checkpoint.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. if (!end_io)
  30. f2fs_flush_merged_writes(sbi);
  31. }
  32. /*
  33. * We guarantee no failure on the returned page.
  34. */
  35. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  36. {
  37. struct address_space *mapping = META_MAPPING(sbi);
  38. struct page *page = NULL;
  39. repeat:
  40. page = f2fs_grab_cache_page(mapping, index, false);
  41. if (!page) {
  42. cond_resched();
  43. goto repeat;
  44. }
  45. f2fs_wait_on_page_writeback(page, META, true);
  46. if (!PageUptodate(page))
  47. SetPageUptodate(page);
  48. return page;
  49. }
  50. /*
  51. * We guarantee no failure on the returned page.
  52. */
  53. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  54. bool is_meta)
  55. {
  56. struct address_space *mapping = META_MAPPING(sbi);
  57. struct page *page;
  58. struct f2fs_io_info fio = {
  59. .sbi = sbi,
  60. .type = META,
  61. .op = REQ_OP_READ,
  62. .op_flags = REQ_META | REQ_PRIO,
  63. .old_blkaddr = index,
  64. .new_blkaddr = index,
  65. .encrypted_page = NULL,
  66. };
  67. if (unlikely(!is_meta))
  68. fio.op_flags &= ~REQ_META;
  69. repeat:
  70. page = f2fs_grab_cache_page(mapping, index, false);
  71. if (!page) {
  72. cond_resched();
  73. goto repeat;
  74. }
  75. if (PageUptodate(page))
  76. goto out;
  77. fio.page = page;
  78. if (f2fs_submit_page_bio(&fio)) {
  79. f2fs_put_page(page, 1);
  80. goto repeat;
  81. }
  82. lock_page(page);
  83. if (unlikely(page->mapping != mapping)) {
  84. f2fs_put_page(page, 1);
  85. goto repeat;
  86. }
  87. /*
  88. * if there is any IO error when accessing device, make our filesystem
  89. * readonly and make sure do not write checkpoint with non-uptodate
  90. * meta page.
  91. */
  92. if (unlikely(!PageUptodate(page)))
  93. f2fs_stop_checkpoint(sbi, false);
  94. out:
  95. return page;
  96. }
  97. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  98. {
  99. return __get_meta_page(sbi, index, true);
  100. }
  101. /* for POR only */
  102. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  103. {
  104. return __get_meta_page(sbi, index, false);
  105. }
  106. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  107. {
  108. switch (type) {
  109. case META_NAT:
  110. break;
  111. case META_SIT:
  112. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  113. return false;
  114. break;
  115. case META_SSA:
  116. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  117. blkaddr < SM_I(sbi)->ssa_blkaddr))
  118. return false;
  119. break;
  120. case META_CP:
  121. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  122. blkaddr < __start_cp_addr(sbi)))
  123. return false;
  124. break;
  125. case META_POR:
  126. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  127. blkaddr < MAIN_BLKADDR(sbi)))
  128. return false;
  129. break;
  130. default:
  131. BUG();
  132. }
  133. return true;
  134. }
  135. /*
  136. * Readahead CP/NAT/SIT/SSA pages
  137. */
  138. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  139. int type, bool sync)
  140. {
  141. struct page *page;
  142. block_t blkno = start;
  143. struct f2fs_io_info fio = {
  144. .sbi = sbi,
  145. .type = META,
  146. .op = REQ_OP_READ,
  147. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  148. .encrypted_page = NULL,
  149. .in_list = false,
  150. };
  151. struct blk_plug plug;
  152. if (unlikely(type == META_POR))
  153. fio.op_flags &= ~REQ_META;
  154. blk_start_plug(&plug);
  155. for (; nrpages-- > 0; blkno++) {
  156. if (!is_valid_blkaddr(sbi, blkno, type))
  157. goto out;
  158. switch (type) {
  159. case META_NAT:
  160. if (unlikely(blkno >=
  161. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  162. blkno = 0;
  163. /* get nat block addr */
  164. fio.new_blkaddr = current_nat_addr(sbi,
  165. blkno * NAT_ENTRY_PER_BLOCK);
  166. break;
  167. case META_SIT:
  168. /* get sit block addr */
  169. fio.new_blkaddr = current_sit_addr(sbi,
  170. blkno * SIT_ENTRY_PER_BLOCK);
  171. break;
  172. case META_SSA:
  173. case META_CP:
  174. case META_POR:
  175. fio.new_blkaddr = blkno;
  176. break;
  177. default:
  178. BUG();
  179. }
  180. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  181. fio.new_blkaddr, false);
  182. if (!page)
  183. continue;
  184. if (PageUptodate(page)) {
  185. f2fs_put_page(page, 1);
  186. continue;
  187. }
  188. fio.page = page;
  189. f2fs_submit_page_bio(&fio);
  190. f2fs_put_page(page, 0);
  191. }
  192. out:
  193. blk_finish_plug(&plug);
  194. return blkno - start;
  195. }
  196. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  197. {
  198. struct page *page;
  199. bool readahead = false;
  200. page = find_get_page(META_MAPPING(sbi), index);
  201. if (!page || !PageUptodate(page))
  202. readahead = true;
  203. f2fs_put_page(page, 0);
  204. if (readahead)
