slub.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kasan.h>
  23. #include <linux/kmemcheck.h>
  24. #include <linux/cpu.h>
  25. #include <linux/cpuset.h>
  26. #include <linux/mempolicy.h>
  27. #include <linux/ctype.h>
  28. #include <linux/debugobjects.h>
  29. #include <linux/kallsyms.h>
  30. #include <linux/memory.h>
  31. #include <linux/math64.h>
  32. #include <linux/fault-inject.h>
  33. #include <linux/stacktrace.h>
  34. #include <linux/prefetch.h>
  35. #include <linux/memcontrol.h>
  36. #include <trace/events/kmem.h>
  37. #include "internal.h"
  38. /*
  39. * Lock order:
  40. * 1. slab_mutex (Global Mutex)
  41. * 2. node->list_lock
  42. * 3. slab_lock(page) (Only on some arches and for debugging)
  43. *
  44. * slab_mutex
  45. *
  46. * The role of the slab_mutex is to protect the list of all the slabs
  47. * and to synchronize major metadata changes to slab cache structures.
  48. *
  49. * The slab_lock is only used for debugging and on arches that do not
  50. * have the ability to do a cmpxchg_double. It only protects the second
  51. * double word in the page struct. Meaning
  52. * A. page->freelist -> List of object free in a page
  53. * B. page->counters -> Counters of objects
  54. * C. page->frozen -> frozen state
  55. *
  56. * If a slab is frozen then it is exempt from list management. It is not
  57. * on any list. The processor that froze the slab is the one who can
  58. * perform list operations on the page. Other processors may put objects
  59. * onto the freelist but the processor that froze the slab is the only
  60. * one that can retrieve the objects from the page's freelist.
  61. *
  62. * The list_lock protects the partial and full list on each node and
  63. * the partial slab counter. If taken then no new slabs may be added or
  64. * removed from the lists nor make the number of partial slabs be modified.
  65. * (Note that the total number of slabs is an atomic value that may be
  66. * modified without taking the list lock).
  67. *
  68. * The list_lock is a centralized lock and thus we avoid taking it as
  69. * much as possible. As long as SLUB does not have to handle partial
  70. * slabs, operations can continue without any centralized lock. F.e.
  71. * allocating a long series of objects that fill up slabs does not require
  72. * the list lock.
  73. * Interrupts are disabled during allocation and deallocation in order to
  74. * make the slab allocator safe to use in the context of an irq. In addition
  75. * interrupts are disabled to ensure that the processor does not change
  76. * while handling per_cpu slabs, due to kernel preemption.
  77. *
  78. * SLUB assigns one slab for allocation to each processor.
  79. * Allocations only occur from these slabs called cpu slabs.
  80. *
  81. * Slabs with free elements are kept on a partial list and during regular
  82. * operations no list for full slabs is used. If an object in a full slab is
  83. * freed then the slab will show up again on the partial lists.
  84. * We track full slabs for debugging purposes though because otherwise we
  85. * cannot scan all objects.
  86. *
  87. * Slabs are freed when they become empty. Teardown and setup is
  88. * minimal so we rely on the page allocators per cpu caches for
  89. * fast frees and allocs.
  90. *
  91. * Overloading of page flags that are otherwise used for LRU management.
  92. *
  93. * PageActive The slab is frozen and exempt from list processing.
  94. * This means that the slab is dedicated to a purpose
  95. * such as satisfying allocations for a specific
  96. * processor. Objects may be freed in the slab while
  97. * it is frozen but slab_free will then skip the usual
  98. * list operations. It is up to the processor holding
  99. * the slab to integrate the slab into the slab lists
  100. * when the slab is no longer needed.
  101. *
  102. * One use of this flag is to mark slabs that are
  103. * used for allocations. Then such a slab becomes a cpu
  104. * slab. The cpu slab may be equipped with an additional
  105. * freelist that allows lockless access to
  106. * free objects in addition to the regular freelist
  107. * that requires the slab lock.
  108. *
  109. * PageError Slab requires special handling due to debug
  110. * options set. This moves slab handling out of
  111. * the fast path and disables lockless freelists.
  112. */
  113. static inline int kmem_cache_debug(struct kmem_cache *s)
  114. {
  115. #ifdef CONFIG_SLUB_DEBUG
  116. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  117. #else
  118. return 0;
  119. #endif
  120. }
  121. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  122. {
  123. #ifdef CONFIG_SLUB_CPU_PARTIAL
  124. return !kmem_cache_debug(s);
  125. #else
  126. return false;
  127. #endif
  128. }
  129. /*
  130. * Issues still to be resolved:
  131. *
  132. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  133. *
  134. * - Variable sizing of the per node arrays
  135. */
  136. /* Enable to test recovery from slab corruption on boot */
  137. #undef SLUB_RESILIENCY_TEST
  138. /* Enable to log cmpxchg failures */
  139. #undef SLUB_DEBUG_CMPXCHG
  140. /*
  141. * Mininum number of partial slabs. These will be left on the partial
  142. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  143. */
  144. #define MIN_PARTIAL 5
  145. /*
  146. * Maximum number of desirable partial slabs.
  147. * The existence of more partial slabs makes kmem_cache_shrink
  148. * sort the partial list by the number of objects in use.
  149. */
  150. #define MAX_PARTIAL 10
  151. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  152. SLAB_POISON | SLAB_STORE_USER)
  153. /*
  154. * Debugging flags that require metadata to be stored in the slab. These get
  155. * disabled when slub_debug=O is used and a cache's min order increases with
  156. * metadata.
  157. */
  158. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  159. #define OO_SHIFT 16
  160. #define OO_MASK ((1 << OO_SHIFT) - 1)
  161. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  162. /* Internal SLUB flags */
  163. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  164. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  191. #endif
  192. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  193. {
  194. #ifdef CONFIG_SLUB_STATS
  195. /*
  196. * The rmw is racy on a preemptible kernel but this is acceptable, so
  197. * avoid this_cpu_add()'s irq-disable overhead.
  198. */
  199. raw_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. /* Verify that a pointer has an address that is valid within a slab page */
  206. static inline int check_valid_pointer(struct kmem_cache *s,
  207. struct page *page, const void *object)
  208. {
  209. void *base;
  210. if (!object)
  211. return 1;
  212. base = page_address(page);
  213. if (object < base || object >= base + page->objects * s->size ||
  214. (object - base) % s->size) {
  215. return 0;
  216. }
  217. return 1;
  218. }
  219. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  220. {
  221. return *(void **)(object + s->offset);
  222. }
  223. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  224. {
  225. prefetch(object + s->offset);
  226. }
  227. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  228. {
  229. void *p;
  230. #ifdef CONFIG_DEBUG_PAGEALLOC
  231. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  232. #else
  233. p = get_freepointer(s, object);
  234. #endif
  235. return p;
  236. }
  237. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  238. {
  239. *(void **)(object + s->offset) = fp;
  240. }
  241. /* Loop over all objects in a slab */
  242. #define for_each_object(__p, __s, __addr, __objects) \
  243. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  244. __p += (__s)->size)
  245. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  246. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  247. __p += (__s)->size, __idx++)
  248. /* Determine object index from a given position */
  249. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  250. {
  251. return (p - addr) / s->size;
  252. }
  253. static inline size_t slab_ksize(const struct kmem_cache *s)
  254. {
  255. #ifdef CONFIG_SLUB_DEBUG
  256. /*
  257. * Debugging requires use of the padding between object
  258. * and whatever may come after it.
  259. */
  260. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  261. return s->object_size;
  262. #endif
  263. /*
  264. * If we have the need to store the freelist pointer
  265. * back there or track user information then we can
  266. * only use the space before that information.
  267. */
  268. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  269. return s->inuse;
  270. /*
  271. * Else we can use all the padding etc for the allocation
  272. */
  273. return s->size;
  274. }
  275. static inline int order_objects(int order, unsigned long size, int reserved)
  276. {
  277. return ((PAGE_SIZE << order) - reserved) / size;
  278. }
  279. static inline struct kmem_cache_order_objects oo_make(int order,
  280. unsigned long size, int reserved)
  281. {
  282. struct kmem_cache_order_objects x = {
  283. (order << OO_SHIFT) + order_objects(order, size, reserved)
  284. };
  285. return x;
  286. }
  287. static inline int oo_order(struct kmem_cache_order_objects x)
  288. {
  289. return x.x >> OO_SHIFT;
  290. }
  291. static inline int oo_objects(struct kmem_cache_order_objects x)
  292. {
  293. return x.x & OO_MASK;
  294. }
  295. /*
  296. * Per slab locking using the pagelock
  297. */
  298. static __always_inline void slab_lock(struct page *page)
  299. {
  300. VM_BUG_ON_PAGE(PageTail(page), page);
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. VM_BUG_ON_PAGE(PageTail(page), page);
  306. __bit_spin_unlock(PG_locked, &page->flags);
  307. }
  308. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  309. {
  310. struct page tmp;
  311. tmp.counters = counters_new;
  312. /*
  313. * page->counters can cover frozen/inuse/objects as well
  314. * as page->_count. If we assign to ->counters directly
  315. * we run the risk of losing updates to page->_count, so
  316. * be careful and only assign to the fields we need.
  317. */
  318. page->frozen = tmp.frozen;
  319. page->inuse = tmp.inuse;
  320. page->objects = tmp.objects;
  321. }
  322. /* Interrupts must be disabled (for the fallback code to work right) */
  323. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  324. void *freelist_old, unsigned long counters_old,
  325. void *freelist_new, unsigned long counters_new,
  326. const char *n)
  327. {
  328. VM_BUG_ON(!irqs_disabled());
  329. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  330. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  331. if (s->flags & __CMPXCHG_DOUBLE) {
  332. if (cmpxchg_double(&page->freelist, &page->counters,
  333. freelist_old, counters_old,
  334. freelist_new, counters_new))
  335. return true;
  336. } else
  337. #endif
  338. {
  339. slab_lock(page);
  340. if (page->freelist == freelist_old &&
  341. page->counters == counters_old) {
  342. page->freelist = freelist_new;
  343. set_page_slub_counters(page, counters_new);
  344. slab_unlock(page);
  345. return true;
  346. }
  347. slab_unlock(page);
  348. }
  349. cpu_relax();
  350. stat(s, CMPXCHG_DOUBLE_FAIL);
  351. #ifdef SLUB_DEBUG_CMPXCHG
  352. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  353. #endif
  354. return false;
  355. }
  356. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  357. void *freelist_old, unsigned long counters_old,
  358. void *freelist_new, unsigned long counters_new,
  359. const char *n)
  360. {
  361. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  362. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  363. if (s->flags & __CMPXCHG_DOUBLE) {
  364. if (cmpxchg_double(&page->freelist, &page->counters,
  365. freelist_old, counters_old,
  366. freelist_new, counters_new))
  367. return true;
  368. } else
  369. #endif
  370. {
  371. unsigned long flags;
  372. local_irq_save(flags);
  373. slab_lock(page);
  374. if (page->freelist == freelist_old &&
  375. page->counters == counters_old) {
  376. page->freelist = freelist_new;
  377. set_page_slub_counters(page, counters_new);
  378. slab_unlock(page);
  379. local_irq_restore(flags);
  380. return true;
  381. }
  382. slab_unlock(page);
  383. local_irq_restore(flags);
  384. }
  385. cpu_relax();
  386. stat(s, CMPXCHG_DOUBLE_FAIL);
  387. #ifdef SLUB_DEBUG_CMPXCHG
  388. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  389. #endif
  390. return false;
  391. }
  392. #ifdef CONFIG_SLUB_DEBUG
  393. /*
  394. * Determine a map of object in use on a page.
  395. *
  396. * Node listlock must be held to guarantee that the page does
  397. * not vanish from under us.
  398. */
  399. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  400. {
  401. void *p;
  402. void *addr = page_address(page);
  403. for (p = page->freelist; p; p = get_freepointer(s, p))
  404. set_bit(slab_index(p, s, addr), map);
  405. }
  406. /*
  407. * Debug settings:
  408. */
  409. #if defined(CONFIG_SLUB_DEBUG_ON)
  410. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  411. #elif defined(CONFIG_KASAN)
  412. static int slub_debug = SLAB_STORE_USER;
  413. #else
  414. static int slub_debug;
  415. #endif
  416. static char *slub_debug_slabs;
  417. static int disable_higher_order_debug;
  418. /*
  419. * slub is about to manipulate internal object metadata. This memory lies
  420. * outside the range of the allocated object, so accessing it would normally
  421. * be reported by kasan as a bounds error. metadata_access_enable() is used
  422. * to tell kasan that these accesses are OK.
  423. */
  424. static inline void metadata_access_enable(void)
  425. {
  426. kasan_disable_current();
  427. }
  428. static inline void metadata_access_disable(void)
  429. {
  430. kasan_enable_current();
  431. }
  432. /*
  433. * Object debugging
  434. */
  435. static void print_section(char *text, u8 *addr, unsigned int length)
  436. {
  437. metadata_access_enable();
  438. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  439. length, 1);
  440. metadata_access_disable();
  441. }
  442. static struct track *get_track(struct kmem_cache *s, void *object,
  443. enum track_item alloc)
  444. {
  445. struct track *p;
  446. if (s->offset)
  447. p = object + s->offset + sizeof(void *);
  448. else
  449. p = object + s->inuse;
  450. return p + alloc;
  451. }
  452. static void set_track(struct kmem_cache *s, void *object,
  453. enum track_item alloc, unsigned long addr)
  454. {
  455. struct track *p = get_track(s, object, alloc);
  456. if (addr) {
  457. #ifdef CONFIG_STACKTRACE
  458. struct stack_trace trace;
  459. int i;
  460. trace.nr_entries = 0;
  461. trace.max_entries = TRACK_ADDRS_COUNT;
  462. trace.entries = p->addrs;
  463. trace.skip = 3;
  464. metadata_access_enable();
  465. save_stack_trace(&trace);
  466. metadata_access_disable();
  467. /* See rant in lockdep.c */
  468. if (trace.nr_entries != 0 &&
  469. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  470. trace.nr_entries--;
  471. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  472. p->addrs[i] = 0;
  473. #endif
  474. p->addr = addr;
  475. p->cpu = smp_processor_id();
  476. p->pid = current->pid;
  477. p->when = jiffies;
  478. } else
  479. memset(p, 0, sizeof(struct track));
  480. }
  481. static void init_tracking(struct kmem_cache *s, void *object)
  482. {
  483. if (!(s->flags & SLAB_STORE_USER))
  484. return;
  485. set_track(s, object, TRACK_FREE, 0UL);
  486. set_track(s, object, TRACK_ALLOC, 0UL);
  487. }
  488. static void print_track(const char *s, struct track *t)
  489. {
  490. if (!t->addr)
  491. return;
  492. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  493. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  494. #ifdef CONFIG_STACKTRACE
  495. {
  496. int i;
  497. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  498. if (t->addrs[i])
  499. pr_err("\t%pS\n", (void *)t->addrs[i]);
  500. else
  501. break;
  502. }
  503. #endif
  504. }
  505. static void print_tracking(struct kmem_cache *s, void *object)
  506. {
  507. if (!(s->flags & SLAB_STORE_USER))
  508. return;
  509. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  510. print_track("Freed", get_track(s, object, TRACK_FREE));
  511. }
  512. static void print_page_info(struct page *page)
  513. {
  514. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  515. page, page->objects, page->inuse, page->freelist, page->flags);
  516. }
  517. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  518. {
  519. struct va_format vaf;
  520. va_list args;
  521. va_start(args, fmt);
  522. vaf.fmt = fmt;
  523. vaf.va = &args;
  524. pr_err("=============================================================================\n");
  525. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  526. pr_err("-----------------------------------------------------------------------------\n\n");
  527. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  528. va_end(args);
  529. }
  530. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  531. {
  532. struct va_format vaf;
  533. va_list args;
  534. va_start(args, fmt);
  535. vaf.fmt = fmt;
  536. vaf.va = &args;
  537. pr_err("FIX %s: %pV\n", s->name, &vaf);
  538. va_end(args);
  539. }
  540. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  541. {
  542. unsigned int off; /* Offset of last byte */
  543. u8 *addr = page_address(page);
  544. print_tracking(s, p);
  545. print_page_info(page);
  546. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  547. p, p - addr, get_freepointer(s, p));
  548. if (p > addr + 16)
  549. print_section("Bytes b4 ", p - 16, 16);
  550. print_section("Object ", p, min_t(unsigned long, s->object_size,
  551. PAGE_SIZE));
  552. if (s->flags & SLAB_RED_ZONE)
  553. print_section("Redzone ", p + s->object_size,
  554. s->inuse - s->object_size);
  555. if (s->offset)
  556. off = s->offset + sizeof(void *);
  557. else
  558. off = s->inuse;
  559. if (s->flags & SLAB_STORE_USER)
  560. off += 2 * sizeof(struct track);
  561. if (off != s->size)
  562. /* Beginning of the filler is the free pointer */
  563. print_section("Padding ", p + off, s->size - off);
  564. dump_stack();
  565. }
  566. void object_err(struct kmem_cache *s, struct page *page,
  567. u8 *object, char *reason)
  568. {
  569. slab_bug(s, "%s", reason);
  570. print_trailer(s, page, object);
  571. }
  572. static void slab_err(struct kmem_cache *s, struct page *page,
  573. const char *fmt, ...)
  574. {
  575. va_list args;
  576. char buf[100];
  577. va_start(args, fmt);
  578. vsnprintf(buf, sizeof(buf), fmt, args);
  579. va_end(args);
  580. slab_bug(s, "%s", buf);
  581. print_page_info(page);
  582. dump_stack();
  583. }
  584. static void init_object(struct kmem_cache *s, void *object, u8 val)
  585. {
  586. u8 *p = object;
  587. if (s->flags & __OBJECT_POISON) {
  588. memset(p, POISON_FREE, s->object_size - 1);
  589. p[s->object_size - 1] = POISON_END;
  590. }
  591. if (s->flags & SLAB_RED_ZONE)
  592. memset(p + s->object_size, val, s->inuse - s->object_size);
  593. }
  594. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  595. void *from, void *to)
  596. {
  597. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  598. memset(from, data, to - from);
  599. }
  600. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  601. u8 *object, char *what,
  602. u8 *start, unsigned int value, unsigned int bytes)
  603. {
  604. u8 *fault;
  605. u8 *end;
  606. metadata_access_enable();
  607. fault = memchr_inv(start, value, bytes);
  608. metadata_access_disable();
  609. if (!fault)
  610. return 1;
  611. end = start + bytes;
  612. while (end > fault && end[-1] == value)
  613. end--;
  614. slab_bug(s, "%s overwritten", what);
  615. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  616. fault, end - 1, fault[0], value);
  617. print_trailer(s, page, object);
  618. restore_bytes(s, what, value, fault, end);
  619. return 0;
  620. }
  621. /*
  622. * Object layout:
  623. *
  624. * object address
  625. * Bytes of the object to be managed.
  626. * If the freepointer may overlay the object then the free
  627. * pointer is the first word of the object.
  628. *
  629. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  630. * 0xa5 (POISON_END)
  631. *
  632. * object + s->object_size
  633. * Padding to reach word boundary. This is also used for Redzoning.
  634. * Padding is extended by another word if Redzoning is enabled and
  635. * object_size == inuse.
  636. *
  637. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  638. * 0xcc (RED_ACTIVE) for objects in use.
  639. *
  640. * object + s->inuse
  641. * Meta data starts here.
  642. *
  643. * A. Free pointer (if we cannot overwrite object on free)
  644. * B. Tracking data for SLAB_STORE_USER
  645. * C. Padding to reach required alignment boundary or at mininum
  646. * one word if debugging is on to be able to detect writes
  647. * before the word boundary.
  648. *
  649. * Padding is done using 0x5a (POISON_INUSE)
  650. *
  651. * object + s->size
  652. * Nothing is used beyond s->size.
  653. *
  654. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  655. * ignored. And therefore no slab options that rely on these boundaries
  656. * may be used with merged slabcaches.
