tree-log.c 113 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412
  1. /*
  2. * Copyright (C) 2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/list_sort.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "disk-io.h"
  25. #include "locking.h"
  26. #include "print-tree.h"
  27. #include "backref.h"
  28. #include "tree-log.h"
  29. #include "hash.h"
  30. /* magic values for the inode_only field in btrfs_log_inode:
  31. *
  32. * LOG_INODE_ALL means to log everything
  33. * LOG_INODE_EXISTS means to log just enough to recreate the inode
  34. * during log replay
  35. */
  36. #define LOG_INODE_ALL 0
  37. #define LOG_INODE_EXISTS 1
  38. /*
  39. * directory trouble cases
  40. *
  41. * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42. * log, we must force a full commit before doing an fsync of the directory
  43. * where the unlink was done.
  44. * ---> record transid of last unlink/rename per directory
  45. *
  46. * mkdir foo/some_dir
  47. * normal commit
  48. * rename foo/some_dir foo2/some_dir
  49. * mkdir foo/some_dir
  50. * fsync foo/some_dir/some_file
  51. *
  52. * The fsync above will unlink the original some_dir without recording
  53. * it in its new location (foo2). After a crash, some_dir will be gone
  54. * unless the fsync of some_file forces a full commit
  55. *
  56. * 2) we must log any new names for any file or dir that is in the fsync
  57. * log. ---> check inode while renaming/linking.
  58. *
  59. * 2a) we must log any new names for any file or dir during rename
  60. * when the directory they are being removed from was logged.
  61. * ---> check inode and old parent dir during rename
  62. *
  63. * 2a is actually the more important variant. With the extra logging
  64. * a crash might unlink the old name without recreating the new one
  65. *
  66. * 3) after a crash, we must go through any directories with a link count
  67. * of zero and redo the rm -rf
  68. *
  69. * mkdir f1/foo
  70. * normal commit
  71. * rm -rf f1/foo
  72. * fsync(f1)
  73. *
  74. * The directory f1 was fully removed from the FS, but fsync was never
  75. * called on f1, only its parent dir. After a crash the rm -rf must
  76. * be replayed. This must be able to recurse down the entire
  77. * directory tree. The inode link count fixup code takes care of the
  78. * ugly details.
  79. */
  80. /*
  81. * stages for the tree walking. The first
  82. * stage (0) is to only pin down the blocks we find
  83. * the second stage (1) is to make sure that all the inodes
  84. * we find in the log are created in the subvolume.
  85. *
  86. * The last stage is to deal with directories and links and extents
  87. * and all the other fun semantics
  88. */
  89. #define LOG_WALK_PIN_ONLY 0
  90. #define LOG_WALK_REPLAY_INODES 1
  91. #define LOG_WALK_REPLAY_DIR_INDEX 2
  92. #define LOG_WALK_REPLAY_ALL 3
  93. static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  94. struct btrfs_root *root, struct inode *inode,
  95. int inode_only);
  96. static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  97. struct btrfs_root *root,
  98. struct btrfs_path *path, u64 objectid);
  99. static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
  100. struct btrfs_root *root,
  101. struct btrfs_root *log,
  102. struct btrfs_path *path,
  103. u64 dirid, int del_all);
  104. /*
  105. * tree logging is a special write ahead log used to make sure that
  106. * fsyncs and O_SYNCs can happen without doing full tree commits.
  107. *
  108. * Full tree commits are expensive because they require commonly
  109. * modified blocks to be recowed, creating many dirty pages in the
  110. * extent tree an 4x-6x higher write load than ext3.
  111. *
  112. * Instead of doing a tree commit on every fsync, we use the
  113. * key ranges and transaction ids to find items for a given file or directory
  114. * that have changed in this transaction. Those items are copied into
  115. * a special tree (one per subvolume root), that tree is written to disk
  116. * and then the fsync is considered complete.
  117. *
  118. * After a crash, items are copied out of the log-tree back into the
  119. * subvolume tree. Any file data extents found are recorded in the extent
  120. * allocation tree, and the log-tree freed.
  121. *
  122. * The log tree is read three times, once to pin down all the extents it is
  123. * using in ram and once, once to create all the inodes logged in the tree
  124. * and once to do all the other items.
  125. */
  126. /*
  127. * start a sub transaction and setup the log tree
  128. * this increments the log tree writer count to make the people
  129. * syncing the tree wait for us to finish
  130. */
  131. static int start_log_trans(struct btrfs_trans_handle *trans,
  132. struct btrfs_root *root)
  133. {
  134. int ret;
  135. int err = 0;
  136. mutex_lock(&root->log_mutex);
  137. if (root->log_root) {
  138. if (!root->log_start_pid) {
  139. root->log_start_pid = current->pid;
  140. root->log_multiple_pids = false;
  141. } else if (root->log_start_pid != current->pid) {
  142. root->log_multiple_pids = true;
  143. }
  144. atomic_inc(&root->log_batch);
  145. atomic_inc(&root->log_writers);
  146. mutex_unlock(&root->log_mutex);
  147. return 0;
  148. }
  149. root->log_multiple_pids = false;
  150. root->log_start_pid = current->pid;
  151. mutex_lock(&root->fs_info->tree_log_mutex);
  152. if (!root->fs_info->log_root_tree) {
  153. ret = btrfs_init_log_root_tree(trans, root->fs_info);
  154. if (ret)
  155. err = ret;
  156. }
  157. if (err == 0 && !root->log_root) {
  158. ret = btrfs_add_log_tree(trans, root);
  159. if (ret)
  160. err = ret;
  161. }
  162. mutex_unlock(&root->fs_info->tree_log_mutex);
  163. atomic_inc(&root->log_batch);
  164. atomic_inc(&root->log_writers);
  165. mutex_unlock(&root->log_mutex);
  166. return err;
  167. }
  168. /*
  169. * returns 0 if there was a log transaction running and we were able
  170. * to join, or returns -ENOENT if there were not transactions
  171. * in progress
  172. */
  173. static int join_running_log_trans(struct btrfs_root *root)
  174. {
  175. int ret = -ENOENT;
  176. smp_mb();
  177. if (!root->log_root)
  178. return -ENOENT;
  179. mutex_lock(&root->log_mutex);
  180. if (root->log_root) {
  181. ret = 0;
  182. atomic_inc(&root->log_writers);
  183. }
  184. mutex_unlock(&root->log_mutex);
  185. return ret;
  186. }
  187. /*
  188. * This either makes the current running log transaction wait
  189. * until you call btrfs_end_log_trans() or it makes any future
  190. * log transactions wait until you call btrfs_end_log_trans()
  191. */
  192. int btrfs_pin_log_trans(struct btrfs_root *root)
  193. {
  194. int ret = -ENOENT;
  195. mutex_lock(&root->log_mutex);
  196. atomic_inc(&root->log_writers);
  197. mutex_unlock(&root->log_mutex);
  198. return ret;
  199. }
  200. /*
  201. * indicate we're done making changes to the log tree
  202. * and wake up anyone waiting to do a sync
  203. */
  204. void btrfs_end_log_trans(struct btrfs_root *root)
  205. {
  206. if (atomic_dec_and_test(&root->log_writers)) {
  207. smp_mb();
  208. if (waitqueue_active(&root->log_writer_wait))
  209. wake_up(&root->log_writer_wait);
  210. }
  211. }
  212. /*
  213. * the walk control struct is used to pass state down the chain when
  214. * processing the log tree. The stage field tells us which part
  215. * of the log tree processing we are currently doing. The others
  216. * are state fields used for that specific part
  217. */
  218. struct walk_control {
  219. /* should we free the extent on disk when done? This is used
  220. * at transaction commit time while freeing a log tree
  221. */
  222. int free;
  223. /* should we write out the extent buffer? This is used
  224. * while flushing the log tree to disk during a sync
  225. */
  226. int write;
  227. /* should we wait for the extent buffer io to finish? Also used
  228. * while flushing the log tree to disk for a sync
  229. */
  230. int wait;
  231. /* pin only walk, we record which extents on disk belong to the
  232. * log trees
  233. */
  234. int pin;
  235. /* what stage of the replay code we're currently in */
  236. int stage;
  237. /* the root we are currently replaying */
  238. struct btrfs_root *replay_dest;
  239. /* the trans handle for the current replay */
  240. struct btrfs_trans_handle *trans;
  241. /* the function that gets used to process blocks we find in the
  242. * tree. Note the extent_buffer might not be up to date when it is
  243. * passed in, and it must be checked or read if you need the data
  244. * inside it
  245. */
  246. int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
  247. struct walk_control *wc, u64 gen);
  248. };
  249. /*
  250. * process_func used to pin down extents, write them or wait on them
  251. */
  252. static int process_one_buffer(struct btrfs_root *log,
  253. struct extent_buffer *eb,
  254. struct walk_control *wc, u64 gen)
  255. {
  256. int ret = 0;
  257. /*
  258. * If this fs is mixed then we need to be able to process the leaves to
  259. * pin down any logged extents, so we have to read the block.