  205. ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  206. }
  207. static int __f2fs_write_meta_page(struct page *page,
  208. struct writeback_control *wbc,
  209. enum iostat_type io_type)
  210. {
  211. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  212. trace_f2fs_writepage(page, META);
  213. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  214. goto redirty_out;
  215. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  216. goto redirty_out;
  217. if (unlikely(f2fs_cp_error(sbi)))
  218. goto redirty_out;
  219. write_meta_page(sbi, page, io_type);
  220. dec_page_count(sbi, F2FS_DIRTY_META);
  221. if (wbc->for_reclaim)
  222. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  223. 0, page->index, META);
  224. unlock_page(page);
  225. if (unlikely(f2fs_cp_error(sbi)))
  226. f2fs_submit_merged_write(sbi, META);
  227. return 0;
  228. redirty_out:
  229. redirty_page_for_writepage(wbc, page);
  230. return AOP_WRITEPAGE_ACTIVATE;
  231. }
  232. static int f2fs_write_meta_page(struct page *page,
  233. struct writeback_control *wbc)
  234. {
  235. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  236. }
  237. static int f2fs_write_meta_pages(struct address_space *mapping,
  238. struct writeback_control *wbc)
  239. {
  240. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  241. long diff, written;
  242. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  243. goto skip_write;
  244. /* collect a number of dirty meta pages and write together */
  245. if (wbc->for_kupdate ||
  246. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  247. goto skip_write;
  248. /* if locked failed, cp will flush dirty pages instead */
  249. if (!mutex_trylock(&sbi->cp_mutex))
  250. goto skip_write;
  251. trace_f2fs_writepages(mapping->host, wbc, META);
  252. diff = nr_pages_to_write(sbi, META, wbc);
  253. written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  254. mutex_unlock(&sbi->cp_mutex);
  255. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  256. return 0;
  257. skip_write:
  258. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  259. trace_f2fs_writepages(mapping->host, wbc, META);
  260. return 0;
  261. }
  262. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  263. long nr_to_write, enum iostat_type io_type)
  264. {
  265. struct address_space *mapping = META_MAPPING(sbi);
  266. pgoff_t index = 0, prev = ULONG_MAX;
  267. struct pagevec pvec;
  268. long nwritten = 0;
  269. int nr_pages;
  270. struct writeback_control wbc = {
  271. .for_reclaim = 0,
  272. };
  273. struct blk_plug plug;
  274. pagevec_init(&pvec);
  275. blk_start_plug(&plug);
  276. while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  277. PAGECACHE_TAG_DIRTY))) {
  278. int i;
  279. for (i = 0; i < nr_pages; i++) {
  280. struct page *page = pvec.pages[i];
  281. if (prev == ULONG_MAX)
  282. prev = page->index - 1;
  283. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  284. pagevec_release(&pvec);
  285. goto stop;
  286. }
  287. lock_page(page);
  288. if (unlikely(page->mapping != mapping)) {
  289. continue_unlock:
  290. unlock_page(page);
  291. continue;
  292. }
  293. if (!PageDirty(page)) {
  294. /* someone wrote it for us */
  295. goto continue_unlock;
  296. }
  297. f2fs_wait_on_page_writeback(page, META, true);
  298. BUG_ON(PageWriteback(page));
  299. if (!clear_page_dirty_for_io(page))
  300. goto continue_unlock;
  301. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  302. unlock_page(page);
  303. break;
  304. }
  305. nwritten++;
  306. prev = page->index;
  307. if (unlikely(nwritten >= nr_to_write))
  308. break;
  309. }
  310. pagevec_release(&pvec);
  311. cond_resched();
  312. }
  313. stop:
  314. if (nwritten)
  315. f2fs_submit_merged_write(sbi, type);
  316. blk_finish_plug(&plug);
  317. return nwritten;
  318. }
  319. static int f2fs_set_meta_page_dirty(struct page *page)
  320. {
  321. trace_f2fs_set_page_dirty(page, META);
  322. if (!PageUptodate(page))
  323. SetPageUptodate(page);
  324. if (!PageDirty(page)) {
  325. f2fs_set_page_dirty_nobuffers(page);
  326. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  327. SetPagePrivate(page);
  328. f2fs_trace_pid(page);
  329. return 1;
  330. }
  331. return 0;
  332. }
  333. const struct address_space_operations f2fs_meta_aops = {
  334. .writepage = f2fs_write_meta_page,
  335. .writepages = f2fs_write_meta_pages,
  336. .set_page_dirty = f2fs_set_meta_page_dirty,
  337. .invalidatepage = f2fs_invalidate_page,
  338. .releasepage = f2fs_release_page,
  339. #ifdef CONFIG_MIGRATION
  340. .migratepage = f2fs_migrate_page,
  341. #endif
  342. };
  343. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
  344. unsigned int devidx, int type)
  345. {
  346. struct inode_management *im = &sbi->im[type];
  347. struct ino_entry *e, *tmp;
