tsc.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/geode.h>
  23. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  24. EXPORT_SYMBOL(cpu_khz);
  25. unsigned int __read_mostly tsc_khz;
  26. EXPORT_SYMBOL(tsc_khz);
  27. /*
  28. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  29. */
  30. static int __read_mostly tsc_unstable;
  31. /* native_sched_clock() is called before tsc_init(), so
  32. we must start with the TSC soft disabled to prevent
  33. erroneous rdtsc usage on !cpu_has_tsc processors */
  34. static int __read_mostly tsc_disabled = -1;
  35. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  36. int tsc_clocksource_reliable;
  37. /*
  38. * Use a ring-buffer like data structure, where a writer advances the head by
  39. * writing a new data entry and a reader advances the tail when it observes a
  40. * new entry.
  41. *
  42. * Writers are made to wait on readers until there's space to write a new
  43. * entry.
  44. *
  45. * This means that we can always use an {offset, mul} pair to compute a ns
  46. * value that is 'roughly' in the right direction, even if we're writing a new
  47. * {offset, mul} pair during the clock read.
  48. *
  49. * The down-side is that we can no longer guarantee strict monotonicity anymore
  50. * (assuming the TSC was that to begin with), because while we compute the
  51. * intersection point of the two clock slopes and make sure the time is
  52. * continuous at the point of switching; we can no longer guarantee a reader is
  53. * strictly before or after the switch point.
  54. *
  55. * It does mean a reader no longer needs to disable IRQs in order to avoid
  56. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  57. * no longer run the risk of hitting half-written state.
  58. */
  59. struct cyc2ns {
  60. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  61. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  62. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  63. }; /* exactly fits one cacheline */
  64. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  65. struct cyc2ns_data *cyc2ns_read_begin(void)
  66. {
  67. struct cyc2ns_data *head;
  68. preempt_disable();
  69. head = this_cpu_read(cyc2ns.head);
  70. /*
  71. * Ensure we observe the entry when we observe the pointer to it.
  72. * matches the wmb from cyc2ns_write_end().
  73. */
  74. smp_read_barrier_depends();
  75. head->__count++;
  76. barrier();
  77. return head;
  78. }
  79. void cyc2ns_read_end(struct cyc2ns_data *head)
  80. {
  81. barrier();
  82. /*
  83. * If we're the outer most nested read; update the tail pointer
  84. * when we're done. This notifies possible pending writers
  85. * that we've observed the head pointer and that the other
  86. * entry is now free.
  87. */
  88. if (!--head->__count) {
  89. /*
  90. * x86-TSO does not reorder writes with older reads;
  91. * therefore once this write becomes visible to another
  92. * cpu, we must be finished reading the cyc2ns_data.
  93. *
  94. * matches with cyc2ns_write_begin().
  95. */
  96. this_cpu_write(cyc2ns.tail, head);
  97. }
  98. preempt_enable();
  99. }
  100. /*
  101. * Begin writing a new @data entry for @cpu.
  102. *
  103. * Assumes some sort of write side lock; currently 'provided' by the assumption
  104. * that cpufreq will call its notifiers sequentially.
  105. */
  106. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  107. {
  108. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  109. struct cyc2ns_data *data = c2n->data;
  110. if (data == c2n->head)
  111. data++;
  112. /* XXX send an IPI to @cpu in order to guarantee a read? */
  113. /*
  114. * When we observe the tail write from cyc2ns_read_end(),
  115. * the cpu must be done with that entry and its safe
  116. * to start writing to it.
  117. */
  118. while (c2n->tail == data)
  119. cpu_relax();
  120. return data;
  121. }
  122. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  123. {
  124. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  125. /*
  126. * Ensure the @data writes are visible before we publish the
  127. * entry. Matches the data-depencency in cyc2ns_read_begin().
  128. */
  129. smp_wmb();
  130. ACCESS_ONCE(c2n->head) = data;
  131. }
  132. /*
  133. * Accelerators for sched_clock()
  134. * convert from cycles(64bits) => nanoseconds (64bits)
  135. * basic equation:
  136. * ns = cycles / (freq / ns_per_sec)
  137. * ns = cycles * (ns_per_sec / freq)
  138. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  139. * ns = cycles * (10^6 / cpu_khz)
  140. *
  141. * Then we use scaling math (suggested by george@mvista.com) to get:
  142. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  143. * ns = cycles * cyc2ns_scale / SC
  144. *
  145. * And since SC is a constant power of two, we can convert the div
  146. * into a shift. The larger SC is, the more accurate the conversion, but
  147. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  148. * (64-bit result) can be used.
