io-pgtable-arm-v7s.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /*
  2. * CPU-agnostic ARM page table allocator.
  3. *
  4. * ARMv7 Short-descriptor format, supporting
  5. * - Basic memory attributes
  6. * - Simplified access permissions (AP[2:1] model)
  7. * - Backwards-compatible TEX remap
  8. * - Large pages/supersections (if indicated by the caller)
  9. *
  10. * Not supporting:
  11. * - Legacy access permissions (AP[2:0] model)
  12. *
  13. * Almost certainly never supporting:
  14. * - PXN
  15. * - Domains
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License version 2 as
  19. * published by the Free Software Foundation.
  20. *
  21. * This program is distributed in the hope that it will be useful,
  22. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  24. * GNU General Public License for more details.
  25. *
  26. * You should have received a copy of the GNU General Public License
  27. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  28. *
  29. * Copyright (C) 2014-2015 ARM Limited
  30. * Copyright (c) 2014-2015 MediaTek Inc.
  31. */
  32. #define pr_fmt(fmt) "arm-v7s io-pgtable: " fmt
  33. #include <linux/atomic.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/gfp.h>
  36. #include <linux/iommu.h>
  37. #include <linux/kernel.h>
  38. #include <linux/kmemleak.h>
  39. #include <linux/sizes.h>
  40. #include <linux/slab.h>
  41. #include <linux/spinlock.h>
  42. #include <linux/types.h>
  43. #include <asm/barrier.h>
  44. #include "io-pgtable.h"
  45. /* Struct accessors */
  46. #define io_pgtable_to_data(x) \
  47. container_of((x), struct arm_v7s_io_pgtable, iop)
  48. #define io_pgtable_ops_to_data(x) \
  49. io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
  50. /*
  51. * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
  52. * and 12 bits in a page. With some carefully-chosen coefficients we can
  53. * hide the ugly inconsistencies behind these macros and at least let the
  54. * rest of the code pretend to be somewhat sane.
  55. */
  56. #define ARM_V7S_ADDR_BITS 32
  57. #define _ARM_V7S_LVL_BITS(lvl) (16 - (lvl) * 4)
  58. #define ARM_V7S_LVL_SHIFT(lvl) (ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
  59. #define ARM_V7S_TABLE_SHIFT 10
  60. #define ARM_V7S_PTES_PER_LVL(lvl) (1 << _ARM_V7S_LVL_BITS(lvl))
  61. #define ARM_V7S_TABLE_SIZE(lvl) \
  62. (ARM_V7S_PTES_PER_LVL(lvl) * sizeof(arm_v7s_iopte))
  63. #define ARM_V7S_BLOCK_SIZE(lvl) (1UL << ARM_V7S_LVL_SHIFT(lvl))
  64. #define ARM_V7S_LVL_MASK(lvl) ((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
  65. #define ARM_V7S_TABLE_MASK ((u32)(~0U << ARM_V7S_TABLE_SHIFT))
  66. #define _ARM_V7S_IDX_MASK(lvl) (ARM_V7S_PTES_PER_LVL(lvl) - 1)
  67. #define ARM_V7S_LVL_IDX(addr, lvl) ({ \
  68. int _l = lvl; \
  69. ((u32)(addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l); \
  70. })
  71. /*
  72. * Large page/supersection entries are effectively a block of 16 page/section
  73. * entries, along the lines of the LPAE contiguous hint, but all with the
  74. * same output address. For want of a better common name we'll call them
  75. * "contiguous" versions of their respective page/section entries here, but
  76. * noting the distinction (WRT to TLB maintenance) that they represent *one*
  77. * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
  78. */
  79. #define ARM_V7S_CONT_PAGES 16
  80. /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
  81. #define ARM_V7S_PTE_TYPE_TABLE 0x1
  82. #define ARM_V7S_PTE_TYPE_PAGE 0x2
  83. #define ARM_V7S_PTE_TYPE_CONT_PAGE 0x1
  84. #define ARM_V7S_PTE_IS_VALID(pte) (((pte) & 0x3) != 0)
  85. #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
  86. ((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
  87. /* Page table bits */
  88. #define ARM_V7S_ATTR_XN(lvl) BIT(4 * (2 - (lvl)))
  89. #define ARM_V7S_ATTR_B BIT(2)
  90. #define ARM_V7S_ATTR_C BIT(3)
  91. #define ARM_V7S_ATTR_NS_TABLE BIT(3)
  92. #define ARM_V7S_ATTR_NS_SECTION BIT(19)
  93. #define ARM_V7S_CONT_SECTION BIT(18)
  94. #define ARM_V7S_CONT_PAGE_XN_SHIFT 15
  95. /*
  96. * The attribute bits are consistently ordered*, but occupy bits [17:10] of
  97. * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
  98. * fields relative to that 8-bit block, plus a total shift relative to the PTE.