  348. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  349. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  350. spin_lock(&im->ino_lock);
  351. e = radix_tree_lookup(&im->ino_root, ino);
  352. if (!e) {
  353. e = tmp;
  354. if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
  355. f2fs_bug_on(sbi, 1);
  356. memset(e, 0, sizeof(struct ino_entry));
  357. e->ino = ino;
  358. list_add_tail(&e->list, &im->ino_list);
  359. if (type != ORPHAN_INO)
  360. im->ino_num++;
  361. }
  362. if (type == FLUSH_INO)
  363. f2fs_set_bit(devidx, (char *)&e->dirty_device);
  364. spin_unlock(&im->ino_lock);
  365. radix_tree_preload_end();
  366. if (e != tmp)
  367. kmem_cache_free(ino_entry_slab, tmp);
  368. }
  369. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  370. {
  371. struct inode_management *im = &sbi->im[type];
  372. struct ino_entry *e;
  373. spin_lock(&im->ino_lock);
  374. e = radix_tree_lookup(&im->ino_root, ino);
  375. if (e) {
  376. list_del(&e->list);
  377. radix_tree_delete(&im->ino_root, ino);
  378. im->ino_num--;
  379. spin_unlock(&im->ino_lock);
  380. kmem_cache_free(ino_entry_slab, e);
  381. return;
  382. }
  383. spin_unlock(&im->ino_lock);
  384. }
  385. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  386. {
  387. /* add new dirty ino entry into list */
  388. __add_ino_entry(sbi, ino, 0, type);
  389. }
  390. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  391. {
  392. /* remove dirty ino entry from list */
  393. __remove_ino_entry(sbi, ino, type);
  394. }
  395. /* mode should be APPEND_INO or UPDATE_INO */
  396. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  397. {
  398. struct inode_management *im = &sbi->im[mode];
  399. struct ino_entry *e;
  400. spin_lock(&im->ino_lock);
  401. e = radix_tree_lookup(&im->ino_root, ino);
  402. spin_unlock(&im->ino_lock);
  403. return e ? true : false;
  404. }
  405. void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  406. {
  407. struct ino_entry *e, *tmp;
  408. int i;
  409. for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
  410. struct inode_management *im = &sbi->im[i];
  411. spin_lock(&im->ino_lock);
  412. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  413. list_del(&e->list);
  414. radix_tree_delete(&im->ino_root, e->ino);
  415. kmem_cache_free(ino_entry_slab, e);
  416. im->ino_num--;
  417. }
  418. spin_unlock(&im->ino_lock);
  419. }
  420. }
  421. void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  422. unsigned int devidx, int type)
  423. {
  424. __add_ino_entry(sbi, ino, devidx, type);
  425. }
  426. bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  427. unsigned int devidx, int type)
  428. {
  429. struct inode_management *im = &sbi->im[type];
  430. struct ino_entry *e;
  431. bool is_dirty = false;
  432. spin_lock(&im->ino_lock);
  433. e = radix_tree_lookup(&im->ino_root, ino);
  434. if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
  435. is_dirty = true;
  436. spin_unlock(&im->ino_lock);
  437. return is_dirty;
  438. }
  439. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  440. {
  441. struct inode_management *im = &sbi->im[ORPHAN_INO];
  442. int err = 0;
  443. spin_lock(&im->ino_lock);
  444. #ifdef CONFIG_F2FS_FAULT_INJECTION
  445. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  446. spin_unlock(&im->ino_lock);
  447. f2fs_show_injection_info(FAULT_ORPHAN);
  448. return -ENOSPC;
  449. }
  450. #endif
  451. if (unlikely(im->ino_num >= sbi->max_orphans))
  452. err = -ENOSPC;
  453. else
  454. im->ino_num++;
  455. spin_unlock(&im->ino_lock);
  456. return err;
  457. }
  458. void release_orphan_inode(struct f2fs_sb_info *sbi)
  459. {
  460. struct inode_management *im = &sbi->im[ORPHAN_INO];
  461. spin_lock(&im->ino_lock);
  462. f2fs_bug_on(sbi, im->ino_num == 0);
  463. im->ino_num--;
  464. spin_unlock(&im->ino_lock);
  465. }
  466. void add_orphan_inode(struct inode *inode)
  467. {
  468. /* add new orphan ino entry into list */
  469. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
  470. update_inode_page(inode);
  471. }
  472. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  473. {
  474. /* remove orphan entry from orphan list */
  475. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  476. }
  477. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  478. {
  479. struct inode *inode;
  480. struct node_info ni;
  481. int err = acquire_orphan_inode(sbi);
  482. if (err) {
  483. set_sbi_flag(sbi, SBI_NEED_FSCK);
  484. f2fs_msg(sbi->sb, KERN_WARNING,
  485. "%s: orphan failed (ino=%x), run fsck to fix.",
  486. __func__, ino);
  487. return err;
  488. }
  489. __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
  490. inode = f2fs_iget_retry(sbi->sb, ino);
  491. if (IS_ERR(inode)) {
  492. /*
  493. * there should be a bug that we can't find the entry
  494. * to orphan inode.