  149. *
  150. * We can use khz divisor instead of mhz to keep a better precision.
  151. * (mathieu.desnoyers@polymtl.ca)
  152. *
  153. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  154. */
  155. static void cyc2ns_data_init(struct cyc2ns_data *data)
  156. {
  157. data->cyc2ns_mul = 0;
  158. data->cyc2ns_shift = 0;
  159. data->cyc2ns_offset = 0;
  160. data->__count = 0;
  161. }
  162. static void cyc2ns_init(int cpu)
  163. {
  164. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  165. cyc2ns_data_init(&c2n->data[0]);
  166. cyc2ns_data_init(&c2n->data[1]);
  167. c2n->head = c2n->data;
  168. c2n->tail = c2n->data;
  169. }
  170. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  171. {
  172. struct cyc2ns_data *data, *tail;
  173. unsigned long long ns;
  174. /*
  175. * See cyc2ns_read_*() for details; replicated in order to avoid
  176. * an extra few instructions that came with the abstraction.
  177. * Notable, it allows us to only do the __count and tail update
  178. * dance when its actually needed.
  179. */
  180. preempt_disable_notrace();
  181. data = this_cpu_read(cyc2ns.head);
  182. tail = this_cpu_read(cyc2ns.tail);
  183. if (likely(data == tail)) {
  184. ns = data->cyc2ns_offset;
  185. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  186. } else {
  187. data->__count++;
  188. barrier();
  189. ns = data->cyc2ns_offset;
  190. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  191. barrier();
  192. if (!--data->__count)
  193. this_cpu_write(cyc2ns.tail, data);
  194. }
  195. preempt_enable_notrace();
  196. return ns;
  197. }
  198. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  199. {
  200. unsigned long long tsc_now, ns_now;
  201. struct cyc2ns_data *data;
  202. unsigned long flags;
  203. local_irq_save(flags);
  204. sched_clock_idle_sleep_event();
  205. if (!cpu_khz)
  206. goto done;
  207. data = cyc2ns_write_begin(cpu);
  208. tsc_now = rdtsc();
  209. ns_now = cycles_2_ns(tsc_now);
  210. /*
  211. * Compute a new multiplier as per the above comment and ensure our
  212. * time function is continuous; see the comment near struct
  213. * cyc2ns_data.
  214. */
  215. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
  216. NSEC_PER_MSEC, 0);
  217. /*
  218. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  219. * not expected to be greater than 31 due to the original published
  220. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  221. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  222. */
  223. if (data->cyc2ns_shift == 32) {
  224. data->cyc2ns_shift = 31;
  225. data->cyc2ns_mul >>= 1;
  226. }
  227. data->cyc2ns_offset = ns_now -
  228. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  229. cyc2ns_write_end(cpu, data);
  230. done:
  231. sched_clock_idle_wakeup_event(0);
  232. local_irq_restore(flags);
  233. }
  234. /*
  235. * Scheduler clock - returns current time in nanosec units.
  236. */
  237. u64 native_sched_clock(void)
  238. {
  239. if (static_branch_likely(&__use_tsc)) {
  240. u64 tsc_now = rdtsc();
  241. /* return the value in ns */
  242. return cycles_2_ns(tsc_now);
  243. }
  244. /*
  245. * Fall back to jiffies if there's no TSC available:
  246. * ( But note that we still use it if the TSC is marked
  247. * unstable. We do this because unlike Time Of Day,
  248. * the scheduler clock tolerates small errors and it's
  249. * very important for it to be as fast as the platform
  250. * can achieve it. )
  251. */
  252. /* No locking but a rare wrong value is not a big deal: */
  253. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  254. }
  255. /*
  256. * Generate a sched_clock if you already have a TSC value.
