_sgs = 0;
  2842. unsigned int enqd_len, block_len, trb_buff_len, full_len;
  2843. int sent_len, ret;
  2844. u32 field, length_field, remainder;
  2845. u64 addr, send_addr;
  2846. ring = xhci_urb_to_transfer_ring(xhci, urb);
  2847. if (!ring)
  2848. return -EINVAL;
  2849. full_len = urb->transfer_buffer_length;
  2850. /* If we have scatter/gather list, we use it. */
  2851. if (urb->num_sgs) {
  2852. num_sgs = urb->num_mapped_sgs;
  2853. sg = urb->sg;
  2854. addr = (u64) sg_dma_address(sg);
  2855. block_len = sg_dma_len(sg);
  2856. num_trbs = count_sg_trbs_needed(urb);
  2857. } else {
  2858. num_trbs = count_trbs_needed(urb);
  2859. addr = (u64) urb->transfer_dma;
  2860. block_len = full_len;
  2861. }
  2862. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2863. ep_index, urb->stream_id,
  2864. num_trbs, urb, 0, mem_flags);
  2865. if (unlikely(ret < 0))
  2866. return ret;
  2867. urb_priv = urb->hcpriv;
  2868. /* Deal with URB_ZERO_PACKET - need one more td/trb */
  2869. if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
  2870. need_zero_pkt = true;
  2871. td = &urb_priv->td[0];
  2872. /*
  2873. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  2874. * until we've finished creating all the other TRBs. The ring's cycle
  2875. * state may change as we enqueue the other TRBs, so save it too.
  2876. */
  2877. start_trb = &ring->enqueue->generic;
  2878. start_cycle = ring->cycle_state;
  2879. send_addr = addr;
  2880. /* Queue the TRBs, even if they are zero-length */
  2881. for (enqd_len = 0; first_trb || enqd_len < full_len;
  2882. enqd_len += trb_buff_len) {
  2883. field = TRB_TYPE(TRB_NORMAL);
  2884. /* TRB buffer should not cross 64KB boundaries */
  2885. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  2886. trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
  2887. if (enqd_len + trb_buff_len > full_len)
  2888. trb_buff_len = full_len - enqd_len;
  2889. /* Don't change the cycle bit of the first TRB until later */
  2890. if (first_trb) {
  2891. first_trb = false;
  2892. if (start_cycle == 0)
  2893. field |= TRB_CYCLE;
  2894. } else
  2895. field |= ring->cycle_state;
  2896. /* Chain all the TRBs together; clear the chain bit in the last
  2897. * TRB to indicate it's the last TRB in the chain.
  2898. */
  2899. if (enqd_len + trb_buff_len < full_len) {
  2900. field |= TRB_CHAIN;
  2901. if (trb_is_link(ring->enqueue + 1)) {
  2902. if (xhci_align_td(xhci, urb, enqd_len,
  2903. &trb_buff_len,
  2904. ring->enq_seg)) {
  2905. send_addr = ring->enq_seg->bounce_dma;
  2906. /* assuming TD won't span 2 segs */
  2907. td->bounce_seg = ring->enq_seg;
  2908. }
  2909. }
  2910. }
  2911. if (enqd_len + trb_buff_len >= full_len) {
  2912. field &= ~TRB_CHAIN;
  2913. field |= TRB_IOC;
  2914. more_trbs_coming = false;
  2915. td->last_trb = ring->enqueue;
  2916. }
  2917. /* Only set interrupt on short packet for IN endpoints */
  2918. if (usb_urb_dir_in(urb))
