mmu.c 122 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. static bool dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #define MMU_WARN_ON(x) WARN_ON(x)
  64. #else
  65. #define pgprintk(x...) do { } while (0)
  66. #define rmap_printk(x...) do { } while (0)
  67. #define MMU_WARN_ON(x) do { } while (0)
  68. #endif
  69. #define PTE_PREFETCH_NUM 8
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define PT64_LEVEL_BITS 9
  73. #define PT64_LEVEL_SHIFT(level) \
  74. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LVL_OFFSET_MASK(level) \
  81. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  82. * PT32_LEVEL_BITS))) - 1))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT64_LVL_ADDR_MASK(level) \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT64_LEVEL_BITS))) - 1))
  91. #define PT64_LVL_OFFSET_MASK(level) \
  92. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT64_LEVEL_BITS))) - 1))
  94. #define PT32_BASE_ADDR_MASK PAGE_MASK
  95. #define PT32_DIR_BASE_ADDR_MASK \
  96. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  97. #define PT32_LVL_ADDR_MASK(level) \
  98. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  101. | shadow_x_mask | shadow_nx_mask)
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #include <trace/events/kvm.h>
  107. #define CREATE_TRACE_POINTS
  108. #include "mmutrace.h"
  109. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  110. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  111. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  112. /* make pte_list_desc fit well in cache line */
  113. #define PTE_LIST_EXT 3
  114. struct pte_list_desc {
  115. u64 *sptes[PTE_LIST_EXT];
  116. struct pte_list_desc *more;
  117. };
  118. struct kvm_shadow_walk_iterator {
  119. u64 addr;
  120. hpa_t shadow_addr;
  121. u64 *sptep;
  122. int level;
  123. unsigned index;
  124. };
  125. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  126. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  127. shadow_walk_okay(&(_walker)); \
  128. shadow_walk_next(&(_walker)))
  129. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  130. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  131. shadow_walk_okay(&(_walker)) && \
  132. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  133. __shadow_walk_next(&(_walker), spte))
  134. static struct kmem_cache *pte_list_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static struct percpu_counter kvm_total_used_mmu_pages;
  137. static u64 __read_mostly shadow_nx_mask;
  138. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  139. static u64 __read_mostly shadow_user_mask;
  140. static u64 __read_mostly shadow_accessed_mask;
  141. static u64 __read_mostly shadow_dirty_mask;
  142. static u64 __read_mostly shadow_mmio_mask;
  143. static void mmu_spte_set(u64 *sptep, u64 spte);
  144. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  145. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  146. {
  147. shadow_mmio_mask = mmio_mask;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  150. /*
  151. * the low bit of the generation number is always presumed to be zero.
  152. * This disables mmio caching during memslot updates. The concept is
  153. * similar to a seqcount but instead of retrying the access we just punt
  154. * and ignore the cache.
  155. *
  156. * spte bits 3-11 are used as bits 1-9 of the generation number,
  157. * the bits 52-61 are used as bits 10-19 of the generation number.
  158. */
  159. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  160. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  161. #define MMIO_GEN_SHIFT 20
  162. #define MMIO_GEN_LOW_SHIFT 10
  163. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  164. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  165. static u64 generation_mmio_spte_mask(unsigned int gen)
  166. {
  167. u64 mask;
  168. WARN_ON(gen & ~MMIO_GEN_MASK);
  169. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  170. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  171. return mask;
  172. }
  173. static unsigned int get_mmio_spte_generation(u64 spte)
  174. {
  175. unsigned int gen;
  176. spte &= ~shadow_mmio_mask;
  177. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  178. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  179. return gen;
  180. }
  181. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  182. {
  183. return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
  184. }
  185. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  186. unsigned access)
  187. {
  188. unsigned int gen = kvm_current_mmio_generation(kvm);
  189. u64 mask = generation_mmio_spte_mask(gen);
  190. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  191. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  192. trace_mark_mmio_spte(sptep, gfn, access, gen);
  193. mmu_spte_set(sptep, mask);
  194. }
  195. static bool is_mmio_spte(u64 spte)
  196. {
  197. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  198. }
  199. static gfn_t get_mmio_spte_gfn(u64 spte)
  200. {
  201. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  202. return (spte & ~mask) >> PAGE_SHIFT;
  203. }
  204. static unsigned get_mmio_spte_access(u64 spte)
  205. {
  206. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  207. return (spte & ~mask) & ~PAGE_MASK;
  208. }
  209. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  210. pfn_t pfn, unsigned access)
  211. {
  212. if (unlikely(is_noslot_pfn(pfn))) {
  213. mark_mmio_spte(kvm, sptep, gfn, access);
  214. return true;
  215. }
  216. return false;
  217. }
  218. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  219. {
  220. unsigned int kvm_gen, spte_gen;
  221. kvm_gen = kvm_current_mmio_generation(kvm);
  222. spte_gen = get_mmio_spte_generation(spte);
  223. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  224. return likely(kvm_gen == spte_gen);
  225. }
  226. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  227. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  228. {
  229. shadow_user_mask = user_mask;
  230. shadow_accessed_mask = accessed_mask;
  231. shadow_dirty_mask = dirty_mask;
  232. shadow_nx_mask = nx_mask;
  233. shadow_x_mask = x_mask;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  236. static int is_cpuid_PSE36(void)
  237. {
  238. return 1;
  239. }
  240. static int is_nx(struct kvm_vcpu *vcpu)
  241. {
  242. return vcpu->arch.efer & EFER_NX;
  243. }
  244. static int is_shadow_present_pte(u64 pte)
  245. {
  246. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  247. }
  248. static int is_large_pte(u64 pte)
  249. {
  250. return pte & PT_PAGE_SIZE_MASK;
  251. }
  252. static int is_rmap_spte(u64 pte)
  253. {
  254. return is_shadow_present_pte(pte);
  255. }
  256. static int is_last_spte(u64 pte, int level)
  257. {
  258. if (level == PT_PAGE_TABLE_LEVEL)
  259. return 1;
  260. if (is_large_pte(pte))
  261. return 1;
  262. return 0;
  263. }
  264. static pfn_t spte_to_pfn(u64 pte)
  265. {
  266. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  267. }
  268. static gfn_t pse36_gfn_delta(u32 gpte)
  269. {
  270. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  271. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  272. }
  273. #ifdef CONFIG_X86_64
  274. static void __set_spte(u64 *sptep, u64 spte)
  275. {
  276. *sptep = spte;
  277. }
  278. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  279. {
  280. *sptep = spte;
  281. }
  282. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  283. {
  284. return xchg(sptep, spte);
  285. }
  286. static u64 __get_spte_lockless(u64 *sptep)
  287. {
  288. return ACCESS_ONCE(*sptep);
  289. }
  290. static bool __check_direct_spte_mmio_pf(u64 spte)
  291. {
  292. /* It is valid if the spte is zapped. */
  293. return spte == 0ull;
  294. }
  295. #else
  296. union split_spte {
  297. struct {
  298. u32 spte_low;
  299. u32 spte_high;
  300. };
  301. u64 spte;
  302. };
  303. static void count_spte_clear(u64 *sptep, u64 spte)
  304. {
  305. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  306. if (is_shadow_present_pte(spte))
  307. return;
  308. /* Ensure the spte is completely set before we increase the count */
  309. smp_wmb();
  310. sp->clear_spte_count++;
  311. }
  312. static void __set_spte(u64 *sptep, u64 spte)
  313. {
  314. union split_spte *ssptep, sspte;
  315. ssptep = (union split_spte *)sptep;
  316. sspte = (union split_spte)spte;
  317. ssptep->spte_high = sspte.spte_high;
  318. /*
  319. * If we map the spte from nonpresent to present, We should store
  320. * the high bits firstly, then set present bit, so cpu can not
  321. * fetch this spte while we are setting the spte.
  322. */
  323. smp_wmb();
  324. ssptep->spte_low = sspte.spte_low;
  325. }
  326. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  327. {
  328. union split_spte *ssptep, sspte;
  329. ssptep = (union split_spte *)sptep;
  330. sspte = (union split_spte)spte;
  331. ssptep->spte_low = sspte.spte_low;
  332. /*
  333. * If we map the spte from present to nonpresent, we should clear
  334. * present bit firstly to avoid vcpu fetch the old high bits.
  335. */
  336. smp_wmb();
  337. ssptep->spte_high = sspte.spte_high;
  338. count_spte_clear(sptep, spte);
  339. }
  340. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  341. {
  342. union split_spte *ssptep, sspte, orig;
  343. ssptep = (union split_spte *)sptep;
  344. sspte = (union split_spte)spte;
  345. /* xchg acts as a barrier before the setting of the high bits */
  346. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  347. orig.spte_high = ssptep->spte_high;
  348. ssptep->spte_high = sspte.spte_high;
  349. count_spte_clear(sptep, spte);
  350. return orig.spte;
  351. }
  352. /*
  353. * The idea using the light way get the spte on x86_32 guest is from
  354. * gup_get_pte(arch/x86/mm/gup.c).
  355. *
  356. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  357. * coalesces them and we are running out of the MMU lock. Therefore
  358. * we need to protect against in-progress updates of the spte.
  359. *
  360. * Reading the spte while an update is in progress may get the old value
  361. * for the high part of the spte. The race is fine for a present->non-present
  362. * change (because the high part of the spte is ignored for non-present spte),
  363. * but for a present->present change we must reread the spte.
  364. *
  365. * All such changes are done in two steps (present->non-present and
  366. * non-present->present), hence it is enough to count the number of
  367. * present->non-present updates: if it changed while reading the spte,
  368. * we might have hit the race. This is done using clear_spte_count.
  369. */
  370. static u64 __get_spte_lockless(u64 *sptep)
  371. {
  372. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  373. union split_spte spte, *orig = (union split_spte *)sptep;
  374. int count;
  375. retry:
  376. count = sp->clear_spte_count;
  377. smp_rmb();
  378. spte.spte_low = orig->spte_low;
  379. smp_rmb();
  380. spte.spte_high = orig->spte_high;
  381. smp_rmb();
  382. if (unlikely(spte.spte_low != orig->spte_low ||
  383. count != sp->clear_spte_count))
  384. goto retry;
  385. return spte.spte;
  386. }
  387. static bool __check_direct_spte_mmio_pf(u64 spte)
  388. {
  389. union split_spte sspte = (union split_spte)spte;
  390. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  391. /* It is valid if the spte is zapped. */
  392. if (spte == 0ull)
  393. return true;
  394. /* It is valid if the spte is being zapped. */
  395. if (sspte.spte_low == 0ull &&
  396. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  397. return true;
  398. return false;
  399. }
  400. #endif
  401. static bool spte_is_locklessly_modifiable(u64 spte)
  402. {
  403. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  404. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  405. }
  406. static bool spte_has_volatile_bits(u64 spte)
  407. {
  408. /*
  409. * Always atomicly update spte if it can be updated
  410. * out of mmu-lock, it can ensure dirty bit is not lost,
  411. * also, it can help us to get a stable is_writable_pte()
  412. * to ensure tlb flush is not missed.
  413. */
  414. if (spte_is_locklessly_modifiable(spte))
  415. return true;
  416. if (!shadow_accessed_mask)
  417. return false;
  418. if (!is_shadow_present_pte(spte))
  419. return false;
  420. if ((spte & shadow_accessed_mask) &&
  421. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  422. return false;
  423. return true;
  424. }
  425. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  426. {
  427. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  428. }
  429. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  430. {
  431. return (old_spte & bit_mask) != (new_spte & bit_mask);
  432. }
  433. /* Rules for using mmu_spte_set:
  434. * Set the sptep from nonpresent to present.
  435. * Note: the sptep being assigned *must* be either not present
  436. * or in a state where the hardware will not attempt to update
  437. * the spte.
  438. */
  439. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  440. {
  441. WARN_ON(is_shadow_present_pte(*sptep));
  442. __set_spte(sptep, new_spte);
  443. }
  444. /* Rules for using mmu_spte_update:
  445. * Update the state bits, it means the mapped pfn is not changged.
  446. *
  447. * Whenever we overwrite a writable spte with a read-only one we
  448. * should flush remote TLBs. Otherwise rmap_write_protect
  449. * will find a read-only spte, even though the writable spte
  450. * might be cached on a CPU's TLB, the return value indicates this
  451. * case.
  452. */
  453. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  454. {
  455. u64 old_spte = *sptep;
  456. bool ret = false;
  457. WARN_ON(!is_rmap_spte(new_spte));
  458. if (!is_shadow_present_pte(old_spte)) {
  459. mmu_spte_set(sptep, new_spte);
  460. return ret;
  461. }
  462. if (!spte_has_volatile_bits(old_spte))
  463. __update_clear_spte_fast(sptep, new_spte);
  464. else
  465. old_spte = __update_clear_spte_slow(sptep, new_spte);
  466. /*
  467. * For the spte updated out of mmu-lock is safe, since
  468. * we always atomicly update it, see the comments in
  469. * spte_has_volatile_bits().
  470. */
  471. if (spte_is_locklessly_modifiable(old_spte) &&
  472. !is_writable_pte(new_spte))
  473. ret = true;
  474. if (!shadow_accessed_mask)
  475. return ret;
  476. /*
  477. * Flush TLB when accessed/dirty bits are changed in the page tables,
  478. * to guarantee consistency between TLB and page tables.
  479. */
  480. if (spte_is_bit_changed(old_spte, new_spte,
  481. shadow_accessed_mask | shadow_dirty_mask))
  482. ret = true;
  483. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  484. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  485. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  486. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  487. return ret;
  488. }
  489. /*
  490. * Rules for using mmu_spte_clear_track_bits:
  491. * It sets the sptep from present to nonpresent, and track the
  492. * state bits, it is used to clear the last level sptep.
  493. */
  494. static int mmu_spte_clear_track_bits(u64 *sptep)
  495. {
  496. pfn_t pfn;
  497. u64 old_spte = *sptep;
  498. if (!spte_has_volatile_bits(old_spte))
  499. __update_clear_spte_fast(sptep, 0ull);
  500. else
  501. old_spte = __update_clear_spte_slow(sptep, 0ull);
  502. if (!is_rmap_spte(old_spte))
  503. return 0;
  504. pfn = spte_to_pfn(old_spte);
  505. /*
  506. * KVM does not hold the refcount of the page used by
  507. * kvm mmu, before reclaiming the page, we should
  508. * unmap it from mmu first.
  509. */
  510. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  511. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  512. kvm_set_pfn_accessed(pfn);
  513. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  514. kvm_set_pfn_dirty(pfn);
  515. return 1;
  516. }
  517. /*
  518. * Rules for using mmu_spte_clear_no_track:
  519. * Directly clear spte without caring the state bits of sptep,
  520. * it is used to set the upper level spte.
  521. */
  522. static void mmu_spte_clear_no_track(u64 *sptep)
  523. {
  524. __update_clear_spte_fast(sptep, 0ull);
  525. }
  526. static u64 mmu_spte_get_lockless(u64 *sptep)
  527. {
  528. return __get_spte_lockless(sptep);
  529. }
  530. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  531. {
  532. /*
  533. * Prevent page table teardown by making any free-er wait during
  534. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  535. */
  536. local_irq_disable();
  537. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  538. /*
  539. * Make sure a following spte read is not reordered ahead of the write
  540. * to vcpu->mode.
