dcache.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/syscalls.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/export.h>
  25. #include <linux/mount.h>
  26. #include <linux/file.h>
  27. #include <linux/uaccess.h>
  28. #include <linux/security.h>
  29. #include <linux/seqlock.h>
  30. #include <linux/swap.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/fs_struct.h>
  33. #include <linux/bit_spinlock.h>
  34. #include <linux/rculist_bl.h>
  35. #include <linux/prefetch.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/list_lru.h>
  38. #include <linux/kasan.h>
  39. #include "internal.h"
  40. #include "mount.h"
  41. /*
  42. * Usage:
  43. * dcache->d_inode->i_lock protects:
  44. * - i_dentry, d_u.d_alias, d_inode of aliases
  45. * dcache_hash_bucket lock protects:
  46. * - the dcache hash table
  47. * s_roots bl list spinlock protects:
  48. * - the s_roots list (see __d_drop)
  49. * dentry->d_sb->s_dentry_lru_lock protects:
  50. * - the dcache lru lists and counters
  51. * d_lock protects:
  52. * - d_flags
  53. * - d_name
  54. * - d_lru
  55. * - d_count
  56. * - d_unhashed()
  57. * - d_parent and d_subdirs
  58. * - childrens' d_child and d_parent
  59. * - d_u.d_alias, d_inode
  60. *
  61. * Ordering:
  62. * dentry->d_inode->i_lock
  63. * dentry->d_lock
  64. * dentry->d_sb->s_dentry_lru_lock
  65. * dcache_hash_bucket lock
  66. * s_roots lock
  67. *
  68. * If there is an ancestor relationship:
  69. * dentry->d_parent->...->d_parent->d_lock
  70. * ...
  71. * dentry->d_parent->d_lock
  72. * dentry->d_lock
  73. *
  74. * If no ancestor relationship:
  75. * if (dentry1 < dentry2)
  76. * dentry1->d_lock
  77. * dentry2->d_lock
  78. */
  79. int sysctl_vfs_cache_pressure __read_mostly = 100;
  80. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  81. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  82. EXPORT_SYMBOL(rename_lock);
  83. static struct kmem_cache *dentry_cache __read_mostly;
  84. const struct qstr empty_name = QSTR_INIT("", 0);
  85. EXPORT_SYMBOL(empty_name);
  86. const struct qstr slash_name = QSTR_INIT("/", 1);
  87. EXPORT_SYMBOL(slash_name);
  88. /*
  89. * This is the single most critical data structure when it comes
  90. * to the dcache: the hashtable for lookups. Somebody should try
  91. * to make this good - I've just made it work.
  92. *
  93. * This hash-function tries to avoid losing too many bits of hash
  94. * information, yet avoid using a prime hash-size or similar.
  95. */
  96. static unsigned int d_hash_shift __read_mostly;
  97. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  98. static inline struct hlist_bl_head *d_hash(unsigned int hash)
  99. {
  100. return dentry_hashtable + (hash >> d_hash_shift);
  101. }
  102. #define IN_LOOKUP_SHIFT 10
  103. static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
  104. static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
  105. unsigned int hash)
  106. {
  107. hash += (unsigned long) parent / L1_CACHE_BYTES;
  108. return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
  109. }
  110. /* Statistics gathering. */
  111. struct dentry_stat_t dentry_stat = {
  112. .age_limit = 45,
  113. };
  114. static DEFINE_PER_CPU(long, nr_dentry);
  115. static DEFINE_PER_CPU(long, nr_dentry_unused);
  116. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  117. /*
  118. * Here we resort to our own counters instead of using generic per-cpu counters
  119. * for consistency with what the vfs inode code does. We are expected to harvest
  120. * better code and performance by having our own specialized counters.
  121. *
  122. * Please note that the loop is done over all possible CPUs, not over all online
  123. * CPUs. The reason for this is that we don't want to play games with CPUs going
  124. * on and off. If one of them goes off, we will just keep their counters.
  125. *
  126. * glommer: See cffbc8a for details, and if you ever intend to change this,
  127. * please update all vfs counters to match.
  128. */
  129. static long get_nr_dentry(void)
  130. {
  131. int i;
  132. long sum = 0;
  133. for_each_possible_cpu(i)
  134. sum += per_cpu(nr_dentry, i);
  135. return sum < 0 ? 0 : sum;
  136. }
  137. static long get_nr_dentry_unused(void)
  138. {
  139. int i;
  140. long sum = 0;
  141. for_each_possible_cpu(i)
  142. sum += per_cpu(nr_dentry_unused, i);
  143. return sum < 0 ? 0 : sum;
  144. }
  145. int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
  146. size_t *lenp, loff_t *ppos)
  147. {
  148. dentry_stat.nr_dentry = get_nr_dentry();
  149. dentry_stat.nr_unused = get_nr_dentry_unused();
  150. return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  151. }
  152. #endif
  153. /*
  154. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  155. * The strings are both count bytes long, and count is non-zero.
  156. */
  157. #ifdef CONFIG_DCACHE_WORD_ACCESS
  158. #include <asm/word-at-a-time.h>
  159. /*
  160. * NOTE! 'cs' and 'scount' come from a dentry, so it has a
  161. * aligned allocation for this particular component. We don't
  162. * strictly need the load_unaligned_zeropad() safety, but it
  163. * doesn't hurt either.
  164. *
  165. * In contrast, 'ct' and 'tcount' can be from a pathname, and do
  166. * need the careful unaligned handling.
  167. */
  168. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  169. {
  170. unsigned long a,b,mask;
  171. for (;;) {
  172. a = *(unsigned long *)cs;
  173. b = load_unaligned_zeropad(ct);
  174. if (tcount < sizeof(unsigned long))
  175. break;
  176. if (unlikely(a != b))
  177. return 1;
  178. cs += sizeof(unsigned long);
  179. ct += sizeof(unsigned long);
  180. tcount -= sizeof(unsigned long);
  181. if (!tcount)
  182. return 0;
  183. }
  184. mask = bytemask_from_count(tcount);
  185. return unlikely(!!((a ^ b) & mask));
  186. }
  187. #else
  188. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  189. {
  190. do {
  191. if (*cs != *ct)
  192. return 1;
  193. cs++;
  194. ct++;
  195. tcount--;
  196. } while (tcount);
  197. return 0;
  198. }
  199. #endif
  200. static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
  201. {
  202. /*
  203. * Be careful about RCU walk racing with rename:
  204. * use 'READ_ONCE' to fetch the name pointer.
  205. *
  206. * NOTE! Even if a rename will mean that the length
  207. * was not loaded atomically, we don't care. The
  208. * RCU walk will check the sequence count eventually,
  209. * and catch it. And we won't overrun the buffer,
  210. * because we're reading the name pointer atomically,
  211. * and a dentry name is guaranteed to be properly
  212. * terminated with a NUL byte.
  213. *
  214. * End result: even if 'len' is wrong, we'll exit
  215. * early because the data cannot match (there can
  216. * be no NUL in the ct/tcount data)
  217. */
  218. const unsigned char *cs = READ_ONCE(dentry->d_name.name);
  219. return dentry_string_cmp(cs, ct, tcount);
  220. }
  221. struct external_name {
  222. union {
  223. atomic_t count;
  224. struct rcu_head head;
  225. } u;
  226. unsigned char name[];
  227. };
  228. static inline struct external_name *external_name(struct dentry *dentry)
  229. {
  230. return container_of(dentry->d_name.name, struct external_name, name[0]);
  231. }
  232. static void __d_free(struct rcu_head *head)
  233. {
  234. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  235. kmem_cache_free(dentry_cache, dentry);
  236. }
  237. static void __d_free_external(struct rcu_head *head)
  238. {
  239. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  240. kfree(external_name(dentry));
  241. kmem_cache_free(dentry_cache, dentry);
  242. }
  243. static inline int dname_external(const struct dentry *dentry)
  244. {
  245. return dentry->d_name.name != dentry->d_iname;
  246. }
  247. void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
  248. {
  249. spin_lock(&dentry->d_lock);
  250. if (unlikely(dname_external(dentry))) {
  251. struct external_name *p = external_name(dentry);
  252. atomic_inc(&p->u.count);
  253. spin_unlock(&dentry->d_lock);
  254. name->name = p->name;
  255. } else {
  256. memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
  257. spin_unlock(&dentry->d_lock);
  258. name->name = name->inline_name;
  259. }
  260. }
  261. EXPORT_SYMBOL(take_dentry_name_snapshot);
  262. void release_dentry_name_snapshot(struct name_snapshot *name)
  263. {
  264. if (unlikely(name->name != name->inline_name)) {
  265. struct external_name *p;
  266. p = container_of(name->name, struct external_name, name[0]);
  267. if (unlikely(atomic_dec_and_test(&p->u.count)))
  268. kfree_rcu(p, u.head);
  269. }
  270. }
  271. EXPORT_SYMBOL(release_dentry_name_snapshot);
  272. static inline void __d_set_inode_and_type(struct dentry *dentry,
  273. struct inode *inode,
  274. unsigned type_flags)
  275. {
  276. unsigned flags;
  277. dentry->d_inode = inode;
  278. flags = READ_ONCE(dentry->d_flags);
  279. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  280. flags |= type_flags;
  281. WRITE_ONCE(dentry->d_flags, flags);
  282. }
  283. static inline void __d_clear_type_and_inode(struct dentry *dentry)
  284. {
  285. unsigned flags = READ_ONCE(dentry->d_flags);
  286. flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
  287. WRITE_ONCE(dentry->d_flags, flags);
  288. dentry->d_inode = NULL;
  289. }
  290. static void dentry_free(struct dentry *dentry)
  291. {
  292. WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
  293. if (unlikely(dname_external(dentry))) {
  294. struct external_name *p = external_name(dentry);
  295. if (likely(atomic_dec_and_test(&p->u.count))) {
  296. call_rcu(&dentry->d_u.d_rcu, __d_free_external);
  297. return;
  298. }
  299. }
  300. /* if dentry was never visible to RCU, immediate free is OK */
  301. if (!(dentry->d_flags & DCACHE_RCUACCESS))
  302. __d_free(&dentry->d_u.d_rcu);
  303. else
  304. call_rcu(&dentry->d_u.d_rcu, __d_free);
  305. }
  306. /*
  307. * Release the dentry's inode, using the filesystem
  308. * d_iput() operation if defined.
  309. */
  310. static void dentry_unlink_inode(struct dentry * dentry)
  311. __releases(dentry->d_lock)
  312. __releases(dentry->d_inode->i_lock)
  313. {
  314. struct inode *inode = dentry->d_inode;
  315. bool hashed = !d_unhashed(dentry);
  316. if (hashed)
  317. raw_write_seqcount_begin(&dentry->d_seq);
  318. __d_clear_type_and_inode(dentry);
  319. hlist_del_init(&dentry->d_u.d_alias);
  320. if (hashed)
  321. raw_write_seqcount_end(&dentry->d_seq);
  322. spin_unlock(&dentry->d_lock);
  323. spin_unlock(&inode->i_lock);
  324. if (!inode->i_nlink)
  325. fsnotify_inoderemove(inode);
  326. if (dentry->d_op && dentry->d_op->d_iput)
  327. dentry->d_op->d_iput(dentry, inode);
  328. else
  329. iput(inode);
  330. }
  331. /*
  332. * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
  333. * is in use - which includes both the "real" per-superblock
  334. * LRU list _and_ the DCACHE_SHRINK_LIST use.
  335. *
  336. * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
  337. * on the shrink list (ie not on the superblock LRU list).
  338. *
  339. * The per-cpu "nr_dentry_unused" counters are updated with
  340. * the DCACHE_LRU_LIST bit.
  341. *
  342. * These helper functions make sure we always follow the
  343. * rules. d_lock must be held by the caller.
  344. */
  345. #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
  346. static void d_lru_add(struct dentry *dentry)
  347. {
  348. D_FLAG_VERIFY(dentry, 0);
  349. dentry->d_flags |= DCACHE_LRU_LIST;
  350. this_cpu_inc(nr_dentry_unused);
  351. WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  352. }
  353. static void d_lru_del(struct dentry *dentry)
  354. {
  355. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  356. dentry->d_flags &= ~DCACHE_LRU_LIST;
  357. this_cpu_dec(nr_dentry_unused);
  358. WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
  359. }
  360. static void d_shrink_del(struct dentry *dentry)
  361. {
  362. D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  363. list_del_init(&dentry->d_lru);
  364. dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
  365. this_cpu_dec(nr_dentry_unused);
  366. }
  367. static void d_shrink_add(struct dentry *dentry, struct list_head *list)
  368. {
  369. D_FLAG_VERIFY(dentry, 0);
  370. list_add(&dentry->d_lru, list);
  371. dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
  372. this_cpu_inc(nr_dentry_unused);
  373. }
  374. /*
  375. * These can only be called under the global LRU lock, ie during the
  376. * callback for freeing the LRU list. "isolate" removes it from the
  377. * LRU lists entirely, while shrink_move moves it to the indicated
  378. * private list.
  379. */
  380. static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
  381. {
  382. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  383. dentry->d_flags &= ~DCACHE_LRU_LIST;
  384. this_cpu_dec(nr_dentry_unused);
  385. list_lru_isolate(lru, &dentry->d_lru);
  386. }
  387. static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
  388. struct list_head *list)
  389. {
  390. D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
  391. dentry->d_flags |= DCACHE_SHRINK_LIST;
  392. list_lru_isolate_move(lru, &dentry->d_lru, list);
  393. }
  394. /*
  395. * dentry_lru_(add|del)_list) must be called with d_lock held.
  396. */
  397. static void dentry_lru_add(struct dentry *dentry)
  398. {
  399. if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
  400. d_lru_add(dentry);
  401. else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
  402. dentry->d_flags |= DCACHE_REFERENCED;
  403. }
  404. /**
  405. * d_drop - drop a dentry
  406. * @dentry: dentry to drop
  407. *
  408. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  409. * be found through a VFS lookup any more. Note that this is different from
  410. * deleting the dentry - d_delete will try to mark the dentry negative if
  411. * possible, giving a successful _negative_ lookup, while d_drop will
  412. * just make the cache lookup fail.
  413. *
  414. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  415. * reason (NFS timeouts or autofs deletes).
  416. *
  417. * __d_drop requires dentry->d_lock.