  2919. field |= TRB_ISP;
  2920. /* Set the TRB length, TD size, and interrupter fields. */
  2921. remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
  2922. full_len, urb, more_trbs_coming);
  2923. length_field = TRB_LEN(trb_buff_len) |
  2924. TRB_TD_SIZE(remainder) |
  2925. TRB_INTR_TARGET(0);
  2926. queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
  2927. lower_32_bits(send_addr),
  2928. upper_32_bits(send_addr),
  2929. length_field,
  2930. field);
  2931. addr += trb_buff_len;
  2932. sent_len = trb_buff_len;
  2933. while (sg && sent_len >= block_len) {
  2934. /* New sg entry */
  2935. --num_sgs;
  2936. sent_len -= block_len;
  2937. if (num_sgs != 0) {
  2938. sg = sg_next(sg);
  2939. block_len = sg_dma_len(sg);
  2940. addr = (u64) sg_dma_address(sg);
  2941. addr += sent_len;
  2942. }
  2943. }
  2944. block_len -= sent_len;
  2945. send_addr = addr;
  2946. }
  2947. if (need_zero_pkt) {
  2948. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2949. ep_index, urb->stream_id,
  2950. 1, urb, 1, mem_flags);
  2951. urb_priv->td[1].last_trb = ring->enqueue;
  2952. field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
  2953. queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
  2954. }
  2955. check_trb_math(urb, enqd_len);
  2956. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  2957. start_cycle, start_trb);
  2958. return 0;
  2959. }
  2960. /* Caller must have locked xhci->lock */
  2961. int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  2962. struct urb *urb, int slot_id, unsigned int ep_index)
  2963. {
  2964. struct xhci_ring *ep_ring;
  2965. int num_trbs;
  2966. int ret;
  2967. struct usb_ctrlrequest *setup;
  2968. struct xhci_generic_trb *start_trb;
  2969. int start_cycle;
  2970. u32 field;
  2971. struct urb_priv *urb_priv;
  2972. struct xhci_td *td;
  2973. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  2974. if (!ep_ring)
  2975. return -EINVAL;
  2976. /*
  2977. * Need to copy setup packet into setup TRB, so we can't use the setup
  2978. * DMA address.
  2979. */
  2980. if (!urb->setup_packet)
  2981. return -EINVAL;
  2982. /* 1 TRB for setup, 1 for status */
  2983. num_trbs = 2;
  2984. /*
  2985. * Don't need to check if we need additional event data and normal TRBs,
  2986. * since data in control transfers will never get bigger than 16MB
  2987. * XXX: can we get a buffer that crosses 64KB boundaries?
  2988. */
  2989. if (urb->transfer_buffer_length > 0)
  2990. num_trbs++;
  2991. ret = prepare_transfer(xhci, xhci->devs[slot_id],
  2992. ep_index, urb->stream_id,
  2993. num_trbs, urb, 0, mem_flags);
  2994. if (ret < 0)
  2995. return ret;
  2996. urb_priv = urb->hcpriv;
  2997. td = &urb_priv->td[0];
  2998. /*
  2999. * Don't give the first TRB to the hardware (by toggling the cycle bit)
  3000. * until we've finished creating all the other TRBs. The ring's cycle
  3001. * state may change as we enqueue the other TRBs, so save it too.