  657. */
  658. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  659. {
  660. unsigned long off = s->inuse; /* The end of info */
  661. if (s->offset)
  662. /* Freepointer is placed after the object. */
  663. off += sizeof(void *);
  664. if (s->flags & SLAB_STORE_USER)
  665. /* We also have user information there */
  666. off += 2 * sizeof(struct track);
  667. if (s->size == off)
  668. return 1;
  669. return check_bytes_and_report(s, page, p, "Object padding",
  670. p + off, POISON_INUSE, s->size - off);
  671. }
  672. /* Check the pad bytes at the end of a slab page */
  673. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  674. {
  675. u8 *start;
  676. u8 *fault;
  677. u8 *end;
  678. int length;
  679. int remainder;
  680. if (!(s->flags & SLAB_POISON))
  681. return 1;
  682. start = page_address(page);
  683. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  684. end = start + length;
  685. remainder = length % s->size;
  686. if (!remainder)
  687. return 1;
  688. metadata_access_enable();
  689. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  690. metadata_access_disable();
  691. if (!fault)
  692. return 1;
  693. while (end > fault && end[-1] == POISON_INUSE)
  694. end--;
  695. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  696. print_section("Padding ", end - remainder, remainder);
  697. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  698. return 0;
  699. }
  700. static int check_object(struct kmem_cache *s, struct page *page,
  701. void *object, u8 val)
  702. {
  703. u8 *p = object;
  704. u8 *endobject = object + s->object_size;
  705. if (s->flags & SLAB_RED_ZONE) {
  706. if (!check_bytes_and_report(s, page, object, "Redzone",
  707. endobject, val, s->inuse - s->object_size))
  708. return 0;
  709. } else {
  710. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  711. check_bytes_and_report(s, page, p, "Alignment padding",
  712. endobject, POISON_INUSE,
  713. s->inuse - s->object_size);
  714. }
  715. }
  716. if (s->flags & SLAB_POISON) {
  717. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  718. (!check_bytes_and_report(s, page, p, "Poison", p,
  719. POISON_FREE, s->object_size - 1) ||
  720. !check_bytes_and_report(s, page, p, "Poison",
  721. p + s->object_size - 1, POISON_END, 1)))
  722. return 0;
  723. /*
  724. * check_pad_bytes cleans up on its own.
  725. */
  726. check_pad_bytes(s, page, p);
  727. }
  728. if (!s->offset && val == SLUB_RED_ACTIVE)
  729. /*
  730. * Object and freepointer overlap. Cannot check
  731. * freepointer while object is allocated.
  732. */
  733. return 1;
  734. /* Check free pointer validity */
  735. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  736. object_err(s, page, p, "Freepointer corrupt");
  737. /*
  738. * No choice but to zap it and thus lose the remainder
  739. * of the free objects in this slab. May cause
  740. * another error because the object count is now wrong.
  741. */
  742. set_freepointer(s, p, NULL);
  743. return 0;
  744. }
  745. return 1;
  746. }
  747. static int check_slab(struct kmem_cache *s, struct page *page)
  748. {
  749. int maxobj;
  750. VM_BUG_ON(!irqs_disabled());
  751. if (!PageSlab(page)) {
  752. slab_err(s, page, "Not a valid slab page");
  753. return 0;
  754. }
  755. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  756. if (page->objects > maxobj) {
  757. slab_err(s, page, "objects %u > max %u",
  758. page->objects, maxobj);
  759. return 0;
  760. }
  761. if (page->inuse > page->objects) {
  762. slab_err(s, page, "inuse %u > max %u",
  763. page->inuse, page->objects);
  764. return 0;
  765. }
  766. /* Slab_pad_check fixes things up after itself */
  767. slab_pad_check(s, page);
  768. return 1;
  769. }
  770. /*
  771. * Determine if a certain object on a page is on the freelist. Must hold the
  772. * slab lock to guarantee that the chains are in a consistent state.
  773. */
  774. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  775. {
  776. int nr = 0;
  777. void *fp;
  778. void *object = NULL;
  779. int max_objects;
  780. fp = page->freelist;
  781. while (fp && nr <= page->objects) {
  782. if (fp == search)
  783. return 1;
  784. if (!check_valid_pointer(s, page, fp)) {
  785. if (object) {
  786. object_err(s, page, object,
  787. "Freechain corrupt");
  788. set_freepointer(s, object, NULL);
  789. } else {
  790. slab_err(s, page, "Freepointer corrupt");
  791. page->freelist = NULL;
  792. page->inuse = page->objects;
  793. slab_fix(s, "Freelist cleared");
  794. return 0;
  795. }
  796. break;
  797. }
  798. object = fp;
  799. fp = get_freepointer(s, object);
  800. nr++;
  801. }
  802. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  803. if (max_objects > MAX_OBJS_PER_PAGE)
  804. max_objects = MAX_OBJS_PER_PAGE;
  805. if (page->objects != max_objects) {
  806. slab_err(s, page, "Wrong number of objects. Found %d but "
  807. "should be %d", page->objects, max_objects);
  808. page->objects = max_objects;
  809. slab_fix(s, "Number of objects adjusted.");
  810. }
  811. if (page->inuse != page->objects - nr) {
  812. slab_err(s, page, "Wrong object count. Counter is %d but "
  813. "counted were %d", page->inuse, page->objects - nr);
  814. page->inuse = page->objects - nr;
  815. slab_fix(s, "Object count adjusted.");
  816. }
  817. return search == NULL;
  818. }
  819. static void trace(struct kmem_cache *s, struct page *page, void *object,
  820. int alloc)
  821. {
  822. if (s->flags & SLAB_TRACE) {
  823. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  824. s->name,
  825. alloc ? "alloc" : "free",
  826. object, page->inuse,
  827. page->freelist);
  828. if (!alloc)
  829. print_section("Object ", (void *)object,
  830. s->object_size);
  831. dump_stack();
  832. }
  833. }
  834. /*
  835. * Tracking of fully allocated slabs for debugging purposes.
  836. */
  837. static void add_full(struct kmem_cache *s,
  838. struct kmem_cache_node *n, struct page *page)
  839. {
  840. if (!(s->flags & SLAB_STORE_USER))
  841. return;
  842. lockdep_assert_held(&n->list_lock);
  843. list_add(&page->lru, &n->full);
  844. }
  845. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  846. {
  847. if (!(s->flags & SLAB_STORE_USER))
  848. return;
  849. lockdep_assert_held(&n->list_lock);
  850. list_del(&page->lru);
  851. }
  852. /* Tracking of the number of slabs for debugging purposes */
  853. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  854. {
  855. struct kmem_cache_node *n = get_node(s, node);
  856. return atomic_long_read(&n->nr_slabs);
  857. }
  858. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  859. {
  860. return atomic_long_read(&n->nr_slabs);
  861. }
  862. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  863. {
  864. struct kmem_cache_node *n = get_node(s, node);
  865. /*
  866. * May be called early in order to allocate a slab for the
  867. * kmem_cache_node structure. Solve the chicken-egg
  868. * dilemma by deferring the increment of the count during
  869. * bootstrap (see early_kmem_cache_node_alloc).
  870. */
  871. if (likely(n)) {
  872. atomic_long_inc(&n->nr_slabs);
  873. atomic_long_add(objects, &n->total_objects);
  874. }
  875. }
  876. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  877. {
  878. struct kmem_cache_node *n = get_node(s, node);
  879. atomic_long_dec(&n->nr_slabs);
  880. atomic_long_sub(objects, &n->total_objects);
  881. }
  882. /* Object debug checks for alloc/free paths */
  883. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  884. void *object)
  885. {
  886. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  887. return;
  888. init_object(s, object, SLUB_RED_INACTIVE);
  889. init_tracking(s, object);
  890. }
  891. static noinline int alloc_debug_processing(struct kmem_cache *s,
  892. struct page *page,
  893. void *object, unsigned long addr)
  894. {
  895. if (!check_slab(s, page))
  896. goto bad;
  897. if (!check_valid_pointer(s, page, object)) {
  898. object_err(s, page, object, "Freelist Pointer check fails");
  899. goto bad;
  900. }
  901. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  902. goto bad;
  903. /* Success perform special debug activities for allocs */
  904. if (s->flags & SLAB_STORE_USER)
  905. set_track(s, object, TRACK_ALLOC, addr);
  906. trace(s, page, object, 1);
  907. init_object(s, object, SLUB_RED_ACTIVE);
  908. return 1;
  909. bad:
  910. if (PageSlab(page)) {
  911. /*
  912. * If this is a slab page then lets do the best we can
  913. * to avoid issues in the future. Marking all objects
  914. * as used avoids touching the remaining objects.
  915. */
  916. slab_fix(s, "Marking all objects used");
  917. page->inuse = page->objects;
  918. page->freelist = NULL;
  919. }
  920. return 0;
  921. }
  922. /* Supports checking bulk free of a constructed freelist */
  923. static noinline struct kmem_cache_node *free_debug_processing(
  924. struct kmem_cache *s, struct page *page,
  925. void *head, void *tail, int bulk_cnt,
  926. unsigned long addr, unsigned long *flags)
  927. {
  928. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  929. void *object = head;
  930. int cnt = 0;
  931. spin_lock_irqsave(&n->list_lock, *flags);
  932. slab_lock(page);
  933. if (!check_slab(s, page))
  934. goto fail;
  935. next_object:
  936. cnt++;
  937. if (!check_valid_pointer(s, page, object)) {
  938. slab_err(s, page, "Invalid object pointer 0x%p", object);
  939. goto fail;
  940. }
  941. if (on_freelist(s, page, object)) {
  942. object_err(s, page, object, "Object already free");
  943. goto fail;
  944. }
  945. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  946. goto out;
  947. if (unlikely(s != page->slab_cache)) {
  948. if (!PageSlab(page)) {
  949. slab_err(s, page, "Attempt to free object(0x%p) "
  950. "outside of slab", object);
  951. } else if (!page->slab_cache) {
  952. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  953. object);
  954. dump_stack();
  955. } else
  956. object_err(s, page, object,
  957. "page slab pointer corrupt.");
  958. goto fail;
  959. }
  960. if (s->flags & SLAB_STORE_USER)
  961. set_track(s, object, TRACK_FREE, addr);
  962. trace(s, page, object, 0);
  963. /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
  964. init_object(s, object, SLUB_RED_INACTIVE);
  965. /* Reached end of constructed freelist yet? */
  966. if (object != tail) {
  967. object = get_freepointer(s, object);
  968. goto next_object;
  969. }
  970. out:
  971. if (cnt != bulk_cnt)
  972. slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
  973. bulk_cnt, cnt);
  974. slab_unlock(page);
  975. /*
  976. * Keep node_lock to preserve integrity
  977. * until the object is actually freed
  978. */
  979. return n;
  980. fail:
  981. slab_unlock(page);
  982. spin_unlock_irqrestore(&n->list_lock, *flags);
  983. slab_fix(s, "Object at 0x%p not freed", object);
  984. return NULL;
  985. }
  986. static int __init setup_slub_debug(char *str)
  987. {
  988. slub_debug = DEBUG_DEFAULT_FLAGS;
  989. if (*str++ != '=' || !*str)
  990. /*
  991. * No options specified. Switch on full debugging.
  992. */
  993. goto out;
  994. if (*str == ',')
  995. /*
  996. * No options but restriction on slabs. This means full
  997. * debugging for slabs matching a pattern.
  998. */
  999. goto check_slabs;
  1000. slub_debug = 0;
  1001. if (*str == '-')
  1002. /*
  1003. * Switch off all debugging measures.
  1004. */
  1005. goto out;
  1006. /*
  1007. * Determine which debug features should be switched on
  1008. */
  1009. for (; *str && *str != ','; str++) {
  1010. switch (tolower(*str)) {
  1011. case 'f':
  1012. slub_debug |= SLAB_DEBUG_FREE;
  1013. break;
  1014. case 'z':
  1015. slub_debug |= SLAB_RED_ZONE;
  1016. break;
  1017. case 'p':
  1018. slub_debug |= SLAB_POISON;
  1019. break;
  1020. case 'u':
  1021. slub_debug |= SLAB_STORE_USER;
  1022. break;
  1023. case 't':
  1024. slub_debug |= SLAB_TRACE;
  1025. break;
  1026. case 'a':
  1027. slub_debug |= SLAB_FAILSLAB;
  1028. break;
  1029. case 'o':
  1030. /*
  1031. * Avoid enabling debugging on caches if its minimum
  1032. * order would increase as a result.
  1033. */
  1034. disable_higher_order_debug = 1;
  1035. break;
  1036. default:
  1037. pr_err("slub_debug option '%c' unknown. skipped\n",
  1038. *str);
  1039. }
  1040. }
  1041. check_slabs:
  1042. if (*str == ',')
  1043. slub_debug_slabs = str + 1;
  1044. out:
  1045. return 1;
  1046. }
  1047. __setup("slub_debug", setup_slub_debug);
  1048. unsigned long kmem_cache_flags(unsigned long object_size,
  1049. unsigned long flags, const char *name,
  1050. void (*ctor)(void *))
  1051. {
  1052. /*
  1053. * Enable debugging if selected on the kernel commandline.
  1054. */
  1055. if (slub_debug && (!slub_debug_slabs || (name &&
  1056. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1057. flags |= slub_debug;
  1058. return flags;
  1059. }
  1060. #else /* !CONFIG_SLUB_DEBUG */
  1061. static inline void setup_object_debug(struct kmem_cache *s,
  1062. struct page *page, void *object) {}
  1063. static inline int alloc_debug_processing(struct kmem_cache *s,
  1064. struct page *page, void *object, unsigned long addr) { return 0; }
  1065. static inline struct kmem_cache_node *free_debug_processing(
  1066. struct kmem_cache *s, struct page *page,
  1067. void *head, void *tail, int bulk_cnt,
  1068. unsigned long addr, unsigned long *flags) { return NULL; }
  1069. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1070. { return 1; }
  1071. static inline int check_object(struct kmem_cache *s, struct page *page,
  1072. void *object, u8 val) { return 1; }
  1073. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1074. struct page *page) {}
  1075. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1076. struct page *page) {}
  1077. unsigned long kmem_cache_flags(unsigned long object_size,
  1078. unsigned long flags, const char *name,
  1079. void (*ctor)(void *))
  1080. {
  1081. return flags;
  1082. }
  1083. #define slub_debug 0
  1084. #define disable_higher_order_debug 0
  1085. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1086. { return 0; }
  1087. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1088. { return 0; }
  1089. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1090. int objects) {}
  1091. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1092. int objects) {}
  1093. #endif /* CONFIG_SLUB_DEBUG */
  1094. /*
  1095. * Hooks for other subsystems that check memory allocations. In a typical
  1096. * production configuration these hooks all should produce no code at all.
  1097. */
  1098. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1099. {
  1100. kmemleak_alloc(ptr, size, 1, flags);
  1101. kasan_kmalloc_large(ptr, size);
  1102. }
  1103. static inline void kfree_hook(const void *x)
  1104. {
  1105. kmemleak_free(x);
  1106. kasan_kfree_large(x);
  1107. }
  1108. static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
  1109. gfp_t flags)
  1110. {
  1111. flags &= gfp_allowed_mask;
  1112. lockdep_trace_alloc(flags);
  1113. might_sleep_if(gfpflags_allow_blocking(flags));
  1114. if (should_failslab(s->object_size, flags, s->flags))
  1115. return NULL;
  1116. return memcg_kmem_get_cache(s, flags);
  1117. }
  1118. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1119. size_t size, void **p)
  1120. {
  1121. size_t i;
  1122. flags &= gfp_allowed_mask;
  1123. for (i = 0; i < size; i++) {
  1124. void *object = p[i];
  1125. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1126. kmemleak_alloc_recursive(object, s->object_size, 1,
  1127. s->flags, flags);
  1128. kasan_slab_alloc(s, object);
  1129. }
  1130. memcg_kmem_put_cache(s);
  1131. }
  1132. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1133. {
  1134. kmemleak_free_recursive(x, s->flags);
  1135. /*
  1136. * Trouble is that we may no longer disable interrupts in the fast path
  1137. * So in order to make the debug calls that expect irqs to be
  1138. * disabled we need to disable interrupts temporarily.
  1139. */
  1140. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1141. {
  1142. unsigned long flags;
  1143. local_irq_save(flags);
  1144. kmemcheck_slab_free(s, x, s->object_size);
  1145. debug_check_no_locks_freed(x, s->object_size);
  1146. local_irq_restore(flags);
  1147. }
  1148. #endif
  1149. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1150. debug_check_no_obj_freed(x, s->object_size);
  1151. kasan_slab_free(s, x);
  1152. }
  1153. static inline void slab_free_freelist_hook(struct kmem_cache *s,
  1154. void *head, void *tail)
  1155. {
  1156. /*
  1157. * Compiler cannot detect this function can be removed if slab_free_hook()
  1158. * evaluates to nothing. Thus, catch all relevant config debug options here.
  1159. */
  1160. #if defined(CONFIG_KMEMCHECK) || \
  1161. defined(CONFIG_LOCKDEP) || \
  1162. defined(CONFIG_DEBUG_KMEMLEAK) || \
  1163. defined(CONFIG_DEBUG_OBJECTS_FREE) || \
  1164. defined(CONFIG_KASAN)
  1165. void *object = head;
  1166. void *tail_obj = tail ? : head;
  1167. do {
  1168. slab_free_hook(s, object);
  1169. } while ((object != tail_obj) &&
  1170. (object = get_freepointer(s, object)));
  1171. #endif
  1172. }
  1173. static void setup_object(struct kmem_cache *s, struct page *page,
  1174. void *object)
  1175. {
  1176. setup_object_debug(s, page, object);
  1177. if (unlikely(s->ctor)) {
  1178. kasan_unpoison_object_data(s, object);
  1179. s->ctor(object);
  1180. kasan_poison_object_data(s, object);
  1181. }
  1182. }
  1183. /*
  1184. * Slab allocation and freeing
  1185. */
  1186. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1187. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1188. {
  1189. struct page *page;
  1190. int order = oo_order(oo);
  1191. flags |= __GFP_NOTRACK;
  1192. if (node == NUMA_NO_NODE)
  1193. page = alloc_pages(flags, order);
  1194. else
  1195. page = __alloc_pages_node(node, flags, order);
  1196. if (page && memcg_charge_slab(page, flags, order, s)) {
  1197. __free_pages(page, order);
  1198. page = NULL;
  1199. }
  1200. return page;
  1201. }
  1202. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1203. {
  1204. struct page *page;
  1205. struct kmem_cache_order_objects oo = s->oo;
  1206. gfp_t alloc_gfp;
  1207. void *start, *p;
  1208. int idx, order;
  1209. flags &= gfp_allowed_mask;
  1210. if (gfpflags_allow_blocking(flags))
  1211. local_irq_enable();
  1212. flags |= s->allocflags;
  1213. /*
  1214. * Let the initial higher-order allocation fail under memory pressure
  1215. * so we fall-back to the minimum order allocation.
  1216. */
  1217. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1218. if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
  1219. alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
  1220. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1221. if (unlikely(!page)) {
  1222. oo = s->min;
  1223. alloc_gfp = flags;
  1224. /*
  1225. * Allocation may have failed due to fragmentation.
  1226. * Try a lower order alloc if possible
  1227. */
  1228. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1229. if (unlikely(!page))
  1230. goto out;
  1231. stat(s, ORDER_FALLBACK);
  1232. }
  1233. if (kmemcheck_enabled &&
  1234. !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1235. int pages = 1 << oo_order(oo);
  1236. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1237. /*
  1238. * Objects from caches that have a constructor don't get
  1239. * cleared when they're allocated, so we need to do it here.