  257. */
  258. u64 native_sched_clock_from_tsc(u64 tsc)
  259. {
  260. return cycles_2_ns(tsc);
  261. }
  262. /* We need to define a real function for sched_clock, to override the
  263. weak default version */
  264. #ifdef CONFIG_PARAVIRT
  265. unsigned long long sched_clock(void)
  266. {
  267. return paravirt_sched_clock();
  268. }
  269. #else
  270. unsigned long long
  271. sched_clock(void) __attribute__((alias("native_sched_clock")));
  272. #endif
  273. int check_tsc_unstable(void)
  274. {
  275. return tsc_unstable;
  276. }
  277. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  278. int check_tsc_disabled(void)
  279. {
  280. return tsc_disabled;
  281. }
  282. EXPORT_SYMBOL_GPL(check_tsc_disabled);
  283. #ifdef CONFIG_X86_TSC
  284. int __init notsc_setup(char *str)
  285. {
  286. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  287. tsc_disabled = 1;
  288. return 1;
  289. }
  290. #else
  291. /*
  292. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  293. * in cpu/common.c
  294. */
  295. int __init notsc_setup(char *str)
  296. {
  297. setup_clear_cpu_cap(X86_FEATURE_TSC);
  298. return 1;
  299. }
  300. #endif
  301. __setup("notsc", notsc_setup);
  302. static int no_sched_irq_time;
  303. static int __init tsc_setup(char *str)
  304. {
  305. if (!strcmp(str, "reliable"))
  306. tsc_clocksource_reliable = 1;
  307. if (!strncmp(str, "noirqtime", 9))
  308. no_sched_irq_time = 1;
  309. return 1;
  310. }
  311. __setup("tsc=", tsc_setup);
  312. #define MAX_RETRIES 5
  313. #define SMI_TRESHOLD 50000
  314. /*
  315. * Read TSC and the reference counters. Take care of SMI disturbance
  316. */
  317. static u64 tsc_read_refs(u64 *p, int hpet)
  318. {
  319. u64 t1, t2;
  320. int i;
  321. for (i = 0; i < MAX_RETRIES; i++) {
  322. t1 = get_cycles();
  323. if (hpet)
  324. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  325. else
  326. *p = acpi_pm_read_early();
  327. t2 = get_cycles();
  328. if ((t2 - t1) < SMI_TRESHOLD)
  329. return t2;
  330. }
  331. return ULLONG_MAX;
  332. }
  333. /*
  334. * Calculate the TSC frequency from HPET reference
  335. */
  336. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  337. {
  338. u64 tmp;
  339. if (hpet2 < hpet1)
  340. hpet2 += 0x100000000ULL;
  341. hpet2 -= hpet1;
  342. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  343. do_div(tmp, 1000000);
  344. do_div(deltatsc, tmp);
  345. return (unsigned long) deltatsc;
  346. }
  347. /*
  348. * Calculate the TSC frequency from PMTimer reference
  349. */
  350. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  351. {
  352. u64 tmp;
  353. if (!pm1 && !pm2)
  354. return ULONG_MAX;
  355. if (pm2 < pm1)
  356. pm2 += (u64)ACPI_PM_OVRRUN;
  357. pm2 -= pm1;
  358. tmp = pm2 * 1000000000LL;
  359. do_div(tmp, PMTMR_TICKS_PER_SEC);
  360. do_div(deltatsc, tmp);
  361. return (unsigned long) deltatsc;
  362. }
  363. #define CAL_MS 10
  364. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  365. #define CAL_PIT_LOOPS 1000
  366. #define CAL2_MS 50
  367. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  368. #define CAL2_PIT_LOOPS 5000
  369. /*
  370. * Try to calibrate the TSC against the Programmable
  371. * Interrupt Timer and return the frequency of the TSC
  372. * in kHz.
  373. *
  374. * Return ULONG_MAX on failure to calibrate.
  375. */
  376. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  377. {
  378. u64 tsc, t1, t2, delta;
  379. unsigned long tscmin, tscmax;
  380. int pitcnt;
  381. /* Set the Gate high, disable speaker */
  382. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  383. /*
  384. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  385. * count mode), binary count. Set the latch register to 50ms
  386. * (LSB then MSB) to begin countdown.
  387. */
  388. outb(0xb0, 0x43);
  389. outb(latch & 0xff, 0x42);
  390. outb(latch >> 8, 0x42);
  391. tsc = t1 = t2 = get_cycles();
  392. pitcnt = 0;
  393. tscmax = 0;
  394. tscmin = ULONG_MAX;
  395. while ((inb(0x61) & 0x20) == 0) {
  396. t2 = get_cycles();
  397. delta = t2 - tsc;
  398. tsc = t2;
  399. if ((unsigned long) delta < tscmin)
  400. tscmin = (unsigned int) delta;
  401. if ((unsigned long) delta > tscmax)
  402. tscmax = (unsigned int) delta;
  403. pitcnt++;
  404. }
  405. /*
  406. * Sanity checks:
  407. *
  408. * If we were not able to read the PIT more than loopmin
  409. * times, then we have been hit by a massive SMI
  410. *
  411. * If the maximum is 10 times larger than the minimum,
  412. * then we got hit by an SMI as well.