  3002. */
  3003. start_trb = &ep_ring->enqueue->generic;
  3004. start_cycle = ep_ring->cycle_state;
  3005. /* Queue setup TRB - see section 6.4.1.2.1 */
  3006. /* FIXME better way to translate setup_packet into two u32 fields? */
  3007. setup = (struct usb_ctrlrequest *) urb->setup_packet;
  3008. field = 0;
  3009. field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
  3010. if (start_cycle == 0)
  3011. field |= 0x1;
  3012. /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
  3013. if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
  3014. if (urb->transfer_buffer_length > 0) {
  3015. if (setup->bRequestType & USB_DIR_IN)
  3016. field |= TRB_TX_TYPE(TRB_DATA_IN);
  3017. else
  3018. field |= TRB_TX_TYPE(TRB_DATA_OUT);
  3019. }
  3020. }
  3021. queue_trb(xhci, ep_ring, true,
  3022. setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
  3023. le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
  3024. TRB_LEN(8) | TRB_INTR_TARGET(0),
  3025. /* Immediate data in pointer */
  3026. field);
  3027. /* If there's data, queue data TRBs */
  3028. /* Only set interrupt on short packet for IN endpoints */
  3029. if (usb_urb_dir_in(urb))
  3030. field = TRB_ISP | TRB_TYPE(TRB_DATA);
  3031. else
  3032. field = TRB_TYPE(TRB_DATA);
  3033. if (urb->transfer_buffer_length > 0) {
  3034. u32 length_field, remainder;
  3035. remainder = xhci_td_remainder(xhci, 0,
  3036. urb->transfer_buffer_length,
  3037. urb->transfer_buffer_length,
  3038. urb, 1);
  3039. length_field = TRB_LEN(urb->transfer_buffer_length) |
  3040. TRB_TD_SIZE(remainder) |
  3041. TRB_INTR_TARGET(0);
  3042. if (setup->bRequestType & USB_DIR_IN)
  3043. field |= TRB_DIR_IN;
  3044. queue_trb(xhci, ep_ring, true,
  3045. lower_32_bits(urb->transfer_dma),
  3046. upper_32_bits(urb->transfer_dma),
  3047. length_field,
  3048. field | ep_ring->cycle_state);
  3049. }
  3050. /* Save the DMA address of the last TRB in the TD */
  3051. td->last_trb = ep_ring->enqueue;
  3052. /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
  3053. /* If the device sent data, the status stage is an OUT transfer */
  3054. if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
  3055. field = 0;
  3056. else
  3057. field = TRB_DIR_IN;
  3058. queue_trb(xhci, ep_ring, false,
  3059. 0,
  3060. 0,
  3061. TRB_INTR_TARGET(0),
  3062. /* Event on completion */
  3063. field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
  3064. giveback_first_trb(xhci, slot_id, ep_index, 0,
  3065. start_cycle, start_trb);
  3066. return 0;
  3067. }
  3068. /*
  3069. * The transfer burst count field of the isochronous TRB defines the number of
  3070. * bursts that are required to move all packets in this TD. Only SuperSpeed
  3071. * devices can burst up to bMaxBurst number of packets per service interval.
  3072. * This field is zero based, meaning a value of zero in the field means one
  3073. * burst. Basically, for everything but SuperSpeed devices, this field will be
  3074. * zero. Only xHCI 1.0 host controllers support this field.
  3075. */
  3076. static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
  3077. struct urb *urb, unsigned int total_packet_count)
  3078. {
  3079. unsigned int max_burst;
  3080. if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
  3081. return 0;
  3082. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3083. return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
  3084. }
  3085. /*
  3086. * Returns the number of packets in the last "burst" of packets. This field is
  3087. * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
  3088. * the last burst packet count is equal to the total number of packets in the
  3089. * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
  3090. * must contain (bMaxBurst + 1) number of packets, but the last burst can
  3091. * contain 1 to (bMaxBurst + 1) packets.
  3092. */
  3093. static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
  3094. struct urb *urb, unsigned int total_packet_count)
  3095. {
  3096. unsigned int max_burst;
  3097. unsigned int residue;
  3098. if (xhci->hci_version < 0x100)
  3099. return 0;
  3100. if (urb->dev->speed >= USB_SPEED_SUPER) {
  3101. /* bMaxBurst is zero based: 0 means 1 packet per burst */
  3102. max_burst = urb->ep->ss_ep_comp.bMaxBurst;
  3103. residue = total_packet_count % (max_burst + 1);
  3104. /* If residue is zero, the last burst contains (max_burst + 1)
  3105. * number of packets, but the TLBPC field is zero-based.
  3106. */
  3107. if (residue == 0)
  3108. return max_burst;
  3109. return residue - 1;
  3110. }
  3111. if (total_packet_count == 0)
  3112. return 0;
  3113. return total_packet_count - 1;
  3114. }
  3115. /*
  3116. * Calculates Frame ID field of the isochronous TRB identifies the
  3117. * target frame that the Interval associated with this Isochronous
  3118. * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
  3119. *
  3120. * Returns actual frame id on success, negative value on error.
