sdma_v3_0.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  59. {
  60. SDMA0_REGISTER_OFFSET,
  61. SDMA1_REGISTER_OFFSET
  62. };
  63. static const u32 golden_settings_tonga_a11[] =
  64. {
  65. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  66. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  67. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  69. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  71. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  72. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  74. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  75. };
  76. static const u32 tonga_mgcg_cgcg_init[] =
  77. {
  78. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  79. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  80. };
  81. static const u32 golden_settings_fiji_a10[] =
  82. {
  83. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  84. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  86. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  88. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  91. };
  92. static const u32 fiji_mgcg_cgcg_init[] =
  93. {
  94. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  95. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  96. };
  97. static const u32 golden_settings_polaris11_a11[] =
  98. {
  99. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  105. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  106. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  108. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  109. };
  110. static const u32 golden_settings_polaris10_a11[] =
  111. {
  112. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  113. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  114. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  118. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  119. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  121. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  122. };
  123. static const u32 cz_golden_settings_a11[] =
  124. {
  125. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  126. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  127. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  129. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  132. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  133. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  135. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  137. };
  138. static const u32 cz_mgcg_cgcg_init[] =
  139. {
  140. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  141. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  142. };
  143. static const u32 stoney_golden_settings_a11[] =
  144. {
  145. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  147. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  149. };
  150. static const u32 stoney_mgcg_cgcg_init[] =
  151. {
  152. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  153. };
  154. /*
  155. * sDMA - System DMA
  156. * Starting with CIK, the GPU has new asynchronous
  157. * DMA engines. These engines are used for compute
  158. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  159. * and each one supports 1 ring buffer used for gfx
  160. * and 2 queues used for compute.
  161. *
  162. * The programming model is very similar to the CP
  163. * (ring buffer, IBs, etc.), but sDMA has it's own
  164. * packet format that is different from the PM4 format
  165. * used by the CP. sDMA supports copying data, writing
  166. * embedded data, solid fills, and a number of other
  167. * things. It also has support for tiling/detiling of
  168. * buffers.
  169. */
  170. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  171. {
  172. switch (adev->asic_type) {
  173. case CHIP_FIJI:
  174. amdgpu_program_register_sequence(adev,
  175. fiji_mgcg_cgcg_init,
  176. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  177. amdgpu_program_register_sequence(adev,
  178. golden_settings_fiji_a10,
  179. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  180. break;
  181. case CHIP_TONGA:
  182. amdgpu_program_register_sequence(adev,
  183. tonga_mgcg_cgcg_init,
  184. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  185. amdgpu_program_register_sequence(adev,
  186. golden_settings_tonga_a11,
  187. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  188. break;
  189. case CHIP_POLARIS11:
  190. case CHIP_POLARIS12:
  191. amdgpu_program_register_sequence(adev,
  192. golden_settings_polaris11_a11,
  193. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  194. break;
  195. case CHIP_POLARIS10:
  196. amdgpu_program_register_sequence(adev,
  197. golden_settings_polaris10_a11,
  198. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  199. break;
  200. case CHIP_CARRIZO:
  201. amdgpu_program_register_sequence(adev,
  202. cz_mgcg_cgcg_init,
  203. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  204. amdgpu_program_register_sequence(adev,
  205. cz_golden_settings_a11,
  206. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  207. break;
  208. case CHIP_STONEY:
  209. amdgpu_program_register_sequence(adev,
  210. stoney_mgcg_cgcg_init,
  211. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  212. amdgpu_program_register_sequence(adev,
  213. stoney_golden_settings_a11,
  214. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  221. {
  222. int i;
  223. for (i = 0; i < adev->sdma.num_instances; i++) {
  224. release_firmware(adev->sdma.instance[i].fw);
  225. adev->sdma.instance[i].fw = NULL;
  226. }
  227. }
  228. /**
  229. * sdma_v3_0_init_microcode - load ucode images from disk
  230. *
  231. * @adev: amdgpu_device pointer
  232. *
  233. * Use the firmware interface to load the ucode images into
  234. * the driver (not loaded into hw).
  235. * Returns 0 on success, error on failure.
  236. */
  237. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  238. {
  239. const char *chip_name;
  240. char fw_name[30];
  241. int err = 0, i;
  242. struct amdgpu_firmware_info *info = NULL;
  243. const struct common_firmware_header *header = NULL;
  244. const struct sdma_firmware_header_v1_0 *hdr;
  245. DRM_DEBUG("\n");
  246. switch (adev->asic_type) {
  247. case CHIP_TONGA:
  248. chip_name = "tonga";
  249. break;
  250. case CHIP_FIJI:
  251. chip_name = "fiji";
  252. break;
  253. case CHIP_POLARIS11:
  254. chip_name = "polaris11";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS12:
  260. chip_name = "polaris12";
  261. break;
  262. case CHIP_CARRIZO:
  263. chip_name = "carrizo";
  264. break;
  265. case CHIP_STONEY:
  266. chip_name = "stoney";
  267. break;
  268. default: BUG();
  269. }
  270. for (i = 0; i < adev->sdma.num_instances; i++) {
  271. if (i == 0)
  272. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  273. else
  274. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  275. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  276. if (err)
  277. goto out;
  278. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  279. if (err)
  280. goto out;
  281. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  282. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  283. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  284. if (adev->sdma.instance[i].feature_version >= 20)
  285. adev->sdma.instance[i].burst_nop = true;
  286. if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
  287. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  288. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  289. info->fw = adev->sdma.instance[i].fw;
  290. header = (const struct common_firmware_header *)info->fw->data;
  291. adev->firmware.fw_size +=
  292. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  293. }
  294. }
  295. out:
  296. if (err) {
  297. pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
  298. for (i = 0; i < adev->sdma.num_instances; i++) {
  299. release_firmware(adev->sdma.instance[i].fw);
  300. adev->sdma.instance[i].fw = NULL;
  301. }
  302. }
  303. return err;
  304. }
  305. /**
  306. * sdma_v3_0_ring_get_rptr - get the current read pointer
  307. *
  308. * @ring: amdgpu ring pointer
  309. *
  310. * Get the current rptr from the hardware (VI+).