  495. */
  496. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  497. return PTR_ERR(inode);
  498. }
  499. clear_nlink(inode);
  500. /* truncate all the data during iput */
  501. iput(inode);
  502. get_node_info(sbi, ino, &ni);
  503. /* ENOMEM was fully retried in f2fs_evict_inode. */
  504. if (ni.blk_addr != NULL_ADDR) {
  505. set_sbi_flag(sbi, SBI_NEED_FSCK);
  506. f2fs_msg(sbi->sb, KERN_WARNING,
  507. "%s: orphan failed (ino=%x) by kernel, retry mount.",
  508. __func__, ino);
  509. return -EIO;
  510. }
  511. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  512. return 0;
  513. }
  514. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  515. {
  516. block_t start_blk, orphan_blocks, i, j;
  517. unsigned int s_flags = sbi->sb->s_flags;
  518. int err = 0;
  519. #ifdef CONFIG_QUOTA
  520. int quota_enabled;
  521. #endif
  522. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  523. return 0;
  524. if (s_flags & SB_RDONLY) {
  525. f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
  526. sbi->sb->s_flags &= ~SB_RDONLY;
  527. }
  528. #ifdef CONFIG_QUOTA
  529. /* Needed for iput() to work correctly and not trash data */
  530. sbi->sb->s_flags |= SB_ACTIVE;
  531. /* Turn on quotas so that they are updated correctly */
  532. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  533. #endif
  534. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  535. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  536. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  537. for (i = 0; i < orphan_blocks; i++) {
  538. struct page *page = get_meta_page(sbi, start_blk + i);
  539. struct f2fs_orphan_block *orphan_blk;
  540. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  541. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  542. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  543. err = recover_orphan_inode(sbi, ino);
  544. if (err) {
  545. f2fs_put_page(page, 1);
  546. goto out;
  547. }
  548. }
  549. f2fs_put_page(page, 1);
  550. }
  551. /* clear Orphan Flag */
  552. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  553. out:
  554. #ifdef CONFIG_QUOTA
  555. /* Turn quotas off */
  556. if (quota_enabled)
  557. f2fs_quota_off_umount(sbi->sb);
  558. #endif
  559. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  560. return err;
  561. }
  562. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  563. {
  564. struct list_head *head;
  565. struct f2fs_orphan_block *orphan_blk = NULL;
  566. unsigned int nentries = 0;
  567. unsigned short index = 1;
  568. unsigned short orphan_blocks;
  569. struct page *page = NULL;
  570. struct ino_entry *orphan = NULL;
  571. struct inode_management *im = &sbi->im[ORPHAN_INO];
  572. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  573. /*
  574. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  575. * orphan inode operations are covered under f2fs_lock_op().
  576. * And, spin_lock should be avoided due to page operations below.
  577. */
  578. head = &im->ino_list;
  579. /* loop for each orphan inode entry and write them in Jornal block */
  580. list_for_each_entry(orphan, head, list) {
  581. if (!page) {
  582. page = grab_meta_page(sbi, start_blk++);
  583. orphan_blk =
  584. (struct f2fs_orphan_block *)page_address(page);
  585. memset(orphan_blk, 0, sizeof(*orphan_blk));
  586. }
  587. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  588. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  589. /*
  590. * an orphan block is full of 1020 entries,
  591. * then we need to flush current orphan blocks
  592. * and bring another one in memory
  593. */
  594. orphan_blk->blk_addr = cpu_to_le16(index);
  595. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  596. orphan_blk->entry_count = cpu_to_le32(nentries);
  597. set_page_dirty(page);
  598. f2fs_put_page(page, 1);
  599. index++;
  600. nentries = 0;
  601. page = NULL;
  602. }
  603. }
  604. if (page) {
  605. orphan_blk->blk_addr = cpu_to_le16(index);
  606. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  607. orphan_blk->entry_count = cpu_to_le32(nentries);
  608. set_page_dirty(page);
  609. f2fs_put_page(page, 1);
  610. }
  611. }
  612. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  613. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  614. unsigned long long *version)
  615. {
  616. unsigned long blk_size = sbi->blocksize;
  617. size_t crc_offset = 0;
  618. __u32 crc = 0;
  619. *cp_page = get_meta_page(sbi, cp_addr);
  620. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  621. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  622. if (crc_offset > (blk_size - sizeof(__le32))) {
  623. f2fs_msg(sbi->sb, KERN_WARNING,
  624. "invalid crc_offset: %zu", crc_offset);
  625. return -EINVAL;
  626. }
  627. crc = cur_cp_crc(*cp_block);
  628. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  629. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  630. return -EINVAL;
  631. }
  632. *version = cur_cp_version(*cp_block);
  633. return 0;
  634. }
  635. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  636. block_t cp_addr, unsigned long long *version)
  637. {
  638. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  639. struct f2fs_checkpoint *cp_block = NULL;