  260. */
  261. if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
  262. ret = btrfs_read_buffer(eb, gen);
  263. if (ret)
  264. return ret;
  265. }
  266. if (wc->pin)
  267. ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
  268. eb->start, eb->len);
  269. if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
  270. if (wc->pin && btrfs_header_level(eb) == 0)
  271. ret = btrfs_exclude_logged_extents(log, eb);
  272. if (wc->write)
  273. btrfs_write_tree_block(eb);
  274. if (wc->wait)
  275. btrfs_wait_tree_block_writeback(eb);
  276. }
  277. return ret;
  278. }
  279. /*
  280. * Item overwrite used by replay and tree logging. eb, slot and key all refer
  281. * to the src data we are copying out.
  282. *
  283. * root is the tree we are copying into, and path is a scratch
  284. * path for use in this function (it should be released on entry and
  285. * will be released on exit).
  286. *
  287. * If the key is already in the destination tree the existing item is
  288. * overwritten. If the existing item isn't big enough, it is extended.
  289. * If it is too large, it is truncated.
  290. *
  291. * If the key isn't in the destination yet, a new item is inserted.
  292. */
  293. static noinline int overwrite_item(struct btrfs_trans_handle *trans,
  294. struct btrfs_root *root,
  295. struct btrfs_path *path,
  296. struct extent_buffer *eb, int slot,
  297. struct btrfs_key *key)
  298. {
  299. int ret;
  300. u32 item_size;
  301. u64 saved_i_size = 0;
  302. int save_old_i_size = 0;
  303. unsigned long src_ptr;
  304. unsigned long dst_ptr;
  305. int overwrite_root = 0;
  306. bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
  307. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
  308. overwrite_root = 1;
  309. item_size = btrfs_item_size_nr(eb, slot);
  310. src_ptr = btrfs_item_ptr_offset(eb, slot);
  311. /* look for the key in the destination tree */
  312. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  313. if (ret < 0)
  314. return ret;
  315. if (ret == 0) {
  316. char *src_copy;
  317. char *dst_copy;
  318. u32 dst_size = btrfs_item_size_nr(path->nodes[0],
  319. path->slots[0]);
  320. if (dst_size != item_size)
  321. goto insert;
  322. if (item_size == 0) {
  323. btrfs_release_path(path);
  324. return 0;
  325. }
  326. dst_copy = kmalloc(item_size, GFP_NOFS);
  327. src_copy = kmalloc(item_size, GFP_NOFS);
  328. if (!dst_copy || !src_copy) {
  329. btrfs_release_path(path);
  330. kfree(dst_copy);
  331. kfree(src_copy);
  332. return -ENOMEM;
  333. }
  334. read_extent_buffer(eb, src_copy, src_ptr, item_size);
  335. dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
  336. read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
  337. item_size);
  338. ret = memcmp(dst_copy, src_copy, item_size);
  339. kfree(dst_copy);
  340. kfree(src_copy);
  341. /*
  342. * they have the same contents, just return, this saves
  343. * us from cowing blocks in the destination tree and doing
  344. * extra writes that may not have been done by a previous
  345. * sync
  346. */
  347. if (ret == 0) {
  348. btrfs_release_path(path);
  349. return 0;
  350. }
  351. /*
  352. * We need to load the old nbytes into the inode so when we
  353. * replay the extents we've logged we get the right nbytes.
  354. */
  355. if (inode_item) {
  356. struct btrfs_inode_item *item;
  357. u64 nbytes;
  358. u32 mode;
  359. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  360. struct btrfs_inode_item);
  361. nbytes = btrfs_inode_nbytes(path->nodes[0], item);
  362. item = btrfs_item_ptr(eb, slot,
  363. struct btrfs_inode_item);
  364. btrfs_set_inode_nbytes(eb, item, nbytes);
  365. /*
  366. * If this is a directory we need to reset the i_size to
  367. * 0 so that we can set it up properly when replaying
  368. * the rest of the items in this log.
  369. */
  370. mode = btrfs_inode_mode(eb, item);
  371. if (S_ISDIR(mode))
  372. btrfs_set_inode_size(eb, item, 0);
  373. }
  374. } else if (inode_item) {
  375. struct btrfs_inode_item *item;
  376. u32 mode;
  377. /*
  378. * New inode, set nbytes to 0 so that the nbytes comes out
  379. * properly when we replay the extents.
  380. */
  381. item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
  382. btrfs_set_inode_nbytes(eb, item, 0);
  383. /*
  384. * If this is a directory we need to reset the i_size to 0 so
  385. * that we can set it up properly when replaying the rest of
  386. * the items in this log.