  3121. */
  3122. static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
  3123. struct urb *urb, int index)
  3124. {
  3125. int start_frame, ist, ret = 0;
  3126. int start_frame_id, end_frame_id, current_frame_id;
  3127. if (urb->dev->speed == USB_SPEED_LOW ||
  3128. urb->dev->speed == USB_SPEED_FULL)
  3129. start_frame = urb->start_frame + index * urb->interval;
  3130. else
  3131. start_frame = (urb->start_frame + index * urb->interval) >> 3;
  3132. /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
  3133. *
  3134. * If bit [3] of IST is cleared to '0', software can add a TRB no
  3135. * later than IST[2:0] Microframes before that TRB is scheduled to
  3136. * be executed.
  3137. * If bit [3] of IST is set to '1', software can add a TRB no later
  3138. * than IST[2:0] Frames before that TRB is scheduled to be executed.
  3139. */
  3140. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3141. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3142. ist <<= 3;
  3143. /* Software shall not schedule an Isoch TD with a Frame ID value that
  3144. * is less than the Start Frame ID or greater than the End Frame ID,
  3145. * where:
  3146. *
  3147. * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
  3148. * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
  3149. *
  3150. * Both the End Frame ID and Start Frame ID values are calculated
  3151. * in microframes. When software determines the valid Frame ID value;
  3152. * The End Frame ID value should be rounded down to the nearest Frame
  3153. * boundary, and the Start Frame ID value should be rounded up to the
  3154. * nearest Frame boundary.
  3155. */
  3156. current_frame_id = readl(&xhci->run_regs->microframe_index);
  3157. start_frame_id = roundup(current_frame_id + ist + 1, 8);
  3158. end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
  3159. start_frame &= 0x7ff;
  3160. start_frame_id = (start_frame_id >> 3) & 0x7ff;
  3161. end_frame_id = (end_frame_id >> 3) & 0x7ff;
  3162. xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
  3163. __func__, index, readl(&xhci->run_regs->microframe_index),
  3164. start_frame_id, end_frame_id, start_frame);
  3165. if (start_frame_id < end_frame_id) {
  3166. if (start_frame > end_frame_id ||
  3167. start_frame < start_frame_id)
  3168. ret = -EINVAL;
  3169. } else if (start_frame_id > end_frame_id) {
  3170. if ((start_frame > end_frame_id &&
  3171. start_frame < start_frame_id))
  3172. ret = -EINVAL;
  3173. } else {
  3174. ret = -EINVAL;
  3175. }
  3176. if (index == 0) {
  3177. if (ret == -EINVAL || start_frame == start_frame_id) {
  3178. start_frame = start_frame_id + 1;
  3179. if (urb->dev->speed == USB_SPEED_LOW ||
  3180. urb->dev->speed == USB_SPEED_FULL)
  3181. urb->start_frame = start_frame;
  3182. else
  3183. urb->start_frame = start_frame << 3;
  3184. ret = 0;
  3185. }
  3186. }
  3187. if (ret) {
  3188. xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
  3189. start_frame, current_frame_id, index,
  3190. start_frame_id, end_frame_id);
  3191. xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
  3192. return ret;
  3193. }
  3194. return start_frame;
  3195. }
  3196. /* This is for isoc transfer */
  3197. static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
  3198. struct urb *urb, int slot_id, unsigned int ep_index)
  3199. {
  3200. struct xhci_ring *ep_ring;
  3201. struct urb_priv *urb_priv;
  3202. struct xhci_td *td;
  3203. int num_tds, trbs_per_td;
  3204. struct xhci_generic_trb *start_trb;
  3205. bool first_trb;
  3206. int start_cycle;
  3207. u32 field, length_field;
  3208. int running_total, trb_buff_len, td_len, td_remain_len, ret;
  3209. u64 start_addr, addr;
  3210. int i, j;