  99. */
  100. #define ARM_V7S_ATTR_SHIFT(lvl) (16 - (lvl) * 6)
  101. #define ARM_V7S_ATTR_MASK 0xff
  102. #define ARM_V7S_ATTR_AP0 BIT(0)
  103. #define ARM_V7S_ATTR_AP1 BIT(1)
  104. #define ARM_V7S_ATTR_AP2 BIT(5)
  105. #define ARM_V7S_ATTR_S BIT(6)
  106. #define ARM_V7S_ATTR_NG BIT(7)
  107. #define ARM_V7S_TEX_SHIFT 2
  108. #define ARM_V7S_TEX_MASK 0x7
  109. #define ARM_V7S_ATTR_TEX(val) (((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
  110. #define ARM_V7S_ATTR_MTK_4GB BIT(9) /* MTK extend it for 4GB mode */
  111. /* *well, except for TEX on level 2 large pages, of course :( */
  112. #define ARM_V7S_CONT_PAGE_TEX_SHIFT 6
  113. #define ARM_V7S_CONT_PAGE_TEX_MASK (ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
  114. /* Simplified access permissions */
  115. #define ARM_V7S_PTE_AF ARM_V7S_ATTR_AP0
  116. #define ARM_V7S_PTE_AP_UNPRIV ARM_V7S_ATTR_AP1
  117. #define ARM_V7S_PTE_AP_RDONLY ARM_V7S_ATTR_AP2
  118. /* Register bits */
  119. #define ARM_V7S_RGN_NC 0
  120. #define ARM_V7S_RGN_WBWA 1
  121. #define ARM_V7S_RGN_WT 2
  122. #define ARM_V7S_RGN_WB 3
  123. #define ARM_V7S_PRRR_TYPE_DEVICE 1
  124. #define ARM_V7S_PRRR_TYPE_NORMAL 2
  125. #define ARM_V7S_PRRR_TR(n, type) (((type) & 0x3) << ((n) * 2))
  126. #define ARM_V7S_PRRR_DS0 BIT(16)
  127. #define ARM_V7S_PRRR_DS1 BIT(17)
  128. #define ARM_V7S_PRRR_NS0 BIT(18)
  129. #define ARM_V7S_PRRR_NS1 BIT(19)
  130. #define ARM_V7S_PRRR_NOS(n) BIT((n) + 24)
  131. #define ARM_V7S_NMRR_IR(n, attr) (((attr) & 0x3) << ((n) * 2))
  132. #define ARM_V7S_NMRR_OR(n, attr) (((attr) & 0x3) << ((n) * 2 + 16))
  133. #define ARM_V7S_TTBR_S BIT(1)
  134. #define ARM_V7S_TTBR_NOS BIT(5)
  135. #define ARM_V7S_TTBR_ORGN_ATTR(attr) (((attr) & 0x3) << 3)
  136. #define ARM_V7S_TTBR_IRGN_ATTR(attr) \
  137. ((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
  138. #define ARM_V7S_TCR_PD1 BIT(5)
  139. typedef u32 arm_v7s_iopte;
  140. static bool selftest_running;
  141. struct arm_v7s_io_pgtable {
  142. struct io_pgtable iop;
  143. arm_v7s_iopte *pgd;
  144. struct kmem_cache *l2_tables;
  145. spinlock_t split_lock;
  146. };
  147. static dma_addr_t __arm_v7s_dma_addr(void *pages)
  148. {
  149. return (dma_addr_t)virt_to_phys(pages);
  150. }
  151. static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl)
  152. {
  153. if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
  154. pte &= ARM_V7S_TABLE_MASK;
  155. else
  156. pte &= ARM_V7S_LVL_MASK(lvl);
  157. return phys_to_virt(pte);
  158. }
  159. static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
  160. struct arm_v7s_io_pgtable *data)
  161. {
  162. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  163. struct device *dev = cfg->iommu_dev;
  164. phys_addr_t phys;
  165. dma_addr_t dma;
  166. size_t size = ARM_V7S_TABLE_SIZE(lvl);
  167. void *table = NULL;
  168. if (lvl == 1)
  169. table = (void *)__get_dma_pages(__GFP_ZERO, get_order(size));
  170. else if (lvl == 2)
  171. table = kmem_cache_zalloc(data->l2_tables, gfp | GFP_DMA);
  172. phys = virt_to_phys(table);
  173. if (phys != (arm_v7s_iopte)phys)
  174. /* Doesn't fit in PTE */
  175. goto out_free;
  176. if (table && !(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)) {
  177. dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
  178. if (dma_mapping_error(dev, dma))