  413. */
  414. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  415. return ULONG_MAX;
  416. /* Calculate the PIT value */
  417. delta = t2 - t1;
  418. do_div(delta, ms);
  419. return delta;
  420. }
  421. /*
  422. * This reads the current MSB of the PIT counter, and
  423. * checks if we are running on sufficiently fast and
  424. * non-virtualized hardware.
  425. *
  426. * Our expectations are:
  427. *
  428. * - the PIT is running at roughly 1.19MHz
  429. *
  430. * - each IO is going to take about 1us on real hardware,
  431. * but we allow it to be much faster (by a factor of 10) or
  432. * _slightly_ slower (ie we allow up to a 2us read+counter
  433. * update - anything else implies a unacceptably slow CPU
  434. * or PIT for the fast calibration to work.
  435. *
  436. * - with 256 PIT ticks to read the value, we have 214us to
  437. * see the same MSB (and overhead like doing a single TSC
  438. * read per MSB value etc).
  439. *
  440. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  441. * them each to take about a microsecond on real hardware.
  442. * So we expect a count value of around 100. But we'll be
  443. * generous, and accept anything over 50.
  444. *
  445. * - if the PIT is stuck, and we see *many* more reads, we
  446. * return early (and the next caller of pit_expect_msb()
  447. * then consider it a failure when they don't see the
  448. * next expected value).
  449. *
  450. * These expectations mean that we know that we have seen the
  451. * transition from one expected value to another with a fairly
  452. * high accuracy, and we didn't miss any events. We can thus
  453. * use the TSC value at the transitions to calculate a pretty
  454. * good value for the TSC frequencty.
  455. */
  456. static inline int pit_verify_msb(unsigned char val)
  457. {
  458. /* Ignore LSB */
  459. inb(0x42);
  460. return inb(0x42) == val;
  461. }
  462. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  463. {
  464. int count;
  465. u64 tsc = 0, prev_tsc = 0;
  466. for (count = 0; count < 50000; count++) {
  467. if (!pit_verify_msb(val))
  468. break;
  469. prev_tsc = tsc;
  470. tsc = get_cycles();
  471. }
  472. *deltap = get_cycles() - prev_tsc;
  473. *tscp = tsc;
  474. /*
  475. * We require _some_ success, but the quality control
  476. * will be based on the error terms on the TSC values.
  477. */
  478. return count > 5;
  479. }
  480. /*
  481. * How many MSB values do we want to see? We aim for
  482. * a maximum error rate of 500ppm (in practice the
  483. * real error is much smaller), but refuse to spend
  484. * more than 50ms on it.
  485. */
  486. #define MAX_QUICK_PIT_MS 50
  487. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  488. static unsigned long quick_pit_calibrate(void)
  489. {
  490. int i;
  491. u64 tsc, delta;
  492. unsigned long d1, d2;
  493. /* Set the Gate high, disable speaker */
  494. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  495. /*
  496. * Counter 2, mode 0 (one-shot), binary count
  497. *
  498. * NOTE! Mode 2 decrements by two (and then the
  499. * output is flipped each time, giving the same
  500. * final output frequency as a decrement-by-one),
  501. * so mode 0 is much better when looking at the
  502. * individual counts.
  503. */
  504. outb(0xb0, 0x43);
  505. /* Start at 0xffff */
  506. outb(0xff, 0x42);
  507. outb(0xff, 0x42);
  508. /*
  509. * The PIT starts counting at the next edge, so we
  510. * need to delay for a microsecond. The easiest way
  511. * to do that is to just read back the 16-bit counter
  512. * once from the PIT.
  513. */
  514. pit_verify_msb(0);
  515. if (pit_expect_msb(0xff, &tsc, &d1)) {
  516. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  517. if (!pit_expect_msb(0xff-i, &delta, &d2))
  518. break;
  519. delta -= tsc;
  520. /*
  521. * Extrapolate the error and fail fast if the error will
  522. * never be below 500 ppm.
  523. */
  524. if (i == 1 &&
  525. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  526. return 0;
  527. /*
  528. * Iterate until the error is less than 500 ppm
  529. */
  530. if (d1+d2 >= delta >> 11)
  531. continue;
  532. /*
  533. * Check the PIT one more time to verify that
  534. * all TSC reads were stable wrt the PIT.
  535. *
  536. * This also guarantees serialization of the
  537. * last cycle read ('d2') in pit_expect_msb.
  538. */
  539. if (!pit_verify_msb(0xfe - i))
  540. break;
  541. goto success;
  542. }
  543. }
  544. pr_info("Fast TSC calibration failed\n");
  545. return 0;
  546. success:
  547. /*
  548. * Ok, if we get here, then we've seen the
  549. * MSB of the PIT decrement 'i' times, and the
  550. * error has shrunk to less than 500 ppm.