  541. */
  542. smp_mb();
  543. }
  544. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  545. {
  546. /*
  547. * Make sure the write to vcpu->mode is not reordered in front of
  548. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  549. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  550. */
  551. smp_mb();
  552. vcpu->mode = OUTSIDE_GUEST_MODE;
  553. local_irq_enable();
  554. }
  555. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  556. struct kmem_cache *base_cache, int min)
  557. {
  558. void *obj;
  559. if (cache->nobjs >= min)
  560. return 0;
  561. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  562. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  563. if (!obj)
  564. return -ENOMEM;
  565. cache->objects[cache->nobjs++] = obj;
  566. }
  567. return 0;
  568. }
  569. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  570. {
  571. return cache->nobjs;
  572. }
  573. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  574. struct kmem_cache *cache)
  575. {
  576. while (mc->nobjs)
  577. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  578. }
  579. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  580. int min)
  581. {
  582. void *page;
  583. if (cache->nobjs >= min)
  584. return 0;
  585. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  586. page = (void *)__get_free_page(GFP_KERNEL);
  587. if (!page)
  588. return -ENOMEM;
  589. cache->objects[cache->nobjs++] = page;
  590. }
  591. return 0;
  592. }
  593. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  594. {
  595. while (mc->nobjs)
  596. free_page((unsigned long)mc->objects[--mc->nobjs]);
  597. }
  598. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  599. {
  600. int r;
  601. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  602. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  603. if (r)
  604. goto out;
  605. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  606. if (r)
  607. goto out;
  608. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  609. mmu_page_header_cache, 4);
  610. out:
  611. return r;
  612. }
  613. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  614. {
  615. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  616. pte_list_desc_cache);
  617. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  618. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  619. mmu_page_header_cache);
  620. }
  621. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  622. {
  623. void *p;
  624. BUG_ON(!mc->nobjs);
  625. p = mc->objects[--mc->nobjs];
  626. return p;
  627. }
  628. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  629. {
  630. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  631. }
  632. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  633. {
  634. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  635. }
  636. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  637. {
  638. if (!sp->role.direct)
  639. return sp->gfns[index];
  640. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  641. }
  642. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  643. {
  644. if (sp->role.direct)
  645. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  646. else
  647. sp->gfns[index] = gfn;
  648. }
  649. /*
  650. * Return the pointer to the large page information for a given gfn,
  651. * handling slots that are not large page aligned.
  652. */
  653. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  654. struct kvm_memory_slot *slot,
  655. int level)
  656. {
  657. unsigned long idx;
  658. idx = gfn_to_index(gfn, slot->base_gfn, level);
  659. return &slot->arch.lpage_info[level - 2][idx];
  660. }
  661. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  662. {
  663. struct kvm_memory_slot *slot;
  664. struct kvm_lpage_info *linfo;
  665. int i;
  666. slot = gfn_to_memslot(kvm, gfn);
  667. for (i = PT_DIRECTORY_LEVEL;
  668. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  669. linfo = lpage_info_slot(gfn, slot, i);
  670. linfo->write_count += 1;
  671. }
  672. kvm->arch.indirect_shadow_pages++;
  673. }
  674. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  675. {
  676. struct kvm_memory_slot *slot;
  677. struct kvm_lpage_info *linfo;
  678. int i;
  679. slot = gfn_to_memslot(kvm, gfn);
  680. for (i = PT_DIRECTORY_LEVEL;
  681. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  682. linfo = lpage_info_slot(gfn, slot, i);
  683. linfo->write_count -= 1;
  684. WARN_ON(linfo->write_count < 0);
  685. }
  686. kvm->arch.indirect_shadow_pages--;
  687. }
  688. static int has_wrprotected_page(struct kvm *kvm,
  689. gfn_t gfn,
  690. int level)
  691. {
  692. struct kvm_memory_slot *slot;
  693. struct kvm_lpage_info *linfo;
  694. slot = gfn_to_memslot(kvm, gfn);
  695. if (slot) {
  696. linfo = lpage_info_slot(gfn, slot, level);
  697. return linfo->write_count;
  698. }
  699. return 1;
  700. }
  701. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  702. {
  703. unsigned long page_size;
  704. int i, ret = 0;
  705. page_size = kvm_host_page_size(kvm, gfn);
  706. for (i = PT_PAGE_TABLE_LEVEL;
  707. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  708. if (page_size >= KVM_HPAGE_SIZE(i))
  709. ret = i;
  710. else
  711. break;
  712. }
  713. return ret;
  714. }
  715. static struct kvm_memory_slot *
  716. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  717. bool no_dirty_log)
  718. {
  719. struct kvm_memory_slot *slot;
  720. slot = gfn_to_memslot(vcpu->kvm, gfn);
  721. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  722. (no_dirty_log && slot->dirty_bitmap))
  723. slot = NULL;
  724. return slot;
  725. }
  726. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  727. {
  728. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  729. }
  730. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  731. {
  732. int host_level, level, max_level;
  733. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  734. if (host_level == PT_PAGE_TABLE_LEVEL)
  735. return host_level;
  736. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  737. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  738. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  739. break;
  740. return level - 1;
  741. }
  742. /*
  743. * Pte mapping structures:
  744. *
  745. * If pte_list bit zero is zero, then pte_list point to the spte.
  746. *
  747. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  748. * pte_list_desc containing more mappings.
  749. *
  750. * Returns the number of pte entries before the spte was added or zero if
  751. * the spte was not added.
  752. *
  753. */
  754. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  755. unsigned long *pte_list)
  756. {
  757. struct pte_list_desc *desc;
  758. int i, count = 0;
  759. if (!*pte_list) {
  760. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  761. *pte_list = (unsigned long)spte;
  762. } else if (!(*pte_list & 1)) {
  763. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  764. desc = mmu_alloc_pte_list_desc(vcpu);
  765. desc->sptes[0] = (u64 *)*pte_list;
  766. desc->sptes[1] = spte;
  767. *pte_list = (unsigned long)desc | 1;
  768. ++count;
  769. } else {
  770. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  771. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  772. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  773. desc = desc->more;
  774. count += PTE_LIST_EXT;
  775. }
  776. if (desc->sptes[PTE_LIST_EXT-1]) {
  777. desc->more = mmu_alloc_pte_list_desc(vcpu);
  778. desc = desc->more;
  779. }
  780. for (i = 0; desc->sptes[i]; ++i)
  781. ++count;
  782. desc->sptes[i] = spte;
  783. }
  784. return count;
  785. }
  786. static void
  787. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  788. int i, struct pte_list_desc *prev_desc)
  789. {
  790. int j;
  791. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  792. ;
  793. desc->sptes[i] = desc->sptes[j];
  794. desc->sptes[j] = NULL;
  795. if (j != 0)
  796. return;
  797. if (!prev_desc && !desc->more)
  798. *pte_list = (unsigned long)desc->sptes[0];
  799. else
  800. if (prev_desc)
  801. prev_desc->more = desc->more;
  802. else
  803. *pte_list = (unsigned long)desc->more | 1;
  804. mmu_free_pte_list_desc(desc);
  805. }
  806. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  807. {
  808. struct pte_list_desc *desc;
  809. struct pte_list_desc *prev_desc;
  810. int i;
  811. if (!*pte_list) {
  812. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  813. BUG();
  814. } else if (!(*pte_list & 1)) {
  815. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  816. if ((u64 *)*pte_list != spte) {
  817. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  818. BUG();
  819. }
  820. *pte_list = 0;
  821. } else {
  822. rmap_printk("pte_list_remove: %p many->many\n", spte);
  823. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  824. prev_desc = NULL;
  825. while (desc) {
  826. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  827. if (desc->sptes[i] == spte) {
  828. pte_list_desc_remove_entry(pte_list,
  829. desc, i,
  830. prev_desc);
  831. return;
  832. }
  833. prev_desc = desc;
  834. desc = desc->more;
  835. }
  836. pr_err("pte_list_remove: %p many->many\n", spte);
  837. BUG();
  838. }
  839. }
  840. typedef void (*pte_list_walk_fn) (u64 *spte);
  841. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  842. {
  843. struct pte_list_desc *desc;
  844. int i;
  845. if (!*pte_list)
  846. return;
  847. if (!(*pte_list & 1))
  848. return fn((u64 *)*pte_list);
  849. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  850. while (desc) {
  851. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  852. fn(desc->sptes[i]);
  853. desc = desc->more;
  854. }
  855. }
  856. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  857. struct kvm_memory_slot *slot)
  858. {
  859. unsigned long idx;
  860. idx = gfn_to_index(gfn, slot->base_gfn, level);
  861. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  862. }
  863. /*
  864. * Take gfn and return the reverse mapping to it.
  865. */
  866. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  867. {
  868. struct kvm_memory_slot *slot;
  869. slot = gfn_to_memslot(kvm, gfn);
  870. return __gfn_to_rmap(gfn, level, slot);
  871. }
  872. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  873. {
  874. struct kvm_mmu_memory_cache *cache;
  875. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  876. return mmu_memory_cache_free_objects(cache);
  877. }
  878. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  879. {
  880. struct kvm_mmu_page *sp;
  881. unsigned long *rmapp;
  882. sp = page_header(__pa(spte));
  883. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  884. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  885. return pte_list_add(vcpu, spte, rmapp);
  886. }
  887. static void rmap_remove(struct kvm *kvm, u64 *spte)
  888. {
  889. struct kvm_mmu_page *sp;
  890. gfn_t gfn;
  891. unsigned long *rmapp;
  892. sp = page_header(__pa(spte));
  893. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  894. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  895. pte_list_remove(spte, rmapp);
  896. }
  897. /*
  898. * Used by the following functions to iterate through the sptes linked by a
  899. * rmap. All fields are private and not assumed to be used outside.
  900. */
  901. struct rmap_iterator {
  902. /* private fields */
  903. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  904. int pos; /* index of the sptep */
  905. };
  906. /*
  907. * Iteration must be started by this function. This should also be used after
  908. * removing/dropping sptes from the rmap link because in such cases the
  909. * information in the itererator may not be valid.
  910. *
  911. * Returns sptep if found, NULL otherwise.
  912. */
  913. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  914. {
  915. if (!rmap)
  916. return NULL;
  917. if (!(rmap & 1)) {
  918. iter->desc = NULL;
  919. return (u64 *)rmap;
  920. }
  921. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  922. iter->pos = 0;
  923. return iter->desc->sptes[iter->pos];
  924. }
  925. /*
  926. * Must be used with a valid iterator: e.g. after rmap_get_first().
  927. *
  928. * Returns sptep if found, NULL otherwise.
  929. */
  930. static u64 *rmap_get_next(struct rmap_iterator *iter)
  931. {
  932. if (iter->desc) {
  933. if (iter->pos < PTE_LIST_EXT - 1) {
  934. u64 *sptep;
  935. ++iter->pos;
  936. sptep = iter->desc->sptes[iter->pos];
  937. if (sptep)
  938. return sptep;
  939. }
  940. iter->desc = iter->desc->more;
  941. if (iter->desc) {
  942. iter->pos = 0;
  943. /* desc->sptes[0] cannot be NULL */
  944. return iter->desc->sptes[iter->pos];
  945. }
  946. }
  947. return NULL;
  948. }
  949. static void drop_spte(struct kvm *kvm, u64 *sptep)
  950. {
  951. if (mmu_spte_clear_track_bits(sptep))
  952. rmap_remove(kvm, sptep);
  953. }
  954. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  955. {
  956. if (is_large_pte(*sptep)) {
  957. WARN_ON(page_header(__pa(sptep))->role.level ==
  958. PT_PAGE_TABLE_LEVEL);
  959. drop_spte(kvm, sptep);
  960. --kvm->stat.lpages;
  961. return true;
  962. }
  963. return false;
  964. }
  965. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  966. {
  967. if (__drop_large_spte(vcpu->kvm, sptep))
  968. kvm_flush_remote_tlbs(vcpu->kvm);
  969. }
  970. /*
  971. * Write-protect on the specified @sptep, @pt_protect indicates whether
  972. * spte write-protection is caused by protecting shadow page table.
  973. *
  974. * Note: write protection is difference between dirty logging and spte
  975. * protection:
  976. * - for dirty logging, the spte can be set to writable at anytime if
  977. * its dirty bitmap is properly set.
  978. * - for spte protection, the spte can be writable only after unsync-ing
  979. * shadow page.
  980. *
  981. * Return true if tlb need be flushed.
  982. */
  983. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  984. {
  985. u64 spte = *sptep;
  986. if (!is_writable_pte(spte) &&
  987. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  988. return false;
  989. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  990. if (pt_protect)
  991. spte &= ~SPTE_MMU_WRITEABLE;
  992. spte = spte & ~PT_WRITABLE_MASK;
  993. return mmu_spte_update(sptep, spte);
  994. }
  995. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  996. bool pt_protect)
  997. {
  998. u64 *sptep;
  999. struct rmap_iterator iter;
  1000. bool flush = false;
  1001. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1002. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1003. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1004. sptep = rmap_get_next(&iter);
  1005. }
  1006. return flush;
  1007. }
  1008. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  1009. {
  1010. u64 spte = *sptep;
  1011. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1012. spte &= ~shadow_dirty_mask;
  1013. return mmu_spte_update(sptep, spte);
  1014. }
  1015. static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  1016. {
  1017. u64 *sptep;
  1018. struct rmap_iterator iter;
  1019. bool flush = false;
  1020. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1021. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1022. flush |= spte_clear_dirty(kvm, sptep);
  1023. sptep = rmap_get_next(&iter);
  1024. }
  1025. return flush;
  1026. }
  1027. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1028. {
  1029. u64 spte = *sptep;
  1030. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1031. spte |= shadow_dirty_mask;
  1032. return mmu_spte_update(sptep, spte);
  1033. }
  1034. static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
  1035. {
  1036. u64 *sptep;
  1037. struct rmap_iterator iter;
  1038. bool flush = false;
  1039. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1040. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1041. flush |= spte_set_dirty(kvm, sptep);
  1042. sptep = rmap_get_next(&iter);
  1043. }
  1044. return flush;
  1045. }
  1046. /**
  1047. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1048. * @kvm: kvm instance
  1049. * @slot: slot to protect
  1050. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1051. * @mask: indicates which pages we should protect
  1052. *
  1053. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1054. * logging we do not have any such mappings.
  1055. */
  1056. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1057. struct kvm_memory_slot *slot,
  1058. gfn_t gfn_offset, unsigned long mask)
  1059. {
  1060. unsigned long *rmapp;
  1061. while (mask) {
  1062. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1063. PT_PAGE_TABLE_LEVEL, slot);
  1064. __rmap_write_protect(kvm, rmapp, false);
  1065. /* clear the first set bit */
  1066. mask &= mask - 1;
  1067. }
  1068. }
  1069. /**
  1070. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1071. * @kvm: kvm instance
  1072. * @slot: slot to clear D-bit
  1073. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1074. * @mask: indicates which pages we should clear D-bit
  1075. *
  1076. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1077. */
  1078. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1079. struct kvm_memory_slot *slot,
  1080. gfn_t gfn_offset, unsigned long mask)
  1081. {
  1082. unsigned long *rmapp;
  1083. while (mask) {
  1084. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1085. PT_PAGE_TABLE_LEVEL, slot);
  1086. __rmap_clear_dirty(kvm, rmapp);
  1087. /* clear the first set bit */
  1088. mask &= mask - 1;
  1089. }
  1090. }
  1091. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1092. /**
  1093. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1094. * PT level pages.
  1095. *
  1096. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1097. * enable dirty logging for them.
  1098. *
  1099. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1100. * logging we do not have any such mappings.