  1240. */
  1241. if (s->ctor)
  1242. kmemcheck_mark_uninitialized_pages(page, pages);
  1243. else
  1244. kmemcheck_mark_unallocated_pages(page, pages);
  1245. }
  1246. page->objects = oo_objects(oo);
  1247. order = compound_order(page);
  1248. page->slab_cache = s;
  1249. __SetPageSlab(page);
  1250. if (page_is_pfmemalloc(page))
  1251. SetPageSlabPfmemalloc(page);
  1252. start = page_address(page);
  1253. if (unlikely(s->flags & SLAB_POISON))
  1254. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1255. kasan_poison_slab(page);
  1256. for_each_object_idx(p, idx, s, start, page->objects) {
  1257. setup_object(s, page, p);
  1258. if (likely(idx < page->objects))
  1259. set_freepointer(s, p, p + s->size);
  1260. else
  1261. set_freepointer(s, p, NULL);
  1262. }
  1263. page->freelist = start;
  1264. page->inuse = page->objects;
  1265. page->frozen = 1;
  1266. out:
  1267. if (gfpflags_allow_blocking(flags))
  1268. local_irq_disable();
  1269. if (!page)
  1270. return NULL;
  1271. mod_zone_page_state(page_zone(page),
  1272. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1273. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1274. 1 << oo_order(oo));
  1275. inc_slabs_node(s, page_to_nid(page), page->objects);
  1276. return page;
  1277. }
  1278. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1279. {
  1280. if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
  1281. pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
  1282. BUG();
  1283. }
  1284. return allocate_slab(s,
  1285. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1286. }
  1287. static void __free_slab(struct kmem_cache *s, struct page *page)
  1288. {
  1289. int order = compound_order(page);
  1290. int pages = 1 << order;
  1291. if (kmem_cache_debug(s)) {
  1292. void *p;
  1293. slab_pad_check(s, page);
  1294. for_each_object(p, s, page_address(page),
  1295. page->objects)
  1296. check_object(s, page, p, SLUB_RED_INACTIVE);
  1297. }
  1298. kmemcheck_free_shadow(page, compound_order(page));
  1299. mod_zone_page_state(page_zone(page),
  1300. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1301. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1302. -pages);
  1303. __ClearPageSlabPfmemalloc(page);
  1304. __ClearPageSlab(page);
  1305. page_mapcount_reset(page);
  1306. if (current->reclaim_state)
  1307. current->reclaim_state->reclaimed_slab += pages;
  1308. __free_kmem_pages(page, order);
  1309. }
  1310. #define need_reserve_slab_rcu \
  1311. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1312. static void rcu_free_slab(struct rcu_head *h)
  1313. {
  1314. struct page *page;
  1315. if (need_reserve_slab_rcu)
  1316. page = virt_to_head_page(h);
  1317. else
  1318. page = container_of((struct list_head *)h, struct page, lru);
  1319. __free_slab(page->slab_cache, page);
  1320. }
  1321. static void free_slab(struct kmem_cache *s, struct page *page)
  1322. {
  1323. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1324. struct rcu_head *head;
  1325. if (need_reserve_slab_rcu) {
  1326. int order = compound_order(page);
  1327. int offset = (PAGE_SIZE << order) - s->reserved;
  1328. VM_BUG_ON(s->reserved != sizeof(*head));
  1329. head = page_address(page) + offset;
  1330. } else {
  1331. head = &page->rcu_head;
  1332. }
  1333. call_rcu(head, rcu_free_slab);
  1334. } else
  1335. __free_slab(s, page);
  1336. }
  1337. static void discard_slab(struct kmem_cache *s, struct page *page)
  1338. {
  1339. dec_slabs_node(s, page_to_nid(page), page->objects);
  1340. free_slab(s, page);
  1341. }
  1342. /*
  1343. * Management of partially allocated slabs.
  1344. */
  1345. static inline void
  1346. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1347. {
  1348. n->nr_partial++;
  1349. if (tail == DEACTIVATE_TO_TAIL)
  1350. list_add_tail(&page->lru, &n->partial);
  1351. else
  1352. list_add(&page->lru, &n->partial);
  1353. }
  1354. static inline void add_partial(struct kmem_cache_node *n,
  1355. struct page *page, int tail)
  1356. {
  1357. lockdep_assert_held(&n->list_lock);
  1358. __add_partial(n, page, tail);
  1359. }
  1360. static inline void remove_partial(struct kmem_cache_node *n,
  1361. struct page *page)
  1362. {
  1363. lockdep_assert_held(&n->list_lock);
  1364. list_del(&page->lru);
  1365. n->nr_partial--;
  1366. }
  1367. /*
  1368. * Remove slab from the partial list, freeze it and
  1369. * return the pointer to the freelist.
  1370. *
  1371. * Returns a list of objects or NULL if it fails.
  1372. */
  1373. static inline void *acquire_slab(struct kmem_cache *s,
  1374. struct kmem_cache_node *n, struct page *page,
  1375. int mode, int *objects)
  1376. {
  1377. void *freelist;
  1378. unsigned long counters;
  1379. struct page new;
  1380. lockdep_assert_held(&n->list_lock);
  1381. /*
  1382. * Zap the freelist and set the frozen bit.
  1383. * The old freelist is the list of objects for the
  1384. * per cpu allocation list.
  1385. */
  1386. freelist = page->freelist;
  1387. counters = page->counters;
  1388. new.counters = counters;
  1389. *objects = new.objects - new.inuse;
  1390. if (mode) {
  1391. new.inuse = page->objects;
  1392. new.freelist = NULL;
  1393. } else {
  1394. new.freelist = freelist;
  1395. }
  1396. VM_BUG_ON(new.frozen);
  1397. new.frozen = 1;
  1398. if (!__cmpxchg_double_slab(s, page,
  1399. freelist, counters,
  1400. new.freelist, new.counters,
  1401. "acquire_slab"))
  1402. return NULL;
  1403. remove_partial(n, page);
  1404. WARN_ON(!freelist);
  1405. return freelist;
  1406. }
  1407. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1408. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1409. /*
  1410. * Try to allocate a partial slab from a specific node.
  1411. */
  1412. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1413. struct kmem_cache_cpu *c, gfp_t flags)
  1414. {
  1415. struct page *page, *page2;
  1416. void *object = NULL;
  1417. int available = 0;
  1418. int objects;
  1419. /*
  1420. * Racy check. If we mistakenly see no partial slabs then we
  1421. * just allocate an empty slab. If we mistakenly try to get a
  1422. * partial slab and there is none available then get_partials()
  1423. * will return NULL.
  1424. */
  1425. if (!n || !n->nr_partial)
  1426. return NULL;
  1427. spin_lock(&n->list_lock);
  1428. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1429. void *t;
  1430. if (!pfmemalloc_match(page, flags))
  1431. continue;
  1432. t = acquire_slab(s, n, page, object == NULL, &objects);
  1433. if (!t)
  1434. break;
  1435. available += objects;
  1436. if (!object) {
  1437. c->page = page;
  1438. stat(s, ALLOC_FROM_PARTIAL);
  1439. object = t;
  1440. } else {
  1441. put_cpu_partial(s, page, 0);
  1442. stat(s, CPU_PARTIAL_NODE);
  1443. }
  1444. if (!kmem_cache_has_cpu_partial(s)
  1445. || available > s->cpu_partial / 2)
  1446. break;
  1447. }
  1448. spin_unlock(&n->list_lock);
  1449. return object;
  1450. }
  1451. /*
  1452. * Get a page from somewhere. Search in increasing NUMA distances.
  1453. */
  1454. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1455. struct kmem_cache_cpu *c)
  1456. {
  1457. #ifdef CONFIG_NUMA
  1458. struct zonelist *zonelist;
  1459. struct zoneref *z;
  1460. struct zone *zone;
  1461. enum zone_type high_zoneidx = gfp_zone(flags);
  1462. void *object;
  1463. unsigned int cpuset_mems_cookie;
  1464. /*
  1465. * The defrag ratio allows a configuration of the tradeoffs between
  1466. * inter node defragmentation and node local allocations. A lower
  1467. * defrag_ratio increases the tendency to do local allocations
  1468. * instead of attempting to obtain partial slabs from other nodes.
  1469. *
  1470. * If the defrag_ratio is set to 0 then kmalloc() always
  1471. * returns node local objects. If the ratio is higher then kmalloc()
  1472. * may return off node objects because partial slabs are obtained
  1473. * from other nodes and filled up.
  1474. *
  1475. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1476. * defrag_ratio = 1000) then every (well almost) allocation will
  1477. * first attempt to defrag slab caches on other nodes. This means
  1478. * scanning over all nodes to look for partial slabs which may be
  1479. * expensive if we do it every time we are trying to find a slab
  1480. * with available objects.
  1481. */
  1482. if (!s->remote_node_defrag_ratio ||
  1483. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1484. return NULL;
  1485. do {
  1486. cpuset_mems_cookie = read_mems_allowed_begin();
  1487. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1488. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1489. struct kmem_cache_node *n;
  1490. n = get_node(s, zone_to_nid(zone));
  1491. if (n && cpuset_zone_allowed(zone, flags) &&
  1492. n->nr_partial > s->min_partial) {
  1493. object = get_partial_node(s, n, c, flags);
  1494. if (object) {
  1495. /*
  1496. * Don't check read_mems_allowed_retry()
  1497. * here - if mems_allowed was updated in
  1498. * parallel, that was a harmless race
  1499. * between allocation and the cpuset
  1500. * update
  1501. */
  1502. return object;
  1503. }
  1504. }
  1505. }
  1506. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1507. #endif
  1508. return NULL;
  1509. }
  1510. /*
  1511. * Get a partial page, lock it and return it.
  1512. */
  1513. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1514. struct kmem_cache_cpu *c)
  1515. {
  1516. void *object;
  1517. int searchnode = node;
  1518. if (node == NUMA_NO_NODE)
  1519. searchnode = numa_mem_id();
  1520. else if (!node_present_pages(node))
  1521. searchnode = node_to_mem_node(node);
  1522. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1523. if (object || node != NUMA_NO_NODE)
  1524. return object;
  1525. return get_any_partial(s, flags, c);
  1526. }
  1527. #ifdef CONFIG_PREEMPT
  1528. /*
  1529. * Calculate the next globally unique transaction for disambiguiation
  1530. * during cmpxchg. The transactions start with the cpu number and are then
  1531. * incremented by CONFIG_NR_CPUS.
  1532. */
  1533. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1534. #else
  1535. /*
  1536. * No preemption supported therefore also no need to check for
  1537. * different cpus.
  1538. */
  1539. #define TID_STEP 1
  1540. #endif
  1541. static inline unsigned long next_tid(unsigned long tid)
  1542. {
  1543. return tid + TID_STEP;
  1544. }
  1545. static inline unsigned int tid_to_cpu(unsigned long tid)
  1546. {
  1547. return tid % TID_STEP;
  1548. }
  1549. static inline unsigned long tid_to_event(unsigned long tid)
  1550. {
  1551. return tid / TID_STEP;
  1552. }
  1553. static inline unsigned int init_tid(int cpu)
  1554. {
  1555. return cpu;
  1556. }
  1557. static inline void note_cmpxchg_failure(const char *n,
  1558. const struct kmem_cache *s, unsigned long tid)
  1559. {
  1560. #ifdef SLUB_DEBUG_CMPXCHG
  1561. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1562. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1563. #ifdef CONFIG_PREEMPT
  1564. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1565. pr_warn("due to cpu change %d -> %d\n",
  1566. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1567. else
  1568. #endif
  1569. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1570. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1571. tid_to_event(tid), tid_to_event(actual_tid));
  1572. else
  1573. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1574. actual_tid, tid, next_tid(tid));
  1575. #endif
  1576. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1577. }
  1578. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1579. {
  1580. int cpu;
  1581. for_each_possible_cpu(cpu)
  1582. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1583. }
  1584. /*
  1585. * Remove the cpu slab
  1586. */
  1587. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1588. void *freelist)
  1589. {
  1590. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1591. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1592. int lock = 0;
  1593. enum slab_modes l = M_NONE, m = M_NONE;
  1594. void *nextfree;
  1595. int tail = DEACTIVATE_TO_HEAD;
  1596. struct page new;
  1597. struct page old;
  1598. if (page->freelist) {
  1599. stat(s, DEACTIVATE_REMOTE_FREES);
  1600. tail = DEACTIVATE_TO_TAIL;
  1601. }
  1602. /*
  1603. * Stage one: Free all available per cpu objects back
  1604. * to the page freelist while it is still frozen. Leave the
  1605. * last one.
  1606. *
  1607. * There is no need to take the list->lock because the page
  1608. * is still frozen.
  1609. */
  1610. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1611. void *prior;
  1612. unsigned long counters;
  1613. do {
  1614. prior = page->freelist;
  1615. counters = page->counters;
  1616. set_freepointer(s, freelist, prior);
  1617. new.counters = counters;
  1618. new.inuse--;
  1619. VM_BUG_ON(!new.frozen);
  1620. } while (!__cmpxchg_double_slab(s, page,
  1621. prior, counters,
  1622. freelist, new.counters,
  1623. "drain percpu freelist"));
  1624. freelist = nextfree;
  1625. }
  1626. /*
  1627. * Stage two: Ensure that the page is unfrozen while the
  1628. * list presence reflects the actual number of objects
  1629. * during unfreeze.
  1630. *
  1631. * We setup the list membership and then perform a cmpxchg
  1632. * with the count. If there is a mismatch then the page
  1633. * is not unfrozen but the page is on the wrong list.
  1634. *
  1635. * Then we restart the process which may have to remove
  1636. * the page from the list that we just put it on again
  1637. * because the number of objects in the slab may have
  1638. * changed.
  1639. */
  1640. redo:
  1641. old.freelist = page->freelist;
  1642. old.counters = page->counters;
  1643. VM_BUG_ON(!old.frozen);
  1644. /* Determine target state of the slab */
  1645. new.counters = old.counters;
  1646. if (freelist) {
  1647. new.inuse--;
  1648. set_freepointer(s, freelist, old.freelist);
  1649. new.freelist = freelist;
  1650. } else
  1651. new.freelist = old.freelist;
  1652. new.frozen = 0;
  1653. if (!new.inuse && n->nr_partial >= s->min_partial)
  1654. m = M_FREE;
  1655. else if (new.freelist) {
  1656. m = M_PARTIAL;
  1657. if (!lock) {
  1658. lock = 1;
  1659. /*
  1660. * Taking the spinlock removes the possiblity
  1661. * that acquire_slab() will see a slab page that
  1662. * is frozen
  1663. */
  1664. spin_lock(&n->list_lock);
  1665. }
  1666. } else {
  1667. m = M_FULL;
  1668. if (kmem_cache_debug(s) && !lock) {
  1669. lock = 1;
  1670. /*
  1671. * This also ensures that the scanning of full
  1672. * slabs from diagnostic functions will not see
  1673. * any frozen slabs.
  1674. */
  1675. spin_lock(&n->list_lock);
  1676. }
  1677. }
  1678. if (l != m) {
  1679. if (l == M_PARTIAL)
  1680. remove_partial(n, page);
  1681. else if (l == M_FULL)
  1682. remove_full(s, n, page);
  1683. if (m == M_PARTIAL) {
  1684. add_partial(n, page, tail);
  1685. stat(s, tail);
  1686. } else if (m == M_FULL) {
  1687. stat(s, DEACTIVATE_FULL);
  1688. add_full(s, n, page);
  1689. }
  1690. }
  1691. l = m;
  1692. if (!__cmpxchg_double_slab(s, page,
  1693. old.freelist, old.counters,
  1694. new.freelist, new.counters,
  1695. "unfreezing slab"))
  1696. goto redo;
  1697. if (lock)
  1698. spin_unlock(&n->list_lock);
  1699. if (m == M_FREE) {
  1700. stat(s, DEACTIVATE_EMPTY);
  1701. discard_slab(s, page);
  1702. stat(s, FREE_SLAB);
  1703. }
  1704. }
  1705. /*
  1706. * Unfreeze all the cpu partial slabs.
  1707. *
  1708. * This function must be called with interrupts disabled
  1709. * for the cpu using c (or some other guarantee must be there
  1710. * to guarantee no concurrent accesses).
  1711. */
  1712. static void unfreeze_partials(struct kmem_cache *s,
  1713. struct kmem_cache_cpu *c)
  1714. {
  1715. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1716. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1717. struct page *page, *discard_page = NULL;
  1718. while ((page = c->partial)) {
  1719. struct page new;
  1720. struct page old;
  1721. c->partial = page->next;
  1722. n2 = get_node(s, page_to_nid(page));
  1723. if (n != n2) {
  1724. if (n)
  1725. spin_unlock(&n->list_lock);
  1726. n = n2;
  1727. spin_lock(&n->list_lock);
  1728. }
  1729. do {
  1730. old.freelist = page->freelist;
  1731. old.counters = page->counters;
  1732. VM_BUG_ON(!old.frozen);
  1733. new.counters = old.counters;
  1734. new.freelist = old.freelist;
  1735. new.frozen = 0;
  1736. } while (!__cmpxchg_double_slab(s, page,
  1737. old.freelist, old.counters,
  1738. new.freelist, new.counters,
  1739. "unfreezing slab"));
  1740. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1741. page->next = discard_page;
  1742. discard_page = page;
  1743. } else {
  1744. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1745. stat(s, FREE_ADD_PARTIAL);
  1746. }
  1747. }
  1748. if (n)
  1749. spin_unlock(&n->list_lock);
  1750. while (discard_page) {
  1751. page = discard_page;
  1752. discard_page = discard_page->next;
  1753. stat(s, DEACTIVATE_EMPTY);
  1754. discard_slab(s, page);
  1755. stat(s, FREE_SLAB);
  1756. }
  1757. #endif
  1758. }
  1759. /*
  1760. * Put a page that was just frozen (in __slab_free) into a partial page
  1761. * slot if available. This is done without interrupts disabled and without
  1762. * preemption disabled. The cmpxchg is racy and may put the partial page
  1763. * onto a random cpus partial slot.
  1764. *
  1765. * If we did not find a slot then simply move all the partials to the
  1766. * per node partial list.
  1767. */
  1768. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1769. {
  1770. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1771. struct page *oldpage;
  1772. int pages;
  1773. int pobjects;
  1774. preempt_disable();
  1775. do {
  1776. pages = 0;
  1777. pobjects = 0;
  1778. oldpage = this_cpu_read(s->cpu_slab->partial);
  1779. if (oldpage) {
  1780. pobjects = oldpage->pobjects;
  1781. pages = oldpage->pages;
  1782. if (drain && pobjects > s->cpu_partial) {
  1783. unsigned long flags;
  1784. /*
  1785. * partial array is full. Move the existing
  1786. * set to the per node partial list.
  1787. */
  1788. local_irq_save(flags);
  1789. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1790. local_irq_restore(flags);
  1791. oldpage = NULL;
  1792. pobjects = 0;
  1793. pages = 0;
  1794. stat(s, CPU_PARTIAL_DRAIN);
  1795. }
  1796. }
  1797. pages++;
  1798. pobjects += page->objects - page->inuse;
  1799. page->pages = pages;
  1800. page->pobjects = pobjects;
  1801. page->next = oldpage;
  1802. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1803. != oldpage);
  1804. if (unlikely(!s->cpu_partial)) {
  1805. unsigned long flags;
  1806. local_irq_save(flags);
  1807. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1808. local_irq_restore(flags);
  1809. }
  1810. preempt_enable();
  1811. #endif
  1812. }
  1813. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1814. {
  1815. stat(s, CPUSLAB_FLUSH);
  1816. deactivate_slab(s, c->page, c->freelist);
  1817. c->tid = next_tid(c->tid);
  1818. c->page = NULL;
  1819. c->freelist = NULL;
  1820. }
  1821. /*
  1822. * Flush cpu slab.
  1823. *
  1824. * Called from IPI handler with interrupts disabled.