  179. goto out_free;
  180. /*
  181. * We depend on the IOMMU being able to work with any physical
  182. * address directly, so if the DMA layer suggests otherwise by
  183. * translating or truncating them, that bodes very badly...
  184. */
  185. if (dma != phys)
  186. goto out_unmap;
  187. }
  188. kmemleak_ignore(table);
  189. return table;
  190. out_unmap:
  191. dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
  192. dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
  193. out_free:
  194. if (lvl == 1)
  195. free_pages((unsigned long)table, get_order(size));
  196. else
  197. kmem_cache_free(data->l2_tables, table);
  198. return NULL;
  199. }
  200. static void __arm_v7s_free_table(void *table, int lvl,
  201. struct arm_v7s_io_pgtable *data)
  202. {
  203. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  204. struct device *dev = cfg->iommu_dev;
  205. size_t size = ARM_V7S_TABLE_SIZE(lvl);
  206. if (!(cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA))
  207. dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
  208. DMA_TO_DEVICE);
  209. if (lvl == 1)
  210. free_pages((unsigned long)table, get_order(size));
  211. else
  212. kmem_cache_free(data->l2_tables, table);
  213. }
  214. static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
  215. struct io_pgtable_cfg *cfg)
  216. {
  217. if (cfg->quirks & IO_PGTABLE_QUIRK_NO_DMA)
  218. return;
  219. dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
  220. num_entries * sizeof(*ptep), DMA_TO_DEVICE);
  221. }
  222. static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
  223. int num_entries, struct io_pgtable_cfg *cfg)
  224. {
  225. int i;
  226. for (i = 0; i < num_entries; i++)
  227. ptep[i] = pte;
  228. __arm_v7s_pte_sync(ptep, num_entries, cfg);
  229. }
  230. static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
  231. struct io_pgtable_cfg *cfg)
  232. {
  233. bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
  234. arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
  235. if (!(prot & IOMMU_MMIO))
  236. pte |= ARM_V7S_ATTR_TEX(1);
  237. if (ap) {
  238. pte |= ARM_V7S_PTE_AF;
  239. if (!(prot & IOMMU_PRIV))
  240. pte |= ARM_V7S_PTE_AP_UNPRIV;
  241. if (!(prot & IOMMU_WRITE))
  242. pte |= ARM_V7S_PTE_AP_RDONLY;
  243. }
  244. pte <<= ARM_V7S_ATTR_SHIFT(lvl);
  245. if ((prot & IOMMU_NOEXEC) && ap)
  246. pte |= ARM_V7S_ATTR_XN(lvl);
  247. if (prot & IOMMU_MMIO)
  248. pte |= ARM_V7S_ATTR_B;
  249. else if (prot & IOMMU_CACHE)
  250. pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
  251. pte |= ARM_V7S_PTE_TYPE_PAGE;
  252. if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
  253. pte |= ARM_V7S_ATTR_NS_SECTION;
  254. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB)
  255. pte |= ARM_V7S_ATTR_MTK_4GB;
  256. return pte;
  257. }
  258. static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
  259. {
  260. int prot = IOMMU_READ;
  261. arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
  262. if (!(attr & ARM_V7S_PTE_AP_RDONLY))
  263. prot |= IOMMU_WRITE;
  264. if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
  265. prot |= IOMMU_PRIV;
  266. if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
  267. prot |= IOMMU_MMIO;
  268. else if (pte & ARM_V7S_ATTR_C)
  269. prot |= IOMMU_CACHE;