  1101. */
  1102. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1103. struct kvm_memory_slot *slot,
  1104. gfn_t gfn_offset, unsigned long mask)
  1105. {
  1106. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1107. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1108. mask);
  1109. else
  1110. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1111. }
  1112. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1113. {
  1114. struct kvm_memory_slot *slot;
  1115. unsigned long *rmapp;
  1116. int i;
  1117. bool write_protected = false;
  1118. slot = gfn_to_memslot(kvm, gfn);
  1119. for (i = PT_PAGE_TABLE_LEVEL;
  1120. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1121. rmapp = __gfn_to_rmap(gfn, i, slot);
  1122. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1123. }
  1124. return write_protected;
  1125. }
  1126. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1127. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1128. unsigned long data)
  1129. {
  1130. u64 *sptep;
  1131. struct rmap_iterator iter;
  1132. int need_tlb_flush = 0;
  1133. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1134. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1135. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
  1136. sptep, *sptep, gfn, level);
  1137. drop_spte(kvm, sptep);
  1138. need_tlb_flush = 1;
  1139. }
  1140. return need_tlb_flush;
  1141. }
  1142. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1143. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1144. unsigned long data)
  1145. {
  1146. u64 *sptep;
  1147. struct rmap_iterator iter;
  1148. int need_flush = 0;
  1149. u64 new_spte;
  1150. pte_t *ptep = (pte_t *)data;
  1151. pfn_t new_pfn;
  1152. WARN_ON(pte_huge(*ptep));
  1153. new_pfn = pte_pfn(*ptep);
  1154. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1155. BUG_ON(!is_shadow_present_pte(*sptep));
  1156. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1157. sptep, *sptep, gfn, level);
  1158. need_flush = 1;
  1159. if (pte_write(*ptep)) {
  1160. drop_spte(kvm, sptep);
  1161. sptep = rmap_get_first(*rmapp, &iter);
  1162. } else {
  1163. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1164. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1165. new_spte &= ~PT_WRITABLE_MASK;
  1166. new_spte &= ~SPTE_HOST_WRITEABLE;
  1167. new_spte &= ~shadow_accessed_mask;
  1168. mmu_spte_clear_track_bits(sptep);
  1169. mmu_spte_set(sptep, new_spte);
  1170. sptep = rmap_get_next(&iter);
  1171. }
  1172. }
  1173. if (need_flush)
  1174. kvm_flush_remote_tlbs(kvm);
  1175. return 0;
  1176. }
  1177. static int kvm_handle_hva_range(struct kvm *kvm,
  1178. unsigned long start,
  1179. unsigned long end,
  1180. unsigned long data,
  1181. int (*handler)(struct kvm *kvm,
  1182. unsigned long *rmapp,
  1183. struct kvm_memory_slot *slot,
  1184. gfn_t gfn,
  1185. int level,
  1186. unsigned long data))
  1187. {
  1188. int j;
  1189. int ret = 0;
  1190. struct kvm_memslots *slots;
  1191. struct kvm_memory_slot *memslot;
  1192. slots = kvm_memslots(kvm);
  1193. kvm_for_each_memslot(memslot, slots) {
  1194. unsigned long hva_start, hva_end;
  1195. gfn_t gfn_start, gfn_end;
  1196. hva_start = max(start, memslot->userspace_addr);
  1197. hva_end = min(end, memslot->userspace_addr +
  1198. (memslot->npages << PAGE_SHIFT));
  1199. if (hva_start >= hva_end)
  1200. continue;
  1201. /*
  1202. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1203. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1204. */
  1205. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1206. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1207. for (j = PT_PAGE_TABLE_LEVEL;
  1208. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1209. unsigned long idx, idx_end;
  1210. unsigned long *rmapp;
  1211. gfn_t gfn = gfn_start;
  1212. /*
  1213. * {idx(page_j) | page_j intersects with
  1214. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1215. */
  1216. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1217. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1218. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1219. for (; idx <= idx_end;
  1220. ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
  1221. ret |= handler(kvm, rmapp++, memslot,
  1222. gfn, j, data);
  1223. }
  1224. }
  1225. return ret;
  1226. }
  1227. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1228. unsigned long data,
  1229. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1230. struct kvm_memory_slot *slot,
  1231. gfn_t gfn, int level,
  1232. unsigned long data))
  1233. {
  1234. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1235. }
  1236. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1237. {
  1238. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1239. }
  1240. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1241. {
  1242. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1243. }
  1244. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1245. {
  1246. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1247. }
  1248. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1249. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1250. unsigned long data)
  1251. {
  1252. u64 *sptep;
  1253. struct rmap_iterator uninitialized_var(iter);
  1254. int young = 0;
  1255. BUG_ON(!shadow_accessed_mask);
  1256. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1257. sptep = rmap_get_next(&iter)) {
  1258. BUG_ON(!is_shadow_present_pte(*sptep));
  1259. if (*sptep & shadow_accessed_mask) {
  1260. young = 1;
  1261. clear_bit((ffs(shadow_accessed_mask) - 1),
  1262. (unsigned long *)sptep);
  1263. }
  1264. }
  1265. trace_kvm_age_page(gfn, level, slot, young);
  1266. return young;
  1267. }
  1268. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1269. struct kvm_memory_slot *slot, gfn_t gfn,
  1270. int level, unsigned long data)
  1271. {
  1272. u64 *sptep;
  1273. struct rmap_iterator iter;
  1274. int young = 0;
  1275. /*
  1276. * If there's no access bit in the secondary pte set by the
  1277. * hardware it's up to gup-fast/gup to set the access bit in
  1278. * the primary pte or in the page structure.
  1279. */
  1280. if (!shadow_accessed_mask)
  1281. goto out;
  1282. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1283. sptep = rmap_get_next(&iter)) {
  1284. BUG_ON(!is_shadow_present_pte(*sptep));
  1285. if (*sptep & shadow_accessed_mask) {
  1286. young = 1;
  1287. break;
  1288. }
  1289. }
  1290. out:
  1291. return young;
  1292. }
  1293. #define RMAP_RECYCLE_THRESHOLD 1000
  1294. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1295. {
  1296. unsigned long *rmapp;
  1297. struct kvm_mmu_page *sp;
  1298. sp = page_header(__pa(spte));
  1299. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1300. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1301. kvm_flush_remote_tlbs(vcpu->kvm);
  1302. }
  1303. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1304. {
  1305. /*
  1306. * In case of absence of EPT Access and Dirty Bits supports,
  1307. * emulate the accessed bit for EPT, by checking if this page has
  1308. * an EPT mapping, and clearing it if it does. On the next access,
  1309. * a new EPT mapping will be established.
  1310. * This has some overhead, but not as much as the cost of swapping
  1311. * out actively used pages or breaking up actively used hugepages.
  1312. */
  1313. if (!shadow_accessed_mask) {
  1314. /*
  1315. * We are holding the kvm->mmu_lock, and we are blowing up
  1316. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1317. * This is correct as long as we don't decouple the mmu_lock
  1318. * protected regions (like invalidate_range_start|end does).
  1319. */
  1320. kvm->mmu_notifier_seq++;
  1321. return kvm_handle_hva_range(kvm, start, end, 0,
  1322. kvm_unmap_rmapp);
  1323. }
  1324. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1325. }
  1326. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1327. {
  1328. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1329. }
  1330. #ifdef MMU_DEBUG
  1331. static int is_empty_shadow_page(u64 *spt)
  1332. {
  1333. u64 *pos;
  1334. u64 *end;
  1335. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1336. if (is_shadow_present_pte(*pos)) {
  1337. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1338. pos, *pos);
  1339. return 0;
  1340. }
  1341. return 1;
  1342. }
  1343. #endif
  1344. /*
  1345. * This value is the sum of all of the kvm instances's
  1346. * kvm->arch.n_used_mmu_pages values. We need a global,
  1347. * aggregate version in order to make the slab shrinker
  1348. * faster
  1349. */
  1350. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1351. {
  1352. kvm->arch.n_used_mmu_pages += nr;
  1353. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1354. }
  1355. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1356. {
  1357. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1358. hlist_del(&sp->hash_link);
  1359. list_del(&sp->link);
  1360. free_page((unsigned long)sp->spt);
  1361. if (!sp->role.direct)
  1362. free_page((unsigned long)sp->gfns);
  1363. kmem_cache_free(mmu_page_header_cache, sp);
  1364. }
  1365. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1366. {
  1367. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1368. }
  1369. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1370. struct kvm_mmu_page *sp, u64 *parent_pte)
  1371. {
  1372. if (!parent_pte)
  1373. return;
  1374. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1375. }
  1376. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1377. u64 *parent_pte)
  1378. {
  1379. pte_list_remove(parent_pte, &sp->parent_ptes);
  1380. }
  1381. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1382. u64 *parent_pte)
  1383. {
  1384. mmu_page_remove_parent_pte(sp, parent_pte);
  1385. mmu_spte_clear_no_track(parent_pte);
  1386. }
  1387. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1388. u64 *parent_pte, int direct)
  1389. {
  1390. struct kvm_mmu_page *sp;
  1391. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1392. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1393. if (!direct)
  1394. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1395. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1396. /*
  1397. * The active_mmu_pages list is the FIFO list, do not move the
  1398. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1399. * this feature. See the comments in kvm_zap_obsolete_pages().
  1400. */
  1401. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1402. sp->parent_ptes = 0;
  1403. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1404. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1405. return sp;
  1406. }
  1407. static void mark_unsync(u64 *spte);
  1408. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1409. {
  1410. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1411. }
  1412. static void mark_unsync(u64 *spte)
  1413. {
  1414. struct kvm_mmu_page *sp;
  1415. unsigned int index;
  1416. sp = page_header(__pa(spte));
  1417. index = spte - sp->spt;
  1418. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1419. return;
  1420. if (sp->unsync_children++)
  1421. return;
  1422. kvm_mmu_mark_parents_unsync(sp);
  1423. }
  1424. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1425. struct kvm_mmu_page *sp)
  1426. {
  1427. return 1;
  1428. }
  1429. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1430. {
  1431. }
  1432. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1433. struct kvm_mmu_page *sp, u64 *spte,
  1434. const void *pte)
  1435. {
  1436. WARN_ON(1);
  1437. }
  1438. #define KVM_PAGE_ARRAY_NR 16
  1439. struct kvm_mmu_pages {
  1440. struct mmu_page_and_offset {
  1441. struct kvm_mmu_page *sp;
  1442. unsigned int idx;
  1443. } page[KVM_PAGE_ARRAY_NR];
  1444. unsigned int nr;
  1445. };
  1446. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1447. int idx)
  1448. {
  1449. int i;
  1450. if (sp->unsync)
  1451. for (i=0; i < pvec->nr; i++)
  1452. if (pvec->page[i].sp == sp)
  1453. return 0;
  1454. pvec->page[pvec->nr].sp = sp;
  1455. pvec->page[pvec->nr].idx = idx;
  1456. pvec->nr++;
  1457. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1458. }
  1459. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1460. struct kvm_mmu_pages *pvec)
  1461. {
  1462. int i, ret, nr_unsync_leaf = 0;
  1463. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1464. struct kvm_mmu_page *child;
  1465. u64 ent = sp->spt[i];
  1466. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1467. goto clear_child_bitmap;
  1468. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1469. if (child->unsync_children) {
  1470. if (mmu_pages_add(pvec, child, i))
  1471. return -ENOSPC;
  1472. ret = __mmu_unsync_walk(child, pvec);
  1473. if (!ret)
  1474. goto clear_child_bitmap;
  1475. else if (ret > 0)
  1476. nr_unsync_leaf += ret;
  1477. else
  1478. return ret;
  1479. } else if (child->unsync) {
  1480. nr_unsync_leaf++;
  1481. if (mmu_pages_add(pvec, child, i))
  1482. return -ENOSPC;
  1483. } else
  1484. goto clear_child_bitmap;
  1485. continue;
  1486. clear_child_bitmap:
  1487. __clear_bit(i, sp->unsync_child_bitmap);
  1488. sp->unsync_children--;
  1489. WARN_ON((int)sp->unsync_children < 0);
  1490. }
  1491. return nr_unsync_leaf;
  1492. }
  1493. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1494. struct kvm_mmu_pages *pvec)
  1495. {
  1496. if (!sp->unsync_children)
  1497. return 0;
  1498. mmu_pages_add(pvec, sp, 0);
  1499. return __mmu_unsync_walk(sp, pvec);
  1500. }
  1501. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1502. {
  1503. WARN_ON(!sp->unsync);
  1504. trace_kvm_mmu_sync_page(sp);
  1505. sp->unsync = 0;
  1506. --kvm->stat.mmu_unsync;
  1507. }
  1508. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1509. struct list_head *invalid_list);
  1510. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1511. struct list_head *invalid_list);
  1512. /*
  1513. * NOTE: we should pay more attention on the zapped-obsolete page
  1514. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1515. * since it has been deleted from active_mmu_pages but still can be found
  1516. * at hast list.
  1517. *
  1518. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1519. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1520. * all the obsolete pages.