  387. */
  388. mode = btrfs_inode_mode(eb, item);
  389. if (S_ISDIR(mode))
  390. btrfs_set_inode_size(eb, item, 0);
  391. }
  392. insert:
  393. btrfs_release_path(path);
  394. /* try to insert the key into the destination tree */
  395. ret = btrfs_insert_empty_item(trans, root, path,
  396. key, item_size);
  397. /* make sure any existing item is the correct size */
  398. if (ret == -EEXIST) {
  399. u32 found_size;
  400. found_size = btrfs_item_size_nr(path->nodes[0],
  401. path->slots[0]);
  402. if (found_size > item_size)
  403. btrfs_truncate_item(root, path, item_size, 1);
  404. else if (found_size < item_size)
  405. btrfs_extend_item(root, path,
  406. item_size - found_size);
  407. } else if (ret) {
  408. return ret;
  409. }
  410. dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
  411. path->slots[0]);
  412. /* don't overwrite an existing inode if the generation number
  413. * was logged as zero. This is done when the tree logging code
  414. * is just logging an inode to make sure it exists after recovery.
  415. *
  416. * Also, don't overwrite i_size on directories during replay.
  417. * log replay inserts and removes directory items based on the
  418. * state of the tree found in the subvolume, and i_size is modified
  419. * as it goes
  420. */
  421. if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
  422. struct btrfs_inode_item *src_item;
  423. struct btrfs_inode_item *dst_item;
  424. src_item = (struct btrfs_inode_item *)src_ptr;
  425. dst_item = (struct btrfs_inode_item *)dst_ptr;
  426. if (btrfs_inode_generation(eb, src_item) == 0)
  427. goto no_copy;
  428. if (overwrite_root &&
  429. S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
  430. S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
  431. save_old_i_size = 1;
  432. saved_i_size = btrfs_inode_size(path->nodes[0],
  433. dst_item);
  434. }
  435. }
  436. copy_extent_buffer(path->nodes[0], eb, dst_ptr,
  437. src_ptr, item_size);
  438. if (save_old_i_size) {
  439. struct btrfs_inode_item *dst_item;
  440. dst_item = (struct btrfs_inode_item *)dst_ptr;
  441. btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
  442. }
  443. /* make sure the generation is filled in */
  444. if (key->type == BTRFS_INODE_ITEM_KEY) {
  445. struct btrfs_inode_item *dst_item;
  446. dst_item = (struct btrfs_inode_item *)dst_ptr;
  447. if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
  448. btrfs_set_inode_generation(path->nodes[0], dst_item,
  449. trans->transid);
  450. }
  451. }
  452. no_copy:
  453. btrfs_mark_buffer_dirty(path->nodes[0]);
  454. btrfs_release_path(path);
  455. return 0;
  456. }
  457. /*
  458. * simple helper to read an inode off the disk from a given root
  459. * This can only be called for subvolume roots and not for the log
  460. */
  461. static noinline struct inode *read_one_inode(struct btrfs_root *root,
  462. u64 objectid)
  463. {
  464. struct btrfs_key key;
  465. struct inode *inode;
  466. key.objectid = objectid;
  467. key.type = BTRFS_INODE_ITEM_KEY;
  468. key.offset = 0;
  469. inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
  470. if (IS_ERR(inode)) {
  471. inode = NULL;
  472. } else if (is_bad_inode(inode)) {
  473. iput(inode);
  474. inode = NULL;
  475. }
  476. return inode;
  477. }
  478. /* replays a single extent in 'eb' at 'slot' with 'key' into the
  479. * subvolume 'root'. path is released on entry and should be released
  480. * on exit.
  481. *
  482. * extents in the log tree have not been allocated out of the extent
  483. * tree yet. So, this completes the allocation, taking a reference
  484. * as required if the extent already exists or creating a new extent
  485. * if it isn't in the extent allocation tree yet.
  486. *
  487. * The extent is inserted into the file, dropping any existing extents
  488. * from the file that overlap the new one.
  489. */
  490. static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
  491. struct btrfs_root *root,
  492. struct btrfs_path *path,
  493. struct extent_buffer *eb, int slot,
  494. struct btrfs_key *key)
  495. {
  496. int found_type;
  497. u64 extent_end;
  498. u64 start = key->offset;
  499. u64 nbytes = 0;
  500. struct btrfs_file_extent_item *item;
  501. struct inode *inode = NULL;
  502. unsigned long size;
  503. int ret = 0;
  504. item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  505. found_type = btrfs_file_extent_type(eb, item);
  506. if (found_type == BTRFS_FILE_EXTENT_REG ||
  507. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  508. nbytes = btrfs_file_extent_num_bytes(eb, item);
  509. extent_end = start + nbytes;
  510. /*
  511. * We don't add to the inodes nbytes if we are prealloc or a
  512. * hole.
  513. */
  514. if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
  515. nbytes = 0;
  516. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  517. size = btrfs_file_extent_inline_len(eb, item);
  518. nbytes = btrfs_file_extent_ram_bytes(eb, item);
  519. extent_end = ALIGN(start + size, root->sectorsize);
  520. } else {
  521. ret = 0;
  522. goto out;
  523. }
  524. inode = read_one_inode(root, key->objectid);
  525. if (!inode) {
  526. ret = -EIO;
  527. goto out;
  528. }
  529. /*
  530. * first check to see if we already have this extent in the
  531. * file. This must be done before the btrfs_drop_extents run
  532. * so we don't try to drop this extent.