  270. if (pte & ARM_V7S_ATTR_XN(lvl))
  271. prot |= IOMMU_NOEXEC;
  272. return prot;
  273. }
  274. static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
  275. {
  276. if (lvl == 1) {
  277. pte |= ARM_V7S_CONT_SECTION;
  278. } else if (lvl == 2) {
  279. arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
  280. arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
  281. pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
  282. pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
  283. (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
  284. ARM_V7S_PTE_TYPE_CONT_PAGE;
  285. }
  286. return pte;
  287. }
  288. static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
  289. {
  290. if (lvl == 1) {
  291. pte &= ~ARM_V7S_CONT_SECTION;
  292. } else if (lvl == 2) {
  293. arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
  294. arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
  295. ARM_V7S_CONT_PAGE_TEX_SHIFT);
  296. pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
  297. pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
  298. (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
  299. ARM_V7S_PTE_TYPE_PAGE;
  300. }
  301. return pte;
  302. }
  303. static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
  304. {
  305. if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
  306. return pte & ARM_V7S_CONT_SECTION;
  307. else if (lvl == 2)
  308. return !(pte & ARM_V7S_PTE_TYPE_PAGE);
  309. return false;
  310. }
  311. static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *, unsigned long,
  312. size_t, int, arm_v7s_iopte *);
  313. static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
  314. unsigned long iova, phys_addr_t paddr, int prot,
  315. int lvl, int num_entries, arm_v7s_iopte *ptep)
  316. {
  317. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  318. arm_v7s_iopte pte;
  319. int i;
  320. for (i = 0; i < num_entries; i++)
  321. if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
  322. /*
  323. * We need to unmap and free the old table before
  324. * overwriting it with a block entry.
  325. */
  326. arm_v7s_iopte *tblp;
  327. size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
  328. tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl);
  329. if (WARN_ON(__arm_v7s_unmap(data, iova + i * sz,
  330. sz, lvl, tblp) != sz))
  331. return -EINVAL;
  332. } else if (ptep[i]) {
  333. /* We require an unmap first */
  334. WARN_ON(!selftest_running);
  335. return -EEXIST;
  336. }
  337. pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
  338. if (num_entries > 1)
  339. pte = arm_v7s_pte_to_cont(pte, lvl);
  340. pte |= paddr & ARM_V7S_LVL_MASK(lvl);
  341. __arm_v7s_set_pte(ptep, pte, num_entries, cfg);
  342. return 0;
  343. }
  344. static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
  345. arm_v7s_iopte *ptep,
  346. arm_v7s_iopte curr,
  347. struct io_pgtable_cfg *cfg)
  348. {
  349. arm_v7s_iopte old, new;
  350. new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
  351. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
  352. new |= ARM_V7S_ATTR_NS_TABLE;
  353. /*
  354. * Ensure the table itself is visible before its PTE can be.
  355. * Whilst we could get away with cmpxchg64_release below, this
  356. * doesn't have any ordering semantics when !CONFIG_SMP.