  640. unsigned long long cur_version = 0, pre_version = 0;
  641. int err;
  642. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  643. &cp_page_1, version);
  644. if (err)
  645. goto invalid_cp1;
  646. pre_version = *version;
  647. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  648. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  649. &cp_page_2, version);
  650. if (err)
  651. goto invalid_cp2;
  652. cur_version = *version;
  653. if (cur_version == pre_version) {
  654. *version = cur_version;
  655. f2fs_put_page(cp_page_2, 1);
  656. return cp_page_1;
  657. }
  658. invalid_cp2:
  659. f2fs_put_page(cp_page_2, 1);
  660. invalid_cp1:
  661. f2fs_put_page(cp_page_1, 1);
  662. return NULL;
  663. }
  664. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  665. {
  666. struct f2fs_checkpoint *cp_block;
  667. struct f2fs_super_block *fsb = sbi->raw_super;
  668. struct page *cp1, *cp2, *cur_page;
  669. unsigned long blk_size = sbi->blocksize;
  670. unsigned long long cp1_version = 0, cp2_version = 0;
  671. unsigned long long cp_start_blk_no;
  672. unsigned int cp_blks = 1 + __cp_payload(sbi);
  673. block_t cp_blk_no;
  674. int i;
  675. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  676. if (!sbi->ckpt)
  677. return -ENOMEM;
  678. /*
  679. * Finding out valid cp block involves read both
  680. * sets( cp pack1 and cp pack 2)
  681. */
  682. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  683. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  684. /* The second checkpoint pack should start at the next segment */
  685. cp_start_blk_no += ((unsigned long long)1) <<
  686. le32_to_cpu(fsb->log_blocks_per_seg);
  687. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  688. if (cp1 && cp2) {
  689. if (ver_after(cp2_version, cp1_version))
  690. cur_page = cp2;
  691. else
  692. cur_page = cp1;
  693. } else if (cp1) {
  694. cur_page = cp1;
  695. } else if (cp2) {
  696. cur_page = cp2;
  697. } else {
  698. goto fail_no_cp;
  699. }
  700. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  701. memcpy(sbi->ckpt, cp_block, blk_size);
  702. /* Sanity checking of checkpoint */
  703. if (sanity_check_ckpt(sbi))
  704. goto free_fail_no_cp;
  705. if (cur_page == cp1)
  706. sbi->cur_cp_pack = 1;
  707. else
  708. sbi->cur_cp_pack = 2;
  709. if (cp_blks <= 1)
  710. goto done;
  711. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  712. if (cur_page == cp2)
  713. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  714. for (i = 1; i < cp_blks; i++) {
  715. void *sit_bitmap_ptr;
  716. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  717. cur_page = get_meta_page(sbi, cp_blk_no + i);
  718. sit_bitmap_ptr = page_address(cur_page);
  719. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  720. f2fs_put_page(cur_page, 1);
  721. }
  722. done:
  723. f2fs_put_page(cp1, 1);
  724. f2fs_put_page(cp2, 1);
  725. return 0;
  726. free_fail_no_cp:
  727. f2fs_put_page(cp1, 1);
  728. f2fs_put_page(cp2, 1);
  729. fail_no_cp:
  730. kfree(sbi->ckpt);
  731. return -EINVAL;
  732. }
  733. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  734. {
  735. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  736. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  737. if (is_inode_flag_set(inode, flag))
  738. return;
  739. set_inode_flag(inode, flag);
  740. if (!f2fs_is_volatile_file(inode))
  741. list_add_tail(&F2FS_I(inode)->dirty_list,
  742. &sbi->inode_list[type]);
  743. stat_inc_dirty_inode(sbi, type);
  744. }
  745. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  746. {
  747. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  748. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  749. return;
  750. list_del_init(&F2FS_I(inode)->dirty_list);
  751. clear_inode_flag(inode, flag);
  752. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  753. }
  754. void update_dirty_page(struct inode *inode, struct page *page)
  755. {
  756. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  757. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  758. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  759. !S_ISLNK(inode->i_mode))
  760. return;
  761. spin_lock(&sbi->inode_lock[type]);
  762. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  763. __add_dirty_inode(inode, type);
  764. inode_inc_dirty_pages(inode);
  765. spin_unlock(&sbi->inode_lock[type]);
  766. SetPagePrivate(page);
  767. f2fs_trace_pid(page);
  768. }
  769. void remove_dirty_inode(struct inode *inode)
  770. {
  771. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  772. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  773. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  774. !S_ISLNK(inode->i_mode))
  775. return;
  776. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  777. return;
  778. spin_lock(&sbi->inode_lock[type]);
  779. __remove_dirty_inode(inode, type);
  780. spin_unlock(&sbi->inode_lock[type]);
  781. }
  782. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  783. {
  784. struct list_head *head;
  785. struct inode *inode;
  786. struct f2fs_inode_info *fi;
  787. bool is_dir = (type == DIR_INODE);
  788. unsigned long ino = 0;
  789. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  790. get_pages(sbi, is_dir ?