  533. */
  534. ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
  535. start, 0);
  536. if (ret == 0 &&
  537. (found_type == BTRFS_FILE_EXTENT_REG ||
  538. found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
  539. struct btrfs_file_extent_item cmp1;
  540. struct btrfs_file_extent_item cmp2;
  541. struct btrfs_file_extent_item *existing;
  542. struct extent_buffer *leaf;
  543. leaf = path->nodes[0];
  544. existing = btrfs_item_ptr(leaf, path->slots[0],
  545. struct btrfs_file_extent_item);
  546. read_extent_buffer(eb, &cmp1, (unsigned long)item,
  547. sizeof(cmp1));
  548. read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
  549. sizeof(cmp2));
  550. /*
  551. * we already have a pointer to this exact extent,
  552. * we don't have to do anything
  553. */
  554. if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
  555. btrfs_release_path(path);
  556. goto out;
  557. }
  558. }
  559. btrfs_release_path(path);
  560. /* drop any overlapping extents */
  561. ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
  562. if (ret)
  563. goto out;
  564. if (found_type == BTRFS_FILE_EXTENT_REG ||
  565. found_type == BTRFS_FILE_EXTENT_PREALLOC) {
  566. u64 offset;
  567. unsigned long dest_offset;
  568. struct btrfs_key ins;
  569. ret = btrfs_insert_empty_item(trans, root, path, key,
  570. sizeof(*item));
  571. if (ret)
  572. goto out;
  573. dest_offset = btrfs_item_ptr_offset(path->nodes[0],
  574. path->slots[0]);
  575. copy_extent_buffer(path->nodes[0], eb, dest_offset,
  576. (unsigned long)item, sizeof(*item));
  577. ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
  578. ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
  579. ins.type = BTRFS_EXTENT_ITEM_KEY;
  580. offset = key->offset - btrfs_file_extent_offset(eb, item);
  581. if (ins.objectid > 0) {
  582. u64 csum_start;
  583. u64 csum_end;
  584. LIST_HEAD(ordered_sums);
  585. /*
  586. * is this extent already allocated in the extent
  587. * allocation tree? If so, just add a reference
  588. */
  589. ret = btrfs_lookup_extent(root, ins.objectid,
  590. ins.offset);
  591. if (ret == 0) {
  592. ret = btrfs_inc_extent_ref(trans, root,
  593. ins.objectid, ins.offset,
  594. 0, root->root_key.objectid,
  595. key->objectid, offset, 0);
  596. if (ret)
  597. goto out;
  598. } else {
  599. /*
  600. * insert the extent pointer in the extent
  601. * allocation tree
  602. */
  603. ret = btrfs_alloc_logged_file_extent(trans,
  604. root, root->root_key.objectid,
  605. key->objectid, offset, &ins);
  606. if (ret)
  607. goto out;
  608. }
  609. btrfs_release_path(path);
  610. if (btrfs_file_extent_compression(eb, item)) {
  611. csum_start = ins.objectid;
  612. csum_end = csum_start + ins.offset;
  613. } else {
  614. csum_start = ins.objectid +
  615. btrfs_file_extent_offset(eb, item);
  616. csum_end = csum_start +
  617. btrfs_file_extent_num_bytes(eb, item);
  618. }
  619. ret = btrfs_lookup_csums_range(root->log_root,
  620. csum_start, csum_end - 1,
  621. &ordered_sums, 0);
  622. if (ret)
  623. goto out;
  624. while (!list_empty(&ordered_sums)) {
  625. struct btrfs_ordered_sum *sums;
  626. sums = list_entry(ordered_sums.next,
  627. struct btrfs_ordered_sum,
  628. list);
  629. if (!ret)
  630. ret = btrfs_csum_file_blocks(trans,
  631. root->fs_info->csum_root,
  632. sums);
  633. list_del(&sums->list);
  634. kfree(sums);
  635. }
  636. if (ret)
  637. goto out;
  638. } else {
  639. btrfs_release_path(path);
  640. }
  641. } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
  642. /* inline extents are easy, we just overwrite them */
  643. ret = overwrite_item(trans, root, path, eb, slot, key);
  644. if (ret)
  645. goto out;
  646. }
  647. inode_add_bytes(inode, nbytes);
  648. ret = btrfs_update_inode(trans, root, inode);
  649. out:
  650. if (inode)
  651. iput(inode);
  652. return ret;
  653. }
  654. /*
  655. * when cleaning up conflicts between the directory names in the
  656. * subvolume, directory names in the log and directory names in the
  657. * inode back references, we may have to unlink inodes from directories.
  658. *
  659. * This is a helper function to do the unlink of a specific directory
  660. * item
  661. */
  662. static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
  663. struct btrfs_root *root,
  664. struct btrfs_path *path,
  665. struct inode *dir,
  666. struct btrfs_dir_item *di)
  667. {
  668. struct inode *inode;
  669. char *name;
  670. int name_len;
  671. struct extent_buffer *leaf;
  672. struct btrfs_key location;
  673. int ret;
  674. leaf = path->nodes[0];
  675. btrfs_dir_item_key_to_cpu(leaf, di, &location);
  676. name_len = btrfs_dir_name_len(leaf, di);
  677. name = kmalloc(name_len, GFP_NOFS);
  678. if (!name)
  679. return -ENOMEM;
  680. read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
  681. btrfs_release_path(path);
  682. inode = read_one_inode(root, location.objectid);
  683. if (!inode) {
  684. ret = -EIO;
  685. goto out;
  686. }
  687. ret = link_to_fixup_dir(trans, root, path, location.objectid);
  688. if (ret)
  689. goto out;
  690. ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
  691. if (ret)
  692. goto out;
  693. else
  694. ret = btrfs_run_delayed_items(trans, root);
  695. out:
  696. kfree(name);
  697. iput(inode);
  698. return ret;
  699. }
  700. /*
  701. * helper function to see if a given name and sequence number found
  702. * in an inode back reference are already in a directory and correctly
  703. * point to this inode
  704. */
  705. static noinline int inode_in_dir(struct btrfs_root *root,
  706. struct btrfs_path *path,
  707. u64 dirid, u64 objectid, u64 index,
  708. const char *name, int name_len)
  709. {
  710. struct btrfs_dir_item *di;
  711. struct btrfs_key location;
  712. int match = 0;
  713. di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
  714. index, name, name_len, 0);
  715. if (di && !IS_ERR(di)) {
  716. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  717. if (location.objectid != objectid)
  718. goto out;
  719. } else
  720. goto out;
  721. btrfs_release_path(path);
  722. di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
  723. if (di && !IS_ERR(di)) {
  724. btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
  725. if (location.objectid != objectid)
  726. goto out;
  727. } else
  728. goto out;
  729. match = 1;
  730. out:
  731. btrfs_release_path(path);
  732. return match;
  733. }
  734. /*
  735. * helper function to check a log tree for a named back reference in
  736. * an inode. This is used to decide if a back reference that is
  737. * found in the subvolume conflicts with what we find in the log.
  738. *
  739. * inode backreferences may have multiple refs in a single item,
  740. * during replay we process one reference at a time, and we don't
  741. * want to delete valid links to a file from the subvolume if that
  742. * link is also in the log.