  551. *
  552. * As a result, we can depend on there not being
  553. * any odd delays anywhere, and the TSC reads are
  554. * reliable (within the error).
  555. *
  556. * kHz = ticks / time-in-seconds / 1000;
  557. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  558. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  559. */
  560. delta *= PIT_TICK_RATE;
  561. do_div(delta, i*256*1000);
  562. pr_info("Fast TSC calibration using PIT\n");
  563. return delta;
  564. }
  565. /**
  566. * native_calibrate_tsc - calibrate the tsc on boot
  567. */
  568. unsigned long native_calibrate_tsc(void)
  569. {
  570. u64 tsc1, tsc2, delta, ref1, ref2;
  571. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  572. unsigned long flags, latch, ms, fast_calibrate;
  573. int hpet = is_hpet_enabled(), i, loopmin;
  574. /* Calibrate TSC using MSR for Intel Atom SoCs */
  575. local_irq_save(flags);
  576. fast_calibrate = try_msr_calibrate_tsc();
  577. local_irq_restore(flags);
  578. if (fast_calibrate)
  579. return fast_calibrate;
  580. local_irq_save(flags);
  581. fast_calibrate = quick_pit_calibrate();
  582. local_irq_restore(flags);
  583. if (fast_calibrate)
  584. return fast_calibrate;
  585. /*
  586. * Run 5 calibration loops to get the lowest frequency value
  587. * (the best estimate). We use two different calibration modes
  588. * here:
  589. *
  590. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  591. * load a timeout of 50ms. We read the time right after we
  592. * started the timer and wait until the PIT count down reaches
  593. * zero. In each wait loop iteration we read the TSC and check
  594. * the delta to the previous read. We keep track of the min
  595. * and max values of that delta. The delta is mostly defined
  596. * by the IO time of the PIT access, so we can detect when a
  597. * SMI/SMM disturbance happened between the two reads. If the
  598. * maximum time is significantly larger than the minimum time,
  599. * then we discard the result and have another try.
  600. *
  601. * 2) Reference counter. If available we use the HPET or the
  602. * PMTIMER as a reference to check the sanity of that value.
  603. * We use separate TSC readouts and check inside of the
  604. * reference read for a SMI/SMM disturbance. We dicard
  605. * disturbed values here as well. We do that around the PIT
  606. * calibration delay loop as we have to wait for a certain
  607. * amount of time anyway.
  608. */
  609. /* Preset PIT loop values */
  610. latch = CAL_LATCH;
  611. ms = CAL_MS;
  612. loopmin = CAL_PIT_LOOPS;
  613. for (i = 0; i < 3; i++) {
  614. unsigned long tsc_pit_khz;
  615. /*
  616. * Read the start value and the reference count of
  617. * hpet/pmtimer when available. Then do the PIT
  618. * calibration, which will take at least 50ms, and
  619. * read the end value.
  620. */
  621. local_irq_save(flags);
  622. tsc1 = tsc_read_refs(&ref1, hpet);
  623. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  624. tsc2 = tsc_read_refs(&ref2, hpet);
  625. local_irq_restore(flags);
  626. /* Pick the lowest PIT TSC calibration so far */
  627. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  628. /* hpet or pmtimer available ? */
  629. if (ref1 == ref2)
  630. continue;
  631. /* Check, whether the sampling was disturbed by an SMI */
  632. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  633. continue;
  634. tsc2 = (tsc2 - tsc1) * 1000000LL;
  635. if (hpet)
  636. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  637. else
  638. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  639. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  640. /* Check the reference deviation */
  641. delta = ((u64) tsc_pit_min) * 100;
  642. do_div(delta, tsc_ref_min);
  643. /*
  644. * If both calibration results are inside a 10% window
  645. * then we can be sure, that the calibration
  646. * succeeded. We break out of the loop right away. We
  647. * use the reference value, as it is more precise.
  648. */
  649. if (delta >= 90 && delta <= 110) {
  650. pr_info("PIT calibration matches %s. %d loops\n",
  651. hpet ? "HPET" : "PMTIMER", i + 1);
  652. return tsc_ref_min;
  653. }
  654. /*
  655. * Check whether PIT failed more than once. This
  656. * happens in virtualized environments. We need to
  657. * give the virtual PC a slightly longer timeframe for
  658. * the HPET/PMTIMER to make the result precise.
  659. */
  660. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  661. latch = CAL2_LATCH;
  662. ms = CAL2_MS;
  663. loopmin = CAL2_PIT_LOOPS;
  664. }
  665. }
  666. /*
  667. * Now check the results.