  3211. bool more_trbs_coming;
  3212. struct xhci_virt_ep *xep;
  3213. int frame_id;
  3214. xep = &xhci->devs[slot_id]->eps[ep_index];
  3215. ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
  3216. num_tds = urb->number_of_packets;
  3217. if (num_tds < 1) {
  3218. xhci_dbg(xhci, "Isoc URB with zero packets?\n");
  3219. return -EINVAL;
  3220. }
  3221. start_addr = (u64) urb->transfer_dma;
  3222. start_trb = &ep_ring->enqueue->generic;
  3223. start_cycle = ep_ring->cycle_state;
  3224. urb_priv = urb->hcpriv;
  3225. /* Queue the TRBs for each TD, even if they are zero-length */
  3226. for (i = 0; i < num_tds; i++) {
  3227. unsigned int total_pkt_count, max_pkt;
  3228. unsigned int burst_count, last_burst_pkt_count;
  3229. u32 sia_frame_id;
  3230. first_trb = true;
  3231. running_total = 0;
  3232. addr = start_addr + urb->iso_frame_desc[i].offset;
  3233. td_len = urb->iso_frame_desc[i].length;
  3234. td_remain_len = td_len;
  3235. max_pkt = usb_endpoint_maxp(&urb->ep->desc);
  3236. total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
  3237. /* A zero-length transfer still involves at least one packet. */
  3238. if (total_pkt_count == 0)
  3239. total_pkt_count++;
  3240. burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
  3241. last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
  3242. urb, total_pkt_count);
  3243. trbs_per_td = count_isoc_trbs_needed(urb, i);
  3244. ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
  3245. urb->stream_id, trbs_per_td, urb, i, mem_flags);
  3246. if (ret < 0) {
  3247. if (i == 0)
  3248. return ret;
  3249. goto cleanup;
  3250. }
  3251. td = &urb_priv->td[i];
  3252. /* use SIA as default, if frame id is used overwrite it */
  3253. sia_frame_id = TRB_SIA;
  3254. if (!(urb->transfer_flags & URB_ISO_ASAP) &&
  3255. HCC_CFC(xhci->hcc_params)) {
  3256. frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
  3257. if (frame_id >= 0)
  3258. sia_frame_id = TRB_FRAME_ID(frame_id);
  3259. }
  3260. /*
  3261. * Set isoc specific data for the first TRB in a TD.
  3262. * Prevent HW from getting the TRBs by keeping the cycle state
  3263. * inverted in the first TDs isoc TRB.
  3264. */
  3265. field = TRB_TYPE(TRB_ISOC) |
  3266. TRB_TLBPC(last_burst_pkt_count) |
  3267. sia_frame_id |
  3268. (i ? ep_ring->cycle_state : !start_cycle);
  3269. /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
  3270. if (!xep->use_extended_tbc)
  3271. field |= TRB_TBC(burst_count);
  3272. /* fill the rest of the TRB fields, and remaining normal TRBs */
  3273. for (j = 0; j < trbs_per_td; j++) {
  3274. u32 remainder = 0;
  3275. /* only first TRB is isoc, overwrite otherwise */
  3276. if (!first_trb)
  3277. field = TRB_TYPE(TRB_NORMAL) |
  3278. ep_ring->cycle_state;
  3279. /* Only set interrupt on short packet for IN EPs */
  3280. if (usb_urb_dir_in(urb))
  3281. field |= TRB_ISP;
  3282. /* Set the chain bit for all except the last TRB */
  3283. if (j < trbs_per_td - 1) {
  3284. more_trbs_coming = true;
  3285. field |= TRB_CHAIN;
  3286. } else {
  3287. more_trbs_coming = false;
  3288. td->last_trb = ep_ring->enqueue;
  3289. field |= TRB_IOC;
  3290. /* set BEI, except for the last TD */
  3291. if (xhci->hci_version >= 0x100 &&
  3292. !(xhci->quirks & XHCI_AVOID_BEI) &&
  3293. i < num_tds - 1)
  3294. field |= TRB_BEI;
  3295. }
  3296. /* Calculate TRB length */
  3297. trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
  3298. if (trb_buff_len > td_remain_len)
  3299. trb_buff_len = td_remain_len;
  3300. /* Set the TRB length, TD size, & interrupter fields. */
  3301. remainder = xhci_td_remainder(xhci, running_total,
  3302. trb_buff_len, td_len,
  3303. urb, more_trbs_coming);
  3304. length_field = TRB_LEN(trb_buff_len) |