  743. */
  744. static noinline int backref_in_log(struct btrfs_root *log,
  745. struct btrfs_key *key,
  746. u64 ref_objectid,
  747. char *name, int namelen)
  748. {
  749. struct btrfs_path *path;
  750. struct btrfs_inode_ref *ref;
  751. unsigned long ptr;
  752. unsigned long ptr_end;
  753. unsigned long name_ptr;
  754. int found_name_len;
  755. int item_size;
  756. int ret;
  757. int match = 0;
  758. path = btrfs_alloc_path();
  759. if (!path)
  760. return -ENOMEM;
  761. ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
  762. if (ret != 0)
  763. goto out;
  764. ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
  765. if (key->type == BTRFS_INODE_EXTREF_KEY) {
  766. if (btrfs_find_name_in_ext_backref(path, ref_objectid,
  767. name, namelen, NULL))
  768. match = 1;
  769. goto out;
  770. }
  771. item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
  772. ptr_end = ptr + item_size;
  773. while (ptr < ptr_end) {
  774. ref = (struct btrfs_inode_ref *)ptr;
  775. found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
  776. if (found_name_len == namelen) {
  777. name_ptr = (unsigned long)(ref + 1);
  778. ret = memcmp_extent_buffer(path->nodes[0], name,
  779. name_ptr, namelen);
  780. if (ret == 0) {
  781. match = 1;
  782. goto out;
  783. }
  784. }
  785. ptr = (unsigned long)(ref + 1) + found_name_len;
  786. }
  787. out:
  788. btrfs_free_path(path);
  789. return match;
  790. }
  791. static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
  792. struct btrfs_root *root,
  793. struct btrfs_path *path,
  794. struct btrfs_root *log_root,
  795. struct inode *dir, struct inode *inode,
  796. struct extent_buffer *eb,
  797. u64 inode_objectid, u64 parent_objectid,
  798. u64 ref_index, char *name, int namelen,
  799. int *search_done)
  800. {
  801. int ret;
  802. char *victim_name;
  803. int victim_name_len;
  804. struct extent_buffer *leaf;
  805. struct btrfs_dir_item *di;
  806. struct btrfs_key search_key;
  807. struct btrfs_inode_extref *extref;
  808. again:
  809. /* Search old style refs */
  810. search_key.objectid = inode_objectid;
  811. search_key.type = BTRFS_INODE_REF_KEY;
  812. search_key.offset = parent_objectid;
  813. ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
  814. if (ret == 0) {
  815. struct btrfs_inode_ref *victim_ref;
  816. unsigned long ptr;
  817. unsigned long ptr_end;
  818. leaf = path->nodes[0];
  819. /* are we trying to overwrite a back ref for the root directory
  820. * if so, just jump out, we're done
  821. */
  822. if (search_key.objectid == search_key.offset)
  823. return 1;
  824. /* check all the names in this back reference to see
  825. * if they are in the log. if so, we allow them to stay
  826. * otherwise they must be unlinked as a conflict
  827. */
  828. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  829. ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
  830. while (ptr < ptr_end) {
  831. victim_ref = (struct btrfs_inode_ref *)ptr;
  832. victim_name_len = btrfs_inode_ref_name_len(leaf,
  833. victim_ref);
  834. victim_name = kmalloc(victim_name_len, GFP_NOFS);
  835. if (!victim_name)
  836. return -ENOMEM;
  837. read_extent_buffer(leaf, victim_name,
  838. (unsigned long)(victim_ref + 1),
  839. victim_name_len);
  840. if (!backref_in_log(log_root, &search_key,
  841. parent_objectid,
  842. victim_name,
  843. victim_name_len)) {
  844. inc_nlink(inode);
  845. btrfs_release_path(path);
  846. ret = btrfs_unlink_inode(trans, root, dir,
  847. inode, victim_name,
  848. victim_name_len);
  849. kfree(victim_name);
  850. if (ret)
  851. return ret;
  852. ret = btrfs_run_delayed_items(trans, root);
  853. if (ret)
  854. return ret;
  855. *search_done = 1;
  856. goto again;
  857. }
  858. kfree(victim_name);
  859. ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
  860. }
  861. /*
  862. * NOTE: we have searched root tree and checked the
  863. * coresponding ref, it does not need to check again.
  864. */
  865. *search_done = 1;
  866. }
  867. btrfs_release_path(path);
  868. /* Same search but for extended refs */
  869. extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
  870. inode_objectid, parent_objectid, 0,
  871. 0);
  872. if (!IS_ERR_OR_NULL(extref)) {
  873. u32 item_size;
  874. u32 cur_offset = 0;
  875. unsigned long base;
  876. struct inode *victim_parent;
  877. leaf = path->nodes[0];
  878. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  879. base = btrfs_item_ptr_offset(leaf, path->slots[0]);
  880. while (cur_offset < item_size) {
  881. extref = (struct btrfs_inode_extref *)base + cur_offset;
  882. victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
  883. if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
  884. goto next;
  885. victim_name = kmalloc(victim_name_len, GFP_NOFS);
  886. if (!victim_name)
  887. return -ENOMEM;
  888. read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
  889. victim_name_len);
  890. search_key.objectid = inode_objectid;
  891. search_key.type = BTRFS_INODE_EXTREF_KEY;
  892. search_key.offset = btrfs_extref_hash(parent_objectid,
  893. victim_name,
  894. victim_name_len);
  895. ret = 0;
  896. if (!backref_in_log(log_root, &search_key,
  897. parent_objectid, victim_name,
  898. victim_name_len)) {
  899. ret = -ENOENT;
  900. victim_parent = read_one_inode(root,
  901. parent_objectid);
  902. if (victim_parent) {
  903. inc_nlink(inode);
  904. btrfs_release_path(path);
  905. ret = btrfs_unlink_inode(trans, root,
  906. victim_parent,
  907. inode,
  908. victim_name,
  909. victim_name_len);
  910. if (!ret)
  911. ret = btrfs_run_delayed_items(
  912. trans, root);
  913. }
  914. iput(victim_parent);
  915. kfree(victim_name);
  916. if (ret)
  917. return ret;
  918. *search_done = 1;
  919. goto again;
  920. }
  921. kfree(victim_name);
  922. if (ret)
  923. return ret;
  924. next:
  925. cur_offset += victim_name_len + sizeof(*extref);
  926. }
  927. *search_done = 1;
  928. }
  929. btrfs_release_path(path);
  930. /* look for a conflicting sequence number */
  931. di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
  932. ref_index, name, namelen, 0);
  933. if (di && !IS_ERR(di)) {
  934. ret = drop_one_dir_item(trans, root, path, dir, di);
  935. if (ret)
  936. return ret;
  937. }
  938. btrfs_release_path(path);
  939. /* look for a conflicing name */
  940. di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
  941. name, namelen, 0);
  942. if (di && !IS_ERR(di)) {
  943. ret = drop_one_dir_item(trans, root, path, dir, di);
  944. if (ret)
  945. return ret;
  946. }
  947. btrfs_release_path(path);
  948. return 0;
  949. }
  950. static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
  951. u32 *namelen, char **name, u64 *index,
  952. u64 *parent_objectid)
  953. {
  954. struct btrfs_inode_extref *extref;
  955. extref = (struct btrfs_inode_extref *)ref_ptr;
  956. *namelen = btrfs_inode_extref_name_len(eb, extref);
  957. *name = kmalloc(*namelen, GFP_NOFS);
  958. if (*name == NULL)
  959. return -ENOMEM;
  960. read_extent_buffer(eb, *name, (unsigned long)&extref->name,
  961. *namelen);
  962. *index = btrfs_inode_extref_index(eb, extref);
  963. if (parent_objectid)
  964. *parent_objectid = btrfs_inode_extref_parent(eb, extref);
  965. return 0;
  966. }
  967. static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
  968. u32 *namelen, char **name, u64 *index)
  969. {
  970. struct btrfs_inode_ref *ref;
  971. ref = (struct btrfs_inode_ref *)ref_ptr;
  972. *namelen = btrfs_inode_ref_name_len(eb, ref);
  973. *name = kmalloc(*namelen, GFP_NOFS);
  974. if (*name == NULL)
  975. return -ENOMEM;
  976. read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
  977. *index = btrfs_inode_ref_index(eb, ref);
  978. return 0;
  979. }
  980. /*
  981. * replay one inode back reference item found in the log tree.
  982. * eb, slot and key refer to the buffer and key found in the log tree.
  983. * root is the destination we are replaying into, and path is for temp
  984. * use by this function. (it should be released on return).