  311. */
  312. static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  313. {
  314. /* XXX check if swapping is necessary on BE */
  315. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  316. }
  317. /**
  318. * sdma_v3_0_ring_get_wptr - get the current write pointer
  319. *
  320. * @ring: amdgpu ring pointer
  321. *
  322. * Get the current wptr from the hardware (VI+).
  323. */
  324. static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  325. {
  326. struct amdgpu_device *adev = ring->adev;
  327. u32 wptr;
  328. if (ring->use_doorbell) {
  329. /* XXX check if swapping is necessary on BE */
  330. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  331. } else {
  332. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  333. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  334. }
  335. return wptr;
  336. }
  337. /**
  338. * sdma_v3_0_ring_set_wptr - commit the write pointer
  339. *
  340. * @ring: amdgpu ring pointer
  341. *
  342. * Write the wptr back to the hardware (VI+).
  343. */
  344. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  345. {
  346. struct amdgpu_device *adev = ring->adev;
  347. if (ring->use_doorbell) {
  348. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  349. /* XXX check if swapping is necessary on BE */
  350. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  351. WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
  352. } else {
  353. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  354. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
  355. }
  356. }
  357. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  358. {
  359. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  360. int i;
  361. for (i = 0; i < count; i++)
  362. if (sdma && sdma->burst_nop && (i == 0))
  363. amdgpu_ring_write(ring, ring->funcs->nop |
  364. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  365. else
  366. amdgpu_ring_write(ring, ring->funcs->nop);
  367. }
  368. /**
  369. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  370. *
  371. * @ring: amdgpu ring pointer
  372. * @ib: IB object to schedule
  373. *
  374. * Schedule an IB in the DMA ring (VI).
  375. */
  376. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  377. struct amdgpu_ib *ib,
  378. unsigned vm_id, bool ctx_switch)
  379. {
  380. u32 vmid = vm_id & 0xf;
  381. /* IB packet must end on a 8 DW boundary */
  382. sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  383. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  384. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  385. /* base must be 32 byte aligned */
  386. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  387. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  388. amdgpu_ring_write(ring, ib->length_dw);
  389. amdgpu_ring_write(ring, 0);
  390. amdgpu_ring_write(ring, 0);
  391. }
  392. /**
  393. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  394. *
  395. * @ring: amdgpu ring pointer
  396. *
  397. * Emit an hdp flush packet on the requested DMA ring.
  398. */
  399. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  400. {
  401. u32 ref_and_mask = 0;
  402. if (ring == &ring->adev->sdma.instance[0].ring)
  403. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  404. else
  405. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  406. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  407. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  408. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  409. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  410. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  411. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  412. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  413. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  414. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  415. }
  416. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  417. {
  418. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  419. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  420. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  421. amdgpu_ring_write(ring, 1);
  422. }
  423. /**
  424. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  425. *
  426. * @ring: amdgpu ring pointer
  427. * @fence: amdgpu fence object
  428. *
  429. * Add a DMA fence packet to the ring to write
  430. * the fence seq number and DMA trap packet to generate
  431. * an interrupt if needed (VI).
  432. */
  433. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  434. unsigned flags)
  435. {
  436. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  437. /* write the fence */
  438. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  439. amdgpu_ring_write(ring, lower_32_bits(addr));
  440. amdgpu_ring_write(ring, upper_32_bits(addr));
  441. amdgpu_ring_write(ring, lower_32_bits(seq));
  442. /* optionally write high bits as well */
  443. if (write64bit) {
  444. addr += 4;
  445. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  446. amdgpu_ring_write(ring, lower_32_bits(addr));
  447. amdgpu_ring_write(ring, upper_32_bits(addr));
  448. amdgpu_ring_write(ring, upper_32_bits(seq));
  449. }
  450. /* generate an interrupt */
  451. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  452. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  453. }
  454. /**
  455. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  456. *
  457. * @adev: amdgpu_device pointer
  458. *
  459. * Stop the gfx async dma ring buffers (VI).
  460. */
  461. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  462. {
  463. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  464. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  465. u32 rb_cntl, ib_cntl;
  466. int i;
  467. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  468. (adev->mman.buffer_funcs_ring == sdma1))
  469. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  470. for (i = 0; i < adev->sdma.num_instances; i++) {
  471. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  472. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  473. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  474. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  475. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  476. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  477. }
  478. sdma0->ready = false;
  479. sdma1->ready = false;
  480. }
  481. /**
  482. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  483. *
  484. * @adev: amdgpu_device pointer
  485. *
  486. * Stop the compute async dma queues (VI).