  418. */
  419. void __d_drop(struct dentry *dentry)
  420. {
  421. if (!d_unhashed(dentry)) {
  422. struct hlist_bl_head *b;
  423. /*
  424. * Hashed dentries are normally on the dentry hashtable,
  425. * with the exception of those newly allocated by
  426. * d_obtain_root, which are always IS_ROOT:
  427. */
  428. if (unlikely(IS_ROOT(dentry)))
  429. b = &dentry->d_sb->s_roots;
  430. else
  431. b = d_hash(dentry->d_name.hash);
  432. hlist_bl_lock(b);
  433. __hlist_bl_del(&dentry->d_hash);
  434. dentry->d_hash.pprev = NULL;
  435. hlist_bl_unlock(b);
  436. /* After this call, in-progress rcu-walk path lookup will fail. */
  437. write_seqcount_invalidate(&dentry->d_seq);
  438. }
  439. }
  440. EXPORT_SYMBOL(__d_drop);
  441. void d_drop(struct dentry *dentry)
  442. {
  443. spin_lock(&dentry->d_lock);
  444. __d_drop(dentry);
  445. spin_unlock(&dentry->d_lock);
  446. }
  447. EXPORT_SYMBOL(d_drop);
  448. static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
  449. {
  450. struct dentry *next;
  451. /*
  452. * Inform d_walk() and shrink_dentry_list() that we are no longer
  453. * attached to the dentry tree
  454. */
  455. dentry->d_flags |= DCACHE_DENTRY_KILLED;
  456. if (unlikely(list_empty(&dentry->d_child)))
  457. return;
  458. __list_del_entry(&dentry->d_child);
  459. /*
  460. * Cursors can move around the list of children. While we'd been
  461. * a normal list member, it didn't matter - ->d_child.next would've
  462. * been updated. However, from now on it won't be and for the
  463. * things like d_walk() it might end up with a nasty surprise.
  464. * Normally d_walk() doesn't care about cursors moving around -
  465. * ->d_lock on parent prevents that and since a cursor has no children
  466. * of its own, we get through it without ever unlocking the parent.
  467. * There is one exception, though - if we ascend from a child that
  468. * gets killed as soon as we unlock it, the next sibling is found
  469. * using the value left in its ->d_child.next. And if _that_
  470. * pointed to a cursor, and cursor got moved (e.g. by lseek())
  471. * before d_walk() regains parent->d_lock, we'll end up skipping
  472. * everything the cursor had been moved past.
  473. *
  474. * Solution: make sure that the pointer left behind in ->d_child.next
  475. * points to something that won't be moving around. I.e. skip the
  476. * cursors.
  477. */
  478. while (dentry->d_child.next != &parent->d_subdirs) {
  479. next = list_entry(dentry->d_child.next, struct dentry, d_child);
  480. if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
  481. break;
  482. dentry->d_child.next = next->d_child.next;
  483. }
  484. }
  485. static void __dentry_kill(struct dentry *dentry)
  486. {
  487. struct dentry *parent = NULL;
  488. bool can_free = true;
  489. if (!IS_ROOT(dentry))
  490. parent = dentry->d_parent;
  491. /*
  492. * The dentry is now unrecoverably dead to the world.
  493. */
  494. lockref_mark_dead(&dentry->d_lockref);
  495. /*
  496. * inform the fs via d_prune that this dentry is about to be
  497. * unhashed and destroyed.
  498. */
  499. if (dentry->d_flags & DCACHE_OP_PRUNE)
  500. dentry->d_op->d_prune(dentry);
  501. if (dentry->d_flags & DCACHE_LRU_LIST) {
  502. if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
  503. d_lru_del(dentry);
  504. }
  505. /* if it was on the hash then remove it */
  506. __d_drop(dentry);
  507. dentry_unlist(dentry, parent);
  508. if (parent)
  509. spin_unlock(&parent->d_lock);
  510. if (dentry->d_inode)
  511. dentry_unlink_inode(dentry);
  512. else
  513. spin_unlock(&dentry->d_lock);
  514. this_cpu_dec(nr_dentry);
  515. if (dentry->d_op && dentry->d_op->d_release)
  516. dentry->d_op->d_release(dentry);
  517. spin_lock(&dentry->d_lock);
  518. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  519. dentry->d_flags |= DCACHE_MAY_FREE;
  520. can_free = false;
  521. }
  522. spin_unlock(&dentry->d_lock);
  523. if (likely(can_free))
  524. dentry_free(dentry);
  525. }
  526. /*
  527. * Finish off a dentry we've decided to kill.
  528. * dentry->d_lock must be held, returns with it unlocked.
  529. * If ref is non-zero, then decrement the refcount too.
  530. * Returns dentry requiring refcount drop, or NULL if we're done.
  531. */
  532. static struct dentry *dentry_kill(struct dentry *dentry)
  533. __releases(dentry->d_lock)
  534. {
  535. struct inode *inode = dentry->d_inode;
  536. struct dentry *parent = NULL;
  537. if (inode && unlikely(!spin_trylock(&inode->i_lock)))
  538. goto failed;
  539. if (!IS_ROOT(dentry)) {
  540. parent = dentry->d_parent;
  541. if (unlikely(!spin_trylock(&parent->d_lock))) {
  542. if (inode)
  543. spin_unlock(&inode->i_lock);
  544. goto failed;
  545. }
  546. }
  547. __dentry_kill(dentry);
  548. return parent;
  549. failed:
  550. spin_unlock(&dentry->d_lock);
  551. return dentry; /* try again with same dentry */
  552. }
  553. static inline struct dentry *lock_parent(struct dentry *dentry)
  554. {
  555. struct dentry *parent = dentry->d_parent;
  556. if (IS_ROOT(dentry))
  557. return NULL;
  558. if (unlikely(dentry->d_lockref.count < 0))
  559. return NULL;
  560. if (likely(spin_trylock(&parent->d_lock)))
  561. return parent;
  562. rcu_read_lock();
  563. spin_unlock(&dentry->d_lock);
  564. again:
  565. parent = READ_ONCE(dentry->d_parent);
  566. spin_lock(&parent->d_lock);
  567. /*
  568. * We can't blindly lock dentry until we are sure
  569. * that we won't violate the locking order.
  570. * Any changes of dentry->d_parent must have
  571. * been done with parent->d_lock held, so
  572. * spin_lock() above is enough of a barrier
  573. * for checking if it's still our child.
  574. */
  575. if (unlikely(parent != dentry->d_parent)) {
  576. spin_unlock(&parent->d_lock);
  577. goto again;
  578. }
  579. rcu_read_unlock();
  580. if (parent != dentry)
  581. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  582. else
  583. parent = NULL;
  584. return parent;
  585. }
  586. /*
  587. * Try to do a lockless dput(), and return whether that was successful.
  588. *
  589. * If unsuccessful, we return false, having already taken the dentry lock.
  590. *
  591. * The caller needs to hold the RCU read lock, so that the dentry is
  592. * guaranteed to stay around even if the refcount goes down to zero!
  593. */
  594. static inline bool fast_dput(struct dentry *dentry)
  595. {
  596. int ret;
  597. unsigned int d_flags;
  598. /*
  599. * If we have a d_op->d_delete() operation, we sould not
  600. * let the dentry count go to zero, so use "put_or_lock".
  601. */
  602. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
  603. return lockref_put_or_lock(&dentry->d_lockref);
  604. /*
  605. * .. otherwise, we can try to just decrement the
  606. * lockref optimistically.
  607. */
  608. ret = lockref_put_return(&dentry->d_lockref);
  609. /*
  610. * If the lockref_put_return() failed due to the lock being held
  611. * by somebody else, the fast path has failed. We will need to
  612. * get the lock, and then check the count again.
  613. */
  614. if (unlikely(ret < 0)) {
  615. spin_lock(&dentry->d_lock);
  616. if (dentry->d_lockref.count > 1) {
  617. dentry->d_lockref.count--;
  618. spin_unlock(&dentry->d_lock);
  619. return 1;
  620. }
  621. return 0;
  622. }
  623. /*
  624. * If we weren't the last ref, we're done.
  625. */
  626. if (ret)
  627. return 1;
  628. /*
  629. * Careful, careful. The reference count went down
  630. * to zero, but we don't hold the dentry lock, so
  631. * somebody else could get it again, and do another
  632. * dput(), and we need to not race with that.
  633. *
  634. * However, there is a very special and common case
  635. * where we don't care, because there is nothing to
  636. * do: the dentry is still hashed, it does not have
  637. * a 'delete' op, and it's referenced and already on
  638. * the LRU list.
  639. *
  640. * NOTE! Since we aren't locked, these values are
  641. * not "stable". However, it is sufficient that at
  642. * some point after we dropped the reference the
  643. * dentry was hashed and the flags had the proper
  644. * value. Other dentry users may have re-gotten
  645. * a reference to the dentry and change that, but
  646. * our work is done - we can leave the dentry
  647. * around with a zero refcount.
  648. */
  649. smp_rmb();
  650. d_flags = READ_ONCE(dentry->d_flags);
  651. d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
  652. /* Nothing to do? Dropping the reference was all we needed? */
  653. if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
  654. return 1;
  655. /*
  656. * Not the fast normal case? Get the lock. We've already decremented
  657. * the refcount, but we'll need to re-check the situation after
  658. * getting the lock.
  659. */
  660. spin_lock(&dentry->d_lock);
  661. /*
  662. * Did somebody else grab a reference to it in the meantime, and
  663. * we're no longer the last user after all? Alternatively, somebody
  664. * else could have killed it and marked it dead. Either way, we
  665. * don't need to do anything else.
  666. */
  667. if (dentry->d_lockref.count) {
  668. spin_unlock(&dentry->d_lock);
  669. return 1;
  670. }
  671. /*
  672. * Re-get the reference we optimistically dropped. We hold the
  673. * lock, and we just tested that it was zero, so we can just
  674. * set it to 1.
  675. */
  676. dentry->d_lockref.count = 1;
  677. return 0;
  678. }
  679. /*
  680. * This is dput
  681. *
  682. * This is complicated by the fact that we do not want to put
  683. * dentries that are no longer on any hash chain on the unused
  684. * list: we'd much rather just get rid of them immediately.
  685. *
  686. * However, that implies that we have to traverse the dentry
  687. * tree upwards to the parents which might _also_ now be
  688. * scheduled for deletion (it may have been only waiting for
  689. * its last child to go away).
  690. *
  691. * This tail recursion is done by hand as we don't want to depend
  692. * on the compiler to always get this right (gcc generally doesn't).
  693. * Real recursion would eat up our stack space.
  694. */
  695. /*
  696. * dput - release a dentry
  697. * @dentry: dentry to release
  698. *
  699. * Release a dentry. This will drop the usage count and if appropriate
  700. * call the dentry unlink method as well as removing it from the queues and
  701. * releasing its resources. If the parent dentries were scheduled for release
  702. * they too may now get deleted.
  703. */
  704. void dput(struct dentry *dentry)
  705. {
  706. if (unlikely(!dentry))
  707. return;
  708. repeat:
  709. might_sleep();
  710. rcu_read_lock();
  711. if (likely(fast_dput(dentry))) {
  712. rcu_read_unlock();
  713. return;
  714. }
  715. /* Slow case: now with the dentry lock held */
  716. rcu_read_unlock();
  717. WARN_ON(d_in_lookup(dentry));
  718. /* Unreachable? Get rid of it */
  719. if (unlikely(d_unhashed(dentry)))
  720. goto kill_it;
  721. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  722. goto kill_it;
  723. if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
  724. if (dentry->d_op->d_delete(dentry))
  725. goto kill_it;
  726. }
  727. dentry_lru_add(dentry);
  728. dentry->d_lockref.count--;
  729. spin_unlock(&dentry->d_lock);
  730. return;
  731. kill_it:
  732. dentry = dentry_kill(dentry);
  733. if (dentry) {
  734. cond_resched();
  735. goto repeat;
  736. }
  737. }
  738. EXPORT_SYMBOL(dput);
  739. /* This must be called with d_lock held */
  740. static inline void __dget_dlock(struct dentry *dentry)
  741. {
  742. dentry->d_lockref.count++;
  743. }
  744. static inline void __dget(struct dentry *dentry)
  745. {
  746. lockref_get(&dentry->d_lockref);
  747. }
  748. struct dentry *dget_parent(struct dentry *dentry)
  749. {
  750. int gotref;
  751. struct dentry *ret;
  752. /*
  753. * Do optimistic parent lookup without any
  754. * locking.
  755. */
  756. rcu_read_lock();
  757. ret = READ_ONCE(dentry->d_parent);
  758. gotref = lockref_get_not_zero(&ret->d_lockref);
  759. rcu_read_unlock();
  760. if (likely(gotref)) {
  761. if (likely(ret == READ_ONCE(dentry->d_parent)))
  762. return ret;
  763. dput(ret);
  764. }
  765. repeat:
  766. /*
  767. * Don't need rcu_dereference because we re-check it was correct under
  768. * the lock.
  769. */
  770. rcu_read_lock();
  771. ret = dentry->d_parent;
  772. spin_lock(&ret->d_lock);
  773. if (unlikely(ret != dentry->d_parent)) {
  774. spin_unlock(&ret->d_lock);
  775. rcu_read_unlock();
  776. goto repeat;
  777. }
  778. rcu_read_unlock();
  779. BUG_ON(!ret->d_lockref.count);
  780. ret->d_lockref.count++;
  781. spin_unlock(&ret->d_lock);
  782. return ret;
  783. }
  784. EXPORT_SYMBOL(dget_parent);
  785. /**
  786. * d_find_alias - grab a hashed alias of inode
  787. * @inode: inode in question
  788. *
  789. * If inode has a hashed alias, or is a directory and has any alias,
  790. * acquire the reference to alias and return it. Otherwise return NULL.
  791. * Notice that if inode is a directory there can be only one alias and
  792. * it can be unhashed only if it has no children, or if it is the root
  793. * of a filesystem, or if the directory was renamed and d_revalidate
  794. * was the first vfs operation to notice.
  795. *
  796. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  797. * any other hashed alias over that one.
  798. */
  799. static struct dentry *__d_find_alias(struct inode *inode)
  800. {
  801. struct dentry *alias, *discon_alias;
  802. again:
  803. discon_alias = NULL;
  804. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  805. spin_lock(&alias->d_lock);
  806. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  807. if (IS_ROOT(alias) &&
  808. (alias->d_flags & DCACHE_DISCONNECTED)) {
  809. discon_alias = alias;
  810. } else {
  811. __dget_dlock(alias);
  812. spin_unlock(&alias->d_lock);
  813. return alias;
  814. }
  815. }
  816. spin_unlock(&alias->d_lock);
  817. }
  818. if (discon_alias) {
  819. alias = discon_alias;
  820. spin_lock(&alias->d_lock);
  821. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  822. __dget_dlock(alias);
  823. spin_unlock(&alias->d_lock);
  824. return alias;
  825. }
  826. spin_unlock(&alias->d_lock);
  827. goto again;
  828. }
  829. return NULL;
  830. }
  831. struct dentry *d_find_alias(struct inode *inode)
  832. {
  833. struct dentry *de = NULL;
  834. if (!hlist_empty(&inode->i_dentry)) {
  835. spin_lock(&inode->i_lock);
  836. de = __d_find_alias(inode);
  837. spin_unlock(&inode->i_lock);
  838. }
  839. return de;
  840. }
  841. EXPORT_SYMBOL(d_find_alias);
  842. /*
  843. * Try to kill dentries associated with this inode.
  844. * WARNING: you must own a reference to inode.