  668. */
  669. if (tsc_pit_min == ULONG_MAX) {
  670. /* PIT gave no useful value */
  671. pr_warn("Unable to calibrate against PIT\n");
  672. /* We don't have an alternative source, disable TSC */
  673. if (!hpet && !ref1 && !ref2) {
  674. pr_notice("No reference (HPET/PMTIMER) available\n");
  675. return 0;
  676. }
  677. /* The alternative source failed as well, disable TSC */
  678. if (tsc_ref_min == ULONG_MAX) {
  679. pr_warn("HPET/PMTIMER calibration failed\n");
  680. return 0;
  681. }
  682. /* Use the alternative source */
  683. pr_info("using %s reference calibration\n",
  684. hpet ? "HPET" : "PMTIMER");
  685. return tsc_ref_min;
  686. }
  687. /* We don't have an alternative source, use the PIT calibration value */
  688. if (!hpet && !ref1 && !ref2) {
  689. pr_info("Using PIT calibration value\n");
  690. return tsc_pit_min;
  691. }
  692. /* The alternative source failed, use the PIT calibration value */
  693. if (tsc_ref_min == ULONG_MAX) {
  694. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  695. return tsc_pit_min;
  696. }
  697. /*
  698. * The calibration values differ too much. In doubt, we use
  699. * the PIT value as we know that there are PMTIMERs around
  700. * running at double speed. At least we let the user know:
  701. */
  702. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  703. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  704. pr_info("Using PIT calibration value\n");
  705. return tsc_pit_min;
  706. }
  707. int recalibrate_cpu_khz(void)
  708. {
  709. #ifndef CONFIG_SMP
  710. unsigned long cpu_khz_old = cpu_khz;
  711. if (cpu_has_tsc) {
  712. tsc_khz = x86_platform.calibrate_tsc();
  713. cpu_khz = tsc_khz;
  714. cpu_data(0).loops_per_jiffy =
  715. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  716. cpu_khz_old, cpu_khz);
  717. return 0;
  718. } else
  719. return -ENODEV;
  720. #else
  721. return -ENODEV;
  722. #endif
  723. }
  724. EXPORT_SYMBOL(recalibrate_cpu_khz);
  725. static unsigned long long cyc2ns_suspend;
  726. void tsc_save_sched_clock_state(void)
  727. {
  728. if (!sched_clock_stable())
  729. return;
  730. cyc2ns_suspend = sched_clock();
  731. }
  732. /*
  733. * Even on processors with invariant TSC, TSC gets reset in some the
  734. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  735. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  736. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  737. * that sched_clock() continues from the point where it was left off during
  738. * suspend.
  739. */
  740. void tsc_restore_sched_clock_state(void)
  741. {
  742. unsigned long long offset;
  743. unsigned long flags;
  744. int cpu;
  745. if (!sched_clock_stable())
  746. return;
  747. local_irq_save(flags);
  748. /*
  749. * We're comming out of suspend, there's no concurrency yet; don't
  750. * bother being nice about the RCU stuff, just write to both
  751. * data fields.
  752. */
  753. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  754. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  755. offset = cyc2ns_suspend - sched_clock();
  756. for_each_possible_cpu(cpu) {
  757. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  758. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  759. }
  760. local_irq_restore(flags);
  761. }
  762. #ifdef CONFIG_CPU_FREQ
  763. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  764. * changes.
  765. *
  766. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  767. * not that important because current Opteron setups do not support
  768. * scaling on SMP anyroads.
  769. *
  770. * Should fix up last_tsc too. Currently gettimeofday in the
  771. * first tick after the change will be slightly wrong.