  487. */
  488. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  489. {
  490. /* XXX todo */
  491. }
  492. /**
  493. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  494. *
  495. * @adev: amdgpu_device pointer
  496. * @enable: enable/disable the DMA MEs context switch.
  497. *
  498. * Halt or unhalt the async dma engines context switch (VI).
  499. */
  500. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  501. {
  502. u32 f32_cntl, phase_quantum = 0;
  503. int i;
  504. if (amdgpu_sdma_phase_quantum) {
  505. unsigned value = amdgpu_sdma_phase_quantum;
  506. unsigned unit = 0;
  507. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  508. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  509. value = (value + 1) >> 1;
  510. unit++;
  511. }
  512. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  513. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  514. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  515. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  516. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  517. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  518. WARN_ONCE(1,
  519. "clamping sdma_phase_quantum to %uK clock cycles\n",
  520. value << unit);
  521. }
  522. phase_quantum =
  523. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  524. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  525. }
  526. for (i = 0; i < adev->sdma.num_instances; i++) {
  527. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  528. if (enable) {
  529. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  530. AUTO_CTXSW_ENABLE, 1);
  531. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  532. ATC_L1_ENABLE, 1);
  533. if (amdgpu_sdma_phase_quantum) {
  534. WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
  535. phase_quantum);
  536. WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
  537. phase_quantum);
  538. }
  539. } else {
  540. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  541. AUTO_CTXSW_ENABLE, 0);
  542. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  543. ATC_L1_ENABLE, 1);
  544. }
  545. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  546. }
  547. }
  548. /**
  549. * sdma_v3_0_enable - stop the async dma engines
  550. *
  551. * @adev: amdgpu_device pointer
  552. * @enable: enable/disable the DMA MEs.
  553. *
  554. * Halt or unhalt the async dma engines (VI).
  555. */
  556. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  557. {
  558. u32 f32_cntl;
  559. int i;
  560. if (!enable) {
  561. sdma_v3_0_gfx_stop(adev);
  562. sdma_v3_0_rlc_stop(adev);
  563. }
  564. for (i = 0; i < adev->sdma.num_instances; i++) {
  565. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  566. if (enable)
  567. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  568. else
  569. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  570. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  571. }
  572. }
  573. /**
  574. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  575. *
  576. * @adev: amdgpu_device pointer
  577. *
  578. * Set up the gfx DMA ring buffers and enable them (VI).
  579. * Returns 0 for success, error for failure.
  580. */
  581. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  582. {
  583. struct amdgpu_ring *ring;
  584. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  585. u32 rb_bufsz;
  586. u32 wb_offset;
  587. u32 doorbell;
  588. u64 wptr_gpu_addr;
  589. int i, j, r;
  590. for (i = 0; i < adev->sdma.num_instances; i++) {
  591. ring = &adev->sdma.instance[i].ring;
  592. amdgpu_ring_clear_ring(ring);
  593. wb_offset = (ring->rptr_offs * 4);
  594. mutex_lock(&adev->srbm_mutex);
  595. for (j = 0; j < 16; j++) {
  596. vi_srbm_select(adev, 0, 0, 0, j);
  597. /* SDMA GFX */
  598. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  599. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  600. }
  601. vi_srbm_select(adev, 0, 0, 0, 0);
  602. mutex_unlock(&adev->srbm_mutex);
  603. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  604. adev->gfx.config.gb_addr_config & 0x70);
  605. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  606. /* Set ring buffer size in dwords */
  607. rb_bufsz = order_base_2(ring->ring_size / 4);
  608. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  609. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  610. #ifdef __BIG_ENDIAN
  611. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  612. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  613. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  614. #endif
  615. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  616. /* Initialize the ring buffer's read and write pointers */
  617. ring->wptr = 0;
  618. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  619. sdma_v3_0_ring_set_wptr(ring);
  620. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  621. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  622. /* set the wb address whether it's enabled or not */
  623. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  624. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  625. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  626. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  627. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  628. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  629. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  630. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  631. if (ring->use_doorbell) {
  632. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  633. OFFSET, ring->doorbell_index);
  634. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  635. } else {
  636. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  637. }
  638. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  639. /* setup the wptr shadow polling */
  640. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  641. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
  642. lower_32_bits(wptr_gpu_addr));
  643. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
  644. upper_32_bits(wptr_gpu_addr));
  645. wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
  646. if (amdgpu_sriov_vf(adev))
  647. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
  648. else
  649. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
  650. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
  651. /* enable DMA RB */
  652. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  653. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  654. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  655. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  656. #ifdef __BIG_ENDIAN
  657. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  658. #endif
  659. /* enable DMA IBs */
  660. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  661. ring->ready = true;
  662. }
  663. /* unhalt the MEs */
  664. sdma_v3_0_enable(adev, true);
  665. /* enable sdma ring preemption */
  666. sdma_v3_0_ctx_switch_enable(adev, true);
  667. for (i = 0; i < adev->sdma.num_instances; i++) {
  668. ring = &adev->sdma.instance[i].ring;
  669. r = amdgpu_ring_test_ring(ring);
  670. if (r) {
  671. ring->ready = false;
  672. return r;
  673. }
  674. if (adev->mman.buffer_funcs_ring == ring)
  675. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  676. }
  677. return 0;
  678. }
  679. /**
  680. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  681. *
  682. * @adev: amdgpu_device pointer
  683. *
  684. * Set up the compute DMA queues and enable them (VI).