  845. */
  846. void d_prune_aliases(struct inode *inode)
  847. {
  848. struct dentry *dentry;
  849. restart:
  850. spin_lock(&inode->i_lock);
  851. hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
  852. spin_lock(&dentry->d_lock);
  853. if (!dentry->d_lockref.count) {
  854. struct dentry *parent = lock_parent(dentry);
  855. if (likely(!dentry->d_lockref.count)) {
  856. __dentry_kill(dentry);
  857. dput(parent);
  858. goto restart;
  859. }
  860. if (parent)
  861. spin_unlock(&parent->d_lock);
  862. }
  863. spin_unlock(&dentry->d_lock);
  864. }
  865. spin_unlock(&inode->i_lock);
  866. }
  867. EXPORT_SYMBOL(d_prune_aliases);
  868. static void shrink_dentry_list(struct list_head *list)
  869. {
  870. struct dentry *dentry, *parent;
  871. while (!list_empty(list)) {
  872. struct inode *inode;
  873. dentry = list_entry(list->prev, struct dentry, d_lru);
  874. spin_lock(&dentry->d_lock);
  875. parent = lock_parent(dentry);
  876. /*
  877. * The dispose list is isolated and dentries are not accounted
  878. * to the LRU here, so we can simply remove it from the list
  879. * here regardless of whether it is referenced or not.
  880. */
  881. d_shrink_del(dentry);
  882. /*
  883. * We found an inuse dentry which was not removed from
  884. * the LRU because of laziness during lookup. Do not free it.
  885. */
  886. if (dentry->d_lockref.count > 0) {
  887. spin_unlock(&dentry->d_lock);
  888. if (parent)
  889. spin_unlock(&parent->d_lock);
  890. continue;
  891. }
  892. if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
  893. bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
  894. spin_unlock(&dentry->d_lock);
  895. if (parent)
  896. spin_unlock(&parent->d_lock);
  897. if (can_free)
  898. dentry_free(dentry);
  899. continue;
  900. }
  901. inode = dentry->d_inode;
  902. if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
  903. d_shrink_add(dentry, list);
  904. spin_unlock(&dentry->d_lock);
  905. if (parent)
  906. spin_unlock(&parent->d_lock);
  907. continue;
  908. }
  909. __dentry_kill(dentry);
  910. /*
  911. * We need to prune ancestors too. This is necessary to prevent
  912. * quadratic behavior of shrink_dcache_parent(), but is also
  913. * expected to be beneficial in reducing dentry cache
  914. * fragmentation.
  915. */
  916. dentry = parent;
  917. while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
  918. parent = lock_parent(dentry);
  919. if (dentry->d_lockref.count != 1) {
  920. dentry->d_lockref.count--;
  921. spin_unlock(&dentry->d_lock);
  922. if (parent)
  923. spin_unlock(&parent->d_lock);
  924. break;
  925. }
  926. inode = dentry->d_inode; /* can't be NULL */
  927. if (unlikely(!spin_trylock(&inode->i_lock))) {
  928. spin_unlock(&dentry->d_lock);
  929. if (parent)
  930. spin_unlock(&parent->d_lock);
  931. cpu_relax();
  932. continue;
  933. }
  934. __dentry_kill(dentry);
  935. dentry = parent;
  936. }
  937. }
  938. }
  939. static enum lru_status dentry_lru_isolate(struct list_head *item,
  940. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  941. {
  942. struct list_head *freeable = arg;
  943. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  944. /*
  945. * we are inverting the lru lock/dentry->d_lock here,
  946. * so use a trylock. If we fail to get the lock, just skip
  947. * it
  948. */
  949. if (!spin_trylock(&dentry->d_lock))
  950. return LRU_SKIP;
  951. /*
  952. * Referenced dentries are still in use. If they have active
  953. * counts, just remove them from the LRU. Otherwise give them
  954. * another pass through the LRU.
  955. */
  956. if (dentry->d_lockref.count) {
  957. d_lru_isolate(lru, dentry);
  958. spin_unlock(&dentry->d_lock);
  959. return LRU_REMOVED;
  960. }
  961. if (dentry->d_flags & DCACHE_REFERENCED) {
  962. dentry->d_flags &= ~DCACHE_REFERENCED;
  963. spin_unlock(&dentry->d_lock);
  964. /*
  965. * The list move itself will be made by the common LRU code. At
  966. * this point, we've dropped the dentry->d_lock but keep the
  967. * lru lock. This is safe to do, since every list movement is
  968. * protected by the lru lock even if both locks are held.
  969. *
  970. * This is guaranteed by the fact that all LRU management
  971. * functions are intermediated by the LRU API calls like
  972. * list_lru_add and list_lru_del. List movement in this file
  973. * only ever occur through this functions or through callbacks
  974. * like this one, that are called from the LRU API.
  975. *
  976. * The only exceptions to this are functions like
  977. * shrink_dentry_list, and code that first checks for the
  978. * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
  979. * operating only with stack provided lists after they are
  980. * properly isolated from the main list. It is thus, always a
  981. * local access.
  982. */
  983. return LRU_ROTATE;
  984. }
  985. d_lru_shrink_move(lru, dentry, freeable);
  986. spin_unlock(&dentry->d_lock);
  987. return LRU_REMOVED;
  988. }
  989. /**
  990. * prune_dcache_sb - shrink the dcache
  991. * @sb: superblock
  992. * @sc: shrink control, passed to list_lru_shrink_walk()
  993. *
  994. * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
  995. * is done when we need more memory and called from the superblock shrinker
  996. * function.
  997. *
  998. * This function may fail to free any resources if all the dentries are in
  999. * use.
  1000. */
  1001. long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
  1002. {
  1003. LIST_HEAD(dispose);
  1004. long freed;
  1005. freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
  1006. dentry_lru_isolate, &dispose);
  1007. shrink_dentry_list(&dispose);
  1008. return freed;
  1009. }
  1010. static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
  1011. struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
  1012. {
  1013. struct list_head *freeable = arg;
  1014. struct dentry *dentry = container_of(item, struct dentry, d_lru);
  1015. /*
  1016. * we are inverting the lru lock/dentry->d_lock here,
  1017. * so use a trylock. If we fail to get the lock, just skip
  1018. * it
  1019. */
  1020. if (!spin_trylock(&dentry->d_lock))
  1021. return LRU_SKIP;
  1022. d_lru_shrink_move(lru, dentry, freeable);
  1023. spin_unlock(&dentry->d_lock);
  1024. return LRU_REMOVED;
  1025. }
  1026. /**
  1027. * shrink_dcache_sb - shrink dcache for a superblock
  1028. * @sb: superblock
  1029. *
  1030. * Shrink the dcache for the specified super block. This is used to free
  1031. * the dcache before unmounting a file system.
  1032. */
  1033. void shrink_dcache_sb(struct super_block *sb)
  1034. {
  1035. long freed;
  1036. do {
  1037. LIST_HEAD(dispose);
  1038. freed = list_lru_walk(&sb->s_dentry_lru,
  1039. dentry_lru_isolate_shrink, &dispose, 1024);
  1040. this_cpu_sub(nr_dentry_unused, freed);
  1041. shrink_dentry_list(&dispose);
  1042. cond_resched();
  1043. } while (list_lru_count(&sb->s_dentry_lru) > 0);
  1044. }
  1045. EXPORT_SYMBOL(shrink_dcache_sb);
  1046. /**
  1047. * enum d_walk_ret - action to talke during tree walk
  1048. * @D_WALK_CONTINUE: contrinue walk
  1049. * @D_WALK_QUIT: quit walk
  1050. * @D_WALK_NORETRY: quit when retry is needed
  1051. * @D_WALK_SKIP: skip this dentry and its children
  1052. */
  1053. enum d_walk_ret {
  1054. D_WALK_CONTINUE,
  1055. D_WALK_QUIT,
  1056. D_WALK_NORETRY,
  1057. D_WALK_SKIP,
  1058. };
  1059. /**
  1060. * d_walk - walk the dentry tree
  1061. * @parent: start of walk
  1062. * @data: data passed to @enter() and @finish()
  1063. * @enter: callback when first entering the dentry
  1064. * @finish: callback when successfully finished the walk
  1065. *
  1066. * The @enter() and @finish() callbacks are called with d_lock held.
  1067. */
  1068. static void d_walk(struct dentry *parent, void *data,
  1069. enum d_walk_ret (*enter)(void *, struct dentry *),
  1070. void (*finish)(void *))
  1071. {
  1072. struct dentry *this_parent;
  1073. struct list_head *next;
  1074. unsigned seq = 0;
  1075. enum d_walk_ret ret;
  1076. bool retry = true;
  1077. again:
  1078. read_seqbegin_or_lock(&rename_lock, &seq);
  1079. this_parent = parent;
  1080. spin_lock(&this_parent->d_lock);
  1081. ret = enter(data, this_parent);
  1082. switch (ret) {
  1083. case D_WALK_CONTINUE:
  1084. break;
  1085. case D_WALK_QUIT:
  1086. case D_WALK_SKIP:
  1087. goto out_unlock;
  1088. case D_WALK_NORETRY:
  1089. retry = false;
  1090. break;
  1091. }
  1092. repeat:
  1093. next = this_parent->d_subdirs.next;
  1094. resume:
  1095. while (next != &this_parent->d_subdirs) {
  1096. struct list_head *tmp = next;
  1097. struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
  1098. next = tmp->next;
  1099. if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
  1100. continue;
  1101. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1102. ret = enter(data, dentry);
  1103. switch (ret) {
  1104. case D_WALK_CONTINUE:
  1105. break;
  1106. case D_WALK_QUIT:
  1107. spin_unlock(&dentry->d_lock);
  1108. goto out_unlock;
  1109. case D_WALK_NORETRY:
  1110. retry = false;
  1111. break;
  1112. case D_WALK_SKIP:
  1113. spin_unlock(&dentry->d_lock);
  1114. continue;
  1115. }
  1116. if (!list_empty(&dentry->d_subdirs)) {
  1117. spin_unlock(&this_parent->d_lock);
  1118. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1119. this_parent = dentry;
  1120. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1121. goto repeat;
  1122. }
  1123. spin_unlock(&dentry->d_lock);
  1124. }
  1125. /*
  1126. * All done at this level ... ascend and resume the search.
  1127. */
  1128. rcu_read_lock();
  1129. ascend:
  1130. if (this_parent != parent) {
  1131. struct dentry *child = this_parent;
  1132. this_parent = child->d_parent;
  1133. spin_unlock(&child->d_lock);
  1134. spin_lock(&this_parent->d_lock);
  1135. /* might go back up the wrong parent if we have had a rename. */
  1136. if (need_seqretry(&rename_lock, seq))
  1137. goto rename_retry;
  1138. /* go into the first sibling still alive */
  1139. do {
  1140. next = child->d_child.next;
  1141. if (next == &this_parent->d_subdirs)
  1142. goto ascend;
  1143. child = list_entry(next, struct dentry, d_child);
  1144. } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
  1145. rcu_read_unlock();
  1146. goto resume;
  1147. }
  1148. if (need_seqretry(&rename_lock, seq))
  1149. goto rename_retry;
  1150. rcu_read_unlock();
  1151. if (finish)
  1152. finish(data);
  1153. out_unlock:
  1154. spin_unlock(&this_parent->d_lock);
  1155. done_seqretry(&rename_lock, seq);
  1156. return;
  1157. rename_retry:
  1158. spin_unlock(&this_parent->d_lock);
  1159. rcu_read_unlock();
  1160. BUG_ON(seq & 1);
  1161. if (!retry)
  1162. return;
  1163. seq = 1;
  1164. goto again;
  1165. }
  1166. struct check_mount {
  1167. struct vfsmount *mnt;
  1168. unsigned int mounted;
  1169. };
  1170. static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
  1171. {
  1172. struct check_mount *info = data;
  1173. struct path path = { .mnt = info->mnt, .dentry = dentry };
  1174. if (likely(!d_mountpoint(dentry)))
  1175. return D_WALK_CONTINUE;
  1176. if (__path_is_mountpoint(&path)) {
  1177. info->mounted = 1;
  1178. return D_WALK_QUIT;
  1179. }
  1180. return D_WALK_CONTINUE;
  1181. }
  1182. /**
  1183. * path_has_submounts - check for mounts over a dentry in the
  1184. * current namespace.
  1185. * @parent: path to check.
  1186. *
  1187. * Return true if the parent or its subdirectories contain
  1188. * a mount point in the current namespace.
  1189. */
  1190. int path_has_submounts(const struct path *parent)
  1191. {
  1192. struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
  1193. read_seqlock_excl(&mount_lock);
  1194. d_walk(parent->dentry, &data, path_check_mount, NULL);
  1195. read_sequnlock_excl(&mount_lock);
  1196. return data.mounted;
  1197. }
  1198. EXPORT_SYMBOL(path_has_submounts);
  1199. /*
  1200. * Called by mount code to set a mountpoint and check if the mountpoint is
  1201. * reachable (e.g. NFS can unhash a directory dentry and then the complete
  1202. * subtree can become unreachable).
  1203. *
  1204. * Only one of d_invalidate() and d_set_mounted() must succeed. For
  1205. * this reason take rename_lock and d_lock on dentry and ancestors.
  1206. */
  1207. int d_set_mounted(struct dentry *dentry)
  1208. {
  1209. struct dentry *p;
  1210. int ret = -ENOENT;
  1211. write_seqlock(&rename_lock);
  1212. for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
  1213. /* Need exclusion wrt. d_invalidate() */
  1214. spin_lock(&p->d_lock);
  1215. if (unlikely(d_unhashed(p))) {
  1216. spin_unlock(&p->d_lock);
  1217. goto out;
  1218. }
  1219. spin_unlock(&p->d_lock);
  1220. }
  1221. spin_lock(&dentry->d_lock);
  1222. if (!d_unlinked(dentry)) {
  1223. ret = -EBUSY;
  1224. if (!d_mountpoint(dentry)) {
  1225. dentry->d_flags |= DCACHE_MOUNTED;
  1226. ret = 0;
  1227. }
  1228. }
  1229. spin_unlock(&dentry->d_lock);
  1230. out:
  1231. write_sequnlock(&rename_lock);
  1232. return ret;
  1233. }
  1234. /*
  1235. * Search the dentry child list of the specified parent,
  1236. * and move any unused dentries to the end of the unused
  1237. * list for prune_dcache(). We descend to the next level
  1238. * whenever the d_subdirs list is non-empty and continue
  1239. * searching.
  1240. *
  1241. * It returns zero iff there are no unused children,
  1242. * otherwise it returns the number of children moved to
  1243. * the end of the unused list. This may not be the total
  1244. * number of unused children, because select_parent can
  1245. * drop the lock and return early due to latency
  1246. * constraints.
  1247. */
  1248. struct select_data {
  1249. struct dentry *start;
  1250. struct list_head dispose;
  1251. int found;
  1252. };
  1253. static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
  1254. {
  1255. struct select_data *data = _data;
  1256. enum d_walk_ret ret = D_WALK_CONTINUE;
  1257. if (data->start == dentry)
  1258. goto out;
  1259. if (dentry->d_flags & DCACHE_SHRINK_LIST) {
  1260. data->found++;
  1261. } else {
  1262. if (dentry->d_flags & DCACHE_LRU_LIST)
  1263. d_lru_del(dentry);
  1264. if (!dentry->d_lockref.count) {
  1265. d_shrink_add(dentry, &data->dispose);
  1266. data->found++;
  1267. }
  1268. }
  1269. /*
  1270. * We can return to the caller if we have found some (this
  1271. * ensures forward progress). We'll be coming back to find
  1272. * the rest.