  985. */
  986. static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
  987. struct btrfs_root *root,
  988. struct btrfs_root *log,
  989. struct btrfs_path *path,
  990. struct extent_buffer *eb, int slot,
  991. struct btrfs_key *key)
  992. {
  993. struct inode *dir = NULL;
  994. struct inode *inode = NULL;
  995. unsigned long ref_ptr;
  996. unsigned long ref_end;
  997. char *name = NULL;
  998. int namelen;
  999. int ret;
  1000. int search_done = 0;
  1001. int log_ref_ver = 0;
  1002. u64 parent_objectid;
  1003. u64 inode_objectid;
  1004. u64 ref_index = 0;
  1005. int ref_struct_size;
  1006. ref_ptr = btrfs_item_ptr_offset(eb, slot);
  1007. ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
  1008. if (key->type == BTRFS_INODE_EXTREF_KEY) {
  1009. struct btrfs_inode_extref *r;
  1010. ref_struct_size = sizeof(struct btrfs_inode_extref);
  1011. log_ref_ver = 1;
  1012. r = (struct btrfs_inode_extref *)ref_ptr;
  1013. parent_objectid = btrfs_inode_extref_parent(eb, r);
  1014. } else {
  1015. ref_struct_size = sizeof(struct btrfs_inode_ref);
  1016. parent_objectid = key->offset;
  1017. }
  1018. inode_objectid = key->objectid;
  1019. /*
  1020. * it is possible that we didn't log all the parent directories
  1021. * for a given inode. If we don't find the dir, just don't
  1022. * copy the back ref in. The link count fixup code will take
  1023. * care of the rest
  1024. */
  1025. dir = read_one_inode(root, parent_objectid);
  1026. if (!dir) {
  1027. ret = -ENOENT;
  1028. goto out;
  1029. }
  1030. inode = read_one_inode(root, inode_objectid);
  1031. if (!inode) {
  1032. ret = -EIO;
  1033. goto out;
  1034. }
  1035. while (ref_ptr < ref_end) {
  1036. if (log_ref_ver) {
  1037. ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
  1038. &ref_index, &parent_objectid);
  1039. /*
  1040. * parent object can change from one array
  1041. * item to another.
  1042. */
  1043. if (!dir)
  1044. dir = read_one_inode(root, parent_objectid);
  1045. if (!dir) {
  1046. ret = -ENOENT;
  1047. goto out;
  1048. }
  1049. } else {
  1050. ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
  1051. &ref_index);
  1052. }
  1053. if (ret)
  1054. goto out;
  1055. /* if we already have a perfect match, we're done */
  1056. if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
  1057. ref_index, name, namelen)) {
  1058. /*
  1059. * look for a conflicting back reference in the
  1060. * metadata. if we find one we have to unlink that name
  1061. * of the file before we add our new link. Later on, we
  1062. * overwrite any existing back reference, and we don't
  1063. * want to create dangling pointers in the directory.
  1064. */
  1065. if (!search_done) {
  1066. ret = __add_inode_ref(trans, root, path, log,
  1067. dir, inode, eb,
  1068. inode_objectid,
  1069. parent_objectid,
  1070. ref_index, name, namelen,
  1071. &search_done);
  1072. if (ret) {
  1073. if (ret == 1)
  1074. ret = 0;
  1075. goto out;
  1076. }
  1077. }
  1078. /* insert our name */
  1079. ret = btrfs_add_link(trans, dir, inode, name, namelen,
  1080. 0, ref_index);
  1081. if (ret)
  1082. goto out;
  1083. btrfs_update_inode(trans, root, inode);
  1084. }
  1085. ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
  1086. kfree(name);
  1087. name = NULL;
  1088. if (log_ref_ver) {
  1089. iput(dir);
  1090. dir = NULL;
  1091. }
  1092. }
  1093. /* finally write the back reference in the inode */
  1094. ret = overwrite_item(trans, root, path, eb, slot, key);
  1095. out:
  1096. btrfs_release_path(path);
  1097. kfree(name);
  1098. iput(dir);
  1099. iput(inode);
  1100. return ret;
  1101. }
  1102. static int insert_orphan_item(struct btrfs_trans_handle *trans,
  1103. struct btrfs_root *root, u64 offset)
  1104. {
  1105. int ret;
  1106. ret = btrfs_find_orphan_item(root, offset);
  1107. if (ret > 0)
  1108. ret = btrfs_insert_orphan_item(trans, root, offset);
  1109. return ret;
  1110. }
  1111. static int count_inode_extrefs(struct btrfs_root *root,
  1112. struct inode *inode, struct btrfs_path *path)
  1113. {
  1114. int ret = 0;
  1115. int name_len;
  1116. unsigned int nlink = 0;
  1117. u32 item_size;
  1118. u32 cur_offset = 0;
  1119. u64 inode_objectid = btrfs_ino(inode);
  1120. u64 offset = 0;
  1121. unsigned long ptr;
  1122. struct btrfs_inode_extref *extref;
  1123. struct extent_buffer *leaf;
  1124. while (1) {
  1125. ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
  1126. &extref, &offset);
  1127. if (ret)
  1128. break;
  1129. leaf = path->nodes[0];
  1130. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1131. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1132. while (cur_offset < item_size) {
  1133. extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
  1134. name_len = btrfs_inode_extref_name_len(leaf, extref);
  1135. nlink++;
  1136. cur_offset += name_len + sizeof(*extref);
  1137. }
  1138. offset++;
  1139. btrfs_release_path(path);
  1140. }
  1141. btrfs_release_path(path);
  1142. if (ret < 0)
  1143. return ret;
  1144. return nlink;
  1145. }
  1146. static int count_inode_refs(struct btrfs_root *root,
  1147. struct inode *inode, struct btrfs_path *path)
  1148. {
  1149. int ret;
  1150. struct btrfs_key key;
  1151. unsigned int nlink = 0;
  1152. unsigned long ptr;
  1153. unsigned long ptr_end;
  1154. int name_len;
  1155. u64 ino = btrfs_ino(inode);
  1156. key.objectid = ino;
  1157. key.type = BTRFS_INODE_REF_KEY;
  1158. key.offset = (u64)-1;
  1159. while (1) {
  1160. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1161. if (ret < 0)
  1162. break;
  1163. if (ret > 0) {
  1164. if (path->slots[0] == 0)
  1165. break;
  1166. path->slots[0]--;
  1167. }
  1168. process_slot:
  1169. btrfs_item_key_to_cpu(path->nodes[0], &key,
  1170. path->slots[0]);
  1171. if (key.objectid != ino ||
  1172. key.type != BTRFS_INODE_REF_KEY)
  1173. break;
  1174. ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
  1175. ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
  1176. path->slots[0]);
  1177. while (ptr < ptr_end) {
  1178. struct btrfs_inode_ref *ref;
  1179. ref = (struct btrfs_inode_ref *)ptr;
  1180. name_len = btrfs_inode_ref_name_len(path->nodes[0],
  1181. ref);
  1182. ptr = (unsigned long)(ref + 1) + name_len;
  1183. nlink++;
  1184. }
  1185. if (key.offset == 0)
  1186. break;
  1187. if (path->slots[0] > 0) {
  1188. path->slots[0]--;
  1189. goto process_slot;
  1190. }
  1191. key.offset--;
  1192. btrfs_release_path(path);
  1193. }
  1194. btrfs_release_path(path);
  1195. return nlink;
  1196. }
  1197. /*
  1198. * There are a few corners where the link count of the file can't
  1199. * be properly maintained during replay. So, instead of adding
  1200. * lots of complexity to the log code, we just scan the backrefs
  1201. * for any file that has been through replay.