  357. */
  358. dma_wmb();
  359. old = cmpxchg_relaxed(ptep, curr, new);
  360. __arm_v7s_pte_sync(ptep, 1, cfg);
  361. return old;
  362. }
  363. static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
  364. phys_addr_t paddr, size_t size, int prot,
  365. int lvl, arm_v7s_iopte *ptep)
  366. {
  367. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  368. arm_v7s_iopte pte, *cptep;
  369. int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
  370. /* Find our entry at the current level */
  371. ptep += ARM_V7S_LVL_IDX(iova, lvl);
  372. /* If we can install a leaf entry at this level, then do so */
  373. if (num_entries)
  374. return arm_v7s_init_pte(data, iova, paddr, prot,
  375. lvl, num_entries, ptep);
  376. /* We can't allocate tables at the final level */
  377. if (WARN_ON(lvl == 2))
  378. return -EINVAL;
  379. /* Grab a pointer to the next level */
  380. pte = READ_ONCE(*ptep);
  381. if (!pte) {
  382. cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
  383. if (!cptep)
  384. return -ENOMEM;
  385. pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
  386. if (pte)
  387. __arm_v7s_free_table(cptep, lvl + 1, data);
  388. } else {
  389. /* We've no easy way of knowing if it's synced yet, so... */
  390. __arm_v7s_pte_sync(ptep, 1, cfg);
  391. }
  392. if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
  393. cptep = iopte_deref(pte, lvl);
  394. } else if (pte) {
  395. /* We require an unmap first */
  396. WARN_ON(!selftest_running);
  397. return -EEXIST;
  398. }
  399. /* Rinse, repeat */
  400. return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
  401. }
  402. static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
  403. phys_addr_t paddr, size_t size, int prot)
  404. {
  405. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  406. struct io_pgtable *iop = &data->iop;
  407. int ret;
  408. /* If no access, then nothing to do */
  409. if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
  410. return 0;
  411. if (WARN_ON(upper_32_bits(iova) || upper_32_bits(paddr)))
  412. return -ERANGE;
  413. ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
  414. /*
  415. * Synchronise all PTE updates for the new mapping before there's
  416. * a chance for anything to kick off a table walk for the new iova.
  417. */
  418. if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
  419. io_pgtable_tlb_add_flush(iop, iova, size,
  420. ARM_V7S_BLOCK_SIZE(2), false);
  421. io_pgtable_tlb_sync(iop);
  422. } else {
  423. wmb();
  424. }
  425. return ret;
  426. }
  427. static void arm_v7s_free_pgtable(struct io_pgtable *iop)
  428. {
  429. struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
  430. int i;
  431. for (i = 0; i < ARM_V7S_PTES_PER_LVL(1); i++) {
  432. arm_v7s_iopte pte = data->pgd[i];
  433. if (ARM_V7S_PTE_IS_TABLE(pte, 1))
  434. __arm_v7s_free_table(iopte_deref(pte, 1), 2, data);
  435. }
  436. __arm_v7s_free_table(data->pgd, 1, data);
  437. kmem_cache_destroy(data->l2_tables);
  438. kfree(data);
  439. }
  440. static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
  441. unsigned long iova, int idx, int lvl,
  442. arm_v7s_iopte *ptep)
  443. {
  444. struct io_pgtable *iop = &data->iop;
  445. arm_v7s_iopte pte;
  446. size_t size = ARM_V7S_BLOCK_SIZE(lvl);
  447. int i;
  448. /* Check that we didn't lose a race to get the lock */
  449. pte = *ptep;
  450. if (!arm_v7s_pte_is_cont(pte, lvl))
  451. return pte;
  452. ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
  453. pte = arm_v7s_cont_to_pte(pte, lvl);