  1273. */
  1274. if (!list_empty(&data->dispose))
  1275. ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
  1276. out:
  1277. return ret;
  1278. }
  1279. /**
  1280. * shrink_dcache_parent - prune dcache
  1281. * @parent: parent of entries to prune
  1282. *
  1283. * Prune the dcache to remove unused children of the parent dentry.
  1284. */
  1285. void shrink_dcache_parent(struct dentry *parent)
  1286. {
  1287. for (;;) {
  1288. struct select_data data;
  1289. INIT_LIST_HEAD(&data.dispose);
  1290. data.start = parent;
  1291. data.found = 0;
  1292. d_walk(parent, &data, select_collect, NULL);
  1293. if (!data.found)
  1294. break;
  1295. shrink_dentry_list(&data.dispose);
  1296. cond_resched();
  1297. }
  1298. }
  1299. EXPORT_SYMBOL(shrink_dcache_parent);
  1300. static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
  1301. {
  1302. /* it has busy descendents; complain about those instead */
  1303. if (!list_empty(&dentry->d_subdirs))
  1304. return D_WALK_CONTINUE;
  1305. /* root with refcount 1 is fine */
  1306. if (dentry == _data && dentry->d_lockref.count == 1)
  1307. return D_WALK_CONTINUE;
  1308. printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
  1309. " still in use (%d) [unmount of %s %s]\n",
  1310. dentry,
  1311. dentry->d_inode ?
  1312. dentry->d_inode->i_ino : 0UL,
  1313. dentry,
  1314. dentry->d_lockref.count,
  1315. dentry->d_sb->s_type->name,
  1316. dentry->d_sb->s_id);
  1317. WARN_ON(1);
  1318. return D_WALK_CONTINUE;
  1319. }
  1320. static void do_one_tree(struct dentry *dentry)
  1321. {
  1322. shrink_dcache_parent(dentry);
  1323. d_walk(dentry, dentry, umount_check, NULL);
  1324. d_drop(dentry);
  1325. dput(dentry);
  1326. }
  1327. /*
  1328. * destroy the dentries attached to a superblock on unmounting
  1329. */
  1330. void shrink_dcache_for_umount(struct super_block *sb)
  1331. {
  1332. struct dentry *dentry;
  1333. WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
  1334. dentry = sb->s_root;
  1335. sb->s_root = NULL;
  1336. do_one_tree(dentry);
  1337. while (!hlist_bl_empty(&sb->s_roots)) {
  1338. dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
  1339. do_one_tree(dentry);
  1340. }
  1341. }
  1342. struct detach_data {
  1343. struct select_data select;
  1344. struct dentry *mountpoint;
  1345. };
  1346. static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
  1347. {
  1348. struct detach_data *data = _data;
  1349. if (d_mountpoint(dentry)) {
  1350. __dget_dlock(dentry);
  1351. data->mountpoint = dentry;
  1352. return D_WALK_QUIT;
  1353. }
  1354. return select_collect(&data->select, dentry);
  1355. }
  1356. static void check_and_drop(void *_data)
  1357. {
  1358. struct detach_data *data = _data;
  1359. if (!data->mountpoint && list_empty(&data->select.dispose))
  1360. __d_drop(data->select.start);
  1361. }
  1362. /**
  1363. * d_invalidate - detach submounts, prune dcache, and drop
  1364. * @dentry: dentry to invalidate (aka detach, prune and drop)
  1365. *
  1366. * no dcache lock.
  1367. *
  1368. * The final d_drop is done as an atomic operation relative to
  1369. * rename_lock ensuring there are no races with d_set_mounted. This
  1370. * ensures there are no unhashed dentries on the path to a mountpoint.
  1371. */
  1372. void d_invalidate(struct dentry *dentry)
  1373. {
  1374. /*
  1375. * If it's already been dropped, return OK.
  1376. */
  1377. spin_lock(&dentry->d_lock);
  1378. if (d_unhashed(dentry)) {
  1379. spin_unlock(&dentry->d_lock);
  1380. return;
  1381. }
  1382. spin_unlock(&dentry->d_lock);
  1383. /* Negative dentries can be dropped without further checks */
  1384. if (!dentry->d_inode) {
  1385. d_drop(dentry);
  1386. return;
  1387. }
  1388. for (;;) {
  1389. struct detach_data data;
  1390. data.mountpoint = NULL;
  1391. INIT_LIST_HEAD(&data.select.dispose);
  1392. data.select.start = dentry;
  1393. data.select.found = 0;
  1394. d_walk(dentry, &data, detach_and_collect, check_and_drop);
  1395. if (!list_empty(&data.select.dispose))
  1396. shrink_dentry_list(&data.select.dispose);
  1397. else if (!data.mountpoint)
  1398. return;
  1399. if (data.mountpoint) {
  1400. detach_mounts(data.mountpoint);
  1401. dput(data.mountpoint);
  1402. }
  1403. cond_resched();
  1404. }
  1405. }
  1406. EXPORT_SYMBOL(d_invalidate);
  1407. /**
  1408. * __d_alloc - allocate a dcache entry
  1409. * @sb: filesystem it will belong to
  1410. * @name: qstr of the name
  1411. *
  1412. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1413. * available. On a success the dentry is returned. The name passed in is
  1414. * copied and the copy passed in may be reused after this call.
  1415. */
  1416. struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1417. {
  1418. struct dentry *dentry;
  1419. char *dname;
  1420. int err;
  1421. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1422. if (!dentry)
  1423. return NULL;
  1424. /*
  1425. * We guarantee that the inline name is always NUL-terminated.
  1426. * This way the memcpy() done by the name switching in rename
  1427. * will still always have a NUL at the end, even if we might
  1428. * be overwriting an internal NUL character
  1429. */
  1430. dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
  1431. if (unlikely(!name)) {
  1432. name = &slash_name;
  1433. dname = dentry->d_iname;
  1434. } else if (name->len > DNAME_INLINE_LEN-1) {
  1435. size_t size = offsetof(struct external_name, name[1]);
  1436. struct external_name *p = kmalloc(size + name->len,
  1437. GFP_KERNEL_ACCOUNT);
  1438. if (!p) {
  1439. kmem_cache_free(dentry_cache, dentry);
  1440. return NULL;
  1441. }
  1442. atomic_set(&p->u.count, 1);
  1443. dname = p->name;
  1444. if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
  1445. kasan_unpoison_shadow(dname,
  1446. round_up(name->len + 1, sizeof(unsigned long)));
  1447. } else {
  1448. dname = dentry->d_iname;
  1449. }
  1450. dentry->d_name.len = name->len;
  1451. dentry->d_name.hash = name->hash;
  1452. memcpy(dname, name->name, name->len);
  1453. dname[name->len] = 0;
  1454. /* Make sure we always see the terminating NUL character */
  1455. smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
  1456. dentry->d_lockref.count = 1;
  1457. dentry->d_flags = 0;
  1458. spin_lock_init(&dentry->d_lock);
  1459. seqcount_init(&dentry->d_seq);
  1460. dentry->d_inode = NULL;
  1461. dentry->d_parent = dentry;
  1462. dentry->d_sb = sb;
  1463. dentry->d_op = NULL;
  1464. dentry->d_fsdata = NULL;
  1465. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1466. INIT_LIST_HEAD(&dentry->d_lru);
  1467. INIT_LIST_HEAD(&dentry->d_subdirs);
  1468. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  1469. INIT_LIST_HEAD(&dentry->d_child);
  1470. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1471. if (dentry->d_op && dentry->d_op->d_init) {
  1472. err = dentry->d_op->d_init(dentry);
  1473. if (err) {
  1474. if (dname_external(dentry))
  1475. kfree(external_name(dentry));
  1476. kmem_cache_free(dentry_cache, dentry);
  1477. return NULL;
  1478. }
  1479. }
  1480. this_cpu_inc(nr_dentry);
  1481. return dentry;
  1482. }
  1483. /**
  1484. * d_alloc - allocate a dcache entry
  1485. * @parent: parent of entry to allocate
  1486. * @name: qstr of the name
  1487. *
  1488. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1489. * available. On a success the dentry is returned. The name passed in is
  1490. * copied and the copy passed in may be reused after this call.
  1491. */
  1492. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1493. {
  1494. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1495. if (!dentry)
  1496. return NULL;
  1497. dentry->d_flags |= DCACHE_RCUACCESS;
  1498. spin_lock(&parent->d_lock);
  1499. /*
  1500. * don't need child lock because it is not subject
  1501. * to concurrency here
  1502. */
  1503. __dget_dlock(parent);
  1504. dentry->d_parent = parent;
  1505. list_add(&dentry->d_child, &parent->d_subdirs);
  1506. spin_unlock(&parent->d_lock);
  1507. return dentry;
  1508. }
  1509. EXPORT_SYMBOL(d_alloc);
  1510. struct dentry *d_alloc_cursor(struct dentry * parent)
  1511. {
  1512. struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
  1513. if (dentry) {
  1514. dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
  1515. dentry->d_parent = dget(parent);
  1516. }
  1517. return dentry;
  1518. }
  1519. /**
  1520. * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
  1521. * @sb: the superblock
  1522. * @name: qstr of the name
  1523. *
  1524. * For a filesystem that just pins its dentries in memory and never
  1525. * performs lookups at all, return an unhashed IS_ROOT dentry.
  1526. */
  1527. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1528. {
  1529. return __d_alloc(sb, name);
  1530. }
  1531. EXPORT_SYMBOL(d_alloc_pseudo);
  1532. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1533. {
  1534. struct qstr q;
  1535. q.name = name;
  1536. q.hash_len = hashlen_string(parent, name);
  1537. return d_alloc(parent, &q);
  1538. }
  1539. EXPORT_SYMBOL(d_alloc_name);
  1540. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1541. {
  1542. WARN_ON_ONCE(dentry->d_op);
  1543. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1544. DCACHE_OP_COMPARE |
  1545. DCACHE_OP_REVALIDATE |
  1546. DCACHE_OP_WEAK_REVALIDATE |
  1547. DCACHE_OP_DELETE |
  1548. DCACHE_OP_REAL));
  1549. dentry->d_op = op;
  1550. if (!op)
  1551. return;
  1552. if (op->d_hash)
  1553. dentry->d_flags |= DCACHE_OP_HASH;
  1554. if (op->d_compare)
  1555. dentry->d_flags |= DCACHE_OP_COMPARE;
  1556. if (op->d_revalidate)
  1557. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1558. if (op->d_weak_revalidate)
  1559. dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
  1560. if (op->d_delete)
  1561. dentry->d_flags |= DCACHE_OP_DELETE;
  1562. if (op->d_prune)
  1563. dentry->d_flags |= DCACHE_OP_PRUNE;
  1564. if (op->d_real)
  1565. dentry->d_flags |= DCACHE_OP_REAL;
  1566. }
  1567. EXPORT_SYMBOL(d_set_d_op);
  1568. /*
  1569. * d_set_fallthru - Mark a dentry as falling through to a lower layer
  1570. * @dentry - The dentry to mark
  1571. *
  1572. * Mark a dentry as falling through to the lower layer (as set with
  1573. * d_pin_lower()). This flag may be recorded on the medium.
  1574. */
  1575. void d_set_fallthru(struct dentry *dentry)
  1576. {
  1577. spin_lock(&dentry->d_lock);
  1578. dentry->d_flags |= DCACHE_FALLTHRU;
  1579. spin_unlock(&dentry->d_lock);
  1580. }
  1581. EXPORT_SYMBOL(d_set_fallthru);
  1582. static unsigned d_flags_for_inode(struct inode *inode)
  1583. {
  1584. unsigned add_flags = DCACHE_REGULAR_TYPE;
  1585. if (!inode)
  1586. return DCACHE_MISS_TYPE;
  1587. if (S_ISDIR(inode->i_mode)) {
  1588. add_flags = DCACHE_DIRECTORY_TYPE;
  1589. if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
  1590. if (unlikely(!inode->i_op->lookup))
  1591. add_flags = DCACHE_AUTODIR_TYPE;
  1592. else
  1593. inode->i_opflags |= IOP_LOOKUP;
  1594. }
  1595. goto type_determined;
  1596. }
  1597. if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
  1598. if (unlikely(inode->i_op->get_link)) {
  1599. add_flags = DCACHE_SYMLINK_TYPE;
  1600. goto type_determined;
  1601. }
  1602. inode->i_opflags |= IOP_NOFOLLOW;
  1603. }
  1604. if (unlikely(!S_ISREG(inode->i_mode)))
  1605. add_flags = DCACHE_SPECIAL_TYPE;
  1606. type_determined:
  1607. if (unlikely(IS_AUTOMOUNT(inode)))
  1608. add_flags |= DCACHE_NEED_AUTOMOUNT;
  1609. return add_flags;
  1610. }
  1611. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1612. {
  1613. unsigned add_flags = d_flags_for_inode(inode);
  1614. WARN_ON(d_in_lookup(dentry));
  1615. spin_lock(&dentry->d_lock);
  1616. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  1617. raw_write_seqcount_begin(&dentry->d_seq);
  1618. __d_set_inode_and_type(dentry, inode, add_flags);
  1619. raw_write_seqcount_end(&dentry->d_seq);
  1620. fsnotify_update_flags(dentry);
  1621. spin_unlock(&dentry->d_lock);
  1622. }
  1623. /**
  1624. * d_instantiate - fill in inode information for a dentry
  1625. * @entry: dentry to complete
  1626. * @inode: inode to attach to this dentry
  1627. *
  1628. * Fill in inode information in the entry.
  1629. *
  1630. * This turns negative dentries into productive full members
  1631. * of society.
  1632. *
  1633. * NOTE! This assumes that the inode count has been incremented
  1634. * (or otherwise set) by the caller to indicate that it is now
  1635. * in use by the dcache.
  1636. */
  1637. void d_instantiate(struct dentry *entry, struct inode * inode)
  1638. {
  1639. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1640. if (inode) {
  1641. security_d_instantiate(entry, inode);
  1642. spin_lock(&inode->i_lock);
  1643. __d_instantiate(entry, inode);
  1644. spin_unlock(&inode->i_lock);
  1645. }
  1646. }
  1647. EXPORT_SYMBOL(d_instantiate);
  1648. /**
  1649. * d_instantiate_no_diralias - instantiate a non-aliased dentry
  1650. * @entry: dentry to complete
  1651. * @inode: inode to attach to this dentry
  1652. *
  1653. * Fill in inode information in the entry. If a directory alias is found, then
  1654. * return an error (and drop inode). Together with d_materialise_unique() this
  1655. * guarantees that a directory inode may never have more than one alias.