  791. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  792. retry:
  793. if (unlikely(f2fs_cp_error(sbi)))
  794. return -EIO;
  795. spin_lock(&sbi->inode_lock[type]);
  796. head = &sbi->inode_list[type];
  797. if (list_empty(head)) {
  798. spin_unlock(&sbi->inode_lock[type]);
  799. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  800. get_pages(sbi, is_dir ?
  801. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  802. return 0;
  803. }
  804. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  805. inode = igrab(&fi->vfs_inode);
  806. spin_unlock(&sbi->inode_lock[type]);
  807. if (inode) {
  808. unsigned long cur_ino = inode->i_ino;
  809. if (is_dir)
  810. F2FS_I(inode)->cp_task = current;
  811. filemap_fdatawrite(inode->i_mapping);
  812. if (is_dir)
  813. F2FS_I(inode)->cp_task = NULL;
  814. iput(inode);
  815. /* We need to give cpu to another writers. */
  816. if (ino == cur_ino) {
  817. congestion_wait(BLK_RW_ASYNC, HZ/50);
  818. cond_resched();
  819. } else {
  820. ino = cur_ino;
  821. }
  822. } else {
  823. /*
  824. * We should submit bio, since it exists several
  825. * wribacking dentry pages in the freeing inode.
  826. */
  827. f2fs_submit_merged_write(sbi, DATA);
  828. cond_resched();
  829. }
  830. goto retry;
  831. }
  832. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  833. {
  834. struct list_head *head = &sbi->inode_list[DIRTY_META];
  835. struct inode *inode;
  836. struct f2fs_inode_info *fi;
  837. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  838. while (total--) {
  839. if (unlikely(f2fs_cp_error(sbi)))
  840. return -EIO;
  841. spin_lock(&sbi->inode_lock[DIRTY_META]);
  842. if (list_empty(head)) {
  843. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  844. return 0;
  845. }
  846. fi = list_first_entry(head, struct f2fs_inode_info,
  847. gdirty_list);
  848. inode = igrab(&fi->vfs_inode);
  849. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  850. if (inode) {
  851. sync_inode_metadata(inode, 0);
  852. /* it's on eviction */
  853. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  854. update_inode_page(inode);
  855. iput(inode);
  856. }
  857. }
  858. return 0;
  859. }
  860. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  861. {
  862. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  863. struct f2fs_nm_info *nm_i = NM_I(sbi);
  864. nid_t last_nid = nm_i->next_scan_nid;
  865. next_free_nid(sbi, &last_nid);
  866. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  867. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  868. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  869. ckpt->next_free_nid = cpu_to_le32(last_nid);
  870. }
  871. /*
  872. * Freeze all the FS-operations for checkpoint.
  873. */
  874. static int block_operations(struct f2fs_sb_info *sbi)
  875. {
  876. struct writeback_control wbc = {
  877. .sync_mode = WB_SYNC_ALL,
  878. .nr_to_write = LONG_MAX,
  879. .for_reclaim = 0,
  880. };
  881. struct blk_plug plug;
  882. int err = 0;
  883. blk_start_plug(&plug);
  884. retry_flush_dents:
  885. f2fs_lock_all(sbi);
  886. /* write all the dirty dentry pages */
  887. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  888. f2fs_unlock_all(sbi);
  889. err = sync_dirty_inodes(sbi, DIR_INODE);
  890. if (err)
  891. goto out;
  892. cond_resched();
  893. goto retry_flush_dents;
  894. }
  895. /*
  896. * POR: we should ensure that there are no dirty node pages
  897. * until finishing nat/sit flush. inode->i_blocks can be updated.
  898. */
  899. down_write(&sbi->node_change);
  900. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  901. up_write(&sbi->node_change);
  902. f2fs_unlock_all(sbi);
  903. err = f2fs_sync_inode_meta(sbi);
  904. if (err)
  905. goto out;
  906. cond_resched();
  907. goto retry_flush_dents;
  908. }
  909. retry_flush_nodes:
  910. down_write(&sbi->node_write);
  911. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  912. up_write(&sbi->node_write);
  913. err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  914. if (err) {
  915. up_write(&sbi->node_change);
  916. f2fs_unlock_all(sbi);
  917. goto out;
  918. }
  919. cond_resched();
  920. goto retry_flush_nodes;
  921. }
  922. /*
  923. * sbi->node_change is used only for AIO write_begin path which produces
  924. * dirty node blocks and some checkpoint values by block allocation.