  454. for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
  455. ptep[i] = pte + i * size;
  456. __arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
  457. size *= ARM_V7S_CONT_PAGES;
  458. io_pgtable_tlb_add_flush(iop, iova, size, size, true);
  459. io_pgtable_tlb_sync(iop);
  460. return pte;
  461. }
  462. static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
  463. unsigned long iova, size_t size,
  464. arm_v7s_iopte blk_pte,
  465. arm_v7s_iopte *ptep)
  466. {
  467. struct io_pgtable_cfg *cfg = &data->iop.cfg;
  468. arm_v7s_iopte pte, *tablep;
  469. int i, unmap_idx, num_entries, num_ptes;
  470. tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
  471. if (!tablep)
  472. return 0; /* Bytes unmapped */
  473. num_ptes = ARM_V7S_PTES_PER_LVL(2);
  474. num_entries = size >> ARM_V7S_LVL_SHIFT(2);
  475. unmap_idx = ARM_V7S_LVL_IDX(iova, 2);
  476. pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
  477. if (num_entries > 1)
  478. pte = arm_v7s_pte_to_cont(pte, 2);
  479. for (i = 0; i < num_ptes; i += num_entries, pte += size) {
  480. /* Unmap! */
  481. if (i == unmap_idx)
  482. continue;
  483. __arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
  484. }
  485. pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
  486. if (pte != blk_pte) {
  487. __arm_v7s_free_table(tablep, 2, data);
  488. if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
  489. return 0;
  490. tablep = iopte_deref(pte, 1);
  491. return __arm_v7s_unmap(data, iova, size, 2, tablep);
  492. }
  493. io_pgtable_tlb_add_flush(&data->iop, iova, size, size, true);
  494. return size;
  495. }
  496. static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
  497. unsigned long iova, size_t size, int lvl,
  498. arm_v7s_iopte *ptep)
  499. {
  500. arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
  501. struct io_pgtable *iop = &data->iop;
  502. int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
  503. /* Something went horribly wrong and we ran out of page table */
  504. if (WARN_ON(lvl > 2))
  505. return 0;
  506. idx = ARM_V7S_LVL_IDX(iova, lvl);
  507. ptep += idx;
  508. do {
  509. pte[i] = READ_ONCE(ptep[i]);
  510. if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
  511. return 0;
  512. } while (++i < num_entries);
  513. /*
  514. * If we've hit a contiguous 'large page' entry at this level, it
  515. * needs splitting first, unless we're unmapping the whole lot.
  516. *
  517. * For splitting, we can't rewrite 16 PTEs atomically, and since we
  518. * can't necessarily assume TEX remap we don't have a software bit to
  519. * mark live entries being split. In practice (i.e. DMA API code), we
  520. * will never be splitting large pages anyway, so just wrap this edge
  521. * case in a lock for the sake of correctness and be done with it.
  522. */
  523. if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
  524. unsigned long flags;
  525. spin_lock_irqsave(&data->split_lock, flags);
  526. pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
  527. spin_unlock_irqrestore(&data->split_lock, flags);
  528. }
  529. /* If the size matches this level, we're in the right place */
  530. if (num_entries) {
  531. size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
  532. __arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
  533. for (i = 0; i < num_entries; i++) {
  534. if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
  535. /* Also flush any partial walks */
  536. io_pgtable_tlb_add_flush(iop, iova, blk_size,
  537. ARM_V7S_BLOCK_SIZE(lvl + 1), false);