  1656. */
  1657. int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
  1658. {
  1659. BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
  1660. security_d_instantiate(entry, inode);
  1661. spin_lock(&inode->i_lock);
  1662. if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
  1663. spin_unlock(&inode->i_lock);
  1664. iput(inode);
  1665. return -EBUSY;
  1666. }
  1667. __d_instantiate(entry, inode);
  1668. spin_unlock(&inode->i_lock);
  1669. return 0;
  1670. }
  1671. EXPORT_SYMBOL(d_instantiate_no_diralias);
  1672. struct dentry *d_make_root(struct inode *root_inode)
  1673. {
  1674. struct dentry *res = NULL;
  1675. if (root_inode) {
  1676. res = __d_alloc(root_inode->i_sb, NULL);
  1677. if (res)
  1678. d_instantiate(res, root_inode);
  1679. else
  1680. iput(root_inode);
  1681. }
  1682. return res;
  1683. }
  1684. EXPORT_SYMBOL(d_make_root);
  1685. static struct dentry * __d_find_any_alias(struct inode *inode)
  1686. {
  1687. struct dentry *alias;
  1688. if (hlist_empty(&inode->i_dentry))
  1689. return NULL;
  1690. alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
  1691. __dget(alias);
  1692. return alias;
  1693. }
  1694. /**
  1695. * d_find_any_alias - find any alias for a given inode
  1696. * @inode: inode to find an alias for
  1697. *
  1698. * If any aliases exist for the given inode, take and return a
  1699. * reference for one of them. If no aliases exist, return %NULL.
  1700. */
  1701. struct dentry *d_find_any_alias(struct inode *inode)
  1702. {
  1703. struct dentry *de;
  1704. spin_lock(&inode->i_lock);
  1705. de = __d_find_any_alias(inode);
  1706. spin_unlock(&inode->i_lock);
  1707. return de;
  1708. }
  1709. EXPORT_SYMBOL(d_find_any_alias);
  1710. static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
  1711. {
  1712. struct dentry *tmp;
  1713. struct dentry *res;
  1714. unsigned add_flags;
  1715. if (!inode)
  1716. return ERR_PTR(-ESTALE);
  1717. if (IS_ERR(inode))
  1718. return ERR_CAST(inode);
  1719. res = d_find_any_alias(inode);
  1720. if (res)
  1721. goto out_iput;
  1722. tmp = __d_alloc(inode->i_sb, NULL);
  1723. if (!tmp) {
  1724. res = ERR_PTR(-ENOMEM);
  1725. goto out_iput;
  1726. }
  1727. security_d_instantiate(tmp, inode);
  1728. spin_lock(&inode->i_lock);
  1729. res = __d_find_any_alias(inode);
  1730. if (res) {
  1731. spin_unlock(&inode->i_lock);
  1732. dput(tmp);
  1733. goto out_iput;
  1734. }
  1735. /* attach a disconnected dentry */
  1736. add_flags = d_flags_for_inode(inode);
  1737. if (disconnected)
  1738. add_flags |= DCACHE_DISCONNECTED;
  1739. spin_lock(&tmp->d_lock);
  1740. __d_set_inode_and_type(tmp, inode, add_flags);
  1741. hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
  1742. if (!disconnected) {
  1743. hlist_bl_lock(&tmp->d_sb->s_roots);
  1744. hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_roots);
  1745. hlist_bl_unlock(&tmp->d_sb->s_roots);
  1746. }
  1747. spin_unlock(&tmp->d_lock);
  1748. spin_unlock(&inode->i_lock);
  1749. return tmp;
  1750. out_iput:
  1751. iput(inode);
  1752. return res;
  1753. }
  1754. /**
  1755. * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
  1756. * @inode: inode to allocate the dentry for
  1757. *
  1758. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1759. * similar open by handle operations. The returned dentry may be anonymous,
  1760. * or may have a full name (if the inode was already in the cache).
  1761. *
  1762. * When called on a directory inode, we must ensure that the inode only ever
  1763. * has one dentry. If a dentry is found, that is returned instead of
  1764. * allocating a new one.
  1765. *
  1766. * On successful return, the reference to the inode has been transferred
  1767. * to the dentry. In case of an error the reference on the inode is released.
  1768. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1769. * be passed in and the error will be propagated to the return value,
  1770. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1771. */
  1772. struct dentry *d_obtain_alias(struct inode *inode)
  1773. {
  1774. return __d_obtain_alias(inode, 1);
  1775. }
  1776. EXPORT_SYMBOL(d_obtain_alias);
  1777. /**
  1778. * d_obtain_root - find or allocate a dentry for a given inode
  1779. * @inode: inode to allocate the dentry for
  1780. *
  1781. * Obtain an IS_ROOT dentry for the root of a filesystem.
  1782. *
  1783. * We must ensure that directory inodes only ever have one dentry. If a
  1784. * dentry is found, that is returned instead of allocating a new one.
  1785. *
  1786. * On successful return, the reference to the inode has been transferred
  1787. * to the dentry. In case of an error the reference on the inode is
  1788. * released. A %NULL or IS_ERR inode may be passed in and will be the
  1789. * error will be propagate to the return value, with a %NULL @inode
  1790. * replaced by ERR_PTR(-ESTALE).
  1791. */
  1792. struct dentry *d_obtain_root(struct inode *inode)
  1793. {
  1794. return __d_obtain_alias(inode, 0);
  1795. }
  1796. EXPORT_SYMBOL(d_obtain_root);
  1797. /**
  1798. * d_add_ci - lookup or allocate new dentry with case-exact name
  1799. * @inode: the inode case-insensitive lookup has found
  1800. * @dentry: the negative dentry that was passed to the parent's lookup func
  1801. * @name: the case-exact name to be associated with the returned dentry
  1802. *
  1803. * This is to avoid filling the dcache with case-insensitive names to the
  1804. * same inode, only the actual correct case is stored in the dcache for
  1805. * case-insensitive filesystems.
  1806. *
  1807. * For a case-insensitive lookup match and if the the case-exact dentry
  1808. * already exists in in the dcache, use it and return it.
  1809. *
  1810. * If no entry exists with the exact case name, allocate new dentry with
  1811. * the exact case, and return the spliced entry.
  1812. */
  1813. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1814. struct qstr *name)
  1815. {
  1816. struct dentry *found, *res;
  1817. /*
  1818. * First check if a dentry matching the name already exists,
  1819. * if not go ahead and create it now.
  1820. */
  1821. found = d_hash_and_lookup(dentry->d_parent, name);
  1822. if (found) {
  1823. iput(inode);
  1824. return found;
  1825. }
  1826. if (d_in_lookup(dentry)) {
  1827. found = d_alloc_parallel(dentry->d_parent, name,
  1828. dentry->d_wait);
  1829. if (IS_ERR(found) || !d_in_lookup(found)) {
  1830. iput(inode);
  1831. return found;
  1832. }
  1833. } else {
  1834. found = d_alloc(dentry->d_parent, name);
  1835. if (!found) {
  1836. iput(inode);
  1837. return ERR_PTR(-ENOMEM);
  1838. }
  1839. }
  1840. res = d_splice_alias(inode, found);
  1841. if (res) {
  1842. dput(found);
  1843. return res;
  1844. }
  1845. return found;
  1846. }
  1847. EXPORT_SYMBOL(d_add_ci);
  1848. static inline bool d_same_name(const struct dentry *dentry,
  1849. const struct dentry *parent,
  1850. const struct qstr *name)
  1851. {
  1852. if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
  1853. if (dentry->d_name.len != name->len)
  1854. return false;
  1855. return dentry_cmp(dentry, name->name, name->len) == 0;
  1856. }
  1857. return parent->d_op->d_compare(dentry,
  1858. dentry->d_name.len, dentry->d_name.name,
  1859. name) == 0;
  1860. }
  1861. /**
  1862. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1863. * @parent: parent dentry
  1864. * @name: qstr of name we wish to find
  1865. * @seqp: returns d_seq value at the point where the dentry was found
  1866. * Returns: dentry, or NULL
  1867. *
  1868. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1869. * resolution (store-free path walking) design described in
  1870. * Documentation/filesystems/path-lookup.txt.
  1871. *
  1872. * This is not to be used outside core vfs.
  1873. *
  1874. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1875. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1876. * without taking d_lock and checking d_seq sequence count against @seq
  1877. * returned here.
  1878. *
  1879. * A refcount may be taken on the found dentry with the d_rcu_to_refcount
  1880. * function.
  1881. *
  1882. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1883. * the returned dentry, so long as its parent's seqlock is checked after the
  1884. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1885. * is formed, giving integrity down the path walk.
  1886. *
  1887. * NOTE! The caller *has* to check the resulting dentry against the sequence
  1888. * number we've returned before using any of the resulting dentry state!
  1889. */
  1890. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  1891. const struct qstr *name,
  1892. unsigned *seqp)
  1893. {
  1894. u64 hashlen = name->hash_len;
  1895. const unsigned char *str = name->name;
  1896. struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
  1897. struct hlist_bl_node *node;
  1898. struct dentry *dentry;
  1899. /*
  1900. * Note: There is significant duplication with __d_lookup_rcu which is
  1901. * required to prevent single threaded performance regressions
  1902. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1903. * Keep the two functions in sync.
  1904. */
  1905. /*
  1906. * The hash list is protected using RCU.
  1907. *
  1908. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1909. * races with d_move().
  1910. *
  1911. * It is possible that concurrent renames can mess up our list
  1912. * walk here and result in missing our dentry, resulting in the
  1913. * false-negative result. d_lookup() protects against concurrent
  1914. * renames using rename_lock seqlock.
  1915. *
  1916. * See Documentation/filesystems/path-lookup.txt for more details.
  1917. */
  1918. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1919. unsigned seq;
  1920. seqretry:
  1921. /*
  1922. * The dentry sequence count protects us from concurrent
  1923. * renames, and thus protects parent and name fields.
  1924. *
  1925. * The caller must perform a seqcount check in order
  1926. * to do anything useful with the returned dentry.
  1927. *
  1928. * NOTE! We do a "raw" seqcount_begin here. That means that
  1929. * we don't wait for the sequence count to stabilize if it
  1930. * is in the middle of a sequence change. If we do the slow
  1931. * dentry compare, we will do seqretries until it is stable,
  1932. * and if we end up with a successful lookup, we actually
  1933. * want to exit RCU lookup anyway.
  1934. *
  1935. * Note that raw_seqcount_begin still *does* smp_rmb(), so
  1936. * we are still guaranteed NUL-termination of ->d_name.name.
  1937. */
  1938. seq = raw_seqcount_begin(&dentry->d_seq);
  1939. if (dentry->d_parent != parent)
  1940. continue;
  1941. if (d_unhashed(dentry))
  1942. continue;
  1943. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
  1944. int tlen;
  1945. const char *tname;
  1946. if (dentry->d_name.hash != hashlen_hash(hashlen))
  1947. continue;
  1948. tlen = dentry->d_name.len;
  1949. tname = dentry->d_name.name;
  1950. /* we want a consistent (name,len) pair */
  1951. if (read_seqcount_retry(&dentry->d_seq, seq)) {
  1952. cpu_relax();
  1953. goto seqretry;
  1954. }
  1955. if (parent->d_op->d_compare(dentry,
  1956. tlen, tname, name) != 0)
  1957. continue;
  1958. } else {
  1959. if (dentry->d_name.hash_len != hashlen)
  1960. continue;
  1961. if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
  1962. continue;
  1963. }
  1964. *seqp = seq;
  1965. return dentry;
  1966. }
  1967. return NULL;
  1968. }
  1969. /**
  1970. * d_lookup - search for a dentry
  1971. * @parent: parent dentry
  1972. * @name: qstr of name we wish to find
  1973. * Returns: dentry, or NULL
  1974. *
  1975. * d_lookup searches the children of the parent dentry for the name in
  1976. * question. If the dentry is found its reference count is incremented and the
  1977. * dentry is returned. The caller must use dput to free the entry when it has
  1978. * finished using it. %NULL is returned if the dentry does not exist.
  1979. */
  1980. struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
  1981. {
  1982. struct dentry *dentry;
  1983. unsigned seq;
  1984. do {
  1985. seq = read_seqbegin(&rename_lock);
  1986. dentry = __d_lookup(parent, name);
  1987. if (dentry)
  1988. break;
  1989. } while (read_seqretry(&rename_lock, seq));
  1990. return dentry;
  1991. }
  1992. EXPORT_SYMBOL(d_lookup);
  1993. /**
  1994. * __d_lookup - search for a dentry (racy)
  1995. * @parent: parent dentry
  1996. * @name: qstr of name we wish to find
  1997. * Returns: dentry, or NULL
  1998. *
  1999. * __d_lookup is like d_lookup, however it may (rarely) return a
  2000. * false-negative result due to unrelated rename activity.
  2001. *
  2002. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  2003. * however it must be used carefully, eg. with a following d_lookup in
  2004. * the case of failure.
  2005. *
  2006. * __d_lookup callers must be commented.
  2007. */
  2008. struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
  2009. {
  2010. unsigned int hash = name->hash;
  2011. struct hlist_bl_head *b = d_hash(hash);
  2012. struct hlist_bl_node *node;
  2013. struct dentry *found = NULL;
  2014. struct dentry *dentry;
  2015. /*
  2016. * Note: There is significant duplication with __d_lookup_rcu which is
  2017. * required to prevent single threaded performance regressions
  2018. * especially on architectures where smp_rmb (in seqcounts) are costly.
  2019. * Keep the two functions in sync.
  2020. */
  2021. /*
  2022. * The hash list is protected using RCU.
  2023. *
  2024. * Take d_lock when comparing a candidate dentry, to avoid races
  2025. * with d_move().
  2026. *
  2027. * It is possible that concurrent renames can mess up our list
  2028. * walk here and result in missing our dentry, resulting in the
  2029. * false-negative result. d_lookup() protects against concurrent
  2030. * renames using rename_lock seqlock.
  2031. *
  2032. * See Documentation/filesystems/path-lookup.txt for more details.
  2033. */
  2034. rcu_read_lock();
  2035. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  2036. if (dentry->d_name.hash != hash)
  2037. continue;
  2038. spin_lock(&dentry->d_lock);
  2039. if (dentry->d_parent != parent)
  2040. goto next;
  2041. if (d_unhashed(dentry))
  2042. goto next;
  2043. if (!d_same_name(dentry, parent, name))
  2044. goto next;
  2045. dentry->d_lockref.count++;
  2046. found = dentry;
  2047. spin_unlock(&dentry->d_lock);
  2048. break;
  2049. next:
  2050. spin_unlock(&dentry->d_lock);
  2051. }
  2052. rcu_read_unlock();
  2053. return found;
  2054. }
  2055. /**
  2056. * d_hash_and_lookup - hash the qstr then search for a dentry
  2057. * @dir: Directory to search in
  2058. * @name: qstr of name we wish to find
  2059. *
  2060. * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
  2061. */
  2062. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  2063. {
  2064. /*
  2065. * Check for a fs-specific hash function. Note that we must
  2066. * calculate the standard hash first, as the d_op->d_hash()
  2067. * routine may choose to leave the hash value unchanged.
  2068. */
  2069. name->hash = full_name_hash(dir, name->name, name->len);
  2070. if (dir->d_flags & DCACHE_OP_HASH) {
  2071. int err = dir->d_op->d_hash(dir, name);
  2072. if (unlikely(err < 0))
  2073. return ERR_PTR(err);
  2074. }
  2075. return d_lookup(dir, name);
  2076. }
  2077. EXPORT_SYMBOL(d_hash_and_lookup);
  2078. /*
  2079. * When a file is deleted, we have two options:
  2080. * - turn this dentry into a negative dentry
  2081. * - unhash this dentry and free it.