  925. */
  926. __prepare_cp_block(sbi);
  927. up_write(&sbi->node_change);
  928. out:
  929. blk_finish_plug(&plug);
  930. return err;
  931. }
  932. static void unblock_operations(struct f2fs_sb_info *sbi)
  933. {
  934. up_write(&sbi->node_write);
  935. f2fs_unlock_all(sbi);
  936. }
  937. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  938. {
  939. DEFINE_WAIT(wait);
  940. for (;;) {
  941. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  942. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  943. break;
  944. io_schedule_timeout(5*HZ);
  945. }
  946. finish_wait(&sbi->cp_wait, &wait);
  947. }
  948. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  949. {
  950. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  951. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  952. unsigned long flags;
  953. spin_lock_irqsave(&sbi->cp_lock, flags);
  954. if ((cpc->reason & CP_UMOUNT) &&
  955. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  956. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  957. disable_nat_bits(sbi, false);
  958. if (cpc->reason & CP_TRIMMED)
  959. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  960. if (cpc->reason & CP_UMOUNT)
  961. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  962. else
  963. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  964. if (cpc->reason & CP_FASTBOOT)
  965. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  966. else
  967. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  968. if (orphan_num)
  969. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  970. else
  971. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  972. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  973. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  974. /* set this flag to activate crc|cp_ver for recovery */
  975. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  976. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  977. }
  978. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  979. {
  980. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  981. struct f2fs_nm_info *nm_i = NM_I(sbi);
  982. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  983. block_t start_blk;
  984. unsigned int data_sum_blocks, orphan_blocks;
  985. __u32 crc32 = 0;
  986. int i;
  987. int cp_payload_blks = __cp_payload(sbi);
  988. struct super_block *sb = sbi->sb;
  989. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  990. u64 kbytes_written;
  991. int err;
  992. /* Flush all the NAT/SIT pages */
  993. while (get_pages(sbi, F2FS_DIRTY_META)) {
  994. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  995. if (unlikely(f2fs_cp_error(sbi)))
  996. return -EIO;
  997. }
  998. /*
  999. * modify checkpoint
  1000. * version number is already updated
  1001. */
  1002. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  1003. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  1004. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  1005. ckpt->cur_node_segno[i] =
  1006. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  1007. ckpt->cur_node_blkoff[i] =
  1008. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  1009. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  1010. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  1011. }
  1012. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  1013. ckpt->cur_data_segno[i] =
  1014. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  1015. ckpt->cur_data_blkoff[i] =
  1016. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  1017. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  1018. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  1019. }
  1020. /* 2 cp + n data seg summary + orphan inode blocks */
  1021. data_sum_blocks = npages_for_summary_flush(sbi, false);
  1022. spin_lock_irqsave(&sbi->cp_lock, flags);
  1023. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1024. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1025. else
  1026. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1027. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1028. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1029. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1030. orphan_blocks);
  1031. if (__remain_node_summaries(cpc->reason))
  1032. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  1033. cp_payload_blks + data_sum_blocks +
  1034. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1035. else
  1036. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1037. cp_payload_blks + data_sum_blocks +
  1038. orphan_blocks);
  1039. /* update ckpt flag for checkpoint */
  1040. update_ckpt_flags(sbi, cpc);
  1041. /* update SIT/NAT bitmap */
  1042. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1043. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1044. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1045. *((__le32 *)((unsigned char *)ckpt +
  1046. le32_to_cpu(ckpt->checksum_offset)))
  1047. = cpu_to_le32(crc32);
  1048. start_blk = __start_cp_next_addr(sbi);
  1049. /* write nat bits */
  1050. if (enabled_nat_bits(sbi, cpc)) {
  1051. __u64 cp_ver = cur_cp_version(ckpt);
  1052. block_t blk;
  1053. cp_ver |= ((__u64)crc32 << 32);
  1054. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1055. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1056. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1057. update_meta_page(sbi, nm_i->nat_bits +
  1058. (i << F2FS_BLKSIZE_BITS), blk + i);
  1059. /* Flush all the NAT BITS pages */
  1060. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1061. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1062. if (unlikely(f2fs_cp_error(sbi)))
  1063. return -EIO;
  1064. }
  1065. }
  1066. /* need to wait for end_io results */
  1067. wait_on_all_pages_writeback(sbi);
  1068. if (unlikely(f2fs_cp_error(sbi)))
  1069. return -EIO;
  1070. /* flush all device cache */
  1071. err = f2fs_flush_device_cache(sbi);
  1072. if (err)
  1073. return err;
  1074. /* write out checkpoint buffer at block 0 */
  1075. update_meta_page(sbi, ckpt, start_blk++);
  1076. for (i = 1; i < 1 + cp_payload_blks; i++)
  1077. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1078. start_blk++);
  1079. if (orphan_num) {
  1080. write_orphan_inodes(sbi, start_blk);
  1081. start_blk += orphan_blocks;
  1082. }
  1083. write_data_summaries(sbi, start_blk);
  1084. start_blk += data_sum_blocks;
  1085. /* Record write statistics in the hot node summary */
  1086. kbytes_written = sbi->kbytes_written;
  1087. if (sb->s_bdev->bd_part)
  1088. kbytes_written += BD_PART_WRITTEN(sbi);
  1089. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1090. if (__remain_node_summaries(cpc->reason)) {
  1091. write_node_summaries(sbi, start_blk);
  1092. start_blk += NR_CURSEG_NODE_TYPE;
  1093. }
  1094. /* writeout checkpoint block */
  1095. update_meta_page(sbi, ckpt, start_blk);
  1096. /* wait for previous submitted node/meta pages writeback */
  1097. wait_on_all_pages_writeback(sbi);
  1098. if (unlikely(f2fs_cp_error(sbi)))
  1099. return -EIO;
  1100. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
  1101. filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
  1102. /* update user_block_counts */
  1103. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1104. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1105. /* Here, we only have one bio having CP pack */
  1106. sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
  1107. /* wait for previous submitted meta pages writeback */
  1108. wait_on_all_pages_writeback(sbi);
  1109. release_ino_entry(sbi, false);
  1110. if (unlikely(f2fs_cp_error(sbi)))
  1111. return -EIO;
  1112. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1113. clear_sbi_flag(sbi, SBI_NEED_CP);
  1114. __set_cp_next_pack(sbi);
  1115. /*
  1116. * redirty superblock if metadata like node page or inode cache is
  1117. * updated during writing checkpoint.