  538. io_pgtable_tlb_sync(iop);
  539. ptep = iopte_deref(pte[i], lvl);
  540. __arm_v7s_free_table(ptep, lvl + 1, data);
  541. } else {
  542. io_pgtable_tlb_add_flush(iop, iova, blk_size,
  543. blk_size, true);
  544. }
  545. iova += blk_size;
  546. }
  547. return size;
  548. } else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
  549. /*
  550. * Insert a table at the next level to map the old region,
  551. * minus the part we want to unmap
  552. */
  553. return arm_v7s_split_blk_unmap(data, iova, size, pte[0], ptep);
  554. }
  555. /* Keep on walkin' */
  556. ptep = iopte_deref(pte[0], lvl);
  557. return __arm_v7s_unmap(data, iova, size, lvl + 1, ptep);
  558. }
  559. static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
  560. size_t size)
  561. {
  562. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  563. if (WARN_ON(upper_32_bits(iova)))
  564. return 0;
  565. return __arm_v7s_unmap(data, iova, size, 1, data->pgd);
  566. }
  567. static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
  568. unsigned long iova)
  569. {
  570. struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
  571. arm_v7s_iopte *ptep = data->pgd, pte;
  572. int lvl = 0;
  573. u32 mask;
  574. do {
  575. ptep += ARM_V7S_LVL_IDX(iova, ++lvl);
  576. pte = READ_ONCE(*ptep);
  577. ptep = iopte_deref(pte, lvl);
  578. } while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
  579. if (!ARM_V7S_PTE_IS_VALID(pte))
  580. return 0;
  581. mask = ARM_V7S_LVL_MASK(lvl);
  582. if (arm_v7s_pte_is_cont(pte, lvl))
  583. mask *= ARM_V7S_CONT_PAGES;
  584. return (pte & mask) | (iova & ~mask);
  585. }
  586. static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
  587. void *cookie)
  588. {
  589. struct arm_v7s_io_pgtable *data;
  590. #ifdef PHYS_OFFSET
  591. if (upper_32_bits(PHYS_OFFSET))
  592. return NULL;
  593. #endif
  594. if (cfg->ias > ARM_V7S_ADDR_BITS || cfg->oas > ARM_V7S_ADDR_BITS)
  595. return NULL;
  596. if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
  597. IO_PGTABLE_QUIRK_NO_PERMS |
  598. IO_PGTABLE_QUIRK_TLBI_ON_MAP |
  599. IO_PGTABLE_QUIRK_ARM_MTK_4GB |
  600. IO_PGTABLE_QUIRK_NO_DMA))
  601. return NULL;
  602. /* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
  603. if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_4GB &&
  604. !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
  605. return NULL;
  606. data = kmalloc(sizeof(*data), GFP_KERNEL);
  607. if (!data)
  608. return NULL;
  609. spin_lock_init(&data->split_lock);
  610. data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
  611. ARM_V7S_TABLE_SIZE(2),
  612. ARM_V7S_TABLE_SIZE(2),
  613. SLAB_CACHE_DMA, NULL);
  614. if (!data->l2_tables)
  615. goto out_free_data;
  616. data->iop.ops = (struct io_pgtable_ops) {
  617. .map = arm_v7s_map,
  618. .unmap = arm_v7s_unmap,
  619. .iova_to_phys = arm_v7s_iova_to_phys,
  620. };
  621. /* We have to do this early for __arm_v7s_alloc_table to work... */
  622. data->iop.cfg = *cfg;
  623. /*
  624. * Unless the IOMMU driver indicates supersection support by
  625. * having SZ_16M set in the initial bitmap, they won't be used.
  626. */
  627. cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
  628. /* TCR: T0SZ=0, disable TTBR1 */
  629. cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
  630. /*
  631. * TEX remap: the indices used map to the closest equivalent types
  632. * under the non-TEX-remap interpretation of those attribute bits,
  633. * excepting various implementation-defined aspects of shareability.