  2082. *
  2083. * Usually, we want to just turn this into
  2084. * a negative dentry, but if anybody else is
  2085. * currently using the dentry or the inode
  2086. * we can't do that and we fall back on removing
  2087. * it from the hash queues and waiting for
  2088. * it to be deleted later when it has no users
  2089. */
  2090. /**
  2091. * d_delete - delete a dentry
  2092. * @dentry: The dentry to delete
  2093. *
  2094. * Turn the dentry into a negative dentry if possible, otherwise
  2095. * remove it from the hash queues so it can be deleted later
  2096. */
  2097. void d_delete(struct dentry * dentry)
  2098. {
  2099. struct inode *inode;
  2100. int isdir = 0;
  2101. /*
  2102. * Are we the only user?
  2103. */
  2104. again:
  2105. spin_lock(&dentry->d_lock);
  2106. inode = dentry->d_inode;
  2107. isdir = S_ISDIR(inode->i_mode);
  2108. if (dentry->d_lockref.count == 1) {
  2109. if (!spin_trylock(&inode->i_lock)) {
  2110. spin_unlock(&dentry->d_lock);
  2111. cpu_relax();
  2112. goto again;
  2113. }
  2114. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  2115. dentry_unlink_inode(dentry);
  2116. fsnotify_nameremove(dentry, isdir);
  2117. return;
  2118. }
  2119. if (!d_unhashed(dentry))
  2120. __d_drop(dentry);
  2121. spin_unlock(&dentry->d_lock);
  2122. fsnotify_nameremove(dentry, isdir);
  2123. }
  2124. EXPORT_SYMBOL(d_delete);
  2125. static void __d_rehash(struct dentry *entry)
  2126. {
  2127. struct hlist_bl_head *b = d_hash(entry->d_name.hash);
  2128. BUG_ON(!d_unhashed(entry));
  2129. hlist_bl_lock(b);
  2130. hlist_bl_add_head_rcu(&entry->d_hash, b);
  2131. hlist_bl_unlock(b);
  2132. }
  2133. /**
  2134. * d_rehash - add an entry back to the hash
  2135. * @entry: dentry to add to the hash
  2136. *
  2137. * Adds a dentry to the hash according to its name.
  2138. */
  2139. void d_rehash(struct dentry * entry)
  2140. {
  2141. spin_lock(&entry->d_lock);
  2142. __d_rehash(entry);
  2143. spin_unlock(&entry->d_lock);
  2144. }
  2145. EXPORT_SYMBOL(d_rehash);
  2146. static inline unsigned start_dir_add(struct inode *dir)
  2147. {
  2148. for (;;) {
  2149. unsigned n = dir->i_dir_seq;
  2150. if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
  2151. return n;
  2152. cpu_relax();
  2153. }
  2154. }
  2155. static inline void end_dir_add(struct inode *dir, unsigned n)
  2156. {
  2157. smp_store_release(&dir->i_dir_seq, n + 2);
  2158. }
  2159. static void d_wait_lookup(struct dentry *dentry)
  2160. {
  2161. if (d_in_lookup(dentry)) {
  2162. DECLARE_WAITQUEUE(wait, current);
  2163. add_wait_queue(dentry->d_wait, &wait);
  2164. do {
  2165. set_current_state(TASK_UNINTERRUPTIBLE);
  2166. spin_unlock(&dentry->d_lock);
  2167. schedule();
  2168. spin_lock(&dentry->d_lock);
  2169. } while (d_in_lookup(dentry));
  2170. }
  2171. }
  2172. struct dentry *d_alloc_parallel(struct dentry *parent,
  2173. const struct qstr *name,
  2174. wait_queue_head_t *wq)
  2175. {
  2176. unsigned int hash = name->hash;
  2177. struct hlist_bl_head *b = in_lookup_hash(parent, hash);
  2178. struct hlist_bl_node *node;
  2179. struct dentry *new = d_alloc(parent, name);
  2180. struct dentry *dentry;
  2181. unsigned seq, r_seq, d_seq;
  2182. if (unlikely(!new))
  2183. return ERR_PTR(-ENOMEM);
  2184. retry:
  2185. rcu_read_lock();
  2186. seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
  2187. r_seq = read_seqbegin(&rename_lock);
  2188. dentry = __d_lookup_rcu(parent, name, &d_seq);
  2189. if (unlikely(dentry)) {
  2190. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2191. rcu_read_unlock();
  2192. goto retry;
  2193. }
  2194. if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
  2195. rcu_read_unlock();
  2196. dput(dentry);
  2197. goto retry;
  2198. }
  2199. rcu_read_unlock();
  2200. dput(new);
  2201. return dentry;
  2202. }
  2203. if (unlikely(read_seqretry(&rename_lock, r_seq))) {
  2204. rcu_read_unlock();
  2205. goto retry;
  2206. }
  2207. hlist_bl_lock(b);
  2208. if (unlikely(parent->d_inode->i_dir_seq != seq)) {
  2209. hlist_bl_unlock(b);
  2210. rcu_read_unlock();
  2211. goto retry;
  2212. }
  2213. /*
  2214. * No changes for the parent since the beginning of d_lookup().
  2215. * Since all removals from the chain happen with hlist_bl_lock(),
  2216. * any potential in-lookup matches are going to stay here until
  2217. * we unlock the chain. All fields are stable in everything
  2218. * we encounter.
  2219. */
  2220. hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
  2221. if (dentry->d_name.hash != hash)
  2222. continue;
  2223. if (dentry->d_parent != parent)
  2224. continue;
  2225. if (!d_same_name(dentry, parent, name))
  2226. continue;
  2227. hlist_bl_unlock(b);
  2228. /* now we can try to grab a reference */
  2229. if (!lockref_get_not_dead(&dentry->d_lockref)) {
  2230. rcu_read_unlock();
  2231. goto retry;
  2232. }
  2233. rcu_read_unlock();
  2234. /*
  2235. * somebody is likely to be still doing lookup for it;
  2236. * wait for them to finish
  2237. */
  2238. spin_lock(&dentry->d_lock);
  2239. d_wait_lookup(dentry);
  2240. /*
  2241. * it's not in-lookup anymore; in principle we should repeat
  2242. * everything from dcache lookup, but it's likely to be what
  2243. * d_lookup() would've found anyway. If it is, just return it;
  2244. * otherwise we really have to repeat the whole thing.
  2245. */
  2246. if (unlikely(dentry->d_name.hash != hash))
  2247. goto mismatch;
  2248. if (unlikely(dentry->d_parent != parent))
  2249. goto mismatch;
  2250. if (unlikely(d_unhashed(dentry)))
  2251. goto mismatch;
  2252. if (unlikely(!d_same_name(dentry, parent, name)))
  2253. goto mismatch;
  2254. /* OK, it *is* a hashed match; return it */
  2255. spin_unlock(&dentry->d_lock);
  2256. dput(new);
  2257. return dentry;
  2258. }
  2259. rcu_read_unlock();
  2260. /* we can't take ->d_lock here; it's OK, though. */
  2261. new->d_flags |= DCACHE_PAR_LOOKUP;
  2262. new->d_wait = wq;
  2263. hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
  2264. hlist_bl_unlock(b);
  2265. return new;
  2266. mismatch:
  2267. spin_unlock(&dentry->d_lock);
  2268. dput(dentry);
  2269. goto retry;
  2270. }
  2271. EXPORT_SYMBOL(d_alloc_parallel);
  2272. void __d_lookup_done(struct dentry *dentry)
  2273. {
  2274. struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
  2275. dentry->d_name.hash);
  2276. hlist_bl_lock(b);
  2277. dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
  2278. __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
  2279. wake_up_all(dentry->d_wait);
  2280. dentry->d_wait = NULL;
  2281. hlist_bl_unlock(b);
  2282. INIT_HLIST_NODE(&dentry->d_u.d_alias);
  2283. INIT_LIST_HEAD(&dentry->d_lru);
  2284. }
  2285. EXPORT_SYMBOL(__d_lookup_done);
  2286. /* inode->i_lock held if inode is non-NULL */
  2287. static inline void __d_add(struct dentry *dentry, struct inode *inode)
  2288. {
  2289. struct inode *dir = NULL;
  2290. unsigned n;
  2291. spin_lock(&dentry->d_lock);
  2292. if (unlikely(d_in_lookup(dentry))) {
  2293. dir = dentry->d_parent->d_inode;
  2294. n = start_dir_add(dir);
  2295. __d_lookup_done(dentry);
  2296. }
  2297. if (inode) {
  2298. unsigned add_flags = d_flags_for_inode(inode);
  2299. hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
  2300. raw_write_seqcount_begin(&dentry->d_seq);
  2301. __d_set_inode_and_type(dentry, inode, add_flags);
  2302. raw_write_seqcount_end(&dentry->d_seq);
  2303. fsnotify_update_flags(dentry);
  2304. }
  2305. __d_rehash(dentry);
  2306. if (dir)
  2307. end_dir_add(dir, n);
  2308. spin_unlock(&dentry->d_lock);
  2309. if (inode)
  2310. spin_unlock(&inode->i_lock);
  2311. }
  2312. /**
  2313. * d_add - add dentry to hash queues
  2314. * @entry: dentry to add
  2315. * @inode: The inode to attach to this dentry
  2316. *
  2317. * This adds the entry to the hash queues and initializes @inode.
  2318. * The entry was actually filled in earlier during d_alloc().
  2319. */
  2320. void d_add(struct dentry *entry, struct inode *inode)
  2321. {
  2322. if (inode) {
  2323. security_d_instantiate(entry, inode);
  2324. spin_lock(&inode->i_lock);
  2325. }
  2326. __d_add(entry, inode);
  2327. }
  2328. EXPORT_SYMBOL(d_add);
  2329. /**
  2330. * d_exact_alias - find and hash an exact unhashed alias
  2331. * @entry: dentry to add
  2332. * @inode: The inode to go with this dentry
  2333. *
  2334. * If an unhashed dentry with the same name/parent and desired
  2335. * inode already exists, hash and return it. Otherwise, return
  2336. * NULL.
  2337. *
  2338. * Parent directory should be locked.
  2339. */
  2340. struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
  2341. {
  2342. struct dentry *alias;
  2343. unsigned int hash = entry->d_name.hash;
  2344. spin_lock(&inode->i_lock);
  2345. hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
  2346. /*
  2347. * Don't need alias->d_lock here, because aliases with
  2348. * d_parent == entry->d_parent are not subject to name or
  2349. * parent changes, because the parent inode i_mutex is held.
  2350. */
  2351. if (alias->d_name.hash != hash)
  2352. continue;
  2353. if (alias->d_parent != entry->d_parent)
  2354. continue;
  2355. if (!d_same_name(alias, entry->d_parent, &entry->d_name))
  2356. continue;
  2357. spin_lock(&alias->d_lock);
  2358. if (!d_unhashed(alias)) {
  2359. spin_unlock(&alias->d_lock);
  2360. alias = NULL;
  2361. } else {
  2362. __dget_dlock(alias);
  2363. __d_rehash(alias);
  2364. spin_unlock(&alias->d_lock);
  2365. }
  2366. spin_unlock(&inode->i_lock);
  2367. return alias;
  2368. }
  2369. spin_unlock(&inode->i_lock);
  2370. return NULL;
  2371. }
  2372. EXPORT_SYMBOL(d_exact_alias);
  2373. /**
  2374. * dentry_update_name_case - update case insensitive dentry with a new name
  2375. * @dentry: dentry to be updated
  2376. * @name: new name
  2377. *
  2378. * Update a case insensitive dentry with new case of name.
  2379. *
  2380. * dentry must have been returned by d_lookup with name @name. Old and new
  2381. * name lengths must match (ie. no d_compare which allows mismatched name
  2382. * lengths).
  2383. *
  2384. * Parent inode i_mutex must be held over d_lookup and into this call (to
  2385. * keep renames and concurrent inserts, and readdir(2) away).
  2386. */
  2387. void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
  2388. {
  2389. BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
  2390. BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
  2391. spin_lock(&dentry->d_lock);
  2392. write_seqcount_begin(&dentry->d_seq);
  2393. memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
  2394. write_seqcount_end(&dentry->d_seq);
  2395. spin_unlock(&dentry->d_lock);
  2396. }
  2397. EXPORT_SYMBOL(dentry_update_name_case);
  2398. static void swap_names(struct dentry *dentry, struct dentry *target)
  2399. {
  2400. if (unlikely(dname_external(target))) {
  2401. if (unlikely(dname_external(dentry))) {
  2402. /*
  2403. * Both external: swap the pointers
  2404. */
  2405. swap(target->d_name.name, dentry->d_name.name);
  2406. } else {
  2407. /*
  2408. * dentry:internal, target:external. Steal target's
  2409. * storage and make target internal.
  2410. */
  2411. memcpy(target->d_iname, dentry->d_name.name,
  2412. dentry->d_name.len + 1);
  2413. dentry->d_name.name = target->d_name.name;
  2414. target->d_name.name = target->d_iname;
  2415. }
  2416. } else {
  2417. if (unlikely(dname_external(dentry))) {
  2418. /*
  2419. * dentry:external, target:internal. Give dentry's
  2420. * storage to target and make dentry internal
  2421. */
  2422. memcpy(dentry->d_iname, target->d_name.name,
  2423. target->d_name.len + 1);
  2424. target->d_name.name = dentry->d_name.name;
  2425. dentry->d_name.name = dentry->d_iname;
  2426. } else {
  2427. /*
  2428. * Both are internal.
  2429. */
  2430. unsigned int i;
  2431. BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
  2432. for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
  2433. swap(((long *) &dentry->d_iname)[i],
  2434. ((long *) &target->d_iname)[i]);
  2435. }
  2436. }
  2437. }
  2438. swap(dentry->d_name.hash_len, target->d_name.hash_len);
  2439. }
  2440. static void copy_name(struct dentry *dentry, struct dentry *target)
  2441. {
  2442. struct external_name *old_name = NULL;
  2443. if (unlikely(dname_external(dentry)))
  2444. old_name = external_name(dentry);
  2445. if (unlikely(dname_external(target))) {
  2446. atomic_inc(&external_name(target)->u.count);
  2447. dentry->d_name = target->d_name;
  2448. } else {
  2449. memcpy(dentry->d_iname, target->d_name.name,
  2450. target->d_name.len + 1);
  2451. dentry->d_name.name = dentry->d_iname;
  2452. dentry->d_name.hash_len = target->d_name.hash_len;
  2453. }
  2454. if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
  2455. kfree_rcu(old_name, u.head);
  2456. }
  2457. static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
  2458. {
  2459. /*
  2460. * XXXX: do we really need to take target->d_lock?