  1521. */
  1522. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1523. hlist_for_each_entry(_sp, \
  1524. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1525. if ((_sp)->gfn != (_gfn)) {} else
  1526. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1527. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1528. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1529. /* @sp->gfn should be write-protected at the call site */
  1530. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1531. struct list_head *invalid_list, bool clear_unsync)
  1532. {
  1533. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1534. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1535. return 1;
  1536. }
  1537. if (clear_unsync)
  1538. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1539. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1540. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1541. return 1;
  1542. }
  1543. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1544. return 0;
  1545. }
  1546. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1547. struct kvm_mmu_page *sp)
  1548. {
  1549. LIST_HEAD(invalid_list);
  1550. int ret;
  1551. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1552. if (ret)
  1553. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1554. return ret;
  1555. }
  1556. #ifdef CONFIG_KVM_MMU_AUDIT
  1557. #include "mmu_audit.c"
  1558. #else
  1559. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1560. static void mmu_audit_disable(void) { }
  1561. #endif
  1562. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1563. struct list_head *invalid_list)
  1564. {
  1565. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1566. }
  1567. /* @gfn should be write-protected at the call site */
  1568. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1569. {
  1570. struct kvm_mmu_page *s;
  1571. LIST_HEAD(invalid_list);
  1572. bool flush = false;
  1573. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1574. if (!s->unsync)
  1575. continue;
  1576. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1577. kvm_unlink_unsync_page(vcpu->kvm, s);
  1578. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1579. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1580. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1581. continue;
  1582. }
  1583. flush = true;
  1584. }
  1585. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1586. if (flush)
  1587. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1588. }
  1589. struct mmu_page_path {
  1590. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1591. unsigned int idx[PT64_ROOT_LEVEL-1];
  1592. };
  1593. #define for_each_sp(pvec, sp, parents, i) \
  1594. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1595. sp = pvec.page[i].sp; \
  1596. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1597. i = mmu_pages_next(&pvec, &parents, i))
  1598. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1599. struct mmu_page_path *parents,
  1600. int i)
  1601. {
  1602. int n;
  1603. for (n = i+1; n < pvec->nr; n++) {
  1604. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1605. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1606. parents->idx[0] = pvec->page[n].idx;
  1607. return n;
  1608. }
  1609. parents->parent[sp->role.level-2] = sp;
  1610. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1611. }
  1612. return n;
  1613. }
  1614. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1615. {
  1616. struct kvm_mmu_page *sp;
  1617. unsigned int level = 0;
  1618. do {
  1619. unsigned int idx = parents->idx[level];
  1620. sp = parents->parent[level];
  1621. if (!sp)
  1622. return;
  1623. --sp->unsync_children;
  1624. WARN_ON((int)sp->unsync_children < 0);
  1625. __clear_bit(idx, sp->unsync_child_bitmap);
  1626. level++;
  1627. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1628. }
  1629. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1630. struct mmu_page_path *parents,
  1631. struct kvm_mmu_pages *pvec)
  1632. {
  1633. parents->parent[parent->role.level-1] = NULL;
  1634. pvec->nr = 0;
  1635. }
  1636. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1637. struct kvm_mmu_page *parent)
  1638. {
  1639. int i;
  1640. struct kvm_mmu_page *sp;
  1641. struct mmu_page_path parents;
  1642. struct kvm_mmu_pages pages;
  1643. LIST_HEAD(invalid_list);
  1644. kvm_mmu_pages_init(parent, &parents, &pages);
  1645. while (mmu_unsync_walk(parent, &pages)) {
  1646. bool protected = false;
  1647. for_each_sp(pages, sp, parents, i)
  1648. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1649. if (protected)
  1650. kvm_flush_remote_tlbs(vcpu->kvm);
  1651. for_each_sp(pages, sp, parents, i) {
  1652. kvm_sync_page(vcpu, sp, &invalid_list);
  1653. mmu_pages_clear_parents(&parents);
  1654. }
  1655. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1656. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1657. kvm_mmu_pages_init(parent, &parents, &pages);
  1658. }
  1659. }
  1660. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1661. {
  1662. int i;
  1663. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1664. sp->spt[i] = 0ull;
  1665. }
  1666. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1667. {
  1668. sp->write_flooding_count = 0;
  1669. }
  1670. static void clear_sp_write_flooding_count(u64 *spte)
  1671. {
  1672. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1673. __clear_sp_write_flooding_count(sp);
  1674. }
  1675. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1676. {
  1677. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1678. }
  1679. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1680. gfn_t gfn,
  1681. gva_t gaddr,
  1682. unsigned level,
  1683. int direct,
  1684. unsigned access,
  1685. u64 *parent_pte)
  1686. {
  1687. union kvm_mmu_page_role role;
  1688. unsigned quadrant;
  1689. struct kvm_mmu_page *sp;
  1690. bool need_sync = false;
  1691. role = vcpu->arch.mmu.base_role;
  1692. role.level = level;
  1693. role.direct = direct;
  1694. if (role.direct)
  1695. role.cr4_pae = 0;
  1696. role.access = access;
  1697. if (!vcpu->arch.mmu.direct_map
  1698. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1699. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1700. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1701. role.quadrant = quadrant;
  1702. }
  1703. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1704. if (is_obsolete_sp(vcpu->kvm, sp))
  1705. continue;
  1706. if (!need_sync && sp->unsync)
  1707. need_sync = true;
  1708. if (sp->role.word != role.word)
  1709. continue;
  1710. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1711. break;
  1712. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1713. if (sp->unsync_children) {
  1714. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1715. kvm_mmu_mark_parents_unsync(sp);
  1716. } else if (sp->unsync)
  1717. kvm_mmu_mark_parents_unsync(sp);
  1718. __clear_sp_write_flooding_count(sp);
  1719. trace_kvm_mmu_get_page(sp, false);
  1720. return sp;
  1721. }
  1722. ++vcpu->kvm->stat.mmu_cache_miss;
  1723. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1724. if (!sp)
  1725. return sp;
  1726. sp->gfn = gfn;
  1727. sp->role = role;
  1728. hlist_add_head(&sp->hash_link,
  1729. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1730. if (!direct) {
  1731. if (rmap_write_protect(vcpu->kvm, gfn))
  1732. kvm_flush_remote_tlbs(vcpu->kvm);
  1733. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1734. kvm_sync_pages(vcpu, gfn);
  1735. account_shadowed(vcpu->kvm, gfn);
  1736. }
  1737. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1738. init_shadow_page_table(sp);
  1739. trace_kvm_mmu_get_page(sp, true);
  1740. return sp;
  1741. }
  1742. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1743. struct kvm_vcpu *vcpu, u64 addr)
  1744. {
  1745. iterator->addr = addr;
  1746. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1747. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1748. if (iterator->level == PT64_ROOT_LEVEL &&
  1749. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1750. !vcpu->arch.mmu.direct_map)
  1751. --iterator->level;
  1752. if (iterator->level == PT32E_ROOT_LEVEL) {
  1753. iterator->shadow_addr
  1754. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1755. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1756. --iterator->level;
  1757. if (!iterator->shadow_addr)
  1758. iterator->level = 0;
  1759. }
  1760. }
  1761. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1762. {
  1763. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1764. return false;
  1765. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1766. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1767. return true;
  1768. }
  1769. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1770. u64 spte)
  1771. {
  1772. if (is_last_spte(spte, iterator->level)) {
  1773. iterator->level = 0;
  1774. return;
  1775. }
  1776. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1777. --iterator->level;
  1778. }
  1779. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1780. {
  1781. return __shadow_walk_next(iterator, *iterator->sptep);
  1782. }
  1783. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1784. {
  1785. u64 spte;
  1786. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1787. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1788. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1789. shadow_user_mask | shadow_x_mask;
  1790. if (accessed)
  1791. spte |= shadow_accessed_mask;
  1792. mmu_spte_set(sptep, spte);
  1793. }
  1794. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1795. unsigned direct_access)
  1796. {
  1797. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1798. struct kvm_mmu_page *child;
  1799. /*
  1800. * For the direct sp, if the guest pte's dirty bit
  1801. * changed form clean to dirty, it will corrupt the
  1802. * sp's access: allow writable in the read-only sp,
  1803. * so we should update the spte at this point to get
  1804. * a new sp with the correct access.
  1805. */
  1806. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1807. if (child->role.access == direct_access)
  1808. return;
  1809. drop_parent_pte(child, sptep);
  1810. kvm_flush_remote_tlbs(vcpu->kvm);
  1811. }
  1812. }
  1813. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1814. u64 *spte)
  1815. {
  1816. u64 pte;
  1817. struct kvm_mmu_page *child;
  1818. pte = *spte;
  1819. if (is_shadow_present_pte(pte)) {
  1820. if (is_last_spte(pte, sp->role.level)) {
  1821. drop_spte(kvm, spte);
  1822. if (is_large_pte(pte))
  1823. --kvm->stat.lpages;
  1824. } else {
  1825. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1826. drop_parent_pte(child, spte);
  1827. }
  1828. return true;
  1829. }
  1830. if (is_mmio_spte(pte))
  1831. mmu_spte_clear_no_track(spte);
  1832. return false;
  1833. }
  1834. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1835. struct kvm_mmu_page *sp)
  1836. {
  1837. unsigned i;
  1838. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1839. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1840. }
  1841. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1842. {
  1843. mmu_page_remove_parent_pte(sp, parent_pte);
  1844. }
  1845. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1846. {
  1847. u64 *sptep;
  1848. struct rmap_iterator iter;
  1849. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1850. drop_parent_pte(sp, sptep);
  1851. }
  1852. static int mmu_zap_unsync_children(struct kvm *kvm,
  1853. struct kvm_mmu_page *parent,
  1854. struct list_head *invalid_list)
  1855. {
  1856. int i, zapped = 0;
  1857. struct mmu_page_path parents;
  1858. struct kvm_mmu_pages pages;
  1859. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1860. return 0;
  1861. kvm_mmu_pages_init(parent, &parents, &pages);
  1862. while (mmu_unsync_walk(parent, &pages)) {
  1863. struct kvm_mmu_page *sp;
  1864. for_each_sp(pages, sp, parents, i) {
  1865. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1866. mmu_pages_clear_parents(&parents);
  1867. zapped++;
  1868. }
  1869. kvm_mmu_pages_init(parent, &parents, &pages);
  1870. }
  1871. return zapped;
  1872. }
  1873. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1874. struct list_head *invalid_list)
  1875. {
  1876. int ret;
  1877. trace_kvm_mmu_prepare_zap_page(sp);
  1878. ++kvm->stat.mmu_shadow_zapped;
  1879. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1880. kvm_mmu_page_unlink_children(kvm, sp);
  1881. kvm_mmu_unlink_parents(kvm, sp);
  1882. if (!sp->role.invalid && !sp->role.direct)
  1883. unaccount_shadowed(kvm, sp->gfn);
  1884. if (sp->unsync)
  1885. kvm_unlink_unsync_page(kvm, sp);
  1886. if (!sp->root_count) {
  1887. /* Count self */
  1888. ret++;
  1889. list_move(&sp->link, invalid_list);
  1890. kvm_mod_used_mmu_pages(kvm, -1);
  1891. } else {
  1892. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1893. /*
  1894. * The obsolete pages can not be used on any vcpus.
  1895. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1896. */
  1897. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1898. kvm_reload_remote_mmus(kvm);
  1899. }
  1900. sp->role.invalid = 1;
  1901. return ret;
  1902. }
  1903. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1904. struct list_head *invalid_list)
  1905. {
  1906. struct kvm_mmu_page *sp, *nsp;
  1907. if (list_empty(invalid_list))
  1908. return;
  1909. /*
  1910. * wmb: make sure everyone sees our modifications to the page tables
  1911. * rmb: make sure we see changes to vcpu->mode
  1912. */
  1913. smp_mb();
  1914. /*
  1915. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1916. * page table walks.
  1917. */
  1918. kvm_flush_remote_tlbs(kvm);
  1919. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1920. WARN_ON(!sp->role.invalid || sp->root_count);
  1921. kvm_mmu_free_page(sp);
  1922. }
  1923. }
  1924. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1925. struct list_head *invalid_list)
  1926. {
  1927. struct kvm_mmu_page *sp;
  1928. if (list_empty(&kvm->arch.active_mmu_pages))
  1929. return false;
  1930. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1931. struct kvm_mmu_page, link);
  1932. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1933. return true;
  1934. }
  1935. /*
  1936. * Changing the number of mmu pages allocated to the vm
  1937. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1938. */
  1939. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1940. {
  1941. LIST_HEAD(invalid_list);
  1942. spin_lock(&kvm->mmu_lock);
  1943. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1944. /* Need to free some mmu pages to achieve the goal. */
  1945. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1946. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1947. break;
  1948. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1949. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1950. }
  1951. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1952. spin_unlock(&kvm->mmu_lock);
  1953. }
  1954. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1955. {
  1956. struct kvm_mmu_page *sp;
  1957. LIST_HEAD(invalid_list);
  1958. int r;
  1959. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1960. r = 0;
  1961. spin_lock(&kvm->mmu_lock);
  1962. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1963. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1964. sp->role.word);
  1965. r = 1;
  1966. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1967. }
  1968. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1969. spin_unlock(&kvm->mmu_lock);
  1970. return r;
  1971. }
  1972. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1973. /*
  1974. * The function is based on mtrr_type_lookup() in
  1975. * arch/x86/kernel/cpu/mtrr/generic.c
  1976. */
  1977. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1978. u64 start, u64 end)
  1979. {
  1980. int i;
  1981. u64 base, mask;
  1982. u8 prev_match, curr_match;
  1983. int num_var_ranges = KVM_NR_VAR_MTRR;
  1984. if (!mtrr_state->enabled)
  1985. return 0xFF;
  1986. /* Make end inclusive end, instead of exclusive */
  1987. end--;
  1988. /* Look in fixed ranges. Just return the type as per start */
  1989. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1990. int idx;
  1991. if (start < 0x80000) {
  1992. idx = 0;
  1993. idx += (start >> 16);
  1994. return mtrr_state->fixed_ranges[idx];
  1995. } else if (start < 0xC0000) {
  1996. idx = 1 * 8;
  1997. idx += ((start - 0x80000) >> 14);
  1998. return mtrr_state->fixed_ranges[idx];
  1999. } else if (start < 0x1000000) {
  2000. idx = 3 * 8;
  2001. idx += ((start - 0xC0000) >> 12);
  2002. return mtrr_state->fixed_ranges[idx];
  2003. }
  2004. }
  2005. /*
  2006. * Look in variable ranges
  2007. * Look of multiple ranges matching this address and pick type
  2008. * as per MTRR precedence
  2009. */
  2010. if (!(mtrr_state->enabled & 2))
  2011. return mtrr_state->def_type;
  2012. prev_match = 0xFF;
  2013. for (i = 0; i < num_var_ranges; ++i) {
  2014. unsigned short start_state, end_state;
  2015. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  2016. continue;
  2017. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  2018. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  2019. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  2020. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  2021. start_state = ((start & mask) == (base & mask));
  2022. end_state = ((end & mask) == (base & mask));
  2023. if (start_state != end_state)
  2024. return 0xFE;
  2025. if ((start & mask) != (base & mask))
  2026. continue;
  2027. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  2028. if (prev_match == 0xFF) {
  2029. prev_match = curr_match;
  2030. continue;
  2031. }
  2032. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  2033. curr_match == MTRR_TYPE_UNCACHABLE)
  2034. return MTRR_TYPE_UNCACHABLE;
  2035. if ((prev_match == MTRR_TYPE_WRBACK &&
  2036. curr_match == MTRR_TYPE_WRTHROUGH) ||
  2037. (prev_match == MTRR_TYPE_WRTHROUGH &&
  2038. curr_match == MTRR_TYPE_WRBACK)) {
  2039. prev_match = MTRR_TYPE_WRTHROUGH;
  2040. curr_match = MTRR_TYPE_WRTHROUGH;
  2041. }
  2042. if (prev_match != curr_match)
  2043. return MTRR_TYPE_UNCACHABLE;
  2044. }
  2045. if (prev_match != 0xFF)
  2046. return prev_match;
  2047. return mtrr_state->def_type;
  2048. }
  2049. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  2050. {
  2051. u8 mtrr;
  2052. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  2053. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  2054. if (mtrr == 0xfe || mtrr == 0xff)
  2055. mtrr = MTRR_TYPE_WRBACK;
  2056. return mtrr;
  2057. }
  2058. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  2059. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2060. {
  2061. trace_kvm_mmu_unsync_page(sp);
  2062. ++vcpu->kvm->stat.mmu_unsync;
  2063. sp->unsync = 1;
  2064. kvm_mmu_mark_parents_unsync(sp);
  2065. }
  2066. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  2067. {
  2068. struct kvm_mmu_page *s;
  2069. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2070. if (s->unsync)
  2071. continue;
  2072. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  2073. __kvm_unsync_page(vcpu, s);
  2074. }
  2075. }
  2076. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2077. bool can_unsync)
  2078. {
  2079. struct kvm_mmu_page *s;
  2080. bool need_unsync = false;
  2081. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2082. if (!can_unsync)
  2083. return 1;
  2084. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2085. return 1;
  2086. if (!s->unsync)
  2087. need_unsync = true;
  2088. }
  2089. if (need_unsync)
  2090. kvm_unsync_pages(vcpu, gfn);
  2091. return 0;
  2092. }
  2093. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2094. unsigned pte_access, int level,
  2095. gfn_t gfn, pfn_t pfn, bool speculative,
  2096. bool can_unsync, bool host_writable)
  2097. {
  2098. u64 spte;
  2099. int ret = 0;
  2100. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2101. return 0;
  2102. spte = PT_PRESENT_MASK;
  2103. if (!speculative)
  2104. spte |= shadow_accessed_mask;
  2105. if (pte_access & ACC_EXEC_MASK)
  2106. spte |= shadow_x_mask;
  2107. else
  2108. spte |= shadow_nx_mask;
  2109. if (pte_access & ACC_USER_MASK)
  2110. spte |= shadow_user_mask;
  2111. if (level > PT_PAGE_TABLE_LEVEL)
  2112. spte |= PT_PAGE_SIZE_MASK;
  2113. if (tdp_enabled)
  2114. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2115. kvm_is_reserved_pfn(pfn));
  2116. if (host_writable)
  2117. spte |= SPTE_HOST_WRITEABLE;
  2118. else
  2119. pte_access &= ~ACC_WRITE_MASK;
  2120. spte |= (u64)pfn << PAGE_SHIFT;
  2121. if (pte_access & ACC_WRITE_MASK) {
  2122. /*
  2123. * Other vcpu creates new sp in the window between
  2124. * mapping_level() and acquiring mmu-lock. We can
  2125. * allow guest to retry the access, the mapping can
  2126. * be fixed if guest refault.
  2127. */
  2128. if (level > PT_PAGE_TABLE_LEVEL &&
  2129. has_wrprotected_page(vcpu->kvm, gfn, level))
  2130. goto done;
  2131. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2132. /*
  2133. * Optimization: for pte sync, if spte was writable the hash
  2134. * lookup is unnecessary (and expensive). Write protection
  2135. * is responsibility of mmu_get_page / kvm_sync_page.
  2136. * Same reasoning can be applied to dirty page accounting.
  2137. */
  2138. if (!can_unsync && is_writable_pte(*sptep))
  2139. goto set_pte;
  2140. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2141. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2142. __func__, gfn);
  2143. ret = 1;
  2144. pte_access &= ~ACC_WRITE_MASK;
  2145. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2146. }
  2147. }
  2148. if (pte_access & ACC_WRITE_MASK) {
  2149. mark_page_dirty(vcpu->kvm, gfn);
  2150. spte |= shadow_dirty_mask;
  2151. }
  2152. set_pte:
  2153. if (mmu_spte_update(sptep, spte))
  2154. kvm_flush_remote_tlbs(vcpu->kvm);
  2155. done:
  2156. return ret;
  2157. }
  2158. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2159. unsigned pte_access, int write_fault, int *emulate,
  2160. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2161. bool host_writable)
  2162. {
  2163. int was_rmapped = 0;
  2164. int rmap_count;
  2165. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2166. *sptep, write_fault, gfn);
  2167. if (is_rmap_spte(*sptep)) {
  2168. /*
  2169. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2170. * the parent of the now unreachable PTE.