  1202. *
  1203. * The scan will update the link count on the inode to reflect the
  1204. * number of back refs found. If it goes down to zero, the iput
  1205. * will free the inode.
  1206. */
  1207. static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
  1208. struct btrfs_root *root,
  1209. struct inode *inode)
  1210. {
  1211. struct btrfs_path *path;
  1212. int ret;
  1213. u64 nlink = 0;
  1214. u64 ino = btrfs_ino(inode);
  1215. path = btrfs_alloc_path();
  1216. if (!path)
  1217. return -ENOMEM;
  1218. ret = count_inode_refs(root, inode, path);
  1219. if (ret < 0)
  1220. goto out;
  1221. nlink = ret;
  1222. ret = count_inode_extrefs(root, inode, path);
  1223. if (ret == -ENOENT)
  1224. ret = 0;
  1225. if (ret < 0)
  1226. goto out;
  1227. nlink += ret;
  1228. ret = 0;
  1229. if (nlink != inode->i_nlink) {
  1230. set_nlink(inode, nlink);
  1231. btrfs_update_inode(trans, root, inode);
  1232. }
  1233. BTRFS_I(inode)->index_cnt = (u64)-1;
  1234. if (inode->i_nlink == 0) {
  1235. if (S_ISDIR(inode->i_mode)) {
  1236. ret = replay_dir_deletes(trans, root, NULL, path,
  1237. ino, 1);
  1238. if (ret)
  1239. goto out;
  1240. }
  1241. ret = insert_orphan_item(trans, root, ino);
  1242. }
  1243. out:
  1244. btrfs_free_path(path);
  1245. return ret;
  1246. }
  1247. static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
  1248. struct btrfs_root *root,
  1249. struct btrfs_path *path)
  1250. {
  1251. int ret;
  1252. struct btrfs_key key;
  1253. struct inode *inode;
  1254. key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
  1255. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1256. key.offset = (u64)-1;
  1257. while (1) {
  1258. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1259. if (ret < 0)
  1260. break;
  1261. if (ret == 1) {
  1262. if (path->slots[0] == 0)
  1263. break;
  1264. path->slots[0]--;
  1265. }
  1266. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  1267. if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
  1268. key.type != BTRFS_ORPHAN_ITEM_KEY)
  1269. break;
  1270. ret = btrfs_del_item(trans, root, path);
  1271. if (ret)
  1272. goto out;
  1273. btrfs_release_path(path);
  1274. inode = read_one_inode(root, key.offset);
  1275. if (!inode)
  1276. return -EIO;
  1277. ret = fixup_inode_link_count(trans, root, inode);
  1278. iput(inode);
  1279. if (ret)
  1280. goto out;
  1281. /*
  1282. * fixup on a directory may create new entries,
  1283. * make sure we always look for the highset possible
  1284. * offset
  1285. */
  1286. key.offset = (u64)-1;
  1287. }
  1288. ret = 0;
  1289. out:
  1290. btrfs_release_path(path);
  1291. return ret;
  1292. }
  1293. /*
  1294. * record a given inode in the fixup dir so we can check its link
  1295. * count when replay is done. The link count is incremented here
  1296. * so the inode won't go away until we check it
  1297. */
  1298. static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  1299. struct btrfs_root *root,
  1300. struct btrfs_path *path,
  1301. u64 objectid)
  1302. {
  1303. struct btrfs_key key;
  1304. int ret = 0;
  1305. struct inode *inode;
  1306. inode = read_one_inode(root, objectid);
  1307. if (!inode)
  1308. return -EIO;
  1309. key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
  1310. btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
  1311. key.offset = objectid;
  1312. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1313. btrfs_release_path(path);
  1314. if (ret == 0) {
  1315. if (!inode->i_nlink)
  1316. set_nlink(inode, 1);
  1317. else
  1318. inc_nlink(inode);
  1319. ret = btrfs_update_inode(trans, root, inode);
  1320. } else if (ret == -EEXIST) {
  1321. ret = 0;
  1322. } else {
  1323. BUG(); /* Logic Error */
  1324. }
  1325. iput(inode);
  1326. return ret;
  1327. }
  1328. /*
  1329. * when replaying the log for a directory, we only insert names
  1330. * for inodes that actually exist. This means an fsync on a directory
  1331. * does not implicitly fsync all the new files in it
  1332. */
  1333. static noinline int insert_one_name(struct btrfs_trans_handle *trans,
  1334. struct btrfs_root *root,
  1335. struct btrfs_path *path,
  1336. u64 dirid, u64 index,
  1337. char *name, int name_len, u8 type,
  1338. struct btrfs_key *location)
  1339. {
  1340. struct inode *inode;
  1341. struct inode *dir;
  1342. int ret;
  1343. inode = read_one_inode(root, location->objectid);
  1344. if (!inode)
  1345. return -ENOENT;
  1346. dir = read_one_inode(root, dirid);
  1347. if (!dir) {
  1348. iput(inode);
  1349. return -EIO;
  1350. }
  1351. ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
  1352. /* FIXME, put inode into FIXUP list */
  1353. iput(inode);
  1354. iput(dir);
  1355. return ret;
  1356. }
  1357. /*
  1358. * take a single entry in a log directory item and replay it into
  1359. * the subvolume.
  1360. *
  1361. * if a conflicting item exists in the subdirectory already,
  1362. * the inode it points to is unlinked and put into the link count
  1363. * fix up tree.
  1364. *
  1365. * If a name from the log points to a file or directory that does
  1366. * not exist in the FS, it is skipped. fsyncs on directories
  1367. * do not force down inodes inside that directory, just changes to the
  1368. * names or unlinks in a directory.