  772. */
  773. static unsigned int ref_freq;
  774. static unsigned long loops_per_jiffy_ref;
  775. static unsigned long tsc_khz_ref;
  776. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  777. void *data)
  778. {
  779. struct cpufreq_freqs *freq = data;
  780. unsigned long *lpj;
  781. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  782. return 0;
  783. lpj = &boot_cpu_data.loops_per_jiffy;
  784. #ifdef CONFIG_SMP
  785. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  786. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  787. #endif
  788. if (!ref_freq) {
  789. ref_freq = freq->old;
  790. loops_per_jiffy_ref = *lpj;
  791. tsc_khz_ref = tsc_khz;
  792. }
  793. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  794. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  795. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  796. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  797. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  798. mark_tsc_unstable("cpufreq changes");
  799. set_cyc2ns_scale(tsc_khz, freq->cpu);
  800. }
  801. return 0;
  802. }
  803. static struct notifier_block time_cpufreq_notifier_block = {
  804. .notifier_call = time_cpufreq_notifier
  805. };
  806. static int __init cpufreq_tsc(void)
  807. {
  808. if (!cpu_has_tsc)
  809. return 0;
  810. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  811. return 0;
  812. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  813. CPUFREQ_TRANSITION_NOTIFIER);
  814. return 0;
  815. }
  816. core_initcall(cpufreq_tsc);
  817. #endif /* CONFIG_CPU_FREQ */
  818. /* clocksource code */
  819. static struct clocksource clocksource_tsc;
  820. /*
  821. * We used to compare the TSC to the cycle_last value in the clocksource
  822. * structure to avoid a nasty time-warp. This can be observed in a
  823. * very small window right after one CPU updated cycle_last under
  824. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  825. * is smaller than the cycle_last reference value due to a TSC which
  826. * is slighty behind. This delta is nowhere else observable, but in
  827. * that case it results in a forward time jump in the range of hours
  828. * due to the unsigned delta calculation of the time keeping core
  829. * code, which is necessary to support wrapping clocksources like pm
  830. * timer.
  831. *
  832. * This sanity check is now done in the core timekeeping code.
  833. * checking the result of read_tsc() - cycle_last for being negative.
  834. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  835. */
  836. static cycle_t read_tsc(struct clocksource *cs)
  837. {
  838. return (cycle_t)rdtsc_ordered();
  839. }
  840. /*
  841. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  842. */
  843. static struct clocksource clocksource_tsc = {
  844. .name = "tsc",
  845. .rating = 300,
  846. .read = read_tsc,
  847. .mask = CLOCKSOURCE_MASK(64),
  848. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  849. CLOCK_SOURCE_MUST_VERIFY,
  850. .archdata = { .vclock_mode = VCLOCK_TSC },
  851. };
  852. void mark_tsc_unstable(char *reason)
  853. {
  854. if (!tsc_unstable) {
  855. tsc_unstable = 1;
  856. clear_sched_clock_stable();
  857. disable_sched_clock_irqtime();
  858. pr_info("Marking TSC unstable due to %s\n", reason);
  859. /* Change only the rating, when not registered */
  860. if (clocksource_tsc.mult)
  861. clocksource_mark_unstable(&clocksource_tsc);
  862. else {
  863. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  864. clocksource_tsc.rating = 0;
  865. }
  866. }
  867. }
  868. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  869. static void __init check_system_tsc_reliable(void)
  870. {
  871. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  872. if (is_geode_lx()) {
  873. /* RTSC counts during suspend */
  874. #define RTSC_SUSP 0x100
  875. unsigned long res_low, res_high;
  876. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  877. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  878. if (res_low & RTSC_SUSP)
  879. tsc_clocksource_reliable = 1;
  880. }
  881. #endif
  882. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  883. tsc_clocksource_reliable = 1;
  884. }
  885. /*
  886. * Make an educated guess if the TSC is trustworthy and synchronized
  887. * over all CPUs.
  888. */
  889. int unsynchronized_tsc(void)
  890. {
  891. if (!cpu_has_tsc || tsc_unstable)
  892. return 1;
  893. #ifdef CONFIG_SMP
  894. if (apic_is_clustered_box())
  895. return 1;
  896. #endif
  897. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  898. return 0;
  899. if (tsc_clocksource_reliable)
  900. return 0;
  901. /*
  902. * Intel systems are normally all synchronized.
  903. * Exceptions must mark TSC as unstable:
  904. */
  905. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  906. /* assume multi socket systems are not synchronized: */
  907. if (num_possible_cpus() > 1)
  908. return 1;
  909. }
  910. return 0;
  911. }
  912. static void tsc_refine_calibration_work(struct work_struct *work);
  913. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  914. /**
  915. * tsc_refine_calibration_work - Further refine tsc freq calibration
  916. * @work - ignored.
  917. *
  918. * This functions uses delayed work over a period of a
  919. * second to further refine the TSC freq value. Since this is
  920. * timer based, instead of loop based, we don't block the boot
  921. * process while this longer calibration is done.
  922. *
  923. * If there are any calibration anomalies (too many SMIs, etc),
  924. * or the refined calibration is off by 1% of the fast early
  925. * calibration, we throw out the new calibration and use the
  926. * early calibration.