  3305. TRB_INTR_TARGET(0);
  3306. /* xhci 1.1 with ETE uses TD Size field for TBC */
  3307. if (first_trb && xep->use_extended_tbc)
  3308. length_field |= TRB_TD_SIZE_TBC(burst_count);
  3309. else
  3310. length_field |= TRB_TD_SIZE(remainder);
  3311. first_trb = false;
  3312. queue_trb(xhci, ep_ring, more_trbs_coming,
  3313. lower_32_bits(addr),
  3314. upper_32_bits(addr),
  3315. length_field,
  3316. field);
  3317. running_total += trb_buff_len;
  3318. addr += trb_buff_len;
  3319. td_remain_len -= trb_buff_len;
  3320. }
  3321. /* Check TD length */
  3322. if (running_total != td_len) {
  3323. xhci_err(xhci, "ISOC TD length unmatch\n");
  3324. ret = -EINVAL;
  3325. goto cleanup;
  3326. }
  3327. }
  3328. /* store the next frame id */
  3329. if (HCC_CFC(xhci->hcc_params))
  3330. xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
  3331. if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
  3332. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  3333. usb_amd_quirk_pll_disable();
  3334. }
  3335. xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
  3336. giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
  3337. start_cycle, start_trb);
  3338. return 0;
  3339. cleanup:
  3340. /* Clean up a partially enqueued isoc transfer. */
  3341. for (i--; i >= 0; i--)
  3342. list_del_init(&urb_priv->td[i].td_list);
  3343. /* Use the first TD as a temporary variable to turn the TDs we've queued
  3344. * into No-ops with a software-owned cycle bit. That way the hardware
  3345. * won't accidentally start executing bogus TDs when we partially
  3346. * overwrite them. td->first_trb and td->start_seg are already set.
  3347. */
  3348. urb_priv->td[0].last_trb = ep_ring->enqueue;
  3349. /* Every TRB except the first & last will have its cycle bit flipped. */
  3350. td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
  3351. /* Reset the ring enqueue back to the first TRB and its cycle bit. */
  3352. ep_ring->enqueue = urb_priv->td[0].first_trb;
  3353. ep_ring->enq_seg = urb_priv->td[0].start_seg;
  3354. ep_ring->cycle_state = start_cycle;
  3355. ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
  3356. usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
  3357. return ret;
  3358. }
  3359. /*
  3360. * Check transfer ring to guarantee there is enough room for the urb.
  3361. * Update ISO URB start_frame and interval.
  3362. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
  3363. * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
  3364. * Contiguous Frame ID is not supported by HC.
  3365. */
  3366. int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
  3367. struct urb *urb, int slot_id, unsigned int ep_index)
  3368. {
  3369. struct xhci_virt_device *xdev;
  3370. struct xhci_ring *ep_ring;
  3371. struct xhci_ep_ctx *ep_ctx;
  3372. int start_frame;
  3373. int num_tds, num_trbs, i;
  3374. int ret;
  3375. struct xhci_virt_ep *xep;
  3376. int ist;
  3377. xdev = xhci->devs[slot_id];
  3378. xep = &xhci->devs[slot_id]->eps[ep_index];
  3379. ep_ring = xdev->eps[ep_index].ring;
  3380. ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
  3381. num_trbs = 0;
  3382. num_tds = urb->number_of_packets;
  3383. for (i = 0; i < num_tds; i++)
  3384. num_trbs += count_isoc_trbs_needed(urb, i);
  3385. /* Check the ring to guarantee there is enough room for the whole urb.
  3386. * Do not insert any td of the urb to the ring if the check failed.
  3387. */
  3388. ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
  3389. num_trbs, mem_flags);
  3390. if (ret)
  3391. return ret;
  3392. /*
  3393. * Check interval value. This should be done before we start to
  3394. * calculate the start frame value.