  1825. */
  1826. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1827. {
  1828. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1829. if (likely(c)) {
  1830. if (c->page)
  1831. flush_slab(s, c);
  1832. unfreeze_partials(s, c);
  1833. }
  1834. }
  1835. static void flush_cpu_slab(void *d)
  1836. {
  1837. struct kmem_cache *s = d;
  1838. __flush_cpu_slab(s, smp_processor_id());
  1839. }
  1840. static bool has_cpu_slab(int cpu, void *info)
  1841. {
  1842. struct kmem_cache *s = info;
  1843. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1844. return c->page || c->partial;
  1845. }
  1846. static void flush_all(struct kmem_cache *s)
  1847. {
  1848. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1849. }
  1850. /*
  1851. * Check if the objects in a per cpu structure fit numa
  1852. * locality expectations.
  1853. */
  1854. static inline int node_match(struct page *page, int node)
  1855. {
  1856. #ifdef CONFIG_NUMA
  1857. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1858. return 0;
  1859. #endif
  1860. return 1;
  1861. }
  1862. #ifdef CONFIG_SLUB_DEBUG
  1863. static int count_free(struct page *page)
  1864. {
  1865. return page->objects - page->inuse;
  1866. }
  1867. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1868. {
  1869. return atomic_long_read(&n->total_objects);
  1870. }
  1871. #endif /* CONFIG_SLUB_DEBUG */
  1872. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1873. static unsigned long count_partial(struct kmem_cache_node *n,
  1874. int (*get_count)(struct page *))
  1875. {
  1876. unsigned long flags;
  1877. unsigned long x = 0;
  1878. struct page *page;
  1879. spin_lock_irqsave(&n->list_lock, flags);
  1880. list_for_each_entry(page, &n->partial, lru)
  1881. x += get_count(page);
  1882. spin_unlock_irqrestore(&n->list_lock, flags);
  1883. return x;
  1884. }
  1885. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1886. static noinline void
  1887. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1888. {
  1889. #ifdef CONFIG_SLUB_DEBUG
  1890. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1891. DEFAULT_RATELIMIT_BURST);
  1892. int node;
  1893. struct kmem_cache_node *n;
  1894. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1895. return;
  1896. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1897. nid, gfpflags);
  1898. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1899. s->name, s->object_size, s->size, oo_order(s->oo),
  1900. oo_order(s->min));
  1901. if (oo_order(s->min) > get_order(s->object_size))
  1902. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1903. s->name);
  1904. for_each_kmem_cache_node(s, node, n) {
  1905. unsigned long nr_slabs;
  1906. unsigned long nr_objs;
  1907. unsigned long nr_free;
  1908. nr_free = count_partial(n, count_free);
  1909. nr_slabs = node_nr_slabs(n);
  1910. nr_objs = node_nr_objs(n);
  1911. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1912. node, nr_slabs, nr_objs, nr_free);
  1913. }
  1914. #endif
  1915. }
  1916. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1917. int node, struct kmem_cache_cpu **pc)
  1918. {
  1919. void *freelist;
  1920. struct kmem_cache_cpu *c = *pc;
  1921. struct page *page;
  1922. freelist = get_partial(s, flags, node, c);
  1923. if (freelist)
  1924. return freelist;
  1925. page = new_slab(s, flags, node);
  1926. if (page) {
  1927. c = raw_cpu_ptr(s->cpu_slab);
  1928. if (c->page)
  1929. flush_slab(s, c);
  1930. /*
  1931. * No other reference to the page yet so we can
  1932. * muck around with it freely without cmpxchg
  1933. */
  1934. freelist = page->freelist;
  1935. page->freelist = NULL;
  1936. stat(s, ALLOC_SLAB);
  1937. c->page = page;
  1938. *pc = c;
  1939. } else
  1940. freelist = NULL;
  1941. return freelist;
  1942. }
  1943. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1944. {
  1945. if (unlikely(PageSlabPfmemalloc(page)))
  1946. return gfp_pfmemalloc_allowed(gfpflags);
  1947. return true;
  1948. }
  1949. /*
  1950. * Check the page->freelist of a page and either transfer the freelist to the
  1951. * per cpu freelist or deactivate the page.
  1952. *
  1953. * The page is still frozen if the return value is not NULL.
  1954. *
  1955. * If this function returns NULL then the page has been unfrozen.
  1956. *
  1957. * This function must be called with interrupt disabled.
  1958. */
  1959. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1960. {
  1961. struct page new;
  1962. unsigned long counters;
  1963. void *freelist;
  1964. do {
  1965. freelist = page->freelist;
  1966. counters = page->counters;
  1967. new.counters = counters;
  1968. VM_BUG_ON(!new.frozen);
  1969. new.inuse = page->objects;
  1970. new.frozen = freelist != NULL;
  1971. } while (!__cmpxchg_double_slab(s, page,
  1972. freelist, counters,
  1973. NULL, new.counters,
  1974. "get_freelist"));
  1975. return freelist;
  1976. }
  1977. /*
  1978. * Slow path. The lockless freelist is empty or we need to perform
  1979. * debugging duties.
  1980. *
  1981. * Processing is still very fast if new objects have been freed to the
  1982. * regular freelist. In that case we simply take over the regular freelist
  1983. * as the lockless freelist and zap the regular freelist.
  1984. *
  1985. * If that is not working then we fall back to the partial lists. We take the
  1986. * first element of the freelist as the object to allocate now and move the
  1987. * rest of the freelist to the lockless freelist.
  1988. *
  1989. * And if we were unable to get a new slab from the partial slab lists then
  1990. * we need to allocate a new slab. This is the slowest path since it involves
  1991. * a call to the page allocator and the setup of a new slab.
  1992. *
  1993. * Version of __slab_alloc to use when we know that interrupts are
  1994. * already disabled (which is the case for bulk allocation).
  1995. */
  1996. static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1997. unsigned long addr, struct kmem_cache_cpu *c)
  1998. {
  1999. void *freelist;
  2000. struct page *page;
  2001. page = c->page;
  2002. if (!page)
  2003. goto new_slab;
  2004. redo:
  2005. if (unlikely(!node_match(page, node))) {
  2006. int searchnode = node;
  2007. if (node != NUMA_NO_NODE && !node_present_pages(node))
  2008. searchnode = node_to_mem_node(node);
  2009. if (unlikely(!node_match(page, searchnode))) {
  2010. stat(s, ALLOC_NODE_MISMATCH);
  2011. deactivate_slab(s, page, c->freelist);
  2012. c->page = NULL;
  2013. c->freelist = NULL;
  2014. goto new_slab;
  2015. }
  2016. }
  2017. /*
  2018. * By rights, we should be searching for a slab page that was
  2019. * PFMEMALLOC but right now, we are losing the pfmemalloc
  2020. * information when the page leaves the per-cpu allocator
  2021. */
  2022. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  2023. deactivate_slab(s, page, c->freelist);
  2024. c->page = NULL;
  2025. c->freelist = NULL;
  2026. goto new_slab;
  2027. }
  2028. /* must check again c->freelist in case of cpu migration or IRQ */
  2029. freelist = c->freelist;
  2030. if (freelist)
  2031. goto load_freelist;
  2032. freelist = get_freelist(s, page);
  2033. if (!freelist) {
  2034. c->page = NULL;
  2035. stat(s, DEACTIVATE_BYPASS);
  2036. goto new_slab;
  2037. }
  2038. stat(s, ALLOC_REFILL);
  2039. load_freelist:
  2040. /*
  2041. * freelist is pointing to the list of objects to be used.
  2042. * page is pointing to the page from which the objects are obtained.
  2043. * That page must be frozen for per cpu allocations to work.
  2044. */
  2045. VM_BUG_ON(!c->page->frozen);
  2046. c->freelist = get_freepointer(s, freelist);
  2047. c->tid = next_tid(c->tid);
  2048. return freelist;
  2049. new_slab:
  2050. if (c->partial) {
  2051. page = c->page = c->partial;
  2052. c->partial = page->next;
  2053. stat(s, CPU_PARTIAL_ALLOC);
  2054. c->freelist = NULL;
  2055. goto redo;
  2056. }
  2057. freelist = new_slab_objects(s, gfpflags, node, &c);
  2058. if (unlikely(!freelist)) {
  2059. slab_out_of_memory(s, gfpflags, node);
  2060. return NULL;
  2061. }
  2062. page = c->page;
  2063. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2064. goto load_freelist;
  2065. /* Only entered in the debug case */
  2066. if (kmem_cache_debug(s) &&
  2067. !alloc_debug_processing(s, page, freelist, addr))
  2068. goto new_slab; /* Slab failed checks. Next slab needed */
  2069. deactivate_slab(s, page, get_freepointer(s, freelist));
  2070. c->page = NULL;
  2071. c->freelist = NULL;
  2072. return freelist;
  2073. }
  2074. /*
  2075. * Another one that disabled interrupt and compensates for possible
  2076. * cpu changes by refetching the per cpu area pointer.
  2077. */
  2078. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  2079. unsigned long addr, struct kmem_cache_cpu *c)
  2080. {
  2081. void *p;
  2082. unsigned long flags;
  2083. local_irq_save(flags);
  2084. #ifdef CONFIG_PREEMPT
  2085. /*
  2086. * We may have been preempted and rescheduled on a different
  2087. * cpu before disabling interrupts. Need to reload cpu area
  2088. * pointer.
  2089. */
  2090. c = this_cpu_ptr(s->cpu_slab);
  2091. #endif
  2092. p = ___slab_alloc(s, gfpflags, node, addr, c);
  2093. local_irq_restore(flags);
  2094. return p;
  2095. }
  2096. /*
  2097. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2098. * have the fastpath folded into their functions. So no function call
  2099. * overhead for requests that can be satisfied on the fastpath.
  2100. *
  2101. * The fastpath works by first checking if the lockless freelist can be used.
  2102. * If not then __slab_alloc is called for slow processing.
  2103. *
  2104. * Otherwise we can simply pick the next object from the lockless free list.
  2105. */
  2106. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2107. gfp_t gfpflags, int node, unsigned long addr)
  2108. {
  2109. void *object;
  2110. struct kmem_cache_cpu *c;
  2111. struct page *page;
  2112. unsigned long tid;
  2113. s = slab_pre_alloc_hook(s, gfpflags);
  2114. if (!s)
  2115. return NULL;
  2116. redo:
  2117. /*
  2118. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2119. * enabled. We may switch back and forth between cpus while
  2120. * reading from one cpu area. That does not matter as long
  2121. * as we end up on the original cpu again when doing the cmpxchg.
  2122. *
  2123. * We should guarantee that tid and kmem_cache are retrieved on
  2124. * the same cpu. It could be different if CONFIG_PREEMPT so we need
  2125. * to check if it is matched or not.
  2126. */
  2127. do {
  2128. tid = this_cpu_read(s->cpu_slab->tid);
  2129. c = raw_cpu_ptr(s->cpu_slab);
  2130. } while (IS_ENABLED(CONFIG_PREEMPT) &&
  2131. unlikely(tid != READ_ONCE(c->tid)));
  2132. /*
  2133. * Irqless object alloc/free algorithm used here depends on sequence
  2134. * of fetching cpu_slab's data. tid should be fetched before anything
  2135. * on c to guarantee that object and page associated with previous tid
  2136. * won't be used with current tid. If we fetch tid first, object and
  2137. * page could be one associated with next tid and our alloc/free
  2138. * request will be failed. In this case, we will retry. So, no problem.
  2139. */
  2140. barrier();
  2141. /*
  2142. * The transaction ids are globally unique per cpu and per operation on
  2143. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2144. * occurs on the right processor and that there was no operation on the
  2145. * linked list in between.
  2146. */
  2147. object = c->freelist;
  2148. page = c->page;
  2149. if (unlikely(!object || !node_match(page, node))) {
  2150. object = __slab_alloc(s, gfpflags, node, addr, c);
  2151. stat(s, ALLOC_SLOWPATH);
  2152. } else {
  2153. void *next_object = get_freepointer_safe(s, object);
  2154. /*
  2155. * The cmpxchg will only match if there was no additional
  2156. * operation and if we are on the right processor.
  2157. *
  2158. * The cmpxchg does the following atomically (without lock
  2159. * semantics!)
  2160. * 1. Relocate first pointer to the current per cpu area.
  2161. * 2. Verify that tid and freelist have not been changed
  2162. * 3. If they were not changed replace tid and freelist
  2163. *
  2164. * Since this is without lock semantics the protection is only
  2165. * against code executing on this cpu *not* from access by
  2166. * other cpus.
  2167. */
  2168. if (unlikely(!this_cpu_cmpxchg_double(
  2169. s->cpu_slab->freelist, s->cpu_slab->tid,
  2170. object, tid,
  2171. next_object, next_tid(tid)))) {
  2172. note_cmpxchg_failure("slab_alloc", s, tid);
  2173. goto redo;
  2174. }
  2175. prefetch_freepointer(s, next_object);
  2176. stat(s, ALLOC_FASTPATH);
  2177. }
  2178. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2179. memset(object, 0, s->object_size);
  2180. slab_post_alloc_hook(s, gfpflags, 1, &object);
  2181. return object;
  2182. }
  2183. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2184. gfp_t gfpflags, unsigned long addr)
  2185. {
  2186. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2187. }
  2188. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2189. {
  2190. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2191. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2192. s->size, gfpflags);
  2193. return ret;
  2194. }
  2195. EXPORT_SYMBOL(kmem_cache_alloc);
  2196. #ifdef CONFIG_TRACING
  2197. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2198. {
  2199. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2200. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2201. kasan_kmalloc(s, ret, size);
  2202. return ret;
  2203. }
  2204. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2205. #endif
  2206. #ifdef CONFIG_NUMA
  2207. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2208. {
  2209. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2210. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2211. s->object_size, s->size, gfpflags, node);
  2212. return ret;
  2213. }
  2214. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2215. #ifdef CONFIG_TRACING
  2216. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2217. gfp_t gfpflags,
  2218. int node, size_t size)
  2219. {
  2220. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2221. trace_kmalloc_node(_RET_IP_, ret,
  2222. size, s->size, gfpflags, node);
  2223. kasan_kmalloc(s, ret, size);
  2224. return ret;
  2225. }
  2226. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2227. #endif
  2228. #endif
  2229. /*
  2230. * Slow path handling. This may still be called frequently since objects
  2231. * have a longer lifetime than the cpu slabs in most processing loads.
  2232. *
  2233. * So we still attempt to reduce cache line usage. Just take the slab
  2234. * lock and free the item. If there is no additional partial page
  2235. * handling required then we can return immediately.
  2236. */
  2237. static void __slab_free(struct kmem_cache *s, struct page *page,
  2238. void *head, void *tail, int cnt,
  2239. unsigned long addr)
  2240. {
  2241. void *prior;
  2242. int was_frozen;
  2243. struct page new;
  2244. unsigned long counters;
  2245. struct kmem_cache_node *n = NULL;
  2246. unsigned long uninitialized_var(flags);
  2247. stat(s, FREE_SLOWPATH);
  2248. if (kmem_cache_debug(s) &&
  2249. !(n = free_debug_processing(s, page, head, tail, cnt,
  2250. addr, &flags)))
  2251. return;
  2252. do {
  2253. if (unlikely(n)) {
  2254. spin_unlock_irqrestore(&n->list_lock, flags);
  2255. n = NULL;
  2256. }
  2257. prior = page->freelist;
  2258. counters = page->counters;
  2259. set_freepointer(s, tail, prior);
  2260. new.counters = counters;
  2261. was_frozen = new.frozen;
  2262. new.inuse -= cnt;
  2263. if ((!new.inuse || !prior) && !was_frozen) {
  2264. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2265. /*
  2266. * Slab was on no list before and will be
  2267. * partially empty
  2268. * We can defer the list move and instead
  2269. * freeze it.
  2270. */
  2271. new.frozen = 1;
  2272. } else { /* Needs to be taken off a list */
  2273. n = get_node(s, page_to_nid(page));
  2274. /*
  2275. * Speculatively acquire the list_lock.
  2276. * If the cmpxchg does not succeed then we may
  2277. * drop the list_lock without any processing.
  2278. *
  2279. * Otherwise the list_lock will synchronize with
  2280. * other processors updating the list of slabs.
  2281. */
  2282. spin_lock_irqsave(&n->list_lock, flags);
  2283. }
  2284. }
  2285. } while (!cmpxchg_double_slab(s, page,
  2286. prior, counters,
  2287. head, new.counters,
  2288. "__slab_free"));
  2289. if (likely(!n)) {
  2290. /*
  2291. * If we just froze the page then put it onto the
  2292. * per cpu partial list.
  2293. */
  2294. if (new.frozen && !was_frozen) {
  2295. put_cpu_partial(s, page, 1);
  2296. stat(s, CPU_PARTIAL_FREE);
  2297. }
  2298. /*
  2299. * The list lock was not taken therefore no list
  2300. * activity can be necessary.
  2301. */
  2302. if (was_frozen)
  2303. stat(s, FREE_FROZEN);
  2304. return;
  2305. }
  2306. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2307. goto slab_empty;
  2308. /*
  2309. * Objects left in the slab. If it was not on the partial list before
  2310. * then add it.
  2311. */
  2312. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2313. if (kmem_cache_debug(s))
  2314. remove_full(s, n, page);
  2315. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2316. stat(s, FREE_ADD_PARTIAL);
  2317. }
  2318. spin_unlock_irqrestore(&n->list_lock, flags);
  2319. return;
  2320. slab_empty:
  2321. if (prior) {
  2322. /*
  2323. * Slab on the partial list.
  2324. */
  2325. remove_partial(n, page);
  2326. stat(s, FREE_REMOVE_PARTIAL);
  2327. } else {
  2328. /* Slab must be on the full list */
  2329. remove_full(s, n, page);
  2330. }
  2331. spin_unlock_irqrestore(&n->list_lock, flags);
  2332. stat(s, FREE_SLAB);
  2333. discard_slab(s, page);
  2334. }
  2335. /*
  2336. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2337. * can perform fastpath freeing without additional function calls.
  2338. *
  2339. * The fastpath is only possible if we are freeing to the current cpu slab
  2340. * of this processor. This typically the case if we have just allocated
  2341. * the item before.
  2342. *
  2343. * If fastpath is not possible then fall back to __slab_free where we deal
  2344. * with all sorts of special processing.
  2345. *
  2346. * Bulk free of a freelist with several objects (all pointing to the
  2347. * same page) possible by specifying head and tail ptr, plus objects
  2348. * count (cnt). Bulk free indicated by tail pointer being set.
  2349. */
  2350. static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
  2351. void *head, void *tail, int cnt,
  2352. unsigned long addr)
  2353. {
  2354. void *tail_obj = tail ? : head;
  2355. struct kmem_cache_cpu *c;
  2356. unsigned long tid;
  2357. slab_free_freelist_hook(s, head, tail);
  2358. redo:
  2359. /*
  2360. * Determine the currently cpus per cpu slab.
  2361. * The cpu may change afterward. However that does not matter since
  2362. * data is retrieved via this pointer. If we are on the same cpu
  2363. * during the cmpxchg then the free will succeed.
  2364. */
  2365. do {
  2366. tid = this_cpu_read(s->cpu_slab->tid);
  2367. c = raw_cpu_ptr(s->cpu_slab);
  2368. } while (IS_ENABLED(CONFIG_PREEMPT) &&
  2369. unlikely(tid != READ_ONCE(c->tid)));
  2370. /* Same with comment on barrier() in slab_alloc_node() */
  2371. barrier();
  2372. if (likely(page == c->page)) {
  2373. set_freepointer(s, tail_obj, c->freelist);
  2374. if (unlikely(!this_cpu_cmpxchg_double(
  2375. s->cpu_slab->freelist, s->cpu_slab->tid,
  2376. c->freelist, tid,
  2377. head, next_tid(tid)))) {
  2378. note_cmpxchg_failure("slab_free", s, tid);
  2379. goto redo;
  2380. }
  2381. stat(s, FREE_FASTPATH);
  2382. } else
  2383. __slab_free(s, page, head, tail_obj, cnt, addr);
  2384. }
  2385. void kmem_cache_free(struct kmem_cache *s, void *x)
  2386. {
  2387. s = cache_from_obj(s, x);
  2388. if (!s)
  2389. return;
  2390. slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
  2391. trace_kmem_cache_free(_RET_IP_, x);
  2392. }
  2393. EXPORT_SYMBOL(kmem_cache_free);
  2394. struct detached_freelist {
  2395. struct page *page;
  2396. void *tail;
  2397. void *freelist;
  2398. int cnt;
  2399. };
  2400. /*
  2401. * This function progressively scans the array with free objects (with
  2402. * a limited look ahead) and extract objects belonging to the same
  2403. * page. It builds a detached freelist directly within the given
  2404. * page/objects. This can happen without any need for
  2405. * synchronization, because the objects are owned by running process.