  685. * Returns 0 for success, error for failure.
  686. */
  687. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  688. {
  689. /* XXX todo */
  690. return 0;
  691. }
  692. /**
  693. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  694. *
  695. * @adev: amdgpu_device pointer
  696. *
  697. * Loads the sDMA0/1 ucode.
  698. * Returns 0 for success, -EINVAL if the ucode is not available.
  699. */
  700. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  701. {
  702. const struct sdma_firmware_header_v1_0 *hdr;
  703. const __le32 *fw_data;
  704. u32 fw_size;
  705. int i, j;
  706. /* halt the MEs */
  707. sdma_v3_0_enable(adev, false);
  708. for (i = 0; i < adev->sdma.num_instances; i++) {
  709. if (!adev->sdma.instance[i].fw)
  710. return -EINVAL;
  711. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  712. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  713. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  714. fw_data = (const __le32 *)
  715. (adev->sdma.instance[i].fw->data +
  716. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  717. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  718. for (j = 0; j < fw_size; j++)
  719. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  720. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  721. }
  722. return 0;
  723. }
  724. /**
  725. * sdma_v3_0_start - setup and start the async dma engines
  726. *
  727. * @adev: amdgpu_device pointer
  728. *
  729. * Set up the DMA engines and enable them (VI).
  730. * Returns 0 for success, error for failure.
  731. */
  732. static int sdma_v3_0_start(struct amdgpu_device *adev)
  733. {
  734. int r;
  735. if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
  736. r = sdma_v3_0_load_microcode(adev);
  737. if (r)
  738. return r;
  739. }
  740. /* disable sdma engine before programing it */
  741. sdma_v3_0_ctx_switch_enable(adev, false);
  742. sdma_v3_0_enable(adev, false);
  743. /* start the gfx rings and rlc compute queues */
  744. r = sdma_v3_0_gfx_resume(adev);
  745. if (r)
  746. return r;
  747. r = sdma_v3_0_rlc_resume(adev);
  748. if (r)
  749. return r;
  750. return 0;
  751. }
  752. /**
  753. * sdma_v3_0_ring_test_ring - simple async dma engine test
  754. *
  755. * @ring: amdgpu_ring structure holding ring information
  756. *
  757. * Test the DMA engine by writing using it to write an
  758. * value to memory. (VI).
  759. * Returns 0 for success, error for failure.
  760. */
  761. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  762. {
  763. struct amdgpu_device *adev = ring->adev;
  764. unsigned i;
  765. unsigned index;
  766. int r;
  767. u32 tmp;
  768. u64 gpu_addr;
  769. r = amdgpu_wb_get(adev, &index);
  770. if (r) {
  771. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  772. return r;
  773. }
  774. gpu_addr = adev->wb.gpu_addr + (index * 4);
  775. tmp = 0xCAFEDEAD;
  776. adev->wb.wb[index] = cpu_to_le32(tmp);
  777. r = amdgpu_ring_alloc(ring, 5);
  778. if (r) {
  779. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  780. amdgpu_wb_free(adev, index);
  781. return r;
  782. }
  783. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  784. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  785. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  786. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  787. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  788. amdgpu_ring_write(ring, 0xDEADBEEF);
  789. amdgpu_ring_commit(ring);
  790. for (i = 0; i < adev->usec_timeout; i++) {
  791. tmp = le32_to_cpu(adev->wb.wb[index]);
  792. if (tmp == 0xDEADBEEF)
  793. break;
  794. DRM_UDELAY(1);
  795. }
  796. if (i < adev->usec_timeout) {
  797. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  798. } else {
  799. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  800. ring->idx, tmp);
  801. r = -EINVAL;
  802. }
  803. amdgpu_wb_free(adev, index);
  804. return r;
  805. }
  806. /**
  807. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  808. *
  809. * @ring: amdgpu_ring structure holding ring information
  810. *
  811. * Test a simple IB in the DMA ring (VI).
  812. * Returns 0 on success, error on failure.