  2171. */
  2172. if (level > PT_PAGE_TABLE_LEVEL &&
  2173. !is_large_pte(*sptep)) {
  2174. struct kvm_mmu_page *child;
  2175. u64 pte = *sptep;
  2176. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2177. drop_parent_pte(child, sptep);
  2178. kvm_flush_remote_tlbs(vcpu->kvm);
  2179. } else if (pfn != spte_to_pfn(*sptep)) {
  2180. pgprintk("hfn old %llx new %llx\n",
  2181. spte_to_pfn(*sptep), pfn);
  2182. drop_spte(vcpu->kvm, sptep);
  2183. kvm_flush_remote_tlbs(vcpu->kvm);
  2184. } else
  2185. was_rmapped = 1;
  2186. }
  2187. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2188. true, host_writable)) {
  2189. if (write_fault)
  2190. *emulate = 1;
  2191. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2192. }
  2193. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2194. *emulate = 1;
  2195. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2196. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2197. is_large_pte(*sptep)? "2MB" : "4kB",
  2198. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2199. *sptep, sptep);
  2200. if (!was_rmapped && is_large_pte(*sptep))
  2201. ++vcpu->kvm->stat.lpages;
  2202. if (is_shadow_present_pte(*sptep)) {
  2203. if (!was_rmapped) {
  2204. rmap_count = rmap_add(vcpu, sptep, gfn);
  2205. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2206. rmap_recycle(vcpu, sptep, gfn);
  2207. }
  2208. }
  2209. kvm_release_pfn_clean(pfn);
  2210. }
  2211. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2212. bool no_dirty_log)
  2213. {
  2214. struct kvm_memory_slot *slot;
  2215. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2216. if (!slot)
  2217. return KVM_PFN_ERR_FAULT;
  2218. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2219. }
  2220. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2221. struct kvm_mmu_page *sp,
  2222. u64 *start, u64 *end)
  2223. {
  2224. struct page *pages[PTE_PREFETCH_NUM];
  2225. unsigned access = sp->role.access;
  2226. int i, ret;
  2227. gfn_t gfn;
  2228. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2229. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2230. return -1;
  2231. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2232. if (ret <= 0)
  2233. return -1;
  2234. for (i = 0; i < ret; i++, gfn++, start++)
  2235. mmu_set_spte(vcpu, start, access, 0, NULL,
  2236. sp->role.level, gfn, page_to_pfn(pages[i]),
  2237. true, true);
  2238. return 0;
  2239. }
  2240. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2241. struct kvm_mmu_page *sp, u64 *sptep)
  2242. {
  2243. u64 *spte, *start = NULL;
  2244. int i;
  2245. WARN_ON(!sp->role.direct);
  2246. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2247. spte = sp->spt + i;
  2248. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2249. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2250. if (!start)
  2251. continue;
  2252. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2253. break;
  2254. start = NULL;
  2255. } else if (!start)
  2256. start = spte;
  2257. }
  2258. }
  2259. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2260. {
  2261. struct kvm_mmu_page *sp;
  2262. /*
  2263. * Since it's no accessed bit on EPT, it's no way to
  2264. * distinguish between actually accessed translations
  2265. * and prefetched, so disable pte prefetch if EPT is
  2266. * enabled.
  2267. */
  2268. if (!shadow_accessed_mask)
  2269. return;
  2270. sp = page_header(__pa(sptep));
  2271. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2272. return;
  2273. __direct_pte_prefetch(vcpu, sp, sptep);
  2274. }
  2275. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2276. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2277. bool prefault)
  2278. {
  2279. struct kvm_shadow_walk_iterator iterator;
  2280. struct kvm_mmu_page *sp;
  2281. int emulate = 0;
  2282. gfn_t pseudo_gfn;
  2283. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2284. return 0;
  2285. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2286. if (iterator.level == level) {
  2287. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2288. write, &emulate, level, gfn, pfn,
  2289. prefault, map_writable);
  2290. direct_pte_prefetch(vcpu, iterator.sptep);
  2291. ++vcpu->stat.pf_fixed;
  2292. break;
  2293. }
  2294. drop_large_spte(vcpu, iterator.sptep);
  2295. if (!is_shadow_present_pte(*iterator.sptep)) {
  2296. u64 base_addr = iterator.addr;
  2297. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2298. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2299. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2300. iterator.level - 1,
  2301. 1, ACC_ALL, iterator.sptep);
  2302. link_shadow_page(iterator.sptep, sp, true);
  2303. }
  2304. }
  2305. return emulate;
  2306. }
  2307. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2308. {
  2309. siginfo_t info;
  2310. info.si_signo = SIGBUS;
  2311. info.si_errno = 0;
  2312. info.si_code = BUS_MCEERR_AR;
  2313. info.si_addr = (void __user *)address;
  2314. info.si_addr_lsb = PAGE_SHIFT;
  2315. send_sig_info(SIGBUS, &info, tsk);
  2316. }
  2317. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2318. {
  2319. /*
  2320. * Do not cache the mmio info caused by writing the readonly gfn
  2321. * into the spte otherwise read access on readonly gfn also can
  2322. * caused mmio page fault and treat it as mmio access.
  2323. * Return 1 to tell kvm to emulate it.
  2324. */
  2325. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2326. return 1;
  2327. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2328. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2329. return 0;
  2330. }
  2331. return -EFAULT;
  2332. }
  2333. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2334. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2335. {
  2336. pfn_t pfn = *pfnp;
  2337. gfn_t gfn = *gfnp;
  2338. int level = *levelp;
  2339. /*
  2340. * Check if it's a transparent hugepage. If this would be an
  2341. * hugetlbfs page, level wouldn't be set to
  2342. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2343. * here.
  2344. */
  2345. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2346. level == PT_PAGE_TABLE_LEVEL &&
  2347. PageTransCompound(pfn_to_page(pfn)) &&
  2348. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2349. unsigned long mask;
  2350. /*
  2351. * mmu_notifier_retry was successful and we hold the
  2352. * mmu_lock here, so the pmd can't become splitting
  2353. * from under us, and in turn
  2354. * __split_huge_page_refcount() can't run from under
  2355. * us and we can safely transfer the refcount from
  2356. * PG_tail to PG_head as we switch the pfn to tail to
  2357. * head.
  2358. */
  2359. *levelp = level = PT_DIRECTORY_LEVEL;
  2360. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2361. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2362. if (pfn & mask) {
  2363. gfn &= ~mask;
  2364. *gfnp = gfn;
  2365. kvm_release_pfn_clean(pfn);
  2366. pfn &= ~mask;
  2367. kvm_get_pfn(pfn);
  2368. *pfnp = pfn;
  2369. }
  2370. }
  2371. }
  2372. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2373. pfn_t pfn, unsigned access, int *ret_val)
  2374. {
  2375. bool ret = true;
  2376. /* The pfn is invalid, report the error! */
  2377. if (unlikely(is_error_pfn(pfn))) {
  2378. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2379. goto exit;
  2380. }
  2381. if (unlikely(is_noslot_pfn(pfn)))
  2382. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2383. ret = false;
  2384. exit:
  2385. return ret;
  2386. }
  2387. static bool page_fault_can_be_fast(u32 error_code)
  2388. {
  2389. /*
  2390. * Do not fix the mmio spte with invalid generation number which
  2391. * need to be updated by slow page fault path.
  2392. */
  2393. if (unlikely(error_code & PFERR_RSVD_MASK))
  2394. return false;
  2395. /*
  2396. * #PF can be fast only if the shadow page table is present and it
  2397. * is caused by write-protect, that means we just need change the
  2398. * W bit of the spte which can be done out of mmu-lock.
  2399. */
  2400. if (!(error_code & PFERR_PRESENT_MASK) ||
  2401. !(error_code & PFERR_WRITE_MASK))
  2402. return false;
  2403. return true;
  2404. }
  2405. static bool
  2406. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2407. u64 *sptep, u64 spte)
  2408. {
  2409. gfn_t gfn;
  2410. WARN_ON(!sp->role.direct);
  2411. /*
  2412. * The gfn of direct spte is stable since it is calculated
  2413. * by sp->gfn.
  2414. */
  2415. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2416. /*
  2417. * Theoretically we could also set dirty bit (and flush TLB) here in
  2418. * order to eliminate unnecessary PML logging. See comments in
  2419. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2420. * enabled, so we do not do this. This might result in the same GPA
  2421. * to be logged in PML buffer again when the write really happens, and
  2422. * eventually to be called by mark_page_dirty twice. But it's also no
  2423. * harm. This also avoids the TLB flush needed after setting dirty bit
  2424. * so non-PML cases won't be impacted.
  2425. *
  2426. * Compare with set_spte where instead shadow_dirty_mask is set.
  2427. */
  2428. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2429. mark_page_dirty(vcpu->kvm, gfn);
  2430. return true;
  2431. }
  2432. /*
  2433. * Return value:
  2434. * - true: let the vcpu to access on the same address again.
  2435. * - false: let the real page fault path to fix it.
  2436. */
  2437. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2438. u32 error_code)
  2439. {
  2440. struct kvm_shadow_walk_iterator iterator;
  2441. struct kvm_mmu_page *sp;
  2442. bool ret = false;
  2443. u64 spte = 0ull;
  2444. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2445. return false;
  2446. if (!page_fault_can_be_fast(error_code))
  2447. return false;
  2448. walk_shadow_page_lockless_begin(vcpu);
  2449. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2450. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2451. break;
  2452. /*
  2453. * If the mapping has been changed, let the vcpu fault on the
  2454. * same address again.
  2455. */
  2456. if (!is_rmap_spte(spte)) {
  2457. ret = true;
  2458. goto exit;
  2459. }
  2460. sp = page_header(__pa(iterator.sptep));
  2461. if (!is_last_spte(spte, sp->role.level))
  2462. goto exit;
  2463. /*
  2464. * Check if it is a spurious fault caused by TLB lazily flushed.
  2465. *
  2466. * Need not check the access of upper level table entries since
  2467. * they are always ACC_ALL.
  2468. */
  2469. if (is_writable_pte(spte)) {
  2470. ret = true;
  2471. goto exit;
  2472. }
  2473. /*
  2474. * Currently, to simplify the code, only the spte write-protected
  2475. * by dirty-log can be fast fixed.
  2476. */
  2477. if (!spte_is_locklessly_modifiable(spte))
  2478. goto exit;
  2479. /*
  2480. * Do not fix write-permission on the large spte since we only dirty
  2481. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2482. * that means other pages are missed if its slot is dirty-logged.
  2483. *
  2484. * Instead, we let the slow page fault path create a normal spte to
  2485. * fix the access.
  2486. *
  2487. * See the comments in kvm_arch_commit_memory_region().
  2488. */
  2489. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2490. goto exit;
  2491. /*
  2492. * Currently, fast page fault only works for direct mapping since
  2493. * the gfn is not stable for indirect shadow page.
  2494. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2495. */
  2496. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2497. exit:
  2498. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2499. spte, ret);
  2500. walk_shadow_page_lockless_end(vcpu);
  2501. return ret;
  2502. }
  2503. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2504. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2505. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2506. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2507. gfn_t gfn, bool prefault)
  2508. {
  2509. int r;
  2510. int level;
  2511. int force_pt_level;
  2512. pfn_t pfn;
  2513. unsigned long mmu_seq;
  2514. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2515. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2516. if (likely(!force_pt_level)) {
  2517. level = mapping_level(vcpu, gfn);
  2518. /*
  2519. * This path builds a PAE pagetable - so we can map
  2520. * 2mb pages at maximum. Therefore check if the level
  2521. * is larger than that.
  2522. */
  2523. if (level > PT_DIRECTORY_LEVEL)
  2524. level = PT_DIRECTORY_LEVEL;
  2525. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2526. } else
  2527. level = PT_PAGE_TABLE_LEVEL;
  2528. if (fast_page_fault(vcpu, v, level, error_code))
  2529. return 0;
  2530. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2531. smp_rmb();
  2532. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2533. return 0;
  2534. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2535. return r;
  2536. spin_lock(&vcpu->kvm->mmu_lock);
  2537. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2538. goto out_unlock;
  2539. make_mmu_pages_available(vcpu);
  2540. if (likely(!force_pt_level))
  2541. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2542. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2543. prefault);
  2544. spin_unlock(&vcpu->kvm->mmu_lock);
  2545. return r;
  2546. out_unlock:
  2547. spin_unlock(&vcpu->kvm->mmu_lock);
  2548. kvm_release_pfn_clean(pfn);
  2549. return 0;
  2550. }
  2551. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2552. {
  2553. int i;
  2554. struct kvm_mmu_page *sp;
  2555. LIST_HEAD(invalid_list);
  2556. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2557. return;
  2558. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2559. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2560. vcpu->arch.mmu.direct_map)) {
  2561. hpa_t root = vcpu->arch.mmu.root_hpa;
  2562. spin_lock(&vcpu->kvm->mmu_lock);
  2563. sp = page_header(root);
  2564. --sp->root_count;
  2565. if (!sp->root_count && sp->role.invalid) {
  2566. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2567. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2568. }
  2569. spin_unlock(&vcpu->kvm->mmu_lock);
  2570. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2571. return;
  2572. }
  2573. spin_lock(&vcpu->kvm->mmu_lock);
  2574. for (i = 0; i < 4; ++i) {
  2575. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2576. if (root) {
  2577. root &= PT64_BASE_ADDR_MASK;
  2578. sp = page_header(root);
  2579. --sp->root_count;
  2580. if (!sp->root_count && sp->role.invalid)
  2581. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2582. &invalid_list);
  2583. }
  2584. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2585. }
  2586. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2587. spin_unlock(&vcpu->kvm->mmu_lock);
  2588. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2589. }
  2590. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2591. {
  2592. int ret = 0;
  2593. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2594. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2595. ret = 1;
  2596. }
  2597. return ret;
  2598. }
  2599. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2600. {
  2601. struct kvm_mmu_page *sp;
  2602. unsigned i;
  2603. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2604. spin_lock(&vcpu->kvm->mmu_lock);
  2605. make_mmu_pages_available(vcpu);
  2606. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2607. 1, ACC_ALL, NULL);
  2608. ++sp->root_count;
  2609. spin_unlock(&vcpu->kvm->mmu_lock);
  2610. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2611. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2612. for (i = 0; i < 4; ++i) {
  2613. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2614. MMU_WARN_ON(VALID_PAGE(root));
  2615. spin_lock(&vcpu->kvm->mmu_lock);
  2616. make_mmu_pages_available(vcpu);
  2617. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2618. i << 30,
  2619. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2620. NULL);
  2621. root = __pa(sp->spt);
  2622. ++sp->root_count;
  2623. spin_unlock(&vcpu->kvm->mmu_lock);
  2624. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2625. }
  2626. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2627. } else
  2628. BUG();
  2629. return 0;
  2630. }
  2631. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2632. {
  2633. struct kvm_mmu_page *sp;
  2634. u64 pdptr, pm_mask;
  2635. gfn_t root_gfn;
  2636. int i;
  2637. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2638. if (mmu_check_root(vcpu, root_gfn))
  2639. return 1;
  2640. /*
  2641. * Do we shadow a long mode page table? If so we need to
  2642. * write-protect the guests page table root.