  2406. * The freelist is build up as a single linked list in the objects.
  2407. * The idea is, that this detached freelist can then be bulk
  2408. * transferred to the real freelist(s), but only requiring a single
  2409. * synchronization primitive. Look ahead in the array is limited due
  2410. * to performance reasons.
  2411. */
  2412. static int build_detached_freelist(struct kmem_cache *s, size_t size,
  2413. void **p, struct detached_freelist *df)
  2414. {
  2415. size_t first_skipped_index = 0;
  2416. int lookahead = 3;
  2417. void *object;
  2418. /* Always re-init detached_freelist */
  2419. df->page = NULL;
  2420. do {
  2421. object = p[--size];
  2422. } while (!object && size);
  2423. if (!object)
  2424. return 0;
  2425. /* Start new detached freelist */
  2426. set_freepointer(s, object, NULL);
  2427. df->page = virt_to_head_page(object);
  2428. df->tail = object;
  2429. df->freelist = object;
  2430. p[size] = NULL; /* mark object processed */
  2431. df->cnt = 1;
  2432. while (size) {
  2433. object = p[--size];
  2434. if (!object)
  2435. continue; /* Skip processed objects */
  2436. /* df->page is always set at this point */
  2437. if (df->page == virt_to_head_page(object)) {
  2438. /* Opportunity build freelist */
  2439. set_freepointer(s, object, df->freelist);
  2440. df->freelist = object;
  2441. df->cnt++;
  2442. p[size] = NULL; /* mark object processed */
  2443. continue;
  2444. }
  2445. /* Limit look ahead search */
  2446. if (!--lookahead)
  2447. break;
  2448. if (!first_skipped_index)
  2449. first_skipped_index = size + 1;
  2450. }
  2451. return first_skipped_index;
  2452. }
  2453. /* Note that interrupts must be enabled when calling this function. */
  2454. void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
  2455. {
  2456. if (WARN_ON(!size))
  2457. return;
  2458. do {
  2459. struct detached_freelist df;
  2460. struct kmem_cache *s;
  2461. /* Support for memcg */
  2462. s = cache_from_obj(orig_s, p[size - 1]);
  2463. size = build_detached_freelist(s, size, p, &df);
  2464. if (unlikely(!df.page))
  2465. continue;
  2466. slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
  2467. } while (likely(size));
  2468. }
  2469. EXPORT_SYMBOL(kmem_cache_free_bulk);
  2470. /* Note that interrupts must be enabled when calling this function. */
  2471. int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
  2472. void **p)
  2473. {
  2474. struct kmem_cache_cpu *c;
  2475. int i;
  2476. /* memcg and kmem_cache debug support */
  2477. s = slab_pre_alloc_hook(s, flags);
  2478. if (unlikely(!s))
  2479. return false;
  2480. /*
  2481. * Drain objects in the per cpu slab, while disabling local
  2482. * IRQs, which protects against PREEMPT and interrupts
  2483. * handlers invoking normal fastpath.
  2484. */
  2485. local_irq_disable();
  2486. c = this_cpu_ptr(s->cpu_slab);
  2487. for (i = 0; i < size; i++) {
  2488. void *object = c->freelist;
  2489. if (unlikely(!object)) {
  2490. /*
  2491. * Invoking slow path likely have side-effect
  2492. * of re-populating per CPU c->freelist
  2493. */
  2494. p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
  2495. _RET_IP_, c);
  2496. if (unlikely(!p[i]))
  2497. goto error;
  2498. c = this_cpu_ptr(s->cpu_slab);
  2499. continue; /* goto for-loop */
  2500. }
  2501. c->freelist = get_freepointer(s, object);
  2502. p[i] = object;
  2503. }
  2504. c->tid = next_tid(c->tid);
  2505. local_irq_enable();
  2506. /* Clear memory outside IRQ disabled fastpath loop */
  2507. if (unlikely(flags & __GFP_ZERO)) {
  2508. int j;
  2509. for (j = 0; j < i; j++)
  2510. memset(p[j], 0, s->object_size);
  2511. }
  2512. /* memcg and kmem_cache debug support */
  2513. slab_post_alloc_hook(s, flags, size, p);
  2514. return i;
  2515. error:
  2516. local_irq_enable();
  2517. slab_post_alloc_hook(s, flags, i, p);
  2518. __kmem_cache_free_bulk(s, i, p);
  2519. return 0;
  2520. }
  2521. EXPORT_SYMBOL(kmem_cache_alloc_bulk);
  2522. /*
  2523. * Object placement in a slab is made very easy because we always start at
  2524. * offset 0. If we tune the size of the object to the alignment then we can
  2525. * get the required alignment by putting one properly sized object after
  2526. * another.
  2527. *
  2528. * Notice that the allocation order determines the sizes of the per cpu
  2529. * caches. Each processor has always one slab available for allocations.
  2530. * Increasing the allocation order reduces the number of times that slabs
  2531. * must be moved on and off the partial lists and is therefore a factor in
  2532. * locking overhead.
  2533. */
  2534. /*
  2535. * Mininum / Maximum order of slab pages. This influences locking overhead
  2536. * and slab fragmentation. A higher order reduces the number of partial slabs
  2537. * and increases the number of allocations possible without having to
  2538. * take the list_lock.
  2539. */
  2540. static int slub_min_order;
  2541. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2542. static int slub_min_objects;
  2543. /*
  2544. * Calculate the order of allocation given an slab object size.
  2545. *
  2546. * The order of allocation has significant impact on performance and other
  2547. * system components. Generally order 0 allocations should be preferred since
  2548. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2549. * be problematic to put into order 0 slabs because there may be too much
  2550. * unused space left. We go to a higher order if more than 1/16th of the slab
  2551. * would be wasted.
  2552. *
  2553. * In order to reach satisfactory performance we must ensure that a minimum
  2554. * number of objects is in one slab. Otherwise we may generate too much
  2555. * activity on the partial lists which requires taking the list_lock. This is
  2556. * less a concern for large slabs though which are rarely used.
  2557. *
  2558. * slub_max_order specifies the order where we begin to stop considering the
  2559. * number of objects in a slab as critical. If we reach slub_max_order then
  2560. * we try to keep the page order as low as possible. So we accept more waste
  2561. * of space in favor of a small page order.
  2562. *
  2563. * Higher order allocations also allow the placement of more objects in a
  2564. * slab and thereby reduce object handling overhead. If the user has
  2565. * requested a higher mininum order then we start with that one instead of
  2566. * the smallest order which will fit the object.
  2567. */
  2568. static inline int slab_order(int size, int min_objects,
  2569. int max_order, int fract_leftover, int reserved)
  2570. {
  2571. int order;
  2572. int rem;
  2573. int min_order = slub_min_order;
  2574. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2575. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2576. for (order = max(min_order, get_order(min_objects * size + reserved));
  2577. order <= max_order; order++) {
  2578. unsigned long slab_size = PAGE_SIZE << order;
  2579. rem = (slab_size - reserved) % size;
  2580. if (rem <= slab_size / fract_leftover)
  2581. break;
  2582. }
  2583. return order;
  2584. }
  2585. static inline int calculate_order(int size, int reserved)
  2586. {
  2587. int order;
  2588. int min_objects;
  2589. int fraction;
  2590. int max_objects;
  2591. /*
  2592. * Attempt to find best configuration for a slab. This
  2593. * works by first attempting to generate a layout with
  2594. * the best configuration and backing off gradually.
  2595. *
  2596. * First we increase the acceptable waste in a slab. Then
  2597. * we reduce the minimum objects required in a slab.
  2598. */
  2599. min_objects = slub_min_objects;
  2600. if (!min_objects)
  2601. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2602. max_objects = order_objects(slub_max_order, size, reserved);
  2603. min_objects = min(min_objects, max_objects);
  2604. while (min_objects > 1) {
  2605. fraction = 16;
  2606. while (fraction >= 4) {
  2607. order = slab_order(size, min_objects,
  2608. slub_max_order, fraction, reserved);
  2609. if (order <= slub_max_order)
  2610. return order;
  2611. fraction /= 2;
  2612. }
  2613. min_objects--;
  2614. }
  2615. /*
  2616. * We were unable to place multiple objects in a slab. Now
  2617. * lets see if we can place a single object there.
  2618. */
  2619. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2620. if (order <= slub_max_order)
  2621. return order;
  2622. /*
  2623. * Doh this slab cannot be placed using slub_max_order.
  2624. */
  2625. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2626. if (order < MAX_ORDER)
  2627. return order;
  2628. return -ENOSYS;
  2629. }
  2630. static void
  2631. init_kmem_cache_node(struct kmem_cache_node *n)
  2632. {
  2633. n->nr_partial = 0;
  2634. spin_lock_init(&n->list_lock);
  2635. INIT_LIST_HEAD(&n->partial);
  2636. #ifdef CONFIG_SLUB_DEBUG
  2637. atomic_long_set(&n->nr_slabs, 0);
  2638. atomic_long_set(&n->total_objects, 0);
  2639. INIT_LIST_HEAD(&n->full);
  2640. #endif
  2641. }
  2642. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2643. {
  2644. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2645. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2646. /*
  2647. * Must align to double word boundary for the double cmpxchg
  2648. * instructions to work; see __pcpu_double_call_return_bool().
  2649. */
  2650. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2651. 2 * sizeof(void *));
  2652. if (!s->cpu_slab)
  2653. return 0;
  2654. init_kmem_cache_cpus(s);
  2655. return 1;
  2656. }
  2657. static struct kmem_cache *kmem_cache_node;
  2658. /*
  2659. * No kmalloc_node yet so do it by hand. We know that this is the first
  2660. * slab on the node for this slabcache. There are no concurrent accesses
  2661. * possible.
  2662. *
  2663. * Note that this function only works on the kmem_cache_node
  2664. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2665. * memory on a fresh node that has no slab structures yet.
  2666. */
  2667. static void early_kmem_cache_node_alloc(int node)
  2668. {
  2669. struct page *page;
  2670. struct kmem_cache_node *n;
  2671. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2672. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2673. BUG_ON(!page);
  2674. if (page_to_nid(page) != node) {
  2675. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2676. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2677. }
  2678. n = page->freelist;
  2679. BUG_ON(!n);
  2680. page->freelist = get_freepointer(kmem_cache_node, n);
  2681. page->inuse = 1;
  2682. page->frozen = 0;
  2683. kmem_cache_node->node[node] = n;
  2684. #ifdef CONFIG_SLUB_DEBUG
  2685. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2686. init_tracking(kmem_cache_node, n);
  2687. #endif
  2688. kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
  2689. init_kmem_cache_node(n);
  2690. inc_slabs_node(kmem_cache_node, node, page->objects);
  2691. /*
  2692. * No locks need to be taken here as it has just been
  2693. * initialized and there is no concurrent access.
  2694. */
  2695. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2696. }
  2697. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2698. {
  2699. int node;
  2700. struct kmem_cache_node *n;
  2701. for_each_kmem_cache_node(s, node, n) {
  2702. kmem_cache_free(kmem_cache_node, n);
  2703. s->node[node] = NULL;
  2704. }
  2705. }
  2706. void __kmem_cache_release(struct kmem_cache *s)
  2707. {
  2708. free_percpu(s->cpu_slab);
  2709. free_kmem_cache_nodes(s);
  2710. }
  2711. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2712. {
  2713. int node;
  2714. for_each_node_state(node, N_NORMAL_MEMORY) {
  2715. struct kmem_cache_node *n;
  2716. if (slab_state == DOWN) {
  2717. early_kmem_cache_node_alloc(node);
  2718. continue;
  2719. }
  2720. n = kmem_cache_alloc_node(kmem_cache_node,
  2721. GFP_KERNEL, node);
  2722. if (!n) {
  2723. free_kmem_cache_nodes(s);
  2724. return 0;
  2725. }
  2726. s->node[node] = n;
  2727. init_kmem_cache_node(n);
  2728. }
  2729. return 1;
  2730. }
  2731. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2732. {
  2733. if (min < MIN_PARTIAL)
  2734. min = MIN_PARTIAL;
  2735. else if (min > MAX_PARTIAL)
  2736. min = MAX_PARTIAL;
  2737. s->min_partial = min;
  2738. }
  2739. /*
  2740. * calculate_sizes() determines the order and the distribution of data within
  2741. * a slab object.
  2742. */
  2743. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2744. {
  2745. unsigned long flags = s->flags;
  2746. unsigned long size = s->object_size;
  2747. int order;
  2748. /*
  2749. * Round up object size to the next word boundary. We can only
  2750. * place the free pointer at word boundaries and this determines
  2751. * the possible location of the free pointer.
  2752. */
  2753. size = ALIGN(size, sizeof(void *));
  2754. #ifdef CONFIG_SLUB_DEBUG
  2755. /*
  2756. * Determine if we can poison the object itself. If the user of
  2757. * the slab may touch the object after free or before allocation
  2758. * then we should never poison the object itself.
  2759. */
  2760. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2761. !s->ctor)
  2762. s->flags |= __OBJECT_POISON;
  2763. else
  2764. s->flags &= ~__OBJECT_POISON;
  2765. /*
  2766. * If we are Redzoning then check if there is some space between the
  2767. * end of the object and the free pointer. If not then add an
  2768. * additional word to have some bytes to store Redzone information.
  2769. */
  2770. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2771. size += sizeof(void *);
  2772. #endif
  2773. /*
  2774. * With that we have determined the number of bytes in actual use
  2775. * by the object. This is the potential offset to the free pointer.
  2776. */
  2777. s->inuse = size;
  2778. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2779. s->ctor)) {
  2780. /*
  2781. * Relocate free pointer after the object if it is not
  2782. * permitted to overwrite the first word of the object on
  2783. * kmem_cache_free.
  2784. *
  2785. * This is the case if we do RCU, have a constructor or
  2786. * destructor or are poisoning the objects.
  2787. */
  2788. s->offset = size;
  2789. size += sizeof(void *);
  2790. }
  2791. #ifdef CONFIG_SLUB_DEBUG
  2792. if (flags & SLAB_STORE_USER)
  2793. /*
  2794. * Need to store information about allocs and frees after
  2795. * the object.
  2796. */
  2797. size += 2 * sizeof(struct track);
  2798. if (flags & SLAB_RED_ZONE)
  2799. /*
  2800. * Add some empty padding so that we can catch
  2801. * overwrites from earlier objects rather than let
  2802. * tracking information or the free pointer be
  2803. * corrupted if a user writes before the start
  2804. * of the object.
  2805. */
  2806. size += sizeof(void *);
  2807. #endif
  2808. /*
  2809. * SLUB stores one object immediately after another beginning from
  2810. * offset 0. In order to align the objects we have to simply size
  2811. * each object to conform to the alignment.
  2812. */
  2813. size = ALIGN(size, s->align);
  2814. s->size = size;
  2815. if (forced_order >= 0)
  2816. order = forced_order;
  2817. else
  2818. order = calculate_order(size, s->reserved);
  2819. if (order < 0)
  2820. return 0;
  2821. s->allocflags = 0;
  2822. if (order)
  2823. s->allocflags |= __GFP_COMP;
  2824. if (s->flags & SLAB_CACHE_DMA)
  2825. s->allocflags |= GFP_DMA;
  2826. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2827. s->allocflags |= __GFP_RECLAIMABLE;
  2828. /*
  2829. * Determine the number of objects per slab
  2830. */
  2831. s->oo = oo_make(order, size, s->reserved);
  2832. s->min = oo_make(get_order(size), size, s->reserved);
  2833. if (oo_objects(s->oo) > oo_objects(s->max))
  2834. s->max = s->oo;
  2835. return !!oo_objects(s->oo);
  2836. }
  2837. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2838. {
  2839. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2840. s->reserved = 0;
  2841. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2842. s->reserved = sizeof(struct rcu_head);
  2843. if (!calculate_sizes(s, -1))
  2844. goto error;
  2845. if (disable_higher_order_debug) {
  2846. /*
  2847. * Disable debugging flags that store metadata if the min slab
  2848. * order increased.
  2849. */
  2850. if (get_order(s->size) > get_order(s->object_size)) {
  2851. s->flags &= ~DEBUG_METADATA_FLAGS;
  2852. s->offset = 0;
  2853. if (!calculate_sizes(s, -1))
  2854. goto error;
  2855. }
  2856. }
  2857. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2858. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2859. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2860. /* Enable fast mode */
  2861. s->flags |= __CMPXCHG_DOUBLE;
  2862. #endif
  2863. /*
  2864. * The larger the object size is, the more pages we want on the partial
  2865. * list to avoid pounding the page allocator excessively.
  2866. */
  2867. set_min_partial(s, ilog2(s->size) / 2);
  2868. /*
  2869. * cpu_partial determined the maximum number of objects kept in the
  2870. * per cpu partial lists of a processor.
  2871. *
  2872. * Per cpu partial lists mainly contain slabs that just have one
  2873. * object freed. If they are used for allocation then they can be
  2874. * filled up again with minimal effort. The slab will never hit the
  2875. * per node partial lists and therefore no locking will be required.
  2876. *
  2877. * This setting also determines
  2878. *
  2879. * A) The number of objects from per cpu partial slabs dumped to the
  2880. * per node list when we reach the limit.
  2881. * B) The number of objects in cpu partial slabs to extract from the
  2882. * per node list when we run out of per cpu objects. We only fetch
  2883. * 50% to keep some capacity around for frees.
  2884. */
  2885. if (!kmem_cache_has_cpu_partial(s))
  2886. s->cpu_partial = 0;
  2887. else if (s->size >= PAGE_SIZE)
  2888. s->cpu_partial = 2;
  2889. else if (s->size >= 1024)
  2890. s->cpu_partial = 6;
  2891. else if (s->size >= 256)
  2892. s->cpu_partial = 13;
  2893. else
  2894. s->cpu_partial = 30;
  2895. #ifdef CONFIG_NUMA
  2896. s->remote_node_defrag_ratio = 1000;
  2897. #endif
  2898. if (!init_kmem_cache_nodes(s))
  2899. goto error;
  2900. if (alloc_kmem_cache_cpus(s))
  2901. return 0;
  2902. free_kmem_cache_nodes(s);
  2903. error:
  2904. if (flags & SLAB_PANIC)
  2905. panic("Cannot create slab %s size=%lu realsize=%u "
  2906. "order=%u offset=%u flags=%lx\n",
  2907. s->name, (unsigned long)s->size, s->size,
  2908. oo_order(s->oo), s->offset, flags);
  2909. return -EINVAL;
  2910. }
  2911. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2912. const char *text)
  2913. {
  2914. #ifdef CONFIG_SLUB_DEBUG
  2915. void *addr = page_address(page);
  2916. void *p;
  2917. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2918. sizeof(long), GFP_ATOMIC);
  2919. if (!map)
  2920. return;
  2921. slab_err(s, page, text, s->name);
  2922. slab_lock(page);
  2923. get_map(s, page, map);
  2924. for_each_object(p, s, addr, page->objects) {
  2925. if (!test_bit(slab_index(p, s, addr), map)) {
  2926. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2927. print_tracking(s, p);
  2928. }
  2929. }
  2930. slab_unlock(page);
  2931. kfree(map);
  2932. #endif
  2933. }
  2934. /*
  2935. * Attempt to free all partial slabs on a node.
  2936. * This is called from __kmem_cache_shutdown(). We must take list_lock
  2937. * because sysfs file might still access partial list after the shutdowning.