  813. */
  814. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  815. {
  816. struct amdgpu_device *adev = ring->adev;
  817. struct amdgpu_ib ib;
  818. struct dma_fence *f = NULL;
  819. unsigned index;
  820. u32 tmp = 0;
  821. u64 gpu_addr;
  822. long r;
  823. r = amdgpu_wb_get(adev, &index);
  824. if (r) {
  825. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  826. return r;
  827. }
  828. gpu_addr = adev->wb.gpu_addr + (index * 4);
  829. tmp = 0xCAFEDEAD;
  830. adev->wb.wb[index] = cpu_to_le32(tmp);
  831. memset(&ib, 0, sizeof(ib));
  832. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  833. if (r) {
  834. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  835. goto err0;
  836. }
  837. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  838. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  839. ib.ptr[1] = lower_32_bits(gpu_addr);
  840. ib.ptr[2] = upper_32_bits(gpu_addr);
  841. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  842. ib.ptr[4] = 0xDEADBEEF;
  843. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  844. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  845. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  846. ib.length_dw = 8;
  847. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  848. if (r)
  849. goto err1;
  850. r = dma_fence_wait_timeout(f, false, timeout);
  851. if (r == 0) {
  852. DRM_ERROR("amdgpu: IB test timed out\n");
  853. r = -ETIMEDOUT;
  854. goto err1;
  855. } else if (r < 0) {
  856. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  857. goto err1;
  858. }
  859. tmp = le32_to_cpu(adev->wb.wb[index]);
  860. if (tmp == 0xDEADBEEF) {
  861. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  862. r = 0;
  863. } else {
  864. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  865. r = -EINVAL;
  866. }
  867. err1:
  868. amdgpu_ib_free(adev, &ib, NULL);
  869. dma_fence_put(f);
  870. err0:
  871. amdgpu_wb_free(adev, index);
  872. return r;
  873. }
  874. /**
  875. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  876. *
  877. * @ib: indirect buffer to fill with commands
  878. * @pe: addr of the page entry
  879. * @src: src addr to copy from
  880. * @count: number of page entries to update
  881. *
  882. * Update PTEs by copying them from the GART using sDMA (CIK).
  883. */
  884. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  885. uint64_t pe, uint64_t src,
  886. unsigned count)
  887. {
  888. unsigned bytes = count * 8;
  889. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  890. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  891. ib->ptr[ib->length_dw++] = bytes;
  892. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  893. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  894. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  895. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  896. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  897. }
  898. /**
  899. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  900. *
  901. * @ib: indirect buffer to fill with commands
  902. * @pe: addr of the page entry
  903. * @value: dst addr to write into pe
  904. * @count: number of page entries to update
  905. * @incr: increase next addr by incr bytes
  906. *
  907. * Update PTEs by writing them manually using sDMA (CIK).
  908. */
  909. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  910. uint64_t value, unsigned count,
  911. uint32_t incr)
  912. {
  913. unsigned ndw = count * 2;
  914. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  915. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  916. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  917. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  918. ib->ptr[ib->length_dw++] = ndw;
  919. for (; ndw > 0; ndw -= 2) {
  920. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  921. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  922. value += incr;
  923. }
  924. }
  925. /**
  926. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  927. *
  928. * @ib: indirect buffer to fill with commands
  929. * @pe: addr of the page entry
  930. * @addr: dst addr to write into pe
  931. * @count: number of page entries to update
  932. * @incr: increase next addr by incr bytes
  933. * @flags: access flags
  934. *
  935. * Update the page tables using sDMA (CIK).
  936. */
  937. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  938. uint64_t addr, unsigned count,
  939. uint32_t incr, uint64_t flags)
  940. {
  941. /* for physically contiguous pages (vram) */
  942. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  943. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  944. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  945. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  946. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  947. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  948. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  949. ib->ptr[ib->length_dw++] = incr; /* increment size */
  950. ib->ptr[ib->length_dw++] = 0;
  951. ib->ptr[ib->length_dw++] = count; /* number of entries */
  952. }
  953. /**
  954. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  955. *
  956. * @ib: indirect buffer to fill with padding
  957. *
  958. */
  959. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  960. {
  961. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  962. u32 pad_count;
  963. int i;
  964. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  965. for (i = 0; i < pad_count; i++)
  966. if (sdma && sdma->burst_nop && (i == 0))
  967. ib->ptr[ib->length_dw++] =
  968. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  969. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  970. else
  971. ib->ptr[ib->length_dw++] =
  972. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  973. }
  974. /**
  975. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  976. *
  977. * @ring: amdgpu_ring pointer
  978. *
  979. * Make sure all previous operations are completed (CIK).
  980. */
  981. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  982. {
  983. uint32_t seq = ring->fence_drv.sync_seq;
  984. uint64_t addr = ring->fence_drv.gpu_addr;
  985. /* wait for idle */
  986. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  987. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  988. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  989. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  990. amdgpu_ring_write(ring, addr & 0xfffffffc);
  991. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  992. amdgpu_ring_write(ring, seq); /* reference */
  993. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  994. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  995. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  996. }
  997. /**
  998. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  999. *
  1000. * @ring: amdgpu_ring pointer
  1001. * @vm: amdgpu_vm pointer
  1002. *
  1003. * Update the page table base and flush the VM TLB
  1004. * using sDMA (VI).