  2643. */
  2644. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2645. hpa_t root = vcpu->arch.mmu.root_hpa;
  2646. MMU_WARN_ON(VALID_PAGE(root));
  2647. spin_lock(&vcpu->kvm->mmu_lock);
  2648. make_mmu_pages_available(vcpu);
  2649. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2650. 0, ACC_ALL, NULL);
  2651. root = __pa(sp->spt);
  2652. ++sp->root_count;
  2653. spin_unlock(&vcpu->kvm->mmu_lock);
  2654. vcpu->arch.mmu.root_hpa = root;
  2655. return 0;
  2656. }
  2657. /*
  2658. * We shadow a 32 bit page table. This may be a legacy 2-level
  2659. * or a PAE 3-level page table. In either case we need to be aware that
  2660. * the shadow page table may be a PAE or a long mode page table.
  2661. */
  2662. pm_mask = PT_PRESENT_MASK;
  2663. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2664. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2665. for (i = 0; i < 4; ++i) {
  2666. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2667. MMU_WARN_ON(VALID_PAGE(root));
  2668. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2669. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2670. if (!is_present_gpte(pdptr)) {
  2671. vcpu->arch.mmu.pae_root[i] = 0;
  2672. continue;
  2673. }
  2674. root_gfn = pdptr >> PAGE_SHIFT;
  2675. if (mmu_check_root(vcpu, root_gfn))
  2676. return 1;
  2677. }
  2678. spin_lock(&vcpu->kvm->mmu_lock);
  2679. make_mmu_pages_available(vcpu);
  2680. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2681. PT32_ROOT_LEVEL, 0,
  2682. ACC_ALL, NULL);
  2683. root = __pa(sp->spt);
  2684. ++sp->root_count;
  2685. spin_unlock(&vcpu->kvm->mmu_lock);
  2686. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2687. }
  2688. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2689. /*
  2690. * If we shadow a 32 bit page table with a long mode page
  2691. * table we enter this path.
  2692. */
  2693. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2694. if (vcpu->arch.mmu.lm_root == NULL) {
  2695. /*
  2696. * The additional page necessary for this is only
  2697. * allocated on demand.
  2698. */
  2699. u64 *lm_root;
  2700. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2701. if (lm_root == NULL)
  2702. return 1;
  2703. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2704. vcpu->arch.mmu.lm_root = lm_root;
  2705. }
  2706. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2707. }
  2708. return 0;
  2709. }
  2710. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2711. {
  2712. if (vcpu->arch.mmu.direct_map)
  2713. return mmu_alloc_direct_roots(vcpu);
  2714. else
  2715. return mmu_alloc_shadow_roots(vcpu);
  2716. }
  2717. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2718. {
  2719. int i;
  2720. struct kvm_mmu_page *sp;
  2721. if (vcpu->arch.mmu.direct_map)
  2722. return;
  2723. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2724. return;
  2725. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2726. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2727. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2728. hpa_t root = vcpu->arch.mmu.root_hpa;
  2729. sp = page_header(root);
  2730. mmu_sync_children(vcpu, sp);
  2731. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2732. return;
  2733. }
  2734. for (i = 0; i < 4; ++i) {
  2735. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2736. if (root && VALID_PAGE(root)) {
  2737. root &= PT64_BASE_ADDR_MASK;
  2738. sp = page_header(root);
  2739. mmu_sync_children(vcpu, sp);
  2740. }
  2741. }
  2742. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2743. }
  2744. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2745. {
  2746. spin_lock(&vcpu->kvm->mmu_lock);
  2747. mmu_sync_roots(vcpu);
  2748. spin_unlock(&vcpu->kvm->mmu_lock);
  2749. }
  2750. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2751. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2752. u32 access, struct x86_exception *exception)
  2753. {
  2754. if (exception)
  2755. exception->error_code = 0;
  2756. return vaddr;
  2757. }
  2758. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2759. u32 access,
  2760. struct x86_exception *exception)
  2761. {
  2762. if (exception)
  2763. exception->error_code = 0;
  2764. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2765. }
  2766. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2767. {
  2768. if (direct)
  2769. return vcpu_match_mmio_gpa(vcpu, addr);
  2770. return vcpu_match_mmio_gva(vcpu, addr);
  2771. }
  2772. /*
  2773. * On direct hosts, the last spte is only allows two states
  2774. * for mmio page fault:
  2775. * - It is the mmio spte
  2776. * - It is zapped or it is being zapped.
  2777. *
  2778. * This function completely checks the spte when the last spte
  2779. * is not the mmio spte.
  2780. */
  2781. static bool check_direct_spte_mmio_pf(u64 spte)
  2782. {
  2783. return __check_direct_spte_mmio_pf(spte);
  2784. }
  2785. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2786. {
  2787. struct kvm_shadow_walk_iterator iterator;
  2788. u64 spte = 0ull;
  2789. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2790. return spte;
  2791. walk_shadow_page_lockless_begin(vcpu);
  2792. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2793. if (!is_shadow_present_pte(spte))
  2794. break;
  2795. walk_shadow_page_lockless_end(vcpu);
  2796. return spte;
  2797. }
  2798. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2799. {
  2800. u64 spte;
  2801. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2802. return RET_MMIO_PF_EMULATE;
  2803. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2804. if (is_mmio_spte(spte)) {
  2805. gfn_t gfn = get_mmio_spte_gfn(spte);
  2806. unsigned access = get_mmio_spte_access(spte);
  2807. if (!check_mmio_spte(vcpu->kvm, spte))
  2808. return RET_MMIO_PF_INVALID;
  2809. if (direct)
  2810. addr = 0;
  2811. trace_handle_mmio_page_fault(addr, gfn, access);
  2812. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2813. return RET_MMIO_PF_EMULATE;
  2814. }
  2815. /*
  2816. * It's ok if the gva is remapped by other cpus on shadow guest,
  2817. * it's a BUG if the gfn is not a mmio page.
  2818. */
  2819. if (direct && !check_direct_spte_mmio_pf(spte))
  2820. return RET_MMIO_PF_BUG;
  2821. /*
  2822. * If the page table is zapped by other cpus, let CPU fault again on
  2823. * the address.
  2824. */
  2825. return RET_MMIO_PF_RETRY;
  2826. }
  2827. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2828. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2829. u32 error_code, bool direct)
  2830. {
  2831. int ret;
  2832. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2833. WARN_ON(ret == RET_MMIO_PF_BUG);
  2834. return ret;
  2835. }
  2836. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2837. u32 error_code, bool prefault)
  2838. {
  2839. gfn_t gfn;
  2840. int r;
  2841. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2842. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2843. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2844. if (likely(r != RET_MMIO_PF_INVALID))
  2845. return r;
  2846. }
  2847. r = mmu_topup_memory_caches(vcpu);
  2848. if (r)
  2849. return r;
  2850. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2851. gfn = gva >> PAGE_SHIFT;
  2852. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2853. error_code, gfn, prefault);
  2854. }
  2855. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2856. {
  2857. struct kvm_arch_async_pf arch;
  2858. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2859. arch.gfn = gfn;
  2860. arch.direct_map = vcpu->arch.mmu.direct_map;
  2861. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2862. return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
  2863. }
  2864. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2865. {
  2866. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2867. kvm_event_needs_reinjection(vcpu)))
  2868. return false;
  2869. return kvm_x86_ops->interrupt_allowed(vcpu);
  2870. }
  2871. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2872. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2873. {
  2874. bool async;
  2875. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2876. if (!async)
  2877. return false; /* *pfn has correct page already */
  2878. if (!prefault && can_do_async_pf(vcpu)) {
  2879. trace_kvm_try_async_get_page(gva, gfn);
  2880. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2881. trace_kvm_async_pf_doublefault(gva, gfn);
  2882. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2883. return true;
  2884. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2885. return true;
  2886. }
  2887. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2888. return false;
  2889. }
  2890. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2891. bool prefault)
  2892. {
  2893. pfn_t pfn;
  2894. int r;
  2895. int level;
  2896. int force_pt_level;
  2897. gfn_t gfn = gpa >> PAGE_SHIFT;
  2898. unsigned long mmu_seq;
  2899. int write = error_code & PFERR_WRITE_MASK;
  2900. bool map_writable;
  2901. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2902. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2903. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2904. if (likely(r != RET_MMIO_PF_INVALID))
  2905. return r;
  2906. }
  2907. r = mmu_topup_memory_caches(vcpu);
  2908. if (r)
  2909. return r;
  2910. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2911. if (likely(!force_pt_level)) {
  2912. level = mapping_level(vcpu, gfn);
  2913. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2914. } else
  2915. level = PT_PAGE_TABLE_LEVEL;
  2916. if (fast_page_fault(vcpu, gpa, level, error_code))
  2917. return 0;
  2918. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2919. smp_rmb();
  2920. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2921. return 0;
  2922. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2923. return r;
  2924. spin_lock(&vcpu->kvm->mmu_lock);
  2925. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2926. goto out_unlock;
  2927. make_mmu_pages_available(vcpu);
  2928. if (likely(!force_pt_level))
  2929. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2930. r = __direct_map(vcpu, gpa, write, map_writable,
  2931. level, gfn, pfn, prefault);
  2932. spin_unlock(&vcpu->kvm->mmu_lock);
  2933. return r;
  2934. out_unlock:
  2935. spin_unlock(&vcpu->kvm->mmu_lock);
  2936. kvm_release_pfn_clean(pfn);
  2937. return 0;
  2938. }
  2939. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2940. struct kvm_mmu *context)
  2941. {
  2942. context->page_fault = nonpaging_page_fault;
  2943. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2944. context->sync_page = nonpaging_sync_page;
  2945. context->invlpg = nonpaging_invlpg;
  2946. context->update_pte = nonpaging_update_pte;
  2947. context->root_level = 0;
  2948. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2949. context->root_hpa = INVALID_PAGE;
  2950. context->direct_map = true;
  2951. context->nx = false;
  2952. }
  2953. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2954. {
  2955. mmu_free_roots(vcpu);
  2956. }
  2957. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2958. {
  2959. return kvm_read_cr3(vcpu);
  2960. }
  2961. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2962. struct x86_exception *fault)
  2963. {
  2964. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2965. }
  2966. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2967. unsigned access, int *nr_present)
  2968. {
  2969. if (unlikely(is_mmio_spte(*sptep))) {
  2970. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2971. mmu_spte_clear_no_track(sptep);
  2972. return true;
  2973. }
  2974. (*nr_present)++;
  2975. mark_mmio_spte(kvm, sptep, gfn, access);
  2976. return true;
  2977. }
  2978. return false;
  2979. }
  2980. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2981. {
  2982. unsigned index;
  2983. index = level - 1;
  2984. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2985. return mmu->last_pte_bitmap & (1 << index);
  2986. }
  2987. #define PTTYPE_EPT 18 /* arbitrary */
  2988. #define PTTYPE PTTYPE_EPT
  2989. #include "paging_tmpl.h"
  2990. #undef PTTYPE
  2991. #define PTTYPE 64
  2992. #include "paging_tmpl.h"
  2993. #undef PTTYPE
  2994. #define PTTYPE 32
  2995. #include "paging_tmpl.h"
  2996. #undef PTTYPE
  2997. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2998. struct kvm_mmu *context)
  2999. {
  3000. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  3001. u64 exb_bit_rsvd = 0;
  3002. u64 gbpages_bit_rsvd = 0;
  3003. u64 nonleaf_bit8_rsvd = 0;
  3004. context->bad_mt_xwr = 0;
  3005. if (!context->nx)
  3006. exb_bit_rsvd = rsvd_bits(63, 63);
  3007. if (!guest_cpuid_has_gbpages(vcpu))
  3008. gbpages_bit_rsvd = rsvd_bits(7, 7);
  3009. /*
  3010. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  3011. * leaf entries) on AMD CPUs only.
  3012. */
  3013. if (guest_cpuid_is_amd(vcpu))
  3014. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3015. switch (context->root_level) {
  3016. case PT32_ROOT_LEVEL:
  3017. /* no rsvd bits for 2 level 4K page table entries */
  3018. context->rsvd_bits_mask[0][1] = 0;
  3019. context->rsvd_bits_mask[0][0] = 0;
  3020. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3021. if (!is_pse(vcpu)) {
  3022. context->rsvd_bits_mask[1][1] = 0;
  3023. break;
  3024. }
  3025. if (is_cpuid_PSE36())
  3026. /* 36bits PSE 4MB page */
  3027. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3028. else
  3029. /* 32 bits PSE 4MB page */
  3030. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3031. break;
  3032. case PT32E_ROOT_LEVEL:
  3033. context->rsvd_bits_mask[0][2] =
  3034. rsvd_bits(maxphyaddr, 63) |
  3035. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3036. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3037. rsvd_bits(maxphyaddr, 62); /* PDE */
  3038. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3039. rsvd_bits(maxphyaddr, 62); /* PTE */
  3040. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3041. rsvd_bits(maxphyaddr, 62) |
  3042. rsvd_bits(13, 20); /* large page */
  3043. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3044. break;
  3045. case PT64_ROOT_LEVEL:
  3046. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3047. nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
  3048. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3049. nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
  3050. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3051. rsvd_bits(maxphyaddr, 51);
  3052. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3053. rsvd_bits(maxphyaddr, 51);
  3054. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  3055. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3056. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3057. rsvd_bits(13, 29);
  3058. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3059. rsvd_bits(maxphyaddr, 51) |
  3060. rsvd_bits(13, 20); /* large page */
  3061. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3062. break;
  3063. }
  3064. }
  3065. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3066. struct kvm_mmu *context, bool execonly)
  3067. {
  3068. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  3069. int pte;
  3070. context->rsvd_bits_mask[0][3] =
  3071. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3072. context->rsvd_bits_mask[0][2] =
  3073. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3074. context->rsvd_bits_mask[0][1] =
  3075. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3076. context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3077. /* large page */
  3078. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  3079. context->rsvd_bits_mask[1][2] =
  3080. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3081. context->rsvd_bits_mask[1][1] =
  3082. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3083. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3084. for (pte = 0; pte < 64; pte++) {
  3085. int rwx_bits = pte & 7;
  3086. int mt = pte >> 3;
  3087. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  3088. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  3089. (rwx_bits == 0x4 && !execonly))
  3090. context->bad_mt_xwr |= (1ull << pte);
  3091. }
  3092. }
  3093. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3094. struct kvm_mmu *mmu, bool ept)
  3095. {
  3096. unsigned bit, byte, pfec;
  3097. u8 map;
  3098. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3099. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3100. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3101. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3102. pfec = byte << 1;
  3103. map = 0;
  3104. wf = pfec & PFERR_WRITE_MASK;
  3105. uf = pfec & PFERR_USER_MASK;
  3106. ff = pfec & PFERR_FETCH_MASK;
  3107. /*
  3108. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3109. * subject to SMAP restrictions, and cleared otherwise. The
  3110. * bit is only meaningful if the SMAP bit is set in CR4.
  3111. */
  3112. smapf = !(pfec & PFERR_RSVD_MASK);
  3113. for (bit = 0; bit < 8; ++bit) {
  3114. x = bit & ACC_EXEC_MASK;
  3115. w = bit & ACC_WRITE_MASK;
  3116. u = bit & ACC_USER_MASK;
  3117. if (!ept) {
  3118. /* Not really needed: !nx will cause pte.nx to fault */
  3119. x |= !mmu->nx;
  3120. /* Allow supervisor writes if !cr0.wp */
  3121. w |= !is_write_protection(vcpu) && !uf;
  3122. /* Disallow supervisor fetches of user code if cr4.smep */
  3123. x &= !(cr4_smep && u && !uf);
  3124. /*
  3125. * SMAP:kernel-mode data accesses from user-mode
  3126. * mappings should fault. A fault is considered
  3127. * as a SMAP violation if all of the following
  3128. * conditions are ture:
  3129. * - X86_CR4_SMAP is set in CR4
  3130. * - An user page is accessed
  3131. * - Page fault in kernel mode
  3132. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3133. *
  3134. * Here, we cover the first three conditions.
  3135. * The fourth is computed dynamically in
  3136. * permission_fault() and is in smapf.
  3137. *
  3138. * Also, SMAP does not affect instruction
  3139. * fetches, add the !ff check here to make it
  3140. * clearer.