  2938. */
  2939. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2940. {
  2941. struct page *page, *h;
  2942. BUG_ON(irqs_disabled());
  2943. spin_lock_irq(&n->list_lock);
  2944. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2945. if (!page->inuse) {
  2946. remove_partial(n, page);
  2947. discard_slab(s, page);
  2948. } else {
  2949. list_slab_objects(s, page,
  2950. "Objects remaining in %s on __kmem_cache_shutdown()");
  2951. }
  2952. }
  2953. spin_unlock_irq(&n->list_lock);
  2954. }
  2955. /*
  2956. * Release all resources used by a slab cache.
  2957. */
  2958. int __kmem_cache_shutdown(struct kmem_cache *s)
  2959. {
  2960. int node;
  2961. struct kmem_cache_node *n;
  2962. flush_all(s);
  2963. /* Attempt to free all objects */
  2964. for_each_kmem_cache_node(s, node, n) {
  2965. free_partial(s, n);
  2966. if (n->nr_partial || slabs_node(s, node))
  2967. return 1;
  2968. }
  2969. return 0;
  2970. }
  2971. /********************************************************************
  2972. * Kmalloc subsystem
  2973. *******************************************************************/
  2974. static int __init setup_slub_min_order(char *str)
  2975. {
  2976. get_option(&str, &slub_min_order);
  2977. return 1;
  2978. }
  2979. __setup("slub_min_order=", setup_slub_min_order);
  2980. static int __init setup_slub_max_order(char *str)
  2981. {
  2982. get_option(&str, &slub_max_order);
  2983. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2984. return 1;
  2985. }
  2986. __setup("slub_max_order=", setup_slub_max_order);
  2987. static int __init setup_slub_min_objects(char *str)
  2988. {
  2989. get_option(&str, &slub_min_objects);
  2990. return 1;
  2991. }
  2992. __setup("slub_min_objects=", setup_slub_min_objects);
  2993. void *__kmalloc(size_t size, gfp_t flags)
  2994. {
  2995. struct kmem_cache *s;
  2996. void *ret;
  2997. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2998. return kmalloc_large(size, flags);
  2999. s = kmalloc_slab(size, flags);
  3000. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3001. return s;
  3002. ret = slab_alloc(s, flags, _RET_IP_);
  3003. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  3004. kasan_kmalloc(s, ret, size);
  3005. return ret;
  3006. }
  3007. EXPORT_SYMBOL(__kmalloc);
  3008. #ifdef CONFIG_NUMA
  3009. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  3010. {
  3011. struct page *page;
  3012. void *ptr = NULL;
  3013. flags |= __GFP_COMP | __GFP_NOTRACK;
  3014. page = alloc_kmem_pages_node(node, flags, get_order(size));
  3015. if (page)
  3016. ptr = page_address(page);
  3017. kmalloc_large_node_hook(ptr, size, flags);
  3018. return ptr;
  3019. }
  3020. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3021. {
  3022. struct kmem_cache *s;
  3023. void *ret;
  3024. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3025. ret = kmalloc_large_node(size, flags, node);
  3026. trace_kmalloc_node(_RET_IP_, ret,
  3027. size, PAGE_SIZE << get_order(size),
  3028. flags, node);
  3029. return ret;
  3030. }
  3031. s = kmalloc_slab(size, flags);
  3032. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3033. return s;
  3034. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  3035. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  3036. kasan_kmalloc(s, ret, size);
  3037. return ret;
  3038. }
  3039. EXPORT_SYMBOL(__kmalloc_node);
  3040. #endif
  3041. static size_t __ksize(const void *object)
  3042. {
  3043. struct page *page;
  3044. if (unlikely(object == ZERO_SIZE_PTR))
  3045. return 0;
  3046. page = virt_to_head_page(object);
  3047. if (unlikely(!PageSlab(page))) {
  3048. WARN_ON(!PageCompound(page));
  3049. return PAGE_SIZE << compound_order(page);
  3050. }
  3051. return slab_ksize(page->slab_cache);
  3052. }
  3053. size_t ksize(const void *object)
  3054. {
  3055. size_t size = __ksize(object);
  3056. /* We assume that ksize callers could use whole allocated area,
  3057. so we need unpoison this area. */
  3058. kasan_krealloc(object, size);
  3059. return size;
  3060. }
  3061. EXPORT_SYMBOL(ksize);
  3062. void kfree(const void *x)
  3063. {
  3064. struct page *page;
  3065. void *object = (void *)x;
  3066. trace_kfree(_RET_IP_, x);
  3067. if (unlikely(ZERO_OR_NULL_PTR(x)))
  3068. return;
  3069. page = virt_to_head_page(x);
  3070. if (unlikely(!PageSlab(page))) {
  3071. BUG_ON(!PageCompound(page));
  3072. kfree_hook(x);
  3073. __free_kmem_pages(page, compound_order(page));
  3074. return;
  3075. }
  3076. slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
  3077. }
  3078. EXPORT_SYMBOL(kfree);
  3079. #define SHRINK_PROMOTE_MAX 32
  3080. /*
  3081. * kmem_cache_shrink discards empty slabs and promotes the slabs filled
  3082. * up most to the head of the partial lists. New allocations will then
  3083. * fill those up and thus they can be removed from the partial lists.
  3084. *
  3085. * The slabs with the least items are placed last. This results in them
  3086. * being allocated from last increasing the chance that the last objects
  3087. * are freed in them.
  3088. */
  3089. int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
  3090. {
  3091. int node;
  3092. int i;
  3093. struct kmem_cache_node *n;
  3094. struct page *page;
  3095. struct page *t;
  3096. struct list_head discard;
  3097. struct list_head promote[SHRINK_PROMOTE_MAX];
  3098. unsigned long flags;
  3099. int ret = 0;
  3100. if (deactivate) {
  3101. /*
  3102. * Disable empty slabs caching. Used to avoid pinning offline
  3103. * memory cgroups by kmem pages that can be freed.
  3104. */
  3105. s->cpu_partial = 0;
  3106. s->min_partial = 0;
  3107. /*
  3108. * s->cpu_partial is checked locklessly (see put_cpu_partial),
  3109. * so we have to make sure the change is visible.
  3110. */
  3111. kick_all_cpus_sync();
  3112. }
  3113. flush_all(s);
  3114. for_each_kmem_cache_node(s, node, n) {
  3115. INIT_LIST_HEAD(&discard);
  3116. for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
  3117. INIT_LIST_HEAD(promote + i);
  3118. spin_lock_irqsave(&n->list_lock, flags);
  3119. /*
  3120. * Build lists of slabs to discard or promote.
  3121. *
  3122. * Note that concurrent frees may occur while we hold the
  3123. * list_lock. page->inuse here is the upper limit.
  3124. */
  3125. list_for_each_entry_safe(page, t, &n->partial, lru) {
  3126. int free = page->objects - page->inuse;
  3127. /* Do not reread page->inuse */
  3128. barrier();
  3129. /* We do not keep full slabs on the list */
  3130. BUG_ON(free <= 0);
  3131. if (free == page->objects) {
  3132. list_move(&page->lru, &discard);
  3133. n->nr_partial--;
  3134. } else if (free <= SHRINK_PROMOTE_MAX)
  3135. list_move(&page->lru, promote + free - 1);
  3136. }
  3137. /*
  3138. * Promote the slabs filled up most to the head of the
  3139. * partial list.
  3140. */
  3141. for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
  3142. list_splice(promote + i, &n->partial);
  3143. spin_unlock_irqrestore(&n->list_lock, flags);
  3144. /* Release empty slabs */
  3145. list_for_each_entry_safe(page, t, &discard, lru)
  3146. discard_slab(s, page);
  3147. if (slabs_node(s, node))
  3148. ret = 1;
  3149. }
  3150. return ret;
  3151. }
  3152. static int slab_mem_going_offline_callback(void *arg)
  3153. {
  3154. struct kmem_cache *s;
  3155. mutex_lock(&slab_mutex);
  3156. list_for_each_entry(s, &slab_caches, list)
  3157. __kmem_cache_shrink(s, false);
  3158. mutex_unlock(&slab_mutex);
  3159. return 0;
  3160. }
  3161. static void slab_mem_offline_callback(void *arg)
  3162. {
  3163. struct kmem_cache_node *n;
  3164. struct kmem_cache *s;
  3165. struct memory_notify *marg = arg;
  3166. int offline_node;
  3167. offline_node = marg->status_change_nid_normal;
  3168. /*
  3169. * If the node still has available memory. we need kmem_cache_node
  3170. * for it yet.
  3171. */
  3172. if (offline_node < 0)
  3173. return;
  3174. mutex_lock(&slab_mutex);
  3175. list_for_each_entry(s, &slab_caches, list) {
  3176. n = get_node(s, offline_node);
  3177. if (n) {
  3178. /*
  3179. * if n->nr_slabs > 0, slabs still exist on the node
  3180. * that is going down. We were unable to free them,
  3181. * and offline_pages() function shouldn't call this
  3182. * callback. So, we must fail.
  3183. */
  3184. BUG_ON(slabs_node(s, offline_node));
  3185. s->node[offline_node] = NULL;
  3186. kmem_cache_free(kmem_cache_node, n);
  3187. }
  3188. }
  3189. mutex_unlock(&slab_mutex);
  3190. }
  3191. static int slab_mem_going_online_callback(void *arg)
  3192. {
  3193. struct kmem_cache_node *n;
  3194. struct kmem_cache *s;
  3195. struct memory_notify *marg = arg;
  3196. int nid = marg->status_change_nid_normal;
  3197. int ret = 0;
  3198. /*
  3199. * If the node's memory is already available, then kmem_cache_node is
  3200. * already created. Nothing to do.
  3201. */
  3202. if (nid < 0)
  3203. return 0;
  3204. /*
  3205. * We are bringing a node online. No memory is available yet. We must
  3206. * allocate a kmem_cache_node structure in order to bring the node
  3207. * online.
  3208. */
  3209. mutex_lock(&slab_mutex);
  3210. list_for_each_entry(s, &slab_caches, list) {
  3211. /*
  3212. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3213. * since memory is not yet available from the node that
  3214. * is brought up.
  3215. */
  3216. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3217. if (!n) {
  3218. ret = -ENOMEM;
  3219. goto out;
  3220. }
  3221. init_kmem_cache_node(n);
  3222. s->node[nid] = n;
  3223. }
  3224. out:
  3225. mutex_unlock(&slab_mutex);
  3226. return ret;
  3227. }
  3228. static int slab_memory_callback(struct notifier_block *self,
  3229. unsigned long action, void *arg)
  3230. {
  3231. int ret = 0;
  3232. switch (action) {
  3233. case MEM_GOING_ONLINE:
  3234. ret = slab_mem_going_online_callback(arg);
  3235. break;
  3236. case MEM_GOING_OFFLINE:
  3237. ret = slab_mem_going_offline_callback(arg);
  3238. break;
  3239. case MEM_OFFLINE:
  3240. case MEM_CANCEL_ONLINE:
  3241. slab_mem_offline_callback(arg);
  3242. break;
  3243. case MEM_ONLINE:
  3244. case MEM_CANCEL_OFFLINE:
  3245. break;
  3246. }
  3247. if (ret)
  3248. ret = notifier_from_errno(ret);
  3249. else
  3250. ret = NOTIFY_OK;
  3251. return ret;
  3252. }
  3253. static struct notifier_block slab_memory_callback_nb = {
  3254. .notifier_call = slab_memory_callback,
  3255. .priority = SLAB_CALLBACK_PRI,
  3256. };
  3257. /********************************************************************
  3258. * Basic setup of slabs
  3259. *******************************************************************/
  3260. /*
  3261. * Used for early kmem_cache structures that were allocated using
  3262. * the page allocator. Allocate them properly then fix up the pointers
  3263. * that may be pointing to the wrong kmem_cache structure.
  3264. */
  3265. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3266. {
  3267. int node;
  3268. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3269. struct kmem_cache_node *n;
  3270. memcpy(s, static_cache, kmem_cache->object_size);
  3271. /*
  3272. * This runs very early, and only the boot processor is supposed to be
  3273. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3274. * IPIs around.
  3275. */
  3276. __flush_cpu_slab(s, smp_processor_id());
  3277. for_each_kmem_cache_node(s, node, n) {
  3278. struct page *p;
  3279. list_for_each_entry(p, &n->partial, lru)
  3280. p->slab_cache = s;
  3281. #ifdef CONFIG_SLUB_DEBUG
  3282. list_for_each_entry(p, &n->full, lru)
  3283. p->slab_cache = s;
  3284. #endif
  3285. }
  3286. slab_init_memcg_params(s);
  3287. list_add(&s->list, &slab_caches);
  3288. return s;
  3289. }
  3290. void __init kmem_cache_init(void)
  3291. {
  3292. static __initdata struct kmem_cache boot_kmem_cache,
  3293. boot_kmem_cache_node;
  3294. if (debug_guardpage_minorder())
  3295. slub_max_order = 0;
  3296. kmem_cache_node = &boot_kmem_cache_node;
  3297. kmem_cache = &boot_kmem_cache;
  3298. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3299. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3300. register_hotmemory_notifier(&slab_memory_callback_nb);
  3301. /* Able to allocate the per node structures */
  3302. slab_state = PARTIAL;
  3303. create_boot_cache(kmem_cache, "kmem_cache",
  3304. offsetof(struct kmem_cache, node) +
  3305. nr_node_ids * sizeof(struct kmem_cache_node *),
  3306. SLAB_HWCACHE_ALIGN);
  3307. kmem_cache = bootstrap(&boot_kmem_cache);
  3308. /*
  3309. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3310. * kmem_cache_node is separately allocated so no need to
  3311. * update any list pointers.
  3312. */
  3313. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3314. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3315. setup_kmalloc_cache_index_table();
  3316. create_kmalloc_caches(0);
  3317. #ifdef CONFIG_SMP
  3318. register_cpu_notifier(&slab_notifier);
  3319. #endif
  3320. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3321. cache_line_size(),
  3322. slub_min_order, slub_max_order, slub_min_objects,
  3323. nr_cpu_ids, nr_node_ids);
  3324. }
  3325. void __init kmem_cache_init_late(void)
  3326. {
  3327. }
  3328. struct kmem_cache *
  3329. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3330. unsigned long flags, void (*ctor)(void *))
  3331. {
  3332. struct kmem_cache *s, *c;
  3333. s = find_mergeable(size, align, flags, name, ctor);
  3334. if (s) {
  3335. s->refcount++;
  3336. /*
  3337. * Adjust the object sizes so that we clear
  3338. * the complete object on kzalloc.
  3339. */
  3340. s->object_size = max(s->object_size, (int)size);
  3341. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3342. for_each_memcg_cache(c, s) {
  3343. c->object_size = s->object_size;
  3344. c->inuse = max_t(int, c->inuse,
  3345. ALIGN(size, sizeof(void *)));
  3346. }
  3347. if (sysfs_slab_alias(s, name)) {
  3348. s->refcount--;
  3349. s = NULL;
  3350. }
  3351. }
  3352. return s;
  3353. }
  3354. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3355. {
  3356. int err;
  3357. err = kmem_cache_open(s, flags);
  3358. if (err)
  3359. return err;
  3360. /* Mutex is not taken during early boot */
  3361. if (slab_state <= UP)
  3362. return 0;
  3363. memcg_propagate_slab_attrs(s);
  3364. err = sysfs_slab_add(s);
  3365. if (err)
  3366. __kmem_cache_release(s);
  3367. return err;
  3368. }
  3369. #ifdef CONFIG_SMP
  3370. /*
  3371. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3372. * necessary.
  3373. */
  3374. static int slab_cpuup_callback(struct notifier_block *nfb,
  3375. unsigned long action, void *hcpu)
  3376. {
  3377. long cpu = (long)hcpu;
  3378. struct kmem_cache *s;
  3379. unsigned long flags;
  3380. switch (action) {
  3381. case CPU_UP_CANCELED:
  3382. case CPU_UP_CANCELED_FROZEN:
  3383. case CPU_DEAD:
  3384. case CPU_DEAD_FROZEN:
  3385. mutex_lock(&slab_mutex);
  3386. list_for_each_entry(s, &slab_caches, list) {
  3387. local_irq_save(flags);
  3388. __flush_cpu_slab(s, cpu);
  3389. local_irq_restore(flags);
  3390. }
  3391. mutex_unlock(&slab_mutex);
  3392. break;
  3393. default:
  3394. break;
  3395. }
  3396. return NOTIFY_OK;
  3397. }
  3398. static struct notifier_block slab_notifier = {
  3399. .notifier_call = slab_cpuup_callback
  3400. };
  3401. #endif
  3402. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3403. {
  3404. struct kmem_cache *s;
  3405. void *ret;
  3406. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3407. return kmalloc_large(size, gfpflags);
  3408. s = kmalloc_slab(size, gfpflags);
  3409. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3410. return s;
  3411. ret = slab_alloc(s, gfpflags, caller);
  3412. /* Honor the call site pointer we received. */
  3413. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3414. return ret;
  3415. }
  3416. #ifdef CONFIG_NUMA
  3417. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3418. int node, unsigned long caller)
  3419. {
  3420. struct kmem_cache *s;
  3421. void *ret;
  3422. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3423. ret = kmalloc_large_node(size, gfpflags, node);
  3424. trace_kmalloc_node(caller, ret,
  3425. size, PAGE_SIZE << get_order(size),
  3426. gfpflags, node);
  3427. return ret;
  3428. }
  3429. s = kmalloc_slab(size, gfpflags);
  3430. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3431. return s;
  3432. ret = slab_alloc_node(s, gfpflags, node, caller);
  3433. /* Honor the call site pointer we received. */
  3434. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3435. return ret;
  3436. }
  3437. #endif
  3438. #ifdef CONFIG_SYSFS
  3439. static int count_inuse(struct page *page)
  3440. {
  3441. return page->inuse;
  3442. }
  3443. static int count_total(struct page *page)
  3444. {
  3445. return page->objects;
  3446. }
  3447. #endif
  3448. #ifdef CONFIG_SLUB_DEBUG
  3449. static int validate_slab(struct kmem_cache *s, struct page *page,
  3450. unsigned long *map)
  3451. {
  3452. void *p;
  3453. void *addr = page_address(page);
  3454. if (!check_slab(s, page) ||
  3455. !on_freelist(s, page, NULL))
  3456. return 0;
  3457. /* Now we know that a valid freelist exists */
  3458. bitmap_zero(map, page->objects);
  3459. get_map(s, page, map);
  3460. for_each_object(p, s, addr, page->objects) {
  3461. if (test_bit(slab_index(p, s, addr), map))
  3462. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3463. return 0;
  3464. }
  3465. for_each_object(p, s, addr, page->objects)
  3466. if (!test_bit(slab_index(p, s, addr), map))
  3467. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3468. return 0;
  3469. return 1;
  3470. }
  3471. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3472. unsigned long *map)
  3473. {
  3474. slab_lock(page);
  3475. validate_slab(s, page, map);
  3476. slab_unlock(page);
  3477. }
  3478. static int validate_slab_node(struct kmem_cache *s,
  3479. struct kmem_cache_node *n, unsigned long *map)
  3480. {
  3481. unsigned long count = 0;
  3482. struct page *page;
  3483. unsigned long flags;
  3484. spin_lock_irqsave(&n->list_lock, flags);
  3485. list_for_each_entry(page, &n->partial, lru) {
  3486. validate_slab_slab(s, page, map);
  3487. count++;
  3488. }
  3489. if (count != n->nr_partial)
  3490. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3491. s->name, count, n->nr_partial);
  3492. if (!(s->flags & SLAB_STORE_USER))
  3493. goto out;
  3494. list_for_each_entry(page, &n->full, lru) {
  3495. validate_slab_slab(s, page, map);
  3496. count++;
  3497. }
  3498. if (count != atomic_long_read(&n->nr_slabs))
  3499. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3500. s->name, count, atomic_long_read(&n->nr_slabs));
  3501. out:
  3502. spin_unlock_irqrestore(&n->list_lock, flags);
  3503. return count;
  3504. }
  3505. static long validate_slab_cache(struct kmem_cache *s)
  3506. {
  3507. int node;
  3508. unsigned long count = 0;
  3509. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3510. sizeof(unsigned long), GFP_KERNEL);
  3511. struct kmem_cache_node *n;
  3512. if (!map)
  3513. return -ENOMEM;
  3514. flush_all(s);
  3515. for_each_kmem_cache_node(s, node, n)
  3516. count += validate_slab_node(s, n, map);
  3517. kfree(map);
  3518. return count;
  3519. }
  3520. /*
  3521. * Generate lists of code addresses where slabcache objects are allocated
  3522. * and freed.