  1005. */
  1006. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1007. unsigned vm_id, uint64_t pd_addr)
  1008. {
  1009. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1010. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1011. if (vm_id < 8) {
  1012. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1013. } else {
  1014. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1015. }
  1016. amdgpu_ring_write(ring, pd_addr >> 12);
  1017. /* flush TLB */
  1018. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1019. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1020. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1021. amdgpu_ring_write(ring, 1 << vm_id);
  1022. /* wait for flush */
  1023. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1024. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1025. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1026. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1027. amdgpu_ring_write(ring, 0);
  1028. amdgpu_ring_write(ring, 0); /* reference */
  1029. amdgpu_ring_write(ring, 0); /* mask */
  1030. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1031. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1032. }
  1033. static int sdma_v3_0_early_init(void *handle)
  1034. {
  1035. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1036. switch (adev->asic_type) {
  1037. case CHIP_STONEY:
  1038. adev->sdma.num_instances = 1;
  1039. break;
  1040. default:
  1041. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1042. break;
  1043. }
  1044. sdma_v3_0_set_ring_funcs(adev);
  1045. sdma_v3_0_set_buffer_funcs(adev);
  1046. sdma_v3_0_set_vm_pte_funcs(adev);
  1047. sdma_v3_0_set_irq_funcs(adev);
  1048. return 0;
  1049. }
  1050. static int sdma_v3_0_sw_init(void *handle)
  1051. {
  1052. struct amdgpu_ring *ring;
  1053. int r, i;
  1054. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1055. /* SDMA trap event */
  1056. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
  1057. &adev->sdma.trap_irq);
  1058. if (r)
  1059. return r;
  1060. /* SDMA Privileged inst */
  1061. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
  1062. &adev->sdma.illegal_inst_irq);
  1063. if (r)
  1064. return r;
  1065. /* SDMA Privileged inst */
  1066. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
  1067. &adev->sdma.illegal_inst_irq);
  1068. if (r)
  1069. return r;
  1070. r = sdma_v3_0_init_microcode(adev);
  1071. if (r) {
  1072. DRM_ERROR("Failed to load sdma firmware!\n");
  1073. return r;
  1074. }
  1075. for (i = 0; i < adev->sdma.num_instances; i++) {
  1076. ring = &adev->sdma.instance[i].ring;
  1077. ring->ring_obj = NULL;
  1078. ring->use_doorbell = true;
  1079. ring->doorbell_index = (i == 0) ?
  1080. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1081. sprintf(ring->name, "sdma%d", i);
  1082. r = amdgpu_ring_init(adev, ring, 1024,
  1083. &adev->sdma.trap_irq,
  1084. (i == 0) ?
  1085. AMDGPU_SDMA_IRQ_TRAP0 :
  1086. AMDGPU_SDMA_IRQ_TRAP1);
  1087. if (r)
  1088. return r;
  1089. }
  1090. return r;
  1091. }
  1092. static int sdma_v3_0_sw_fini(void *handle)
  1093. {
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. int i;
  1096. for (i = 0; i < adev->sdma.num_instances; i++)
  1097. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1098. sdma_v3_0_free_microcode(adev);
  1099. return 0;
  1100. }
  1101. static int sdma_v3_0_hw_init(void *handle)
  1102. {
  1103. int r;
  1104. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1105. sdma_v3_0_init_golden_registers(adev);
  1106. r = sdma_v3_0_start(adev);
  1107. if (r)
  1108. return r;
  1109. return r;
  1110. }
  1111. static int sdma_v3_0_hw_fini(void *handle)
  1112. {
  1113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1114. sdma_v3_0_ctx_switch_enable(adev, false);
  1115. sdma_v3_0_enable(adev, false);
  1116. return 0;
  1117. }
  1118. static int sdma_v3_0_suspend(void *handle)
  1119. {
  1120. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1121. return sdma_v3_0_hw_fini(adev);
  1122. }
  1123. static int sdma_v3_0_resume(void *handle)
  1124. {
  1125. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1126. return sdma_v3_0_hw_init(adev);
  1127. }
  1128. static bool sdma_v3_0_is_idle(void *handle)
  1129. {
  1130. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1131. u32 tmp = RREG32(mmSRBM_STATUS2);
  1132. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1133. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1134. return false;
  1135. return true;
  1136. }
  1137. static int sdma_v3_0_wait_for_idle(void *handle)
  1138. {
  1139. unsigned i;
  1140. u32 tmp;
  1141. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1142. for (i = 0; i < adev->usec_timeout; i++) {
  1143. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1144. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1145. if (!tmp)
  1146. return 0;
  1147. udelay(1);
  1148. }
  1149. return -ETIMEDOUT;
  1150. }
  1151. static bool sdma_v3_0_check_soft_reset(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. u32 srbm_soft_reset = 0;
  1155. u32 tmp = RREG32(mmSRBM_STATUS2);
  1156. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1157. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1158. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1159. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1160. }
  1161. if (srbm_soft_reset) {
  1162. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1163. return true;
  1164. } else {
  1165. adev->sdma.srbm_soft_reset = 0;
  1166. return false;
  1167. }
  1168. }
  1169. static int sdma_v3_0_pre_soft_reset(void *handle)
  1170. {
  1171. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1172. u32 srbm_soft_reset = 0;
  1173. if (!adev->sdma.srbm_soft_reset)
  1174. return 0;
  1175. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1176. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1177. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1178. sdma_v3_0_ctx_switch_enable(adev, false);
  1179. sdma_v3_0_enable(adev, false);
  1180. }
  1181. return 0;
  1182. }
  1183. static int sdma_v3_0_post_soft_reset(void *handle)
  1184. {
  1185. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1186. u32 srbm_soft_reset = 0;
  1187. if (!adev->sdma.srbm_soft_reset)
  1188. return 0;
  1189. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1190. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1191. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1192. sdma_v3_0_gfx_resume(adev);
  1193. sdma_v3_0_rlc_resume(adev);
  1194. }
  1195. return 0;
  1196. }
  1197. static int sdma_v3_0_soft_reset(void *handle)
  1198. {
  1199. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1200. u32 srbm_soft_reset = 0;
  1201. u32 tmp;