  2461. */
  2462. if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
  2463. spin_lock(&target->d_parent->d_lock);
  2464. else {
  2465. if (d_ancestor(dentry->d_parent, target->d_parent)) {
  2466. spin_lock(&dentry->d_parent->d_lock);
  2467. spin_lock_nested(&target->d_parent->d_lock,
  2468. DENTRY_D_LOCK_NESTED);
  2469. } else {
  2470. spin_lock(&target->d_parent->d_lock);
  2471. spin_lock_nested(&dentry->d_parent->d_lock,
  2472. DENTRY_D_LOCK_NESTED);
  2473. }
  2474. }
  2475. if (target < dentry) {
  2476. spin_lock_nested(&target->d_lock, 2);
  2477. spin_lock_nested(&dentry->d_lock, 3);
  2478. } else {
  2479. spin_lock_nested(&dentry->d_lock, 2);
  2480. spin_lock_nested(&target->d_lock, 3);
  2481. }
  2482. }
  2483. static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
  2484. {
  2485. if (target->d_parent != dentry->d_parent)
  2486. spin_unlock(&dentry->d_parent->d_lock);
  2487. if (target->d_parent != target)
  2488. spin_unlock(&target->d_parent->d_lock);
  2489. spin_unlock(&target->d_lock);
  2490. spin_unlock(&dentry->d_lock);
  2491. }
  2492. /*
  2493. * When switching names, the actual string doesn't strictly have to
  2494. * be preserved in the target - because we're dropping the target
  2495. * anyway. As such, we can just do a simple memcpy() to copy over
  2496. * the new name before we switch, unless we are going to rehash
  2497. * it. Note that if we *do* unhash the target, we are not allowed
  2498. * to rehash it without giving it a new name/hash key - whether
  2499. * we swap or overwrite the names here, resulting name won't match
  2500. * the reality in filesystem; it's only there for d_path() purposes.
  2501. * Note that all of this is happening under rename_lock, so the
  2502. * any hash lookup seeing it in the middle of manipulations will
  2503. * be discarded anyway. So we do not care what happens to the hash
  2504. * key in that case.
  2505. */
  2506. /*
  2507. * __d_move - move a dentry
  2508. * @dentry: entry to move
  2509. * @target: new dentry
  2510. * @exchange: exchange the two dentries
  2511. *
  2512. * Update the dcache to reflect the move of a file name. Negative
  2513. * dcache entries should not be moved in this way. Caller must hold
  2514. * rename_lock, the i_mutex of the source and target directories,
  2515. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  2516. */
  2517. static void __d_move(struct dentry *dentry, struct dentry *target,
  2518. bool exchange)
  2519. {
  2520. struct inode *dir = NULL;
  2521. unsigned n;
  2522. if (!dentry->d_inode)
  2523. printk(KERN_WARNING "VFS: moving negative dcache entry\n");
  2524. BUG_ON(d_ancestor(dentry, target));
  2525. BUG_ON(d_ancestor(target, dentry));
  2526. dentry_lock_for_move(dentry, target);
  2527. if (unlikely(d_in_lookup(target))) {
  2528. dir = target->d_parent->d_inode;
  2529. n = start_dir_add(dir);
  2530. __d_lookup_done(target);
  2531. }
  2532. write_seqcount_begin(&dentry->d_seq);
  2533. write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
  2534. /* unhash both */
  2535. /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
  2536. __d_drop(dentry);
  2537. __d_drop(target);
  2538. /* Switch the names.. */
  2539. if (exchange)
  2540. swap_names(dentry, target);
  2541. else
  2542. copy_name(dentry, target);
  2543. /* rehash in new place(s) */
  2544. __d_rehash(dentry);
  2545. if (exchange)
  2546. __d_rehash(target);
  2547. /* ... and switch them in the tree */
  2548. if (IS_ROOT(dentry)) {
  2549. /* splicing a tree */
  2550. dentry->d_flags |= DCACHE_RCUACCESS;
  2551. dentry->d_parent = target->d_parent;
  2552. target->d_parent = target;
  2553. list_del_init(&target->d_child);
  2554. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2555. } else {
  2556. /* swapping two dentries */
  2557. swap(dentry->d_parent, target->d_parent);
  2558. list_move(&target->d_child, &target->d_parent->d_subdirs);
  2559. list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
  2560. if (exchange)
  2561. fsnotify_update_flags(target);
  2562. fsnotify_update_flags(dentry);
  2563. }
  2564. write_seqcount_end(&target->d_seq);
  2565. write_seqcount_end(&dentry->d_seq);
  2566. if (dir)
  2567. end_dir_add(dir, n);
  2568. dentry_unlock_for_move(dentry, target);
  2569. }
  2570. /*
  2571. * d_move - move a dentry
  2572. * @dentry: entry to move
  2573. * @target: new dentry
  2574. *
  2575. * Update the dcache to reflect the move of a file name. Negative
  2576. * dcache entries should not be moved in this way. See the locking
  2577. * requirements for __d_move.
  2578. */
  2579. void d_move(struct dentry *dentry, struct dentry *target)
  2580. {
  2581. write_seqlock(&rename_lock);
  2582. __d_move(dentry, target, false);
  2583. write_sequnlock(&rename_lock);
  2584. }
  2585. EXPORT_SYMBOL(d_move);
  2586. /*
  2587. * d_exchange - exchange two dentries
  2588. * @dentry1: first dentry
  2589. * @dentry2: second dentry
  2590. */
  2591. void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
  2592. {
  2593. write_seqlock(&rename_lock);
  2594. WARN_ON(!dentry1->d_inode);
  2595. WARN_ON(!dentry2->d_inode);
  2596. WARN_ON(IS_ROOT(dentry1));
  2597. WARN_ON(IS_ROOT(dentry2));
  2598. __d_move(dentry1, dentry2, true);
  2599. write_sequnlock(&rename_lock);
  2600. }
  2601. /**
  2602. * d_ancestor - search for an ancestor
  2603. * @p1: ancestor dentry
  2604. * @p2: child dentry
  2605. *
  2606. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2607. * an ancestor of p2, else NULL.
  2608. */
  2609. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2610. {
  2611. struct dentry *p;
  2612. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2613. if (p->d_parent == p1)
  2614. return p;
  2615. }
  2616. return NULL;
  2617. }
  2618. /*
  2619. * This helper attempts to cope with remotely renamed directories
  2620. *
  2621. * It assumes that the caller is already holding
  2622. * dentry->d_parent->d_inode->i_mutex, and rename_lock
  2623. *
  2624. * Note: If ever the locking in lock_rename() changes, then please
  2625. * remember to update this too...
  2626. */
  2627. static int __d_unalias(struct inode *inode,
  2628. struct dentry *dentry, struct dentry *alias)
  2629. {
  2630. struct mutex *m1 = NULL;
  2631. struct rw_semaphore *m2 = NULL;
  2632. int ret = -ESTALE;
  2633. /* If alias and dentry share a parent, then no extra locks required */
  2634. if (alias->d_parent == dentry->d_parent)
  2635. goto out_unalias;
  2636. /* See lock_rename() */
  2637. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2638. goto out_err;
  2639. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2640. if (!inode_trylock_shared(alias->d_parent->d_inode))
  2641. goto out_err;
  2642. m2 = &alias->d_parent->d_inode->i_rwsem;
  2643. out_unalias:
  2644. __d_move(alias, dentry, false);
  2645. ret = 0;
  2646. out_err:
  2647. if (m2)
  2648. up_read(m2);
  2649. if (m1)
  2650. mutex_unlock(m1);
  2651. return ret;
  2652. }
  2653. /**
  2654. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  2655. * @inode: the inode which may have a disconnected dentry
  2656. * @dentry: a negative dentry which we want to point to the inode.
  2657. *
  2658. * If inode is a directory and has an IS_ROOT alias, then d_move that in
  2659. * place of the given dentry and return it, else simply d_add the inode
  2660. * to the dentry and return NULL.
  2661. *
  2662. * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
  2663. * we should error out: directories can't have multiple aliases.
  2664. *
  2665. * This is needed in the lookup routine of any filesystem that is exportable
  2666. * (via knfsd) so that we can build dcache paths to directories effectively.
  2667. *
  2668. * If a dentry was found and moved, then it is returned. Otherwise NULL
  2669. * is returned. This matches the expected return value of ->lookup.
  2670. *
  2671. * Cluster filesystems may call this function with a negative, hashed dentry.
  2672. * In that case, we know that the inode will be a regular file, and also this
  2673. * will only occur during atomic_open. So we need to check for the dentry
  2674. * being already hashed only in the final case.
  2675. */
  2676. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  2677. {
  2678. if (IS_ERR(inode))
  2679. return ERR_CAST(inode);
  2680. BUG_ON(!d_unhashed(dentry));
  2681. if (!inode)
  2682. goto out;
  2683. security_d_instantiate(dentry, inode);
  2684. spin_lock(&inode->i_lock);
  2685. if (S_ISDIR(inode->i_mode)) {
  2686. struct dentry *new = __d_find_any_alias(inode);
  2687. if (unlikely(new)) {
  2688. /* The reference to new ensures it remains an alias */
  2689. spin_unlock(&inode->i_lock);
  2690. write_seqlock(&rename_lock);
  2691. if (unlikely(d_ancestor(new, dentry))) {
  2692. write_sequnlock(&rename_lock);
  2693. dput(new);
  2694. new = ERR_PTR(-ELOOP);
  2695. pr_warn_ratelimited(
  2696. "VFS: Lookup of '%s' in %s %s"
  2697. " would have caused loop\n",
  2698. dentry->d_name.name,
  2699. inode->i_sb->s_type->name,
  2700. inode->i_sb->s_id);
  2701. } else if (!IS_ROOT(new)) {
  2702. int err = __d_unalias(inode, dentry, new);
  2703. write_sequnlock(&rename_lock);
  2704. if (err) {
  2705. dput(new);
  2706. new = ERR_PTR(err);
  2707. }
  2708. } else {
  2709. __d_move(new, dentry, false);
  2710. write_sequnlock(&rename_lock);
  2711. }
  2712. iput(inode);
  2713. return new;
  2714. }
  2715. }
  2716. out:
  2717. __d_add(dentry, inode);
  2718. return NULL;
  2719. }
  2720. EXPORT_SYMBOL(d_splice_alias);
  2721. static int prepend(char **buffer, int *buflen, const char *str, int namelen)
  2722. {
  2723. *buflen -= namelen;
  2724. if (*buflen < 0)
  2725. return -ENAMETOOLONG;
  2726. *buffer -= namelen;
  2727. memcpy(*buffer, str, namelen);
  2728. return 0;
  2729. }
  2730. /**
  2731. * prepend_name - prepend a pathname in front of current buffer pointer
  2732. * @buffer: buffer pointer
  2733. * @buflen: allocated length of the buffer
  2734. * @name: name string and length qstr structure
  2735. *
  2736. * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
  2737. * make sure that either the old or the new name pointer and length are
  2738. * fetched. However, there may be mismatch between length and pointer.
  2739. * The length cannot be trusted, we need to copy it byte-by-byte until
  2740. * the length is reached or a null byte is found. It also prepends "/" at
  2741. * the beginning of the name. The sequence number check at the caller will
  2742. * retry it again when a d_move() does happen. So any garbage in the buffer
  2743. * due to mismatched pointer and length will be discarded.
  2744. *
  2745. * Load acquire is needed to make sure that we see that terminating NUL.
  2746. */
  2747. static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
  2748. {
  2749. const char *dname = smp_load_acquire(&name->name); /* ^^^ */
  2750. u32 dlen = READ_ONCE(name->len);
  2751. char *p;
  2752. *buflen -= dlen + 1;
  2753. if (*buflen < 0)
  2754. return -ENAMETOOLONG;
  2755. p = *buffer -= dlen + 1;
  2756. *p++ = '/';
  2757. while (dlen--) {
  2758. char c = *dname++;
  2759. if (!c)
  2760. break;
  2761. *p++ = c;
  2762. }
  2763. return 0;
  2764. }
  2765. /**
  2766. * prepend_path - Prepend path string to a buffer
  2767. * @path: the dentry/vfsmount to report
  2768. * @root: root vfsmnt/dentry
  2769. * @buffer: pointer to the end of the buffer
  2770. * @buflen: pointer to buffer length
  2771. *
  2772. * The function will first try to write out the pathname without taking any
  2773. * lock other than the RCU read lock to make sure that dentries won't go away.
  2774. * It only checks the sequence number of the global rename_lock as any change
  2775. * in the dentry's d_seq will be preceded by changes in the rename_lock
  2776. * sequence number. If the sequence number had been changed, it will restart
  2777. * the whole pathname back-tracing sequence again by taking the rename_lock.
  2778. * In this case, there is no need to take the RCU read lock as the recursive
  2779. * parent pointer references will keep the dentry chain alive as long as no
  2780. * rename operation is performed.
  2781. */
  2782. static int prepend_path(const struct path *path,
  2783. const struct path *root,
  2784. char **buffer, int *buflen)
  2785. {
  2786. struct dentry *dentry;
  2787. struct vfsmount *vfsmnt;
  2788. struct mount *mnt;
  2789. int error = 0;
  2790. unsigned seq, m_seq = 0;
  2791. char *bptr;
  2792. int blen;
  2793. rcu_read_lock();
  2794. restart_mnt:
  2795. read_seqbegin_or_lock(&mount_lock, &m_seq);
  2796. seq = 0;
  2797. rcu_read_lock();
  2798. restart:
  2799. bptr = *buffer;
  2800. blen = *buflen;
  2801. error = 0;
  2802. dentry = path->dentry;
  2803. vfsmnt = path->mnt;
  2804. mnt = real_mount(vfsmnt);
  2805. read_seqbegin_or_lock(&rename_lock, &seq);
  2806. while (dentry != root->dentry || vfsmnt != root->mnt) {
  2807. struct dentry * parent;
  2808. if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
  2809. struct mount *parent = READ_ONCE(mnt->mnt_parent);
  2810. /* Escaped? */
  2811. if (dentry != vfsmnt->mnt_root) {
  2812. bptr = *buffer;
  2813. blen = *buflen;
  2814. error = 3;
  2815. break;
  2816. }
  2817. /* Global root? */
  2818. if (mnt != parent) {
  2819. dentry = READ_ONCE(mnt->mnt_mountpoint);
  2820. mnt = parent;
  2821. vfsmnt = &mnt->mnt;
  2822. continue;
  2823. }
  2824. if (!error)
  2825. error = is_mounted(vfsmnt) ? 1 : 2;
  2826. break;
  2827. }
  2828. parent = dentry->d_parent;
  2829. prefetch(parent);
  2830. error = prepend_name(&bptr, &blen, &dentry->d_name);
  2831. if (error)
  2832. break;
  2833. dentry = parent;
  2834. }
  2835. if (!(seq & 1))
  2836. rcu_read_unlock();
  2837. if (need_seqretry(&rename_lock, seq)) {
  2838. seq = 1;
  2839. goto restart;
  2840. }
  2841. done_seqretry(&rename_lock, seq);
  2842. if (!(m_seq & 1))
  2843. rcu_read_unlock();
  2844. if (need_seqretry(&mount_lock, m_seq)) {
  2845. m_seq = 1;
  2846. goto restart_mnt;
  2847. }
  2848. done_seqretry(&mount_lock, m_seq);
  2849. if (error >= 0 && bptr == *buffer) {
  2850. if (--blen < 0)
  2851. error = -ENAMETOOLONG;
  2852. else
  2853. *--bptr = '/';
  2854. }
  2855. *buffer = bptr;
  2856. *buflen = blen;
  2857. return error;
  2858. }
  2859. /**
  2860. * __d_path - return the path of a dentry
  2861. * @path: the dentry/vfsmount to report
  2862. * @root: root vfsmnt/dentry
  2863. * @buf: buffer to return value in
  2864. * @buflen: buffer length
  2865. *
  2866. * Convert a dentry into an ASCII path name.