  3395. */
  3396. check_interval(xhci, urb, ep_ctx);
  3397. /* Calculate the start frame and put it in urb->start_frame. */
  3398. if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
  3399. if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
  3400. urb->start_frame = xep->next_frame_id;
  3401. goto skip_start_over;
  3402. }
  3403. }
  3404. start_frame = readl(&xhci->run_regs->microframe_index);
  3405. start_frame &= 0x3fff;
  3406. /*
  3407. * Round up to the next frame and consider the time before trb really
  3408. * gets scheduled by hardare.
  3409. */
  3410. ist = HCS_IST(xhci->hcs_params2) & 0x7;
  3411. if (HCS_IST(xhci->hcs_params2) & (1 << 3))
  3412. ist <<= 3;
  3413. start_frame += ist + XHCI_CFC_DELAY;
  3414. start_frame = roundup(start_frame, 8);
  3415. /*
  3416. * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
  3417. * is greate than 8 microframes.
  3418. */
  3419. if (urb->dev->speed == USB_SPEED_LOW ||
  3420. urb->dev->speed == USB_SPEED_FULL) {
  3421. start_frame = roundup(start_frame, urb->interval << 3);
  3422. urb->start_frame = start_frame >> 3;
  3423. } else {
  3424. start_frame = roundup(start_frame, urb->interval);
  3425. urb->start_frame = start_frame;
  3426. }
  3427. skip_start_over:
  3428. ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
  3429. return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
  3430. }
  3431. /**** Command Ring Operations ****/
  3432. /* Generic function for queueing a command TRB on the command ring.
  3433. * Check to make sure there's room on the command ring for one command TRB.
  3434. * Also check that there's room reserved for commands that must not fail.
  3435. * If this is a command that must not fail, meaning command_must_succeed = TRUE,
  3436. * then only check for the number of reserved spots.
  3437. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
  3438. * because the command event handler may want to resubmit a failed command.
  3439. */
  3440. static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3441. u32 field1, u32 field2,
  3442. u32 field3, u32 field4, bool command_must_succeed)
  3443. {
  3444. int reserved_trbs = xhci->cmd_ring_reserved_trbs;
  3445. int ret;
  3446. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  3447. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3448. xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
  3449. return -ESHUTDOWN;
  3450. }
  3451. if (!command_must_succeed)
  3452. reserved_trbs++;
  3453. ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
  3454. reserved_trbs, GFP_ATOMIC);
  3455. if (ret < 0) {
  3456. xhci_err(xhci, "ERR: No room for command on command ring\n");
  3457. if (command_must_succeed)
  3458. xhci_err(xhci, "ERR: Reserved TRB counting for "
  3459. "unfailable commands failed.\n");
  3460. return ret;
  3461. }
  3462. cmd->command_trb = xhci->cmd_ring->enqueue;
  3463. /* if there are no other commands queued we start the timeout timer */
  3464. if (list_empty(&xhci->cmd_list)) {
  3465. xhci->current_cmd = cmd;
  3466. xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
  3467. }
  3468. list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
  3469. queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
  3470. field4 | xhci->cmd_ring->cycle_state);
  3471. return 0;
  3472. }
  3473. /* Queue a slot enable or disable request on the command ring */
  3474. int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3475. u32 trb_type, u32 slot_id)
  3476. {
  3477. return queue_command(xhci, cmd, 0, 0, 0,
  3478. TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
  3479. }
  3480. /* Queue an address device command TRB */
  3481. int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3482. dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
  3483. {
  3484. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3485. upper_32_bits(in_ctx_ptr), 0,
  3486. TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
  3487. | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
  3488. }
  3489. int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3490. u32 field1, u32 field2, u32 field3, u32 field4)
  3491. {
  3492. return queue_command(xhci, cmd, field1, field2, field3, field4, false);
  3493. }
  3494. /* Queue a reset device command TRB */
  3495. int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3496. u32 slot_id)
  3497. {
  3498. return queue_command(xhci, cmd, 0, 0, 0,
  3499. TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
  3500. false);
  3501. }
  3502. /* Queue a configure endpoint command TRB */
  3503. int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
  3504. struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
  3505. u32 slot_id, bool command_must_succeed)
  3506. {
  3507. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3508. upper_32_bits(in_ctx_ptr), 0,
  3509. TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
  3510. command_must_succeed);
  3511. }
  3512. /* Queue an evaluate context command TRB */
  3513. int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3514. dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
  3515. {
  3516. return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
  3517. upper_32_bits(in_ctx_ptr), 0,
  3518. TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
  3519. command_must_succeed);
  3520. }
  3521. /*
  3522. * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
  3523. * activity on an endpoint that is about to be suspended.