  1202. if (!adev->sdma.srbm_soft_reset)
  1203. return 0;
  1204. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1205. if (srbm_soft_reset) {
  1206. tmp = RREG32(mmSRBM_SOFT_RESET);
  1207. tmp |= srbm_soft_reset;
  1208. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1209. WREG32(mmSRBM_SOFT_RESET, tmp);
  1210. tmp = RREG32(mmSRBM_SOFT_RESET);
  1211. udelay(50);
  1212. tmp &= ~srbm_soft_reset;
  1213. WREG32(mmSRBM_SOFT_RESET, tmp);
  1214. tmp = RREG32(mmSRBM_SOFT_RESET);
  1215. /* Wait a little for things to settle down */
  1216. udelay(50);
  1217. }
  1218. return 0;
  1219. }
  1220. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1221. struct amdgpu_irq_src *source,
  1222. unsigned type,
  1223. enum amdgpu_interrupt_state state)
  1224. {
  1225. u32 sdma_cntl;
  1226. switch (type) {
  1227. case AMDGPU_SDMA_IRQ_TRAP0:
  1228. switch (state) {
  1229. case AMDGPU_IRQ_STATE_DISABLE:
  1230. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1231. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1232. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1233. break;
  1234. case AMDGPU_IRQ_STATE_ENABLE:
  1235. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1236. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1237. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1238. break;
  1239. default:
  1240. break;
  1241. }
  1242. break;
  1243. case AMDGPU_SDMA_IRQ_TRAP1:
  1244. switch (state) {
  1245. case AMDGPU_IRQ_STATE_DISABLE:
  1246. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1247. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1248. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1249. break;
  1250. case AMDGPU_IRQ_STATE_ENABLE:
  1251. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1252. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1253. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1254. break;
  1255. default:
  1256. break;
  1257. }
  1258. break;
  1259. default:
  1260. break;
  1261. }
  1262. return 0;
  1263. }
  1264. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1265. struct amdgpu_irq_src *source,
  1266. struct amdgpu_iv_entry *entry)
  1267. {
  1268. u8 instance_id, queue_id;
  1269. instance_id = (entry->ring_id & 0x3) >> 0;
  1270. queue_id = (entry->ring_id & 0xc) >> 2;
  1271. DRM_DEBUG("IH: SDMA trap\n");
  1272. switch (instance_id) {
  1273. case 0:
  1274. switch (queue_id) {
  1275. case 0:
  1276. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1277. break;
  1278. case 1:
  1279. /* XXX compute */
  1280. break;
  1281. case 2:
  1282. /* XXX compute */
  1283. break;
  1284. }
  1285. break;
  1286. case 1:
  1287. switch (queue_id) {
  1288. case 0:
  1289. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1290. break;
  1291. case 1:
  1292. /* XXX compute */
  1293. break;
  1294. case 2:
  1295. /* XXX compute */
  1296. break;
  1297. }
  1298. break;
  1299. }
  1300. return 0;
  1301. }
  1302. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1303. struct amdgpu_irq_src *source,
  1304. struct amdgpu_iv_entry *entry)
  1305. {
  1306. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1307. schedule_work(&adev->reset_work);
  1308. return 0;
  1309. }
  1310. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1311. struct amdgpu_device *adev,
  1312. bool enable)
  1313. {
  1314. uint32_t temp, data;
  1315. int i;
  1316. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1317. for (i = 0; i < adev->sdma.num_instances; i++) {
  1318. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1319. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1320. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1321. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1322. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1323. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1324. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1325. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1326. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1327. if (data != temp)
  1328. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1329. }
  1330. } else {
  1331. for (i = 0; i < adev->sdma.num_instances; i++) {
  1332. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1333. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1334. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1335. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1336. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1337. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1338. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1339. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1340. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1341. if (data != temp)
  1342. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1343. }
  1344. }
  1345. }
  1346. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1347. struct amdgpu_device *adev,
  1348. bool enable)
  1349. {
  1350. uint32_t temp, data;
  1351. int i;
  1352. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1353. for (i = 0; i < adev->sdma.num_instances; i++) {
  1354. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1355. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1356. if (temp != data)
  1357. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1358. }
  1359. } else {
  1360. for (i = 0; i < adev->sdma.num_instances; i++) {
  1361. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1362. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1363. if (temp != data)
  1364. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1365. }
  1366. }
  1367. }
  1368. static int sdma_v3_0_set_clockgating_state(void *handle,
  1369. enum amd_clockgating_state state)
  1370. {
  1371. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1372. if (amdgpu_sriov_vf(adev))
  1373. return 0;
  1374. switch (adev->asic_type) {
  1375. case CHIP_FIJI:
  1376. case CHIP_CARRIZO:
  1377. case CHIP_STONEY:
  1378. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1379. state == AMD_CG_STATE_GATE);
  1380. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1381. state == AMD_CG_STATE_GATE);
  1382. break;
  1383. default:
  1384. break;
  1385. }
  1386. return 0;
  1387. }
  1388. static int sdma_v3_0_set_powergating_state(void *handle,
  1389. enum amd_powergating_state state)
  1390. {
  1391. return 0;
  1392. }
  1393. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1394. {
  1395. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1396. int data;
  1397. if (amdgpu_sriov_vf(adev))
  1398. *flags = 0;
  1399. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1400. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1401. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1402. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1403. /* AMD_CG_SUPPORT_SDMA_LS */