  3141. */
  3142. smap = cr4_smap && u && !uf && !ff;
  3143. } else
  3144. /* Not really needed: no U/S accesses on ept */
  3145. u = 1;
  3146. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3147. (smapf && smap);
  3148. map |= fault << bit;
  3149. }
  3150. mmu->permissions[byte] = map;
  3151. }
  3152. }
  3153. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3154. {
  3155. u8 map;
  3156. unsigned level, root_level = mmu->root_level;
  3157. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3158. if (root_level == PT32E_ROOT_LEVEL)
  3159. --root_level;
  3160. /* PT_PAGE_TABLE_LEVEL always terminates */
  3161. map = 1 | (1 << ps_set_index);
  3162. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3163. if (level <= PT_PDPE_LEVEL
  3164. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3165. map |= 1 << (ps_set_index | (level - 1));
  3166. }
  3167. mmu->last_pte_bitmap = map;
  3168. }
  3169. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3170. struct kvm_mmu *context,
  3171. int level)
  3172. {
  3173. context->nx = is_nx(vcpu);
  3174. context->root_level = level;
  3175. reset_rsvds_bits_mask(vcpu, context);
  3176. update_permission_bitmask(vcpu, context, false);
  3177. update_last_pte_bitmap(vcpu, context);
  3178. MMU_WARN_ON(!is_pae(vcpu));
  3179. context->page_fault = paging64_page_fault;
  3180. context->gva_to_gpa = paging64_gva_to_gpa;
  3181. context->sync_page = paging64_sync_page;
  3182. context->invlpg = paging64_invlpg;
  3183. context->update_pte = paging64_update_pte;
  3184. context->shadow_root_level = level;
  3185. context->root_hpa = INVALID_PAGE;
  3186. context->direct_map = false;
  3187. }
  3188. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3189. struct kvm_mmu *context)
  3190. {
  3191. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3192. }
  3193. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3194. struct kvm_mmu *context)
  3195. {
  3196. context->nx = false;
  3197. context->root_level = PT32_ROOT_LEVEL;
  3198. reset_rsvds_bits_mask(vcpu, context);
  3199. update_permission_bitmask(vcpu, context, false);
  3200. update_last_pte_bitmap(vcpu, context);
  3201. context->page_fault = paging32_page_fault;
  3202. context->gva_to_gpa = paging32_gva_to_gpa;
  3203. context->sync_page = paging32_sync_page;
  3204. context->invlpg = paging32_invlpg;
  3205. context->update_pte = paging32_update_pte;
  3206. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3207. context->root_hpa = INVALID_PAGE;
  3208. context->direct_map = false;
  3209. }
  3210. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3211. struct kvm_mmu *context)
  3212. {
  3213. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3214. }
  3215. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3216. {
  3217. struct kvm_mmu *context = &vcpu->arch.mmu;
  3218. context->base_role.word = 0;
  3219. context->page_fault = tdp_page_fault;
  3220. context->sync_page = nonpaging_sync_page;
  3221. context->invlpg = nonpaging_invlpg;
  3222. context->update_pte = nonpaging_update_pte;
  3223. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3224. context->root_hpa = INVALID_PAGE;
  3225. context->direct_map = true;
  3226. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3227. context->get_cr3 = get_cr3;
  3228. context->get_pdptr = kvm_pdptr_read;
  3229. context->inject_page_fault = kvm_inject_page_fault;
  3230. if (!is_paging(vcpu)) {
  3231. context->nx = false;
  3232. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3233. context->root_level = 0;
  3234. } else if (is_long_mode(vcpu)) {
  3235. context->nx = is_nx(vcpu);
  3236. context->root_level = PT64_ROOT_LEVEL;
  3237. reset_rsvds_bits_mask(vcpu, context);
  3238. context->gva_to_gpa = paging64_gva_to_gpa;
  3239. } else if (is_pae(vcpu)) {
  3240. context->nx = is_nx(vcpu);
  3241. context->root_level = PT32E_ROOT_LEVEL;
  3242. reset_rsvds_bits_mask(vcpu, context);
  3243. context->gva_to_gpa = paging64_gva_to_gpa;
  3244. } else {
  3245. context->nx = false;
  3246. context->root_level = PT32_ROOT_LEVEL;
  3247. reset_rsvds_bits_mask(vcpu, context);
  3248. context->gva_to_gpa = paging32_gva_to_gpa;
  3249. }
  3250. update_permission_bitmask(vcpu, context, false);
  3251. update_last_pte_bitmap(vcpu, context);
  3252. }
  3253. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3254. {
  3255. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3256. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3257. struct kvm_mmu *context = &vcpu->arch.mmu;
  3258. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3259. if (!is_paging(vcpu))
  3260. nonpaging_init_context(vcpu, context);
  3261. else if (is_long_mode(vcpu))
  3262. paging64_init_context(vcpu, context);
  3263. else if (is_pae(vcpu))
  3264. paging32E_init_context(vcpu, context);
  3265. else
  3266. paging32_init_context(vcpu, context);
  3267. context->base_role.nxe = is_nx(vcpu);
  3268. context->base_role.cr4_pae = !!is_pae(vcpu);
  3269. context->base_role.cr0_wp = is_write_protection(vcpu);
  3270. context->base_role.smep_andnot_wp
  3271. = smep && !is_write_protection(vcpu);
  3272. context->base_role.smap_andnot_wp
  3273. = smap && !is_write_protection(vcpu);
  3274. }
  3275. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3276. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3277. {
  3278. struct kvm_mmu *context = &vcpu->arch.mmu;
  3279. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3280. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3281. context->nx = true;
  3282. context->page_fault = ept_page_fault;
  3283. context->gva_to_gpa = ept_gva_to_gpa;
  3284. context->sync_page = ept_sync_page;
  3285. context->invlpg = ept_invlpg;
  3286. context->update_pte = ept_update_pte;
  3287. context->root_level = context->shadow_root_level;
  3288. context->root_hpa = INVALID_PAGE;
  3289. context->direct_map = false;
  3290. update_permission_bitmask(vcpu, context, true);
  3291. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3292. }
  3293. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3294. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3295. {
  3296. struct kvm_mmu *context = &vcpu->arch.mmu;
  3297. kvm_init_shadow_mmu(vcpu);
  3298. context->set_cr3 = kvm_x86_ops->set_cr3;
  3299. context->get_cr3 = get_cr3;
  3300. context->get_pdptr = kvm_pdptr_read;
  3301. context->inject_page_fault = kvm_inject_page_fault;
  3302. }
  3303. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3304. {
  3305. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3306. g_context->get_cr3 = get_cr3;
  3307. g_context->get_pdptr = kvm_pdptr_read;
  3308. g_context->inject_page_fault = kvm_inject_page_fault;
  3309. /*
  3310. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3311. * translation of l2_gpa to l1_gpa addresses is done using the
  3312. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3313. * functions between mmu and nested_mmu are swapped.
  3314. */
  3315. if (!is_paging(vcpu)) {
  3316. g_context->nx = false;
  3317. g_context->root_level = 0;
  3318. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3319. } else if (is_long_mode(vcpu)) {
  3320. g_context->nx = is_nx(vcpu);
  3321. g_context->root_level = PT64_ROOT_LEVEL;
  3322. reset_rsvds_bits_mask(vcpu, g_context);
  3323. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3324. } else if (is_pae(vcpu)) {
  3325. g_context->nx = is_nx(vcpu);
  3326. g_context->root_level = PT32E_ROOT_LEVEL;
  3327. reset_rsvds_bits_mask(vcpu, g_context);
  3328. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3329. } else {
  3330. g_context->nx = false;
  3331. g_context->root_level = PT32_ROOT_LEVEL;
  3332. reset_rsvds_bits_mask(vcpu, g_context);
  3333. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3334. }
  3335. update_permission_bitmask(vcpu, g_context, false);
  3336. update_last_pte_bitmap(vcpu, g_context);
  3337. }
  3338. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3339. {
  3340. if (mmu_is_nested(vcpu))
  3341. init_kvm_nested_mmu(vcpu);
  3342. else if (tdp_enabled)
  3343. init_kvm_tdp_mmu(vcpu);
  3344. else
  3345. init_kvm_softmmu(vcpu);
  3346. }
  3347. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3348. {
  3349. kvm_mmu_unload(vcpu);
  3350. init_kvm_mmu(vcpu);
  3351. }
  3352. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3353. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3354. {
  3355. int r;
  3356. r = mmu_topup_memory_caches(vcpu);
  3357. if (r)
  3358. goto out;
  3359. r = mmu_alloc_roots(vcpu);
  3360. kvm_mmu_sync_roots(vcpu);
  3361. if (r)
  3362. goto out;
  3363. /* set_cr3() should ensure TLB has been flushed */
  3364. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3365. out:
  3366. return r;
  3367. }
  3368. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3369. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3370. {
  3371. mmu_free_roots(vcpu);
  3372. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3373. }
  3374. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3375. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3376. struct kvm_mmu_page *sp, u64 *spte,
  3377. const void *new)
  3378. {
  3379. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3380. ++vcpu->kvm->stat.mmu_pde_zapped;
  3381. return;
  3382. }
  3383. ++vcpu->kvm->stat.mmu_pte_updated;
  3384. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3385. }
  3386. static bool need_remote_flush(u64 old, u64 new)
  3387. {
  3388. if (!is_shadow_present_pte(old))
  3389. return false;
  3390. if (!is_shadow_present_pte(new))
  3391. return true;
  3392. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3393. return true;
  3394. old ^= shadow_nx_mask;
  3395. new ^= shadow_nx_mask;
  3396. return (old & ~new & PT64_PERM_MASK) != 0;
  3397. }
  3398. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3399. bool remote_flush, bool local_flush)
  3400. {
  3401. if (zap_page)
  3402. return;
  3403. if (remote_flush)
  3404. kvm_flush_remote_tlbs(vcpu->kvm);
  3405. else if (local_flush)
  3406. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3407. }
  3408. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3409. const u8 *new, int *bytes)
  3410. {
  3411. u64 gentry;
  3412. int r;
  3413. /*
  3414. * Assume that the pte write on a page table of the same type
  3415. * as the current vcpu paging mode since we update the sptes only
  3416. * when they have the same mode.
  3417. */
  3418. if (is_pae(vcpu) && *bytes == 4) {
  3419. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3420. *gpa &= ~(gpa_t)7;
  3421. *bytes = 8;
  3422. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3423. if (r)
  3424. gentry = 0;
  3425. new = (const u8 *)&gentry;
  3426. }
  3427. switch (*bytes) {
  3428. case 4:
  3429. gentry = *(const u32 *)new;
  3430. break;
  3431. case 8:
  3432. gentry = *(const u64 *)new;
  3433. break;
  3434. default:
  3435. gentry = 0;
  3436. break;
  3437. }
  3438. return gentry;
  3439. }
  3440. /*
  3441. * If we're seeing too many writes to a page, it may no longer be a page table,
  3442. * or we may be forking, in which case it is better to unmap the page.
  3443. */
  3444. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3445. {
  3446. /*
  3447. * Skip write-flooding detected for the sp whose level is 1, because
  3448. * it can become unsync, then the guest page is not write-protected.
  3449. */
  3450. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3451. return false;
  3452. return ++sp->write_flooding_count >= 3;
  3453. }
  3454. /*
  3455. * Misaligned accesses are too much trouble to fix up; also, they usually
  3456. * indicate a page is not used as a page table.
  3457. */
  3458. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3459. int bytes)
  3460. {
  3461. unsigned offset, pte_size, misaligned;
  3462. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3463. gpa, bytes, sp->role.word);
  3464. offset = offset_in_page(gpa);
  3465. pte_size = sp->role.cr4_pae ? 8 : 4;
  3466. /*
  3467. * Sometimes, the OS only writes the last one bytes to update status
  3468. * bits, for example, in linux, andb instruction is used in clear_bit().
  3469. */
  3470. if (!(offset & (pte_size - 1)) && bytes == 1)
  3471. return false;
  3472. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3473. misaligned |= bytes < 4;
  3474. return misaligned;
  3475. }
  3476. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3477. {
  3478. unsigned page_offset, quadrant;
  3479. u64 *spte;
  3480. int level;
  3481. page_offset = offset_in_page(gpa);
  3482. level = sp->role.level;
  3483. *nspte = 1;
  3484. if (!sp->role.cr4_pae) {
  3485. page_offset <<= 1; /* 32->64 */
  3486. /*
  3487. * A 32-bit pde maps 4MB while the shadow pdes map
  3488. * only 2MB. So we need to double the offset again
  3489. * and zap two pdes instead of one.
  3490. */
  3491. if (level == PT32_ROOT_LEVEL) {
  3492. page_offset &= ~7; /* kill rounding error */
  3493. page_offset <<= 1;
  3494. *nspte = 2;
  3495. }
  3496. quadrant = page_offset >> PAGE_SHIFT;
  3497. page_offset &= ~PAGE_MASK;
  3498. if (quadrant != sp->role.quadrant)
  3499. return NULL;
  3500. }
  3501. spte = &sp->spt[page_offset / sizeof(*spte)];
  3502. return spte;
  3503. }
  3504. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3505. const u8 *new, int bytes)
  3506. {
  3507. gfn_t gfn = gpa >> PAGE_SHIFT;
  3508. struct kvm_mmu_page *sp;
  3509. LIST_HEAD(invalid_list);
  3510. u64 entry, gentry, *spte;
  3511. int npte;
  3512. bool remote_flush, local_flush, zap_page;
  3513. union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
  3514. .cr0_wp = 1,
  3515. .cr4_pae = 1,
  3516. .nxe = 1,
  3517. .smep_andnot_wp = 1,
  3518. .smap_andnot_wp = 1,
  3519. };
  3520. /*
  3521. * If we don't have indirect shadow pages, it means no page is
  3522. * write-protected, so we can exit simply.
  3523. */
  3524. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3525. return;
  3526. zap_page = remote_flush = local_flush = false;
  3527. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3528. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3529. /*
  3530. * No need to care whether allocation memory is successful
  3531. * or not since pte prefetch is skiped if it does not have
  3532. * enough objects in the cache.
  3533. */
  3534. mmu_topup_memory_caches(vcpu);
  3535. spin_lock(&vcpu->kvm->mmu_lock);
  3536. ++vcpu->kvm->stat.mmu_pte_write;
  3537. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3538. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3539. if (detect_write_misaligned(sp, gpa, bytes) ||
  3540. detect_write_flooding(sp)) {
  3541. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3542. &invalid_list);
  3543. ++vcpu->kvm->stat.mmu_flooded;
  3544. continue;
  3545. }
  3546. spte = get_written_sptes(sp, gpa, &npte);
  3547. if (!spte)
  3548. continue;
  3549. local_flush = true;
  3550. while (npte--) {
  3551. entry = *spte;
  3552. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3553. if (gentry &&
  3554. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3555. & mask.word) && rmap_can_add(vcpu))
  3556. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3557. if (need_remote_flush(entry, *spte))
  3558. remote_flush = true;
  3559. ++spte;
  3560. }
  3561. }
  3562. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3563. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3564. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3565. spin_unlock(&vcpu->kvm->mmu_lock);
  3566. }
  3567. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3568. {
  3569. gpa_t gpa;
  3570. int r;
  3571. if (vcpu->arch.mmu.direct_map)
  3572. return 0;
  3573. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3574. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3575. return r;
  3576. }
  3577. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3578. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3579. {
  3580. LIST_HEAD(invalid_list);
  3581. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3582. return;
  3583. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3584. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3585. break;
  3586. ++vcpu->kvm->stat.mmu_recycled;
  3587. }
  3588. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3589. }
  3590. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3591. {
  3592. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3593. return vcpu_match_mmio_gpa(vcpu, addr);
  3594. return vcpu_match_mmio_gva(vcpu, addr);
  3595. }
  3596. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3597. void *insn, int insn_len)
  3598. {
  3599. int r, emulation_type = EMULTYPE_RETRY;
  3600. enum emulation_result er;
  3601. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3602. if (r < 0)
  3603. goto out;
  3604. if (!r) {
  3605. r = 1;
  3606. goto out;
  3607. }
  3608. if (is_mmio_page_fault(vcpu, cr2))
  3609. emulation_type = 0;
  3610. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3611. switch (er) {
  3612. case EMULATE_DONE:
  3613. return 1;
  3614. case EMULATE_USER_EXIT:
  3615. ++vcpu->stat.mmio_exits;
  3616. /* fall through */
  3617. case EMULATE_FAIL:
  3618. return 0;
  3619. default:
  3620. BUG();
  3621. }
  3622. out:
  3623. return r;
  3624. }
  3625. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3626. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3627. {
  3628. vcpu->arch.mmu.invlpg(vcpu, gva);
  3629. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3630. ++vcpu->stat.invlpg;
  3631. }
  3632. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3633. void kvm_enable_tdp(void)
  3634. {
  3635. tdp_enabled = true;
  3636. }
  3637. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3638. void kvm_disable_tdp(void)
  3639. {
  3640. tdp_enabled = false;
  3641. }
  3642. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3643. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3644. {
  3645. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3646. if (vcpu->arch.mmu.lm_root != NULL)
  3647. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3648. }
  3649. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3650. {
  3651. struct page *page;
  3652. int i;
  3653. /*
  3654. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3655. * Therefore we need to allocate shadow page tables in the first
  3656. * 4GB of memory, which happens to fit the DMA32 zone.