  3523. */
  3524. struct location {
  3525. unsigned long count;
  3526. unsigned long addr;
  3527. long long sum_time;
  3528. long min_time;
  3529. long max_time;
  3530. long min_pid;
  3531. long max_pid;
  3532. DECLARE_BITMAP(cpus, NR_CPUS);
  3533. nodemask_t nodes;
  3534. };
  3535. struct loc_track {
  3536. unsigned long max;
  3537. unsigned long count;
  3538. struct location *loc;
  3539. };
  3540. static void free_loc_track(struct loc_track *t)
  3541. {
  3542. if (t->max)
  3543. free_pages((unsigned long)t->loc,
  3544. get_order(sizeof(struct location) * t->max));
  3545. }
  3546. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3547. {
  3548. struct location *l;
  3549. int order;
  3550. order = get_order(sizeof(struct location) * max);
  3551. l = (void *)__get_free_pages(flags, order);
  3552. if (!l)
  3553. return 0;
  3554. if (t->count) {
  3555. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3556. free_loc_track(t);
  3557. }
  3558. t->max = max;
  3559. t->loc = l;
  3560. return 1;
  3561. }
  3562. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3563. const struct track *track)
  3564. {
  3565. long start, end, pos;
  3566. struct location *l;
  3567. unsigned long caddr;
  3568. unsigned long age = jiffies - track->when;
  3569. start = -1;
  3570. end = t->count;
  3571. for ( ; ; ) {
  3572. pos = start + (end - start + 1) / 2;
  3573. /*
  3574. * There is nothing at "end". If we end up there
  3575. * we need to add something to before end.
  3576. */
  3577. if (pos == end)
  3578. break;
  3579. caddr = t->loc[pos].addr;
  3580. if (track->addr == caddr) {
  3581. l = &t->loc[pos];
  3582. l->count++;
  3583. if (track->when) {
  3584. l->sum_time += age;
  3585. if (age < l->min_time)
  3586. l->min_time = age;
  3587. if (age > l->max_time)
  3588. l->max_time = age;
  3589. if (track->pid < l->min_pid)
  3590. l->min_pid = track->pid;
  3591. if (track->pid > l->max_pid)
  3592. l->max_pid = track->pid;
  3593. cpumask_set_cpu(track->cpu,
  3594. to_cpumask(l->cpus));
  3595. }
  3596. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3597. return 1;
  3598. }
  3599. if (track->addr < caddr)
  3600. end = pos;
  3601. else
  3602. start = pos;
  3603. }
  3604. /*
  3605. * Not found. Insert new tracking element.
  3606. */
  3607. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3608. return 0;
  3609. l = t->loc + pos;
  3610. if (pos < t->count)
  3611. memmove(l + 1, l,
  3612. (t->count - pos) * sizeof(struct location));
  3613. t->count++;
  3614. l->count = 1;
  3615. l->addr = track->addr;
  3616. l->sum_time = age;
  3617. l->min_time = age;
  3618. l->max_time = age;
  3619. l->min_pid = track->pid;
  3620. l->max_pid = track->pid;
  3621. cpumask_clear(to_cpumask(l->cpus));
  3622. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3623. nodes_clear(l->nodes);
  3624. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3625. return 1;
  3626. }
  3627. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3628. struct page *page, enum track_item alloc,
  3629. unsigned long *map)
  3630. {
  3631. void *addr = page_address(page);
  3632. void *p;
  3633. bitmap_zero(map, page->objects);
  3634. get_map(s, page, map);
  3635. for_each_object(p, s, addr, page->objects)
  3636. if (!test_bit(slab_index(p, s, addr), map))
  3637. add_location(t, s, get_track(s, p, alloc));
  3638. }
  3639. static int list_locations(struct kmem_cache *s, char *buf,
  3640. enum track_item alloc)
  3641. {
  3642. int len = 0;
  3643. unsigned long i;
  3644. struct loc_track t = { 0, 0, NULL };
  3645. int node;
  3646. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3647. sizeof(unsigned long), GFP_KERNEL);
  3648. struct kmem_cache_node *n;
  3649. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3650. GFP_TEMPORARY)) {
  3651. kfree(map);
  3652. return sprintf(buf, "Out of memory\n");
  3653. }
  3654. /* Push back cpu slabs */
  3655. flush_all(s);
  3656. for_each_kmem_cache_node(s, node, n) {
  3657. unsigned long flags;
  3658. struct page *page;
  3659. if (!atomic_long_read(&n->nr_slabs))
  3660. continue;
  3661. spin_lock_irqsave(&n->list_lock, flags);
  3662. list_for_each_entry(page, &n->partial, lru)
  3663. process_slab(&t, s, page, alloc, map);
  3664. list_for_each_entry(page, &n->full, lru)
  3665. process_slab(&t, s, page, alloc, map);
  3666. spin_unlock_irqrestore(&n->list_lock, flags);
  3667. }
  3668. for (i = 0; i < t.count; i++) {
  3669. struct location *l = &t.loc[i];
  3670. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3671. break;
  3672. len += sprintf(buf + len, "%7ld ", l->count);
  3673. if (l->addr)
  3674. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3675. else
  3676. len += sprintf(buf + len, "<not-available>");
  3677. if (l->sum_time != l->min_time) {
  3678. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3679. l->min_time,
  3680. (long)div_u64(l->sum_time, l->count),
  3681. l->max_time);
  3682. } else
  3683. len += sprintf(buf + len, " age=%ld",
  3684. l->min_time);
  3685. if (l->min_pid != l->max_pid)
  3686. len += sprintf(buf + len, " pid=%ld-%ld",
  3687. l->min_pid, l->max_pid);
  3688. else
  3689. len += sprintf(buf + len, " pid=%ld",
  3690. l->min_pid);
  3691. if (num_online_cpus() > 1 &&
  3692. !cpumask_empty(to_cpumask(l->cpus)) &&
  3693. len < PAGE_SIZE - 60)
  3694. len += scnprintf(buf + len, PAGE_SIZE - len - 50,
  3695. " cpus=%*pbl",
  3696. cpumask_pr_args(to_cpumask(l->cpus)));
  3697. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3698. len < PAGE_SIZE - 60)
  3699. len += scnprintf(buf + len, PAGE_SIZE - len - 50,
  3700. " nodes=%*pbl",
  3701. nodemask_pr_args(&l->nodes));
  3702. len += sprintf(buf + len, "\n");
  3703. }
  3704. free_loc_track(&t);
  3705. kfree(map);
  3706. if (!t.count)
  3707. len += sprintf(buf, "No data\n");
  3708. return len;
  3709. }
  3710. #endif
  3711. #ifdef SLUB_RESILIENCY_TEST
  3712. static void __init resiliency_test(void)
  3713. {
  3714. u8 *p;
  3715. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3716. pr_err("SLUB resiliency testing\n");
  3717. pr_err("-----------------------\n");
  3718. pr_err("A. Corruption after allocation\n");
  3719. p = kzalloc(16, GFP_KERNEL);
  3720. p[16] = 0x12;
  3721. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3722. p + 16);
  3723. validate_slab_cache(kmalloc_caches[4]);
  3724. /* Hmmm... The next two are dangerous */
  3725. p = kzalloc(32, GFP_KERNEL);
  3726. p[32 + sizeof(void *)] = 0x34;
  3727. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3728. p);
  3729. pr_err("If allocated object is overwritten then not detectable\n\n");
  3730. validate_slab_cache(kmalloc_caches[5]);
  3731. p = kzalloc(64, GFP_KERNEL);
  3732. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3733. *p = 0x56;
  3734. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3735. p);
  3736. pr_err("If allocated object is overwritten then not detectable\n\n");
  3737. validate_slab_cache(kmalloc_caches[6]);
  3738. pr_err("\nB. Corruption after free\n");
  3739. p = kzalloc(128, GFP_KERNEL);
  3740. kfree(p);
  3741. *p = 0x78;
  3742. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3743. validate_slab_cache(kmalloc_caches[7]);
  3744. p = kzalloc(256, GFP_KERNEL);
  3745. kfree(p);
  3746. p[50] = 0x9a;
  3747. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3748. validate_slab_cache(kmalloc_caches[8]);
  3749. p = kzalloc(512, GFP_KERNEL);
  3750. kfree(p);
  3751. p[512] = 0xab;
  3752. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3753. validate_slab_cache(kmalloc_caches[9]);
  3754. }
  3755. #else
  3756. #ifdef CONFIG_SYSFS
  3757. static void resiliency_test(void) {};
  3758. #endif
  3759. #endif
  3760. #ifdef CONFIG_SYSFS
  3761. enum slab_stat_type {
  3762. SL_ALL, /* All slabs */
  3763. SL_PARTIAL, /* Only partially allocated slabs */
  3764. SL_CPU, /* Only slabs used for cpu caches */
  3765. SL_OBJECTS, /* Determine allocated objects not slabs */
  3766. SL_TOTAL /* Determine object capacity not slabs */
  3767. };
  3768. #define SO_ALL (1 << SL_ALL)
  3769. #define SO_PARTIAL (1 << SL_PARTIAL)
  3770. #define SO_CPU (1 << SL_CPU)
  3771. #define SO_OBJECTS (1 << SL_OBJECTS)
  3772. #define SO_TOTAL (1 << SL_TOTAL)
  3773. static ssize_t show_slab_objects(struct kmem_cache *s,
  3774. char *buf, unsigned long flags)
  3775. {
  3776. unsigned long total = 0;
  3777. int node;
  3778. int x;
  3779. unsigned long *nodes;
  3780. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3781. if (!nodes)
  3782. return -ENOMEM;
  3783. if (flags & SO_CPU) {
  3784. int cpu;
  3785. for_each_possible_cpu(cpu) {
  3786. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3787. cpu);
  3788. int node;
  3789. struct page *page;
  3790. page = READ_ONCE(c->page);
  3791. if (!page)
  3792. continue;
  3793. node = page_to_nid(page);
  3794. if (flags & SO_TOTAL)
  3795. x = page->objects;
  3796. else if (flags & SO_OBJECTS)
  3797. x = page->inuse;
  3798. else
  3799. x = 1;
  3800. total += x;
  3801. nodes[node] += x;
  3802. page = READ_ONCE(c->partial);
  3803. if (page) {
  3804. node = page_to_nid(page);
  3805. if (flags & SO_TOTAL)
  3806. WARN_ON_ONCE(1);
  3807. else if (flags & SO_OBJECTS)
  3808. WARN_ON_ONCE(1);
  3809. else
  3810. x = page->pages;
  3811. total += x;
  3812. nodes[node] += x;
  3813. }
  3814. }
  3815. }
  3816. get_online_mems();
  3817. #ifdef CONFIG_SLUB_DEBUG
  3818. if (flags & SO_ALL) {
  3819. struct kmem_cache_node *n;
  3820. for_each_kmem_cache_node(s, node, n) {
  3821. if (flags & SO_TOTAL)
  3822. x = atomic_long_read(&n->total_objects);
  3823. else if (flags & SO_OBJECTS)
  3824. x = atomic_long_read(&n->total_objects) -
  3825. count_partial(n, count_free);
  3826. else
  3827. x = atomic_long_read(&n->nr_slabs);
  3828. total += x;
  3829. nodes[node] += x;
  3830. }
  3831. } else
  3832. #endif
  3833. if (flags & SO_PARTIAL) {
  3834. struct kmem_cache_node *n;
  3835. for_each_kmem_cache_node(s, node, n) {
  3836. if (flags & SO_TOTAL)
  3837. x = count_partial(n, count_total);
  3838. else if (flags & SO_OBJECTS)
  3839. x = count_partial(n, count_inuse);
  3840. else
  3841. x = n->nr_partial;
  3842. total += x;
  3843. nodes[node] += x;
  3844. }
  3845. }
  3846. x = sprintf(buf, "%lu", total);
  3847. #ifdef CONFIG_NUMA
  3848. for (node = 0; node < nr_node_ids; node++)
  3849. if (nodes[node])
  3850. x += sprintf(buf + x, " N%d=%lu",
  3851. node, nodes[node]);
  3852. #endif
  3853. put_online_mems();
  3854. kfree(nodes);
  3855. return x + sprintf(buf + x, "\n");
  3856. }
  3857. #ifdef CONFIG_SLUB_DEBUG
  3858. static int any_slab_objects(struct kmem_cache *s)
  3859. {
  3860. int node;
  3861. struct kmem_cache_node *n;
  3862. for_each_kmem_cache_node(s, node, n)
  3863. if (atomic_long_read(&n->total_objects))
  3864. return 1;
  3865. return 0;
  3866. }
  3867. #endif
  3868. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3869. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3870. struct slab_attribute {
  3871. struct attribute attr;
  3872. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3873. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3874. };
  3875. #define SLAB_ATTR_RO(_name) \
  3876. static struct slab_attribute _name##_attr = \
  3877. __ATTR(_name, 0400, _name##_show, NULL)
  3878. #define SLAB_ATTR(_name) \
  3879. static struct slab_attribute _name##_attr = \
  3880. __ATTR(_name, 0600, _name##_show, _name##_store)
  3881. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return sprintf(buf, "%d\n", s->size);
  3884. }
  3885. SLAB_ATTR_RO(slab_size);
  3886. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return sprintf(buf, "%d\n", s->align);
  3889. }
  3890. SLAB_ATTR_RO(align);
  3891. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3892. {
  3893. return sprintf(buf, "%d\n", s->object_size);
  3894. }
  3895. SLAB_ATTR_RO(object_size);
  3896. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3897. {
  3898. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3899. }
  3900. SLAB_ATTR_RO(objs_per_slab);
  3901. static ssize_t order_store(struct kmem_cache *s,
  3902. const char *buf, size_t length)
  3903. {
  3904. unsigned long order;
  3905. int err;
  3906. err = kstrtoul(buf, 10, &order);
  3907. if (err)
  3908. return err;
  3909. if (order > slub_max_order || order < slub_min_order)
  3910. return -EINVAL;
  3911. calculate_sizes(s, order);
  3912. return length;
  3913. }
  3914. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3915. {
  3916. return sprintf(buf, "%d\n", oo_order(s->oo));
  3917. }
  3918. SLAB_ATTR(order);
  3919. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3920. {
  3921. return sprintf(buf, "%lu\n", s->min_partial);
  3922. }
  3923. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3924. size_t length)
  3925. {
  3926. unsigned long min;
  3927. int err;
  3928. err = kstrtoul(buf, 10, &min);
  3929. if (err)
  3930. return err;
  3931. set_min_partial(s, min);
  3932. return length;
  3933. }
  3934. SLAB_ATTR(min_partial);
  3935. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3936. {
  3937. return sprintf(buf, "%u\n", s->cpu_partial);
  3938. }
  3939. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3940. size_t length)
  3941. {
  3942. unsigned long objects;
  3943. int err;
  3944. err = kstrtoul(buf, 10, &objects);
  3945. if (err)
  3946. return err;
  3947. if (objects && !kmem_cache_has_cpu_partial(s))
  3948. return -EINVAL;
  3949. s->cpu_partial = objects;
  3950. flush_all(s);
  3951. return length;
  3952. }
  3953. SLAB_ATTR(cpu_partial);
  3954. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. if (!s->ctor)
  3957. return 0;
  3958. return sprintf(buf, "%pS\n", s->ctor);
  3959. }
  3960. SLAB_ATTR_RO(ctor);
  3961. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3962. {
  3963. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3964. }
  3965. SLAB_ATTR_RO(aliases);
  3966. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3967. {
  3968. return show_slab_objects(s, buf, SO_PARTIAL);
  3969. }
  3970. SLAB_ATTR_RO(partial);
  3971. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3972. {
  3973. return show_slab_objects(s, buf, SO_CPU);
  3974. }
  3975. SLAB_ATTR_RO(cpu_slabs);
  3976. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3977. {
  3978. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3979. }
  3980. SLAB_ATTR_RO(objects);
  3981. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3982. {
  3983. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3984. }
  3985. SLAB_ATTR_RO(objects_partial);
  3986. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3987. {
  3988. int objects = 0;
  3989. int pages = 0;
  3990. int cpu;
  3991. int len;
  3992. for_each_online_cpu(cpu) {
  3993. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3994. if (page) {
  3995. pages += page->pages;
  3996. objects += page->pobjects;
  3997. }
  3998. }
  3999. len = sprintf(buf, "%d(%d)", objects, pages);
  4000. #ifdef CONFIG_SMP
  4001. for_each_online_cpu(cpu) {
  4002. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  4003. if (page && len < PAGE_SIZE - 20)
  4004. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  4005. page->pobjects, page->pages);
  4006. }
  4007. #endif
  4008. return len + sprintf(buf + len, "\n");
  4009. }
  4010. SLAB_ATTR_RO(slabs_cpu_partial);
  4011. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4012. {
  4013. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4014. }
  4015. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4016. const char *buf, size_t length)
  4017. {
  4018. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4019. if (buf[0] == '1')
  4020. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4021. return length;
  4022. }
  4023. SLAB_ATTR(reclaim_account);
  4024. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4027. }
  4028. SLAB_ATTR_RO(hwcache_align);
  4029. #ifdef CONFIG_ZONE_DMA
  4030. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4031. {
  4032. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4033. }
  4034. SLAB_ATTR_RO(cache_dma);
  4035. #endif
  4036. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4037. {
  4038. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4039. }
  4040. SLAB_ATTR_RO(destroy_by_rcu);
  4041. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4042. {
  4043. return sprintf(buf, "%d\n", s->reserved);
  4044. }
  4045. SLAB_ATTR_RO(reserved);
  4046. #ifdef CONFIG_SLUB_DEBUG
  4047. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4048. {
  4049. return show_slab_objects(s, buf, SO_ALL);
  4050. }
  4051. SLAB_ATTR_RO(slabs);
  4052. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4053. {
  4054. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4055. }
  4056. SLAB_ATTR_RO(total_objects);
  4057. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4058. {
  4059. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4060. }
  4061. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4062. const char *buf, size_t length)
  4063. {
  4064. s->flags &= ~SLAB_DEBUG_FREE;
  4065. if (buf[0] == '1') {
  4066. s->flags &= ~__CMPXCHG_DOUBLE;
  4067. s->flags |= SLAB_DEBUG_FREE;
  4068. }
  4069. return length;
  4070. }
  4071. SLAB_ATTR(sanity_checks);
  4072. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4073. {
  4074. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4075. }
  4076. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4077. size_t length)
  4078. {
  4079. /*
  4080. * Tracing a merged cache is going to give confusing results
  4081. * as well as cause other issues like converting a mergeable
  4082. * cache into an umergeable one.