  634. */
  635. cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
  636. ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
  637. ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
  638. ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
  639. ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
  640. cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
  641. ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
  642. /* Looking good; allocate a pgd */
  643. data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
  644. if (!data->pgd)
  645. goto out_free_data;
  646. /* Ensure the empty pgd is visible before any actual TTBR write */
  647. wmb();
  648. /* TTBRs */
  649. cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
  650. ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
  651. ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
  652. ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA);
  653. cfg->arm_v7s_cfg.ttbr[1] = 0;
  654. return &data->iop;
  655. out_free_data:
  656. kmem_cache_destroy(data->l2_tables);
  657. kfree(data);
  658. return NULL;
  659. }
  660. struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
  661. .alloc = arm_v7s_alloc_pgtable,
  662. .free = arm_v7s_free_pgtable,
  663. };
  664. #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
  665. static struct io_pgtable_cfg *cfg_cookie;
  666. static void dummy_tlb_flush_all(void *cookie)
  667. {
  668. WARN_ON(cookie != cfg_cookie);
  669. }
  670. static void dummy_tlb_add_flush(unsigned long iova, size_t size,
  671. size_t granule, bool leaf, void *cookie)
  672. {
  673. WARN_ON(cookie != cfg_cookie);
  674. WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
  675. }
  676. static void dummy_tlb_sync(void *cookie)
  677. {
  678. WARN_ON(cookie != cfg_cookie);
  679. }
  680. static const struct iommu_gather_ops dummy_tlb_ops = {
  681. .tlb_flush_all = dummy_tlb_flush_all,
  682. .tlb_add_flush = dummy_tlb_add_flush,
  683. .tlb_sync = dummy_tlb_sync,
  684. };
  685. #define __FAIL(ops) ({ \
  686. WARN(1, "selftest: test failed\n"); \
  687. selftest_running = false; \
  688. -EFAULT; \
  689. })
  690. static int __init arm_v7s_do_selftests(void)
  691. {
  692. struct io_pgtable_ops *ops;
  693. struct io_pgtable_cfg cfg = {
  694. .tlb = &dummy_tlb_ops,
  695. .oas = 32,
  696. .ias = 32,
  697. .quirks = IO_PGTABLE_QUIRK_ARM_NS | IO_PGTABLE_QUIRK_NO_DMA,
  698. .pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
  699. };
  700. unsigned int iova, size, iova_start;
  701. unsigned int i, loopnr = 0;
  702. selftest_running = true;
  703. cfg_cookie = &cfg;
  704. ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
  705. if (!ops) {
  706. pr_err("selftest: failed to allocate io pgtable ops\n");
  707. return -EINVAL;
  708. }
  709. /*
  710. * Initial sanity checks.
  711. * Empty page tables shouldn't provide any translations.
  712. */
  713. if (ops->iova_to_phys(ops, 42))
  714. return __FAIL(ops);
  715. if (ops->iova_to_phys(ops, SZ_1G + 42))
  716. return __FAIL(ops);
  717. if (ops->iova_to_phys(ops, SZ_2G + 42))
  718. return __FAIL(ops);
  719. /*
  720. * Distinct mappings of different granule sizes.
  721. */
  722. iova = 0;
  723. for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
  724. size = 1UL << i;
  725. if (ops->map(ops, iova, iova, size, IOMMU_READ |
  726. IOMMU_WRITE |
  727. IOMMU_NOEXEC |
  728. IOMMU_CACHE))
  729. return __FAIL(ops);
  730. /* Overlapping mappings */
  731. if (!ops->map(ops, iova, iova + size, size,
  732. IOMMU_READ | IOMMU_NOEXEC))
  733. return __FAIL(ops);
  734. if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
  735. return __FAIL(ops);
  736. iova += SZ_16M;
  737. loopnr++;
  738. }
  739. /* Partial unmap */
  740. i = 1;
  741. size = 1UL << __ffs(cfg.pgsize_bitmap);
  742. while (i < loopnr) {
  743. iova_start = i * SZ_16M;
  744. if (ops->unmap(ops, iova_start + size, size) != size)
  745. return __FAIL(ops);
  746. /* Remap of partial unmap */
  747. if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
  748. return __FAIL(ops);
  749. if (ops->iova_to_phys(ops, iova_start + size + 42)
  750. != (size + 42))
  751. return __FAIL(ops);
  752. i++;
  753. }
  754. /* Full unmap */
  755. iova = 0;
  756. for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
  757. size = 1UL << i;
  758. if (ops->unmap(ops, iova, size) != size)
  759. return __FAIL(ops);
  760. if (ops->iova_to_phys(ops, iova + 42))
  761. return __FAIL(ops);
  762. /* Remap full block */
  763. if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
  764. return __FAIL(ops);
  765. if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
  766. return __FAIL(ops);
  767. iova += SZ_16M;
  768. }
  769. free_io_pgtable_ops(ops);
  770. selftest_running = false;
  771. pr_info("self test ok\n");
  772. return 0;
  773. }
  774. subsys_initcall(arm_v7s_do_selftests);
  775. #endif