  2867. *
  2868. * Returns a pointer into the buffer or an error code if the
  2869. * path was too long.
  2870. *
  2871. * "buflen" should be positive.
  2872. *
  2873. * If the path is not reachable from the supplied root, return %NULL.
  2874. */
  2875. char *__d_path(const struct path *path,
  2876. const struct path *root,
  2877. char *buf, int buflen)
  2878. {
  2879. char *res = buf + buflen;
  2880. int error;
  2881. prepend(&res, &buflen, "\0", 1);
  2882. error = prepend_path(path, root, &res, &buflen);
  2883. if (error < 0)
  2884. return ERR_PTR(error);
  2885. if (error > 0)
  2886. return NULL;
  2887. return res;
  2888. }
  2889. char *d_absolute_path(const struct path *path,
  2890. char *buf, int buflen)
  2891. {
  2892. struct path root = {};
  2893. char *res = buf + buflen;
  2894. int error;
  2895. prepend(&res, &buflen, "\0", 1);
  2896. error = prepend_path(path, &root, &res, &buflen);
  2897. if (error > 1)
  2898. error = -EINVAL;
  2899. if (error < 0)
  2900. return ERR_PTR(error);
  2901. return res;
  2902. }
  2903. /*
  2904. * same as __d_path but appends "(deleted)" for unlinked files.
  2905. */
  2906. static int path_with_deleted(const struct path *path,
  2907. const struct path *root,
  2908. char **buf, int *buflen)
  2909. {
  2910. prepend(buf, buflen, "\0", 1);
  2911. if (d_unlinked(path->dentry)) {
  2912. int error = prepend(buf, buflen, " (deleted)", 10);
  2913. if (error)
  2914. return error;
  2915. }
  2916. return prepend_path(path, root, buf, buflen);
  2917. }
  2918. static int prepend_unreachable(char **buffer, int *buflen)
  2919. {
  2920. return prepend(buffer, buflen, "(unreachable)", 13);
  2921. }
  2922. static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
  2923. {
  2924. unsigned seq;
  2925. do {
  2926. seq = read_seqcount_begin(&fs->seq);
  2927. *root = fs->root;
  2928. } while (read_seqcount_retry(&fs->seq, seq));
  2929. }
  2930. /**
  2931. * d_path - return the path of a dentry
  2932. * @path: path to report
  2933. * @buf: buffer to return value in
  2934. * @buflen: buffer length
  2935. *
  2936. * Convert a dentry into an ASCII path name. If the entry has been deleted
  2937. * the string " (deleted)" is appended. Note that this is ambiguous.
  2938. *
  2939. * Returns a pointer into the buffer or an error code if the path was
  2940. * too long. Note: Callers should use the returned pointer, not the passed
  2941. * in buffer, to use the name! The implementation often starts at an offset
  2942. * into the buffer, and may leave 0 bytes at the start.
  2943. *
  2944. * "buflen" should be positive.
  2945. */
  2946. char *d_path(const struct path *path, char *buf, int buflen)
  2947. {
  2948. char *res = buf + buflen;
  2949. struct path root;
  2950. int error;
  2951. /*
  2952. * We have various synthetic filesystems that never get mounted. On
  2953. * these filesystems dentries are never used for lookup purposes, and
  2954. * thus don't need to be hashed. They also don't need a name until a
  2955. * user wants to identify the object in /proc/pid/fd/. The little hack
  2956. * below allows us to generate a name for these objects on demand:
  2957. *
  2958. * Some pseudo inodes are mountable. When they are mounted
  2959. * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
  2960. * and instead have d_path return the mounted path.
  2961. */
  2962. if (path->dentry->d_op && path->dentry->d_op->d_dname &&
  2963. (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
  2964. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2965. rcu_read_lock();
  2966. get_fs_root_rcu(current->fs, &root);
  2967. error = path_with_deleted(path, &root, &res, &buflen);
  2968. rcu_read_unlock();
  2969. if (error < 0)
  2970. res = ERR_PTR(error);
  2971. return res;
  2972. }
  2973. EXPORT_SYMBOL(d_path);
  2974. /*
  2975. * Helper function for dentry_operations.d_dname() members
  2976. */
  2977. char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
  2978. const char *fmt, ...)
  2979. {
  2980. va_list args;
  2981. char temp[64];
  2982. int sz;
  2983. va_start(args, fmt);
  2984. sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
  2985. va_end(args);
  2986. if (sz > sizeof(temp) || sz > buflen)
  2987. return ERR_PTR(-ENAMETOOLONG);
  2988. buffer += buflen - sz;
  2989. return memcpy(buffer, temp, sz);
  2990. }
  2991. char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
  2992. {
  2993. char *end = buffer + buflen;
  2994. /* these dentries are never renamed, so d_lock is not needed */
  2995. if (prepend(&end, &buflen, " (deleted)", 11) ||
  2996. prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
  2997. prepend(&end, &buflen, "/", 1))
  2998. end = ERR_PTR(-ENAMETOOLONG);
  2999. return end;
  3000. }
  3001. EXPORT_SYMBOL(simple_dname);
  3002. /*
  3003. * Write full pathname from the root of the filesystem into the buffer.
  3004. */
  3005. static char *__dentry_path(struct dentry *d, char *buf, int buflen)
  3006. {
  3007. struct dentry *dentry;
  3008. char *end, *retval;
  3009. int len, seq = 0;
  3010. int error = 0;
  3011. if (buflen < 2)
  3012. goto Elong;
  3013. rcu_read_lock();
  3014. restart:
  3015. dentry = d;
  3016. end = buf + buflen;
  3017. len = buflen;
  3018. prepend(&end, &len, "\0", 1);
  3019. /* Get '/' right */
  3020. retval = end-1;
  3021. *retval = '/';
  3022. read_seqbegin_or_lock(&rename_lock, &seq);
  3023. while (!IS_ROOT(dentry)) {
  3024. struct dentry *parent = dentry->d_parent;
  3025. prefetch(parent);
  3026. error = prepend_name(&end, &len, &dentry->d_name);
  3027. if (error)
  3028. break;
  3029. retval = end;
  3030. dentry = parent;
  3031. }
  3032. if (!(seq & 1))
  3033. rcu_read_unlock();
  3034. if (need_seqretry(&rename_lock, seq)) {
  3035. seq = 1;
  3036. goto restart;
  3037. }
  3038. done_seqretry(&rename_lock, seq);
  3039. if (error)
  3040. goto Elong;
  3041. return retval;
  3042. Elong:
  3043. return ERR_PTR(-ENAMETOOLONG);
  3044. }
  3045. char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
  3046. {
  3047. return __dentry_path(dentry, buf, buflen);
  3048. }
  3049. EXPORT_SYMBOL(dentry_path_raw);
  3050. char *dentry_path(struct dentry *dentry, char *buf, int buflen)
  3051. {
  3052. char *p = NULL;
  3053. char *retval;
  3054. if (d_unlinked(dentry)) {
  3055. p = buf + buflen;
  3056. if (prepend(&p, &buflen, "//deleted", 10) != 0)
  3057. goto Elong;
  3058. buflen++;
  3059. }
  3060. retval = __dentry_path(dentry, buf, buflen);
  3061. if (!IS_ERR(retval) && p)
  3062. *p = '/'; /* restore '/' overriden with '\0' */
  3063. return retval;
  3064. Elong:
  3065. return ERR_PTR(-ENAMETOOLONG);
  3066. }
  3067. static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
  3068. struct path *pwd)
  3069. {
  3070. unsigned seq;
  3071. do {
  3072. seq = read_seqcount_begin(&fs->seq);
  3073. *root = fs->root;
  3074. *pwd = fs->pwd;
  3075. } while (read_seqcount_retry(&fs->seq, seq));
  3076. }
  3077. /*
  3078. * NOTE! The user-level library version returns a
  3079. * character pointer. The kernel system call just
  3080. * returns the length of the buffer filled (which
  3081. * includes the ending '\0' character), or a negative
  3082. * error value. So libc would do something like
  3083. *
  3084. * char *getcwd(char * buf, size_t size)
  3085. * {
  3086. * int retval;
  3087. *
  3088. * retval = sys_getcwd(buf, size);
  3089. * if (retval >= 0)
  3090. * return buf;
  3091. * errno = -retval;
  3092. * return NULL;
  3093. * }
  3094. */
  3095. SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
  3096. {
  3097. int error;
  3098. struct path pwd, root;
  3099. char *page = __getname();
  3100. if (!page)
  3101. return -ENOMEM;
  3102. rcu_read_lock();
  3103. get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
  3104. error = -ENOENT;
  3105. if (!d_unlinked(pwd.dentry)) {
  3106. unsigned long len;
  3107. char *cwd = page + PATH_MAX;
  3108. int buflen = PATH_MAX;
  3109. prepend(&cwd, &buflen, "\0", 1);
  3110. error = prepend_path(&pwd, &root, &cwd, &buflen);
  3111. rcu_read_unlock();
  3112. if (error < 0)
  3113. goto out;
  3114. /* Unreachable from current root */
  3115. if (error > 0) {
  3116. error = prepend_unreachable(&cwd, &buflen);
  3117. if (error)
  3118. goto out;
  3119. }
  3120. error = -ERANGE;
  3121. len = PATH_MAX + page - cwd;
  3122. if (len <= size) {
  3123. error = len;
  3124. if (copy_to_user(buf, cwd, len))
  3125. error = -EFAULT;
  3126. }
  3127. } else {
  3128. rcu_read_unlock();
  3129. }
  3130. out:
  3131. __putname(page);
  3132. return error;
  3133. }
  3134. /*
  3135. * Test whether new_dentry is a subdirectory of old_dentry.
  3136. *
  3137. * Trivially implemented using the dcache structure
  3138. */
  3139. /**
  3140. * is_subdir - is new dentry a subdirectory of old_dentry
  3141. * @new_dentry: new dentry
  3142. * @old_dentry: old dentry
  3143. *
  3144. * Returns true if new_dentry is a subdirectory of the parent (at any depth).
  3145. * Returns false otherwise.
  3146. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  3147. */
  3148. bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  3149. {
  3150. bool result;
  3151. unsigned seq;
  3152. if (new_dentry == old_dentry)
  3153. return true;
  3154. do {
  3155. /* for restarting inner loop in case of seq retry */
  3156. seq = read_seqbegin(&rename_lock);
  3157. /*
  3158. * Need rcu_readlock to protect against the d_parent trashing
  3159. * due to d_move
  3160. */
  3161. rcu_read_lock();
  3162. if (d_ancestor(old_dentry, new_dentry))
  3163. result = true;
  3164. else
  3165. result = false;
  3166. rcu_read_unlock();
  3167. } while (read_seqretry(&rename_lock, seq));
  3168. return result;
  3169. }
  3170. static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
  3171. {
  3172. struct dentry *root = data;
  3173. if (dentry != root) {
  3174. if (d_unhashed(dentry) || !dentry->d_inode)
  3175. return D_WALK_SKIP;
  3176. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  3177. dentry->d_flags |= DCACHE_GENOCIDE;
  3178. dentry->d_lockref.count--;
  3179. }
  3180. }
  3181. return D_WALK_CONTINUE;
  3182. }
  3183. void d_genocide(struct dentry *parent)
  3184. {
  3185. d_walk(parent, parent, d_genocide_kill, NULL);
  3186. }
  3187. void d_tmpfile(struct dentry *dentry, struct inode *inode)
  3188. {
  3189. inode_dec_link_count(inode);
  3190. BUG_ON(dentry->d_name.name != dentry->d_iname ||
  3191. !hlist_unhashed(&dentry->d_u.d_alias) ||
  3192. !d_unlinked(dentry));
  3193. spin_lock(&dentry->d_parent->d_lock);
  3194. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  3195. dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
  3196. (unsigned long long)inode->i_ino);
  3197. spin_unlock(&dentry->d_lock);
  3198. spin_unlock(&dentry->d_parent->d_lock);
  3199. d_instantiate(dentry, inode);
  3200. }
  3201. EXPORT_SYMBOL(d_tmpfile);
  3202. static __initdata unsigned long dhash_entries;
  3203. static int __init set_dhash_entries(char *str)
  3204. {
  3205. if (!str)
  3206. return 0;
  3207. dhash_entries = simple_strtoul(str, &str, 0);
  3208. return 1;
  3209. }
  3210. __setup("dhash_entries=", set_dhash_entries);
  3211. static void __init dcache_init_early(void)
  3212. {
  3213. /* If hashes are distributed across NUMA nodes, defer
  3214. * hash allocation until vmalloc space is available.
  3215. */
  3216. if (hashdist)
  3217. return;
  3218. dentry_hashtable =
  3219. alloc_large_system_hash("Dentry cache",
  3220. sizeof(struct hlist_bl_head),
  3221. dhash_entries,
  3222. 13,
  3223. HASH_EARLY | HASH_ZERO,
  3224. &d_hash_shift,
  3225. NULL,
  3226. 0,
  3227. 0);
  3228. d_hash_shift = 32 - d_hash_shift;
  3229. }
  3230. static void __init dcache_init(void)
  3231. {
  3232. /*
  3233. * A constructor could be added for stable state like the lists,
  3234. * but it is probably not worth it because of the cache nature
  3235. * of the dcache.
  3236. */
  3237. dentry_cache = KMEM_CACHE(dentry,
  3238. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
  3239. /* Hash may have been set up in dcache_init_early */
  3240. if (!hashdist)
  3241. return;
  3242. dentry_hashtable =
  3243. alloc_large_system_hash("Dentry cache",
  3244. sizeof(struct hlist_bl_head),
  3245. dhash_entries,
  3246. 13,
  3247. HASH_ZERO,
  3248. &d_hash_shift,
  3249. NULL,
  3250. 0,
  3251. 0);
  3252. d_hash_shift = 32 - d_hash_shift;
  3253. }
  3254. /* SLAB cache for __getname() consumers */
  3255. struct kmem_cache *names_cachep __read_mostly;
  3256. EXPORT_SYMBOL(names_cachep);
  3257. EXPORT_SYMBOL(d_genocide);
  3258. void __init vfs_caches_init_early(void)
  3259. {
  3260. int i;
  3261. for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
  3262. INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
  3263. dcache_init_early();
  3264. inode_init_early();
  3265. }
  3266. void __init vfs_caches_init(void)
  3267. {
  3268. names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
  3269. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  3270. dcache_init();
  3271. inode_init();
  3272. files_init();
  3273. files_maxfiles_init();
  3274. mnt_init();
  3275. bdev_cache_init();
  3276. chrdev_init();
  3277. }