  4083. */
  4084. if (s->refcount > 1)
  4085. return -EINVAL;
  4086. s->flags &= ~SLAB_TRACE;
  4087. if (buf[0] == '1') {
  4088. s->flags &= ~__CMPXCHG_DOUBLE;
  4089. s->flags |= SLAB_TRACE;
  4090. }
  4091. return length;
  4092. }
  4093. SLAB_ATTR(trace);
  4094. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4095. {
  4096. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4097. }
  4098. static ssize_t red_zone_store(struct kmem_cache *s,
  4099. const char *buf, size_t length)
  4100. {
  4101. if (any_slab_objects(s))
  4102. return -EBUSY;
  4103. s->flags &= ~SLAB_RED_ZONE;
  4104. if (buf[0] == '1') {
  4105. s->flags &= ~__CMPXCHG_DOUBLE;
  4106. s->flags |= SLAB_RED_ZONE;
  4107. }
  4108. calculate_sizes(s, -1);
  4109. return length;
  4110. }
  4111. SLAB_ATTR(red_zone);
  4112. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4113. {
  4114. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4115. }
  4116. static ssize_t poison_store(struct kmem_cache *s,
  4117. const char *buf, size_t length)
  4118. {
  4119. if (any_slab_objects(s))
  4120. return -EBUSY;
  4121. s->flags &= ~SLAB_POISON;
  4122. if (buf[0] == '1') {
  4123. s->flags &= ~__CMPXCHG_DOUBLE;
  4124. s->flags |= SLAB_POISON;
  4125. }
  4126. calculate_sizes(s, -1);
  4127. return length;
  4128. }
  4129. SLAB_ATTR(poison);
  4130. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4131. {
  4132. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4133. }
  4134. static ssize_t store_user_store(struct kmem_cache *s,
  4135. const char *buf, size_t length)
  4136. {
  4137. if (any_slab_objects(s))
  4138. return -EBUSY;
  4139. s->flags &= ~SLAB_STORE_USER;
  4140. if (buf[0] == '1') {
  4141. s->flags &= ~__CMPXCHG_DOUBLE;
  4142. s->flags |= SLAB_STORE_USER;
  4143. }
  4144. calculate_sizes(s, -1);
  4145. return length;
  4146. }
  4147. SLAB_ATTR(store_user);
  4148. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4149. {
  4150. return 0;
  4151. }
  4152. static ssize_t validate_store(struct kmem_cache *s,
  4153. const char *buf, size_t length)
  4154. {
  4155. int ret = -EINVAL;
  4156. if (buf[0] == '1') {
  4157. ret = validate_slab_cache(s);
  4158. if (ret >= 0)
  4159. ret = length;
  4160. }
  4161. return ret;
  4162. }
  4163. SLAB_ATTR(validate);
  4164. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4165. {
  4166. if (!(s->flags & SLAB_STORE_USER))
  4167. return -ENOSYS;
  4168. return list_locations(s, buf, TRACK_ALLOC);
  4169. }
  4170. SLAB_ATTR_RO(alloc_calls);
  4171. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4172. {
  4173. if (!(s->flags & SLAB_STORE_USER))
  4174. return -ENOSYS;
  4175. return list_locations(s, buf, TRACK_FREE);
  4176. }
  4177. SLAB_ATTR_RO(free_calls);
  4178. #endif /* CONFIG_SLUB_DEBUG */
  4179. #ifdef CONFIG_FAILSLAB
  4180. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4181. {
  4182. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4183. }
  4184. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4185. size_t length)
  4186. {
  4187. if (s->refcount > 1)
  4188. return -EINVAL;
  4189. s->flags &= ~SLAB_FAILSLAB;
  4190. if (buf[0] == '1')
  4191. s->flags |= SLAB_FAILSLAB;
  4192. return length;
  4193. }
  4194. SLAB_ATTR(failslab);
  4195. #endif
  4196. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4197. {
  4198. return 0;
  4199. }
  4200. static ssize_t shrink_store(struct kmem_cache *s,
  4201. const char *buf, size_t length)
  4202. {
  4203. if (buf[0] == '1')
  4204. kmem_cache_shrink(s);
  4205. else
  4206. return -EINVAL;
  4207. return length;
  4208. }
  4209. SLAB_ATTR(shrink);
  4210. #ifdef CONFIG_NUMA
  4211. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4212. {
  4213. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4214. }
  4215. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4216. const char *buf, size_t length)
  4217. {
  4218. unsigned long ratio;
  4219. int err;
  4220. err = kstrtoul(buf, 10, &ratio);
  4221. if (err)
  4222. return err;
  4223. if (ratio <= 100)
  4224. s->remote_node_defrag_ratio = ratio * 10;
  4225. return length;
  4226. }
  4227. SLAB_ATTR(remote_node_defrag_ratio);
  4228. #endif
  4229. #ifdef CONFIG_SLUB_STATS
  4230. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4231. {
  4232. unsigned long sum = 0;
  4233. int cpu;
  4234. int len;
  4235. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4236. if (!data)
  4237. return -ENOMEM;
  4238. for_each_online_cpu(cpu) {
  4239. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4240. data[cpu] = x;
  4241. sum += x;
  4242. }
  4243. len = sprintf(buf, "%lu", sum);
  4244. #ifdef CONFIG_SMP
  4245. for_each_online_cpu(cpu) {
  4246. if (data[cpu] && len < PAGE_SIZE - 20)
  4247. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4248. }
  4249. #endif
  4250. kfree(data);
  4251. return len + sprintf(buf + len, "\n");
  4252. }
  4253. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4254. {
  4255. int cpu;
  4256. for_each_online_cpu(cpu)
  4257. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4258. }
  4259. #define STAT_ATTR(si, text) \
  4260. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4261. { \
  4262. return show_stat(s, buf, si); \
  4263. } \
  4264. static ssize_t text##_store(struct kmem_cache *s, \
  4265. const char *buf, size_t length) \
  4266. { \
  4267. if (buf[0] != '0') \
  4268. return -EINVAL; \
  4269. clear_stat(s, si); \
  4270. return length; \
  4271. } \
  4272. SLAB_ATTR(text); \
  4273. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4274. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4275. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4276. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4277. STAT_ATTR(FREE_FROZEN, free_frozen);
  4278. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4279. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4280. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4281. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4282. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4283. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4284. STAT_ATTR(FREE_SLAB, free_slab);
  4285. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4286. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4287. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4288. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4289. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4290. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4291. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4292. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4293. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4294. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4295. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4296. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4297. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4298. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4299. #endif
  4300. static struct attribute *slab_attrs[] = {
  4301. &slab_size_attr.attr,
  4302. &object_size_attr.attr,
  4303. &objs_per_slab_attr.attr,
  4304. &order_attr.attr,
  4305. &min_partial_attr.attr,
  4306. &cpu_partial_attr.attr,
  4307. &objects_attr.attr,
  4308. &objects_partial_attr.attr,
  4309. &partial_attr.attr,
  4310. &cpu_slabs_attr.attr,
  4311. &ctor_attr.attr,
  4312. &aliases_attr.attr,
  4313. &align_attr.attr,
  4314. &hwcache_align_attr.attr,
  4315. &reclaim_account_attr.attr,
  4316. &destroy_by_rcu_attr.attr,
  4317. &shrink_attr.attr,
  4318. &reserved_attr.attr,
  4319. &slabs_cpu_partial_attr.attr,
  4320. #ifdef CONFIG_SLUB_DEBUG
  4321. &total_objects_attr.attr,
  4322. &slabs_attr.attr,
  4323. &sanity_checks_attr.attr,
  4324. &trace_attr.attr,
  4325. &red_zone_attr.attr,
  4326. &poison_attr.attr,
  4327. &store_user_attr.attr,
  4328. &validate_attr.attr,
  4329. &alloc_calls_attr.attr,
  4330. &free_calls_attr.attr,
  4331. #endif
  4332. #ifdef CONFIG_ZONE_DMA
  4333. &cache_dma_attr.attr,
  4334. #endif
  4335. #ifdef CONFIG_NUMA
  4336. &remote_node_defrag_ratio_attr.attr,
  4337. #endif
  4338. #ifdef CONFIG_SLUB_STATS
  4339. &alloc_fastpath_attr.attr,
  4340. &alloc_slowpath_attr.attr,
  4341. &free_fastpath_attr.attr,
  4342. &free_slowpath_attr.attr,
  4343. &free_frozen_attr.attr,
  4344. &free_add_partial_attr.attr,
  4345. &free_remove_partial_attr.attr,
  4346. &alloc_from_partial_attr.attr,
  4347. &alloc_slab_attr.attr,
  4348. &alloc_refill_attr.attr,
  4349. &alloc_node_mismatch_attr.attr,
  4350. &free_slab_attr.attr,
  4351. &cpuslab_flush_attr.attr,
  4352. &deactivate_full_attr.attr,
  4353. &deactivate_empty_attr.attr,
  4354. &deactivate_to_head_attr.attr,
  4355. &deactivate_to_tail_attr.attr,
  4356. &deactivate_remote_frees_attr.attr,
  4357. &deactivate_bypass_attr.attr,
  4358. &order_fallback_attr.attr,
  4359. &cmpxchg_double_fail_attr.attr,
  4360. &cmpxchg_double_cpu_fail_attr.attr,
  4361. &cpu_partial_alloc_attr.attr,
  4362. &cpu_partial_free_attr.attr,
  4363. &cpu_partial_node_attr.attr,
  4364. &cpu_partial_drain_attr.attr,
  4365. #endif
  4366. #ifdef CONFIG_FAILSLAB
  4367. &failslab_attr.attr,
  4368. #endif
  4369. NULL
  4370. };
  4371. static struct attribute_group slab_attr_group = {
  4372. .attrs = slab_attrs,
  4373. };
  4374. static ssize_t slab_attr_show(struct kobject *kobj,
  4375. struct attribute *attr,
  4376. char *buf)
  4377. {
  4378. struct slab_attribute *attribute;
  4379. struct kmem_cache *s;
  4380. int err;
  4381. attribute = to_slab_attr(attr);
  4382. s = to_slab(kobj);
  4383. if (!attribute->show)
  4384. return -EIO;
  4385. err = attribute->show(s, buf);
  4386. return err;
  4387. }
  4388. static ssize_t slab_attr_store(struct kobject *kobj,
  4389. struct attribute *attr,
  4390. const char *buf, size_t len)
  4391. {
  4392. struct slab_attribute *attribute;
  4393. struct kmem_cache *s;
  4394. int err;
  4395. attribute = to_slab_attr(attr);
  4396. s = to_slab(kobj);
  4397. if (!attribute->store)
  4398. return -EIO;
  4399. err = attribute->store(s, buf, len);
  4400. #ifdef CONFIG_MEMCG
  4401. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4402. struct kmem_cache *c;
  4403. mutex_lock(&slab_mutex);
  4404. if (s->max_attr_size < len)
  4405. s->max_attr_size = len;
  4406. /*
  4407. * This is a best effort propagation, so this function's return
  4408. * value will be determined by the parent cache only. This is
  4409. * basically because not all attributes will have a well
  4410. * defined semantics for rollbacks - most of the actions will
  4411. * have permanent effects.
  4412. *
  4413. * Returning the error value of any of the children that fail
  4414. * is not 100 % defined, in the sense that users seeing the
  4415. * error code won't be able to know anything about the state of
  4416. * the cache.
  4417. *
  4418. * Only returning the error code for the parent cache at least
  4419. * has well defined semantics. The cache being written to
  4420. * directly either failed or succeeded, in which case we loop
  4421. * through the descendants with best-effort propagation.
  4422. */
  4423. for_each_memcg_cache(c, s)
  4424. attribute->store(c, buf, len);
  4425. mutex_unlock(&slab_mutex);
  4426. }
  4427. #endif
  4428. return err;
  4429. }
  4430. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4431. {
  4432. #ifdef CONFIG_MEMCG
  4433. int i;
  4434. char *buffer = NULL;
  4435. struct kmem_cache *root_cache;
  4436. if (is_root_cache(s))
  4437. return;
  4438. root_cache = s->memcg_params.root_cache;
  4439. /*
  4440. * This mean this cache had no attribute written. Therefore, no point
  4441. * in copying default values around
  4442. */
  4443. if (!root_cache->max_attr_size)
  4444. return;
  4445. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4446. char mbuf[64];
  4447. char *buf;
  4448. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4449. if (!attr || !attr->store || !attr->show)
  4450. continue;
  4451. /*
  4452. * It is really bad that we have to allocate here, so we will
  4453. * do it only as a fallback. If we actually allocate, though,
  4454. * we can just use the allocated buffer until the end.
  4455. *
  4456. * Most of the slub attributes will tend to be very small in
  4457. * size, but sysfs allows buffers up to a page, so they can
  4458. * theoretically happen.
  4459. */
  4460. if (buffer)
  4461. buf = buffer;
  4462. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4463. buf = mbuf;
  4464. else {
  4465. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4466. if (WARN_ON(!buffer))
  4467. continue;
  4468. buf = buffer;
  4469. }
  4470. attr->show(root_cache, buf);
  4471. attr->store(s, buf, strlen(buf));
  4472. }
  4473. if (buffer)
  4474. free_page((unsigned long)buffer);
  4475. #endif
  4476. }
  4477. static void kmem_cache_release(struct kobject *k)
  4478. {
  4479. slab_kmem_cache_release(to_slab(k));
  4480. }
  4481. static const struct sysfs_ops slab_sysfs_ops = {
  4482. .show = slab_attr_show,
  4483. .store = slab_attr_store,
  4484. };
  4485. static struct kobj_type slab_ktype = {
  4486. .sysfs_ops = &slab_sysfs_ops,
  4487. .release = kmem_cache_release,
  4488. };
  4489. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4490. {
  4491. struct kobj_type *ktype = get_ktype(kobj);
  4492. if (ktype == &slab_ktype)
  4493. return 1;
  4494. return 0;
  4495. }
  4496. static const struct kset_uevent_ops slab_uevent_ops = {
  4497. .filter = uevent_filter,
  4498. };
  4499. static struct kset *slab_kset;
  4500. static inline struct kset *cache_kset(struct kmem_cache *s)
  4501. {
  4502. #ifdef CONFIG_MEMCG
  4503. if (!is_root_cache(s))
  4504. return s->memcg_params.root_cache->memcg_kset;
  4505. #endif
  4506. return slab_kset;
  4507. }
  4508. #define ID_STR_LENGTH 64
  4509. /* Create a unique string id for a slab cache:
  4510. *
  4511. * Format :[flags-]size
  4512. */
  4513. static char *create_unique_id(struct kmem_cache *s)
  4514. {
  4515. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4516. char *p = name;
  4517. BUG_ON(!name);
  4518. *p++ = ':';
  4519. /*
  4520. * First flags affecting slabcache operations. We will only
  4521. * get here for aliasable slabs so we do not need to support
  4522. * too many flags. The flags here must cover all flags that
  4523. * are matched during merging to guarantee that the id is
  4524. * unique.
  4525. */
  4526. if (s->flags & SLAB_CACHE_DMA)
  4527. *p++ = 'd';
  4528. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4529. *p++ = 'a';
  4530. if (s->flags & SLAB_DEBUG_FREE)
  4531. *p++ = 'F';
  4532. if (!(s->flags & SLAB_NOTRACK))
  4533. *p++ = 't';
  4534. if (s->flags & SLAB_ACCOUNT)
  4535. *p++ = 'A';
  4536. if (p != name + 1)
  4537. *p++ = '-';
  4538. p += sprintf(p, "%07d", s->size);
  4539. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4540. return name;
  4541. }
  4542. static int sysfs_slab_add(struct kmem_cache *s)
  4543. {
  4544. int err;
  4545. const char *name;
  4546. int unmergeable = slab_unmergeable(s);
  4547. if (unmergeable) {
  4548. /*
  4549. * Slabcache can never be merged so we can use the name proper.
  4550. * This is typically the case for debug situations. In that
  4551. * case we can catch duplicate names easily.
  4552. */
  4553. sysfs_remove_link(&slab_kset->kobj, s->name);
  4554. name = s->name;
  4555. } else {
  4556. /*
  4557. * Create a unique name for the slab as a target
  4558. * for the symlinks.
  4559. */
  4560. name = create_unique_id(s);
  4561. }
  4562. s->kobj.kset = cache_kset(s);
  4563. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4564. if (err)
  4565. goto out;
  4566. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4567. if (err)
  4568. goto out_del_kobj;
  4569. #ifdef CONFIG_MEMCG
  4570. if (is_root_cache(s)) {
  4571. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4572. if (!s->memcg_kset) {
  4573. err = -ENOMEM;
  4574. goto out_del_kobj;
  4575. }
  4576. }
  4577. #endif
  4578. kobject_uevent(&s->kobj, KOBJ_ADD);
  4579. if (!unmergeable) {
  4580. /* Setup first alias */
  4581. sysfs_slab_alias(s, s->name);
  4582. }
  4583. out:
  4584. if (!unmergeable)
  4585. kfree(name);
  4586. return err;
  4587. out_del_kobj:
  4588. kobject_del(&s->kobj);
  4589. goto out;
  4590. }
  4591. void sysfs_slab_remove(struct kmem_cache *s)
  4592. {
  4593. if (slab_state < FULL)
  4594. /*
  4595. * Sysfs has not been setup yet so no need to remove the
  4596. * cache from sysfs.
  4597. */
  4598. return;
  4599. #ifdef CONFIG_MEMCG
  4600. kset_unregister(s->memcg_kset);
  4601. #endif
  4602. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4603. kobject_del(&s->kobj);
  4604. kobject_put(&s->kobj);
  4605. }
  4606. /*
  4607. * Need to buffer aliases during bootup until sysfs becomes
  4608. * available lest we lose that information.
  4609. */
  4610. struct saved_alias {
  4611. struct kmem_cache *s;
  4612. const char *name;
  4613. struct saved_alias *next;
  4614. };
  4615. static struct saved_alias *alias_list;
  4616. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4617. {
  4618. struct saved_alias *al;
  4619. if (slab_state == FULL) {
  4620. /*
  4621. * If we have a leftover link then remove it.
  4622. */
  4623. sysfs_remove_link(&slab_kset->kobj, name);
  4624. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4625. }
  4626. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4627. if (!al)
  4628. return -ENOMEM;
  4629. al->s = s;
  4630. al->name = name;
  4631. al->next = alias_list;
  4632. alias_list = al;
  4633. return 0;
  4634. }
  4635. static int __init slab_sysfs_init(void)
  4636. {
  4637. struct kmem_cache *s;
  4638. int err;
  4639. mutex_lock(&slab_mutex);
  4640. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4641. if (!slab_kset) {
  4642. mutex_unlock(&slab_mutex);
  4643. pr_err("Cannot register slab subsystem.\n");
  4644. return -ENOSYS;
  4645. }
  4646. slab_state = FULL;
  4647. list_for_each_entry(s, &slab_caches, list) {
  4648. err = sysfs_slab_add(s);
  4649. if (err)
  4650. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4651. s->name);
  4652. }
  4653. while (alias_list) {
  4654. struct saved_alias *al = alias_list;
  4655. alias_list = alias_list->next;
  4656. err = sysfs_slab_alias(al->s, al->name);
  4657. if (err)
  4658. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4659. al->name);
  4660. kfree(al);
  4661. }
  4662. mutex_unlock(&slab_mutex);
  4663. resiliency_test();
  4664. return 0;
  4665. }
  4666. __initcall(slab_sysfs_init);
  4667. #endif /* CONFIG_SYSFS */
  4668. /*
  4669. * The /proc/slabinfo ABI
  4670. */
  4671. #ifdef CONFIG_SLABINFO
  4672. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4673. {
  4674. unsigned long nr_slabs = 0;
  4675. unsigned long nr_objs = 0;
  4676. unsigned long nr_free = 0;
  4677. int node;
  4678. struct kmem_cache_node *n;
  4679. for_each_kmem_cache_node(s, node, n) {
  4680. nr_slabs += node_nr_slabs(n);
  4681. nr_objs += node_nr_objs(n);
  4682. nr_free += count_partial(n, count_free);
  4683. }
  4684. sinfo->active_objs = nr_objs - nr_free;
  4685. sinfo->num_objs = nr_objs;
  4686. sinfo->active_slabs = nr_slabs;
  4687. sinfo->num_slabs = nr_slabs;
  4688. sinfo->objects_per_slab = oo_objects(s->oo);
  4689. sinfo->cache_order = oo_order(s->oo);
  4690. }
  4691. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4692. {
  4693. }
  4694. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4695. size_t count, loff_t *ppos)
  4696. {
  4697. return -EIO;
  4698. }
  4699. #endif /* CONFIG_SLABINFO */