  3657. */
  3658. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3659. if (!page)
  3660. return -ENOMEM;
  3661. vcpu->arch.mmu.pae_root = page_address(page);
  3662. for (i = 0; i < 4; ++i)
  3663. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3664. return 0;
  3665. }
  3666. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3667. {
  3668. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3669. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3670. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3671. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3672. return alloc_mmu_pages(vcpu);
  3673. }
  3674. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3675. {
  3676. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3677. init_kvm_mmu(vcpu);
  3678. }
  3679. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3680. struct kvm_memory_slot *memslot)
  3681. {
  3682. gfn_t last_gfn;
  3683. int i;
  3684. bool flush = false;
  3685. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3686. spin_lock(&kvm->mmu_lock);
  3687. for (i = PT_PAGE_TABLE_LEVEL;
  3688. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3689. unsigned long *rmapp;
  3690. unsigned long last_index, index;
  3691. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3692. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3693. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3694. if (*rmapp)
  3695. flush |= __rmap_write_protect(kvm, rmapp,
  3696. false);
  3697. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3698. cond_resched_lock(&kvm->mmu_lock);
  3699. }
  3700. }
  3701. spin_unlock(&kvm->mmu_lock);
  3702. /*
  3703. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3704. * which do tlb flush out of mmu-lock should be serialized by
  3705. * kvm->slots_lock otherwise tlb flush would be missed.
  3706. */
  3707. lockdep_assert_held(&kvm->slots_lock);
  3708. /*
  3709. * We can flush all the TLBs out of the mmu lock without TLB
  3710. * corruption since we just change the spte from writable to
  3711. * readonly so that we only need to care the case of changing
  3712. * spte from present to present (changing the spte from present
  3713. * to nonpresent will flush all the TLBs immediately), in other
  3714. * words, the only case we care is mmu_spte_update() where we
  3715. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3716. * instead of PT_WRITABLE_MASK, that means it does not depend
  3717. * on PT_WRITABLE_MASK anymore.
  3718. */
  3719. if (flush)
  3720. kvm_flush_remote_tlbs(kvm);
  3721. }
  3722. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3723. unsigned long *rmapp)
  3724. {
  3725. u64 *sptep;
  3726. struct rmap_iterator iter;
  3727. int need_tlb_flush = 0;
  3728. pfn_t pfn;
  3729. struct kvm_mmu_page *sp;
  3730. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  3731. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  3732. sp = page_header(__pa(sptep));
  3733. pfn = spte_to_pfn(*sptep);
  3734. /*
  3735. * We cannot do huge page mapping for indirect shadow pages,
  3736. * which are found on the last rmap (level = 1) when not using
  3737. * tdp; such shadow pages are synced with the page table in
  3738. * the guest, and the guest page table is using 4K page size
  3739. * mapping if the indirect sp has level = 1.
  3740. */
  3741. if (sp->role.direct &&
  3742. !kvm_is_reserved_pfn(pfn) &&
  3743. PageTransCompound(pfn_to_page(pfn))) {
  3744. drop_spte(kvm, sptep);
  3745. sptep = rmap_get_first(*rmapp, &iter);
  3746. need_tlb_flush = 1;
  3747. } else
  3748. sptep = rmap_get_next(&iter);
  3749. }
  3750. return need_tlb_flush;
  3751. }
  3752. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  3753. struct kvm_memory_slot *memslot)
  3754. {
  3755. bool flush = false;
  3756. unsigned long *rmapp;
  3757. unsigned long last_index, index;
  3758. spin_lock(&kvm->mmu_lock);
  3759. rmapp = memslot->arch.rmap[0];
  3760. last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
  3761. memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
  3762. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3763. if (*rmapp)
  3764. flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
  3765. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3766. if (flush) {
  3767. kvm_flush_remote_tlbs(kvm);
  3768. flush = false;
  3769. }
  3770. cond_resched_lock(&kvm->mmu_lock);
  3771. }
  3772. }
  3773. if (flush)
  3774. kvm_flush_remote_tlbs(kvm);
  3775. spin_unlock(&kvm->mmu_lock);
  3776. }
  3777. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  3778. struct kvm_memory_slot *memslot)
  3779. {
  3780. gfn_t last_gfn;
  3781. unsigned long *rmapp;
  3782. unsigned long last_index, index;
  3783. bool flush = false;
  3784. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3785. spin_lock(&kvm->mmu_lock);
  3786. rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
  3787. last_index = gfn_to_index(last_gfn, memslot->base_gfn,
  3788. PT_PAGE_TABLE_LEVEL);
  3789. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3790. if (*rmapp)
  3791. flush |= __rmap_clear_dirty(kvm, rmapp);
  3792. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3793. cond_resched_lock(&kvm->mmu_lock);
  3794. }
  3795. spin_unlock(&kvm->mmu_lock);
  3796. lockdep_assert_held(&kvm->slots_lock);
  3797. /*
  3798. * It's also safe to flush TLBs out of mmu lock here as currently this
  3799. * function is only used for dirty logging, in which case flushing TLB
  3800. * out of mmu lock also guarantees no dirty pages will be lost in
  3801. * dirty_bitmap.
  3802. */
  3803. if (flush)
  3804. kvm_flush_remote_tlbs(kvm);
  3805. }
  3806. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  3807. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  3808. struct kvm_memory_slot *memslot)
  3809. {
  3810. gfn_t last_gfn;
  3811. int i;
  3812. bool flush = false;
  3813. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3814. spin_lock(&kvm->mmu_lock);
  3815. for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
  3816. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3817. unsigned long *rmapp;
  3818. unsigned long last_index, index;
  3819. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3820. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3821. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3822. if (*rmapp)
  3823. flush |= __rmap_write_protect(kvm, rmapp,
  3824. false);
  3825. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3826. cond_resched_lock(&kvm->mmu_lock);
  3827. }
  3828. }
  3829. spin_unlock(&kvm->mmu_lock);
  3830. /* see kvm_mmu_slot_remove_write_access */
  3831. lockdep_assert_held(&kvm->slots_lock);
  3832. if (flush)
  3833. kvm_flush_remote_tlbs(kvm);
  3834. }
  3835. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  3836. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  3837. struct kvm_memory_slot *memslot)
  3838. {
  3839. gfn_t last_gfn;
  3840. int i;
  3841. bool flush = false;
  3842. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3843. spin_lock(&kvm->mmu_lock);
  3844. for (i = PT_PAGE_TABLE_LEVEL;
  3845. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3846. unsigned long *rmapp;
  3847. unsigned long last_index, index;
  3848. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3849. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3850. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3851. if (*rmapp)
  3852. flush |= __rmap_set_dirty(kvm, rmapp);
  3853. if (need_resched() || spin_needbreak(&kvm->mmu_lock))
  3854. cond_resched_lock(&kvm->mmu_lock);
  3855. }
  3856. }
  3857. spin_unlock(&kvm->mmu_lock);
  3858. lockdep_assert_held(&kvm->slots_lock);
  3859. /* see kvm_mmu_slot_leaf_clear_dirty */
  3860. if (flush)
  3861. kvm_flush_remote_tlbs(kvm);
  3862. }
  3863. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  3864. #define BATCH_ZAP_PAGES 10
  3865. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3866. {
  3867. struct kvm_mmu_page *sp, *node;
  3868. int batch = 0;
  3869. restart:
  3870. list_for_each_entry_safe_reverse(sp, node,
  3871. &kvm->arch.active_mmu_pages, link) {
  3872. int ret;
  3873. /*
  3874. * No obsolete page exists before new created page since
  3875. * active_mmu_pages is the FIFO list.
  3876. */
  3877. if (!is_obsolete_sp(kvm, sp))
  3878. break;
  3879. /*
  3880. * Since we are reversely walking the list and the invalid
  3881. * list will be moved to the head, skip the invalid page
  3882. * can help us to avoid the infinity list walking.
  3883. */
  3884. if (sp->role.invalid)
  3885. continue;
  3886. /*
  3887. * Need not flush tlb since we only zap the sp with invalid
  3888. * generation number.
  3889. */
  3890. if (batch >= BATCH_ZAP_PAGES &&
  3891. cond_resched_lock(&kvm->mmu_lock)) {
  3892. batch = 0;
  3893. goto restart;
  3894. }
  3895. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3896. &kvm->arch.zapped_obsolete_pages);
  3897. batch += ret;
  3898. if (ret)
  3899. goto restart;
  3900. }
  3901. /*
  3902. * Should flush tlb before free page tables since lockless-walking
  3903. * may use the pages.
  3904. */
  3905. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3906. }
  3907. /*
  3908. * Fast invalidate all shadow pages and use lock-break technique
  3909. * to zap obsolete pages.
  3910. *
  3911. * It's required when memslot is being deleted or VM is being
  3912. * destroyed, in these cases, we should ensure that KVM MMU does
  3913. * not use any resource of the being-deleted slot or all slots
  3914. * after calling the function.
  3915. */
  3916. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3917. {
  3918. spin_lock(&kvm->mmu_lock);
  3919. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3920. kvm->arch.mmu_valid_gen++;
  3921. /*
  3922. * Notify all vcpus to reload its shadow page table
  3923. * and flush TLB. Then all vcpus will switch to new
  3924. * shadow page table with the new mmu_valid_gen.
  3925. *
  3926. * Note: we should do this under the protection of
  3927. * mmu-lock, otherwise, vcpu would purge shadow page
  3928. * but miss tlb flush.
  3929. */
  3930. kvm_reload_remote_mmus(kvm);
  3931. kvm_zap_obsolete_pages(kvm);
  3932. spin_unlock(&kvm->mmu_lock);
  3933. }
  3934. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3935. {
  3936. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3937. }
  3938. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3939. {
  3940. /*
  3941. * The very rare case: if the generation-number is round,
  3942. * zap all shadow pages.
  3943. */
  3944. if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
  3945. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  3946. kvm_mmu_invalidate_zap_all_pages(kvm);
  3947. }
  3948. }
  3949. static unsigned long
  3950. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  3951. {
  3952. struct kvm *kvm;
  3953. int nr_to_scan = sc->nr_to_scan;
  3954. unsigned long freed = 0;
  3955. spin_lock(&kvm_lock);
  3956. list_for_each_entry(kvm, &vm_list, vm_list) {
  3957. int idx;
  3958. LIST_HEAD(invalid_list);
  3959. /*
  3960. * Never scan more than sc->nr_to_scan VM instances.
  3961. * Will not hit this condition practically since we do not try
  3962. * to shrink more than one VM and it is very unlikely to see
  3963. * !n_used_mmu_pages so many times.
  3964. */
  3965. if (!nr_to_scan--)
  3966. break;
  3967. /*
  3968. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3969. * here. We may skip a VM instance errorneosly, but we do not
  3970. * want to shrink a VM that only started to populate its MMU
  3971. * anyway.
  3972. */
  3973. if (!kvm->arch.n_used_mmu_pages &&
  3974. !kvm_has_zapped_obsolete_pages(kvm))
  3975. continue;
  3976. idx = srcu_read_lock(&kvm->srcu);
  3977. spin_lock(&kvm->mmu_lock);
  3978. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3979. kvm_mmu_commit_zap_page(kvm,
  3980. &kvm->arch.zapped_obsolete_pages);
  3981. goto unlock;
  3982. }
  3983. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  3984. freed++;
  3985. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3986. unlock:
  3987. spin_unlock(&kvm->mmu_lock);
  3988. srcu_read_unlock(&kvm->srcu, idx);
  3989. /*
  3990. * unfair on small ones
  3991. * per-vm shrinkers cry out
  3992. * sadness comes quickly
  3993. */
  3994. list_move_tail(&kvm->vm_list, &vm_list);
  3995. break;
  3996. }
  3997. spin_unlock(&kvm_lock);
  3998. return freed;
  3999. }
  4000. static unsigned long
  4001. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  4002. {
  4003. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4004. }
  4005. static struct shrinker mmu_shrinker = {
  4006. .count_objects = mmu_shrink_count,
  4007. .scan_objects = mmu_shrink_scan,
  4008. .seeks = DEFAULT_SEEKS * 10,
  4009. };
  4010. static void mmu_destroy_caches(void)
  4011. {
  4012. if (pte_list_desc_cache)
  4013. kmem_cache_destroy(pte_list_desc_cache);
  4014. if (mmu_page_header_cache)
  4015. kmem_cache_destroy(mmu_page_header_cache);
  4016. }
  4017. int kvm_mmu_module_init(void)
  4018. {
  4019. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4020. sizeof(struct pte_list_desc),
  4021. 0, 0, NULL);
  4022. if (!pte_list_desc_cache)
  4023. goto nomem;
  4024. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4025. sizeof(struct kvm_mmu_page),
  4026. 0, 0, NULL);
  4027. if (!mmu_page_header_cache)
  4028. goto nomem;
  4029. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4030. goto nomem;
  4031. register_shrinker(&mmu_shrinker);
  4032. return 0;
  4033. nomem:
  4034. mmu_destroy_caches();
  4035. return -ENOMEM;
  4036. }
  4037. /*
  4038. * Caculate mmu pages needed for kvm.
  4039. */
  4040. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4041. {
  4042. unsigned int nr_mmu_pages;
  4043. unsigned int nr_pages = 0;
  4044. struct kvm_memslots *slots;
  4045. struct kvm_memory_slot *memslot;
  4046. slots = kvm_memslots(kvm);
  4047. kvm_for_each_memslot(memslot, slots)
  4048. nr_pages += memslot->npages;
  4049. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4050. nr_mmu_pages = max(nr_mmu_pages,
  4051. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4052. return nr_mmu_pages;
  4053. }
  4054. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  4055. {
  4056. struct kvm_shadow_walk_iterator iterator;
  4057. u64 spte;
  4058. int nr_sptes = 0;
  4059. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  4060. return nr_sptes;
  4061. walk_shadow_page_lockless_begin(vcpu);
  4062. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  4063. sptes[iterator.level-1] = spte;
  4064. nr_sptes++;
  4065. if (!is_shadow_present_pte(spte))
  4066. break;
  4067. }
  4068. walk_shadow_page_lockless_end(vcpu);
  4069. return nr_sptes;
  4070. }
  4071. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  4072. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4073. {
  4074. kvm_mmu_unload(vcpu);
  4075. free_mmu_pages(vcpu);
  4076. mmu_free_memory_caches(vcpu);
  4077. }
  4078. void kvm_mmu_module_exit(void)
  4079. {
  4080. mmu_destroy_caches();
  4081. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4082. unregister_shrinker(&mmu_shrinker);
  4083. mmu_audit_disable();
  4084. }