  3524. */
  3525. int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3526. int slot_id, unsigned int ep_index, int suspend)
  3527. {
  3528. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3529. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3530. u32 type = TRB_TYPE(TRB_STOP_RING);
  3531. u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
  3532. return queue_command(xhci, cmd, 0, 0, 0,
  3533. trb_slot_id | trb_ep_index | type | trb_suspend, false);
  3534. }
  3535. /* Set Transfer Ring Dequeue Pointer command */
  3536. void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
  3537. unsigned int slot_id, unsigned int ep_index,
  3538. struct xhci_dequeue_state *deq_state)
  3539. {
  3540. dma_addr_t addr;
  3541. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3542. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3543. u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
  3544. u32 trb_sct = 0;
  3545. u32 type = TRB_TYPE(TRB_SET_DEQ);
  3546. struct xhci_virt_ep *ep;
  3547. struct xhci_command *cmd;
  3548. int ret;
  3549. xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
  3550. "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
  3551. deq_state->new_deq_seg,
  3552. (unsigned long long)deq_state->new_deq_seg->dma,
  3553. deq_state->new_deq_ptr,
  3554. (unsigned long long)xhci_trb_virt_to_dma(
  3555. deq_state->new_deq_seg, deq_state->new_deq_ptr),
  3556. deq_state->new_cycle_state);
  3557. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  3558. deq_state->new_deq_ptr);
  3559. if (addr == 0) {
  3560. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3561. xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
  3562. deq_state->new_deq_seg, deq_state->new_deq_ptr);
  3563. return;
  3564. }
  3565. ep = &xhci->devs[slot_id]->eps[ep_index];
  3566. if ((ep->ep_state & SET_DEQ_PENDING)) {
  3567. xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
  3568. xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
  3569. return;
  3570. }
  3571. /* This function gets called from contexts where it cannot sleep */
  3572. cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
  3573. if (!cmd)
  3574. return;
  3575. ep->queued_deq_seg = deq_state->new_deq_seg;
  3576. ep->queued_deq_ptr = deq_state->new_deq_ptr;
  3577. if (deq_state->stream_id)
  3578. trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
  3579. ret = queue_command(xhci, cmd,
  3580. lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
  3581. upper_32_bits(addr), trb_stream_id,
  3582. trb_slot_id | trb_ep_index | type, false);
  3583. if (ret < 0) {
  3584. xhci_free_command(xhci, cmd);
  3585. return;
  3586. }
  3587. /* Stop the TD queueing code from ringing the doorbell until
  3588. * this command completes. The HC won't set the dequeue pointer
  3589. * if the ring is running, and ringing the doorbell starts the
  3590. * ring running.
  3591. */
  3592. ep->ep_state |= SET_DEQ_PENDING;
  3593. }
  3594. int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
  3595. int slot_id, unsigned int ep_index,
  3596. enum xhci_ep_reset_type reset_type)
  3597. {
  3598. u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
  3599. u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
  3600. u32 type = TRB_TYPE(TRB_RESET_EP);
  3601. if (reset_type == EP_SOFT_RESET)
  3602. type |= TRB_TSP;
  3603. return queue_command(xhci, cmd, 0, 0, 0,
  3604. trb_slot_id | trb_ep_index | type, false);
  3605. }