  927. */
  928. static void tsc_refine_calibration_work(struct work_struct *work)
  929. {
  930. static u64 tsc_start = -1, ref_start;
  931. static int hpet;
  932. u64 tsc_stop, ref_stop, delta;
  933. unsigned long freq;
  934. /* Don't bother refining TSC on unstable systems */
  935. if (check_tsc_unstable())
  936. goto out;
  937. /*
  938. * Since the work is started early in boot, we may be
  939. * delayed the first time we expire. So set the workqueue
  940. * again once we know timers are working.
  941. */
  942. if (tsc_start == -1) {
  943. /*
  944. * Only set hpet once, to avoid mixing hardware
  945. * if the hpet becomes enabled later.
  946. */
  947. hpet = is_hpet_enabled();
  948. schedule_delayed_work(&tsc_irqwork, HZ);
  949. tsc_start = tsc_read_refs(&ref_start, hpet);
  950. return;
  951. }
  952. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  953. /* hpet or pmtimer available ? */
  954. if (ref_start == ref_stop)
  955. goto out;
  956. /* Check, whether the sampling was disturbed by an SMI */
  957. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  958. goto out;
  959. delta = tsc_stop - tsc_start;
  960. delta *= 1000000LL;
  961. if (hpet)
  962. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  963. else
  964. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  965. /* Make sure we're within 1% */
  966. if (abs(tsc_khz - freq) > tsc_khz/100)
  967. goto out;
  968. tsc_khz = freq;
  969. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  970. (unsigned long)tsc_khz / 1000,
  971. (unsigned long)tsc_khz % 1000);
  972. out:
  973. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  974. }
  975. static int __init init_tsc_clocksource(void)
  976. {
  977. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  978. return 0;
  979. if (tsc_clocksource_reliable)
  980. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  981. /* lower the rating if we already know its unstable: */
  982. if (check_tsc_unstable()) {
  983. clocksource_tsc.rating = 0;
  984. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  985. }
  986. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  987. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  988. /*
  989. * Trust the results of the earlier calibration on systems
  990. * exporting a reliable TSC.
  991. */
  992. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  993. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  994. return 0;
  995. }
  996. schedule_delayed_work(&tsc_irqwork, 0);
  997. return 0;
  998. }
  999. /*
  1000. * We use device_initcall here, to ensure we run after the hpet
  1001. * is fully initialized, which may occur at fs_initcall time.
  1002. */
  1003. device_initcall(init_tsc_clocksource);
  1004. void __init tsc_init(void)
  1005. {
  1006. u64 lpj;
  1007. int cpu;
  1008. if (!cpu_has_tsc) {
  1009. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1010. return;
  1011. }
  1012. tsc_khz = x86_platform.calibrate_tsc();
  1013. cpu_khz = tsc_khz;
  1014. if (!tsc_khz) {
  1015. mark_tsc_unstable("could not calculate TSC khz");
  1016. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1017. return;
  1018. }
  1019. pr_info("Detected %lu.%03lu MHz processor\n",
  1020. (unsigned long)cpu_khz / 1000,
  1021. (unsigned long)cpu_khz % 1000);
  1022. /*
  1023. * Secondary CPUs do not run through tsc_init(), so set up
  1024. * all the scale factors for all CPUs, assuming the same
  1025. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1026. * up if their speed diverges)
  1027. */
  1028. for_each_possible_cpu(cpu) {
  1029. cyc2ns_init(cpu);
  1030. set_cyc2ns_scale(cpu_khz, cpu);
  1031. }
  1032. if (tsc_disabled > 0)
  1033. return;
  1034. /* now allow native_sched_clock() to use rdtsc */
  1035. tsc_disabled = 0;
  1036. static_branch_enable(&__use_tsc);
  1037. if (!no_sched_irq_time)
  1038. enable_sched_clock_irqtime();
  1039. lpj = ((u64)tsc_khz * 1000);
  1040. do_div(lpj, HZ);
  1041. lpj_fine = lpj;
  1042. use_tsc_delay();
  1043. if (unsynchronized_tsc())
  1044. mark_tsc_unstable("TSCs unsynchronized");
  1045. check_system_tsc_reliable();
  1046. }
  1047. #ifdef CONFIG_SMP
  1048. /*
  1049. * If we have a constant TSC and are using the TSC for the delay loop,
  1050. * we can skip clock calibration if another cpu in the same socket has already
  1051. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1052. * cpus in the socket - this should be a safe assumption.
  1053. */
  1054. unsigned long calibrate_delay_is_known(void)
  1055. {
  1056. int i, cpu = smp_processor_id();
  1057. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1058. return 0;
  1059. for_each_online_cpu(i)
  1060. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  1061. return cpu_data(i).loops_per_jiffy;
  1062. return 0;
  1063. }
  1064. #endif