  1118. */
  1119. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1120. get_pages(sbi, F2FS_DIRTY_IMETA))
  1121. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1122. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1123. return 0;
  1124. }
  1125. /*
  1126. * We guarantee that this checkpoint procedure will not fail.
  1127. */
  1128. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1129. {
  1130. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1131. unsigned long long ckpt_ver;
  1132. int err = 0;
  1133. mutex_lock(&sbi->cp_mutex);
  1134. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1135. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1136. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1137. goto out;
  1138. if (unlikely(f2fs_cp_error(sbi))) {
  1139. err = -EIO;
  1140. goto out;
  1141. }
  1142. if (f2fs_readonly(sbi->sb)) {
  1143. err = -EROFS;
  1144. goto out;
  1145. }
  1146. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1147. err = block_operations(sbi);
  1148. if (err)
  1149. goto out;
  1150. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1151. f2fs_flush_merged_writes(sbi);
  1152. /* this is the case of multiple fstrims without any changes */
  1153. if (cpc->reason & CP_DISCARD) {
  1154. if (!exist_trim_candidates(sbi, cpc)) {
  1155. unblock_operations(sbi);
  1156. goto out;
  1157. }
  1158. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1159. SIT_I(sbi)->dirty_sentries == 0 &&
  1160. prefree_segments(sbi) == 0) {
  1161. flush_sit_entries(sbi, cpc);
  1162. clear_prefree_segments(sbi, cpc);
  1163. unblock_operations(sbi);
  1164. goto out;
  1165. }
  1166. }
  1167. /*
  1168. * update checkpoint pack index
  1169. * Increase the version number so that
  1170. * SIT entries and seg summaries are written at correct place
  1171. */
  1172. ckpt_ver = cur_cp_version(ckpt);
  1173. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1174. /* write cached NAT/SIT entries to NAT/SIT area */
  1175. flush_nat_entries(sbi, cpc);
  1176. flush_sit_entries(sbi, cpc);
  1177. /* unlock all the fs_lock[] in do_checkpoint() */
  1178. err = do_checkpoint(sbi, cpc);
  1179. if (err)
  1180. release_discard_addrs(sbi);
  1181. else
  1182. clear_prefree_segments(sbi, cpc);
  1183. unblock_operations(sbi);
  1184. stat_inc_cp_count(sbi->stat_info);
  1185. if (cpc->reason & CP_RECOVERY)
  1186. f2fs_msg(sbi->sb, KERN_NOTICE,
  1187. "checkpoint: version = %llx", ckpt_ver);
  1188. /* do checkpoint periodically */
  1189. f2fs_update_time(sbi, CP_TIME);
  1190. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1191. out:
  1192. mutex_unlock(&sbi->cp_mutex);
  1193. return err;
  1194. }
  1195. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  1196. {
  1197. int i;
  1198. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1199. struct inode_management *im = &sbi->im[i];
  1200. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1201. spin_lock_init(&im->ino_lock);
  1202. INIT_LIST_HEAD(&im->ino_list);
  1203. im->ino_num = 0;
  1204. }
  1205. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1206. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1207. F2FS_ORPHANS_PER_BLOCK;
  1208. }
  1209. int __init create_checkpoint_caches(void)
  1210. {
  1211. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1212. sizeof(struct ino_entry));
  1213. if (!ino_entry_slab)
  1214. return -ENOMEM;
  1215. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1216. sizeof(struct inode_entry));
  1217. if (!inode_entry_slab) {
  1218. kmem_cache_destroy(ino_entry_slab);
  1219. return -ENOMEM;
  1220. }
  1221. return 0;
  1222. }
  1223. void destroy_checkpoint_caches(void)
  1224. {
  1225. kmem_cache_destroy(ino_entry_slab);
  1226. kmem_cache_destroy(inode_entry_slab);
  1227. }