  1404. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1405. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1406. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1407. }
  1408. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1409. .name = "sdma_v3_0",
  1410. .early_init = sdma_v3_0_early_init,
  1411. .late_init = NULL,
  1412. .sw_init = sdma_v3_0_sw_init,
  1413. .sw_fini = sdma_v3_0_sw_fini,
  1414. .hw_init = sdma_v3_0_hw_init,
  1415. .hw_fini = sdma_v3_0_hw_fini,
  1416. .suspend = sdma_v3_0_suspend,
  1417. .resume = sdma_v3_0_resume,
  1418. .is_idle = sdma_v3_0_is_idle,
  1419. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1420. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1421. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1422. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1423. .soft_reset = sdma_v3_0_soft_reset,
  1424. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1425. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1426. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1427. };
  1428. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1429. .type = AMDGPU_RING_TYPE_SDMA,
  1430. .align_mask = 0xf,
  1431. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1432. .support_64bit_ptrs = false,
  1433. .get_rptr = sdma_v3_0_ring_get_rptr,
  1434. .get_wptr = sdma_v3_0_ring_get_wptr,
  1435. .set_wptr = sdma_v3_0_ring_set_wptr,
  1436. .emit_frame_size =
  1437. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1438. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1439. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1440. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1441. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1442. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1443. .emit_ib = sdma_v3_0_ring_emit_ib,
  1444. .emit_fence = sdma_v3_0_ring_emit_fence,
  1445. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1446. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1447. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1448. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1449. .test_ring = sdma_v3_0_ring_test_ring,
  1450. .test_ib = sdma_v3_0_ring_test_ib,
  1451. .insert_nop = sdma_v3_0_ring_insert_nop,
  1452. .pad_ib = sdma_v3_0_ring_pad_ib,
  1453. };
  1454. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1455. {
  1456. int i;
  1457. for (i = 0; i < adev->sdma.num_instances; i++)
  1458. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1459. }
  1460. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1461. .set = sdma_v3_0_set_trap_irq_state,
  1462. .process = sdma_v3_0_process_trap_irq,
  1463. };
  1464. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1465. .process = sdma_v3_0_process_illegal_inst_irq,
  1466. };
  1467. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1468. {
  1469. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1470. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1471. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1472. }
  1473. /**
  1474. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1475. *
  1476. * @ring: amdgpu_ring structure holding ring information
  1477. * @src_offset: src GPU address
  1478. * @dst_offset: dst GPU address
  1479. * @byte_count: number of bytes to xfer
  1480. *
  1481. * Copy GPU buffers using the DMA engine (VI).
  1482. * Used by the amdgpu ttm implementation to move pages if
  1483. * registered as the asic copy callback.
  1484. */
  1485. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1486. uint64_t src_offset,
  1487. uint64_t dst_offset,
  1488. uint32_t byte_count)
  1489. {
  1490. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1491. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1492. ib->ptr[ib->length_dw++] = byte_count;
  1493. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1494. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1495. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1496. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1497. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1498. }
  1499. /**
  1500. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1501. *
  1502. * @ring: amdgpu_ring structure holding ring information
  1503. * @src_data: value to write to buffer
  1504. * @dst_offset: dst GPU address
  1505. * @byte_count: number of bytes to xfer
  1506. *
  1507. * Fill GPU buffers using the DMA engine (VI).
  1508. */
  1509. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1510. uint32_t src_data,
  1511. uint64_t dst_offset,
  1512. uint32_t byte_count)
  1513. {
  1514. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1515. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1516. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1517. ib->ptr[ib->length_dw++] = src_data;
  1518. ib->ptr[ib->length_dw++] = byte_count;
  1519. }
  1520. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1521. .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1522. .copy_num_dw = 7,
  1523. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1524. .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1525. .fill_num_dw = 5,
  1526. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1527. };
  1528. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1529. {
  1530. if (adev->mman.buffer_funcs == NULL) {
  1531. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1532. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1533. }
  1534. }
  1535. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1536. .copy_pte_num_dw = 7,
  1537. .copy_pte = sdma_v3_0_vm_copy_pte,
  1538. .write_pte = sdma_v3_0_vm_write_pte,
  1539. /* not 0x3fffff due to HW limitation */
  1540. .set_max_nums_pte_pde = 0x3fffe0 >> 3,
  1541. .set_pte_pde_num_dw = 10,
  1542. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1543. };
  1544. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1545. {
  1546. unsigned i;
  1547. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1548. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1549. for (i = 0; i < adev->sdma.num_instances; i++)
  1550. adev->vm_manager.vm_pte_rings[i] =
  1551. &adev->sdma.instance[i].ring;
  1552. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1553. }
  1554. }
  1555. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1556. {
  1557. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1558. .major = 3,
  1559. .minor = 0,
  1560. .rev = 0,
  1561. .funcs = &sdma_v3_0_ip_funcs,
  1562. };
  1563. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1564. {
  1565. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1566. .major = 3,
  1567. .minor = 1,
  1568. .rev = 0,
  1569. .funcs = &sdma_v3_0_ip_funcs,
  1570. };