  1369. */
  1370. static noinline int replay_one_name(struct btrfs_trans_handle *trans,
  1371. struct btrfs_root *root,
  1372. struct btrfs_path *path,
  1373. struct extent_buffer *eb,
  1374. struct btrfs_dir_item *di,
  1375. struct btrfs_key *key)
  1376. {
  1377. char *name;
  1378. int name_len;
  1379. struct btrfs_dir_item *dst_di;
  1380. struct btrfs_key found_key;
  1381. struct btrfs_key log_key;
  1382. struct inode *dir;
  1383. u8 log_type;
  1384. int exists;
  1385. int ret = 0;
  1386. bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
  1387. dir = read_one_inode(root, key->objectid);
  1388. if (!dir)
  1389. return -EIO;
  1390. name_len = btrfs_dir_name_len(eb, di);
  1391. name = kmalloc(name_len, GFP_NOFS);
  1392. if (!name) {
  1393. ret = -ENOMEM;
  1394. goto out;
  1395. }
  1396. log_type = btrfs_dir_type(eb, di);
  1397. read_extent_buffer(eb, name, (unsigned long)(di + 1),
  1398. name_len);
  1399. btrfs_dir_item_key_to_cpu(eb, di, &log_key);
  1400. exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
  1401. if (exists == 0)
  1402. exists = 1;
  1403. else
  1404. exists = 0;
  1405. btrfs_release_path(path);
  1406. if (key->type == BTRFS_DIR_ITEM_KEY) {
  1407. dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
  1408. name, name_len, 1);
  1409. } else if (key->type == BTRFS_DIR_INDEX_KEY) {
  1410. dst_di = btrfs_lookup_dir_index_item(trans, root, path,
  1411. key->objectid,
  1412. key->offset, name,
  1413. name_len, 1);
  1414. } else {
  1415. /* Corruption */
  1416. ret = -EINVAL;
  1417. goto out;
  1418. }
  1419. if (IS_ERR_OR_NULL(dst_di)) {
  1420. /* we need a sequence number to insert, so we only
  1421. * do inserts for the BTRFS_DIR_INDEX_KEY types
  1422. */
  1423. if (key->type != BTRFS_DIR_INDEX_KEY)
  1424. goto out;
  1425. goto insert;
  1426. }
  1427. btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
  1428. /* the existing item matches the logged item */
  1429. if (found_key.objectid == log_key.objectid &&
  1430. found_key.type == log_key.type &&
  1431. found_key.offset == log_key.offset &&
  1432. btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
  1433. goto out;
  1434. }
  1435. /*
  1436. * don't drop the conflicting directory entry if the inode
  1437. * for the new entry doesn't exist
  1438. */
  1439. if (!exists)
  1440. goto out;
  1441. ret = drop_one_dir_item(trans, root, path, dir, dst_di);
  1442. if (ret)
  1443. goto out;
  1444. if (key->type == BTRFS_DIR_INDEX_KEY)
  1445. goto insert;
  1446. out:
  1447. btrfs_release_path(path);
  1448. if (!ret && update_size) {
  1449. btrfs_i_size_write(dir, dir->i_size + name_len * 2);
  1450. ret = btrfs_update_inode(trans, root, dir);
  1451. }
  1452. kfree(name);
  1453. iput(dir);
  1454. return ret;
  1455. insert:
  1456. btrfs_release_path(path);
  1457. ret = insert_one_name(trans, root, path, key->objectid, key->offset,
  1458. name, name_len, log_type, &log_key);
  1459. if (ret && ret != -ENOENT)
  1460. goto out;
  1461. update_size = false;
  1462. ret = 0;
  1463. goto out;
  1464. }
  1465. /*
  1466. * find all the names in a directory item and reconcile them into
  1467. * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
  1468. * one name in a directory item, but the same code gets used for
  1469. * both directory index types
  1470. */
  1471. static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
  1472. struct btrfs_root *root,
  1473. struct btrfs_path *path,
  1474. struct extent_buffer *eb, int slot,
  1475. struct btrfs_key *key)
  1476. {
  1477. int ret;
  1478. u32 item_size = btrfs_item_size_nr(eb, slot);
  1479. struct btrfs_dir_item *di;
  1480. int name_len;
  1481. unsigned long ptr;
  1482. unsigned long ptr_end;
  1483. ptr = btrfs_item_ptr_offset(eb, slot);
  1484. ptr_end = ptr + item_size;
  1485. while (ptr < ptr_end) {
  1486. di = (struct btrfs_dir_item *)ptr;
  1487. if (verify_dir_item(root, eb, di))
  1488. return -EIO;
  1489. name_len = btrfs_dir_name_len(eb, di);
  1490. ret = replay_one_name(trans, root, path, eb, di, key);
  1491. if (ret)
  1492. return ret;
  1493. ptr = (unsigned long)(di + 1);
  1494. ptr += name_len;
  1495. }
  1496. return 0;
  1497. }
  1498. /*
  1499. * directory replay has two parts. There are the standard directory
  1500. * items in the log copied from the subvolume, and range items
  1501. * created in the log while the subvolume was logged.
  1502. *
  1503. * The range items tell us which parts of the key space the log
  1504. * is authoritative for. During replay, if a key in the subvolume
  1505. * directory is in a logged range item, but not actually in the log
  1506. * that means it was deleted from the directory before the fsync
  1507. * and should be removed.
  1508. */
  1509. static noinline int find_dir_range(struct btrfs_root *root,
  1510. struct btrfs_path *path,
  1511. u64 dirid, int key_type,
  1512. u64 *start_ret, u64 *end_ret)
  1513. {
  1514. struct btrfs_key key;
  1515. u64 found_end;
  1516. struct btrfs_dir_log_item *item;
  1517. int ret;
  1518. int nritems;
  1519. if (*start_ret == (u64)-1)
  1520. return 1;
  1521. key.objectid = dirid;
  1522. key.type = key_type;
  1523. key.offset = *start_ret;
  1524. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1525. if (ret < 0)
  1526. goto out;
  1527. if (ret > 0) {
  1528. if (path->slots[0] == 0)
  1529. goto out;
  1530. path->slots[0]--;
  1531. }
  1532. if (ret != 0)
  1533. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  1534. if (key.type != key_type || key.objectid != dirid) {
  1535. ret = 1;
  1536. goto next;
  1537. }
  1538. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  1539. struct btrfs_dir_log_item);
  1540. found_end = btrfs_dir_log_end(path->nodes[0], item);
  1541. if (*start_ret >= key.offset && *start_ret <= found_end) {
  1542. ret = 0;
  1543. *start_ret = key.offset;
  1544. *end_ret = found_end;
  1545. goto out;
  1546. }
  1547. ret = 1;
  1548. next:
  1549. /* check the next slot in the tree to see if it is a valid item */
  1550. nritems = btrfs_header_nritems(path->nodes[0]);
  1551. if (path->slots[0] >= nritems) {
  1552. ret = btrfs_next_leaf(root, path);
  1553. if (ret)
  1554. goto out;
  1555. } else {
  1556. path->slots[0]++;
  1557. }
  1558. btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
  1559. if (key.type != key_type || key.objectid != dirid) {
  1560. ret = 1;
  1561. goto out;
  1562. }
  1563. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  1564. struct btrfs_dir_log_item);
  1565. found_end = btrfs_dir_log_end(path->nodes[0], item);
  1566. *start_ret = key.offset;
  1567. *end_ret = found_end;
  1568. ret = 0;
  1569. out:
  1570. btrfs_release_path(path);
  1571. return ret;
  1572. }
  1573. /*
  1574. * this looks for a given directory item in the log. If the directory
  1575. * item is not in the log, the item is removed and the inode it points
  1576. * to is unlinked
  1577. */
  1578. static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
  1579. struct btrfs_root *root,
  1580. struct btrfs_root *log,
  1581. struct btrfs_path *path,
  1582. struct btrfs_path *log_path,
  1583. struct inode *dir,
  1584. struct btrfs_key *dir_key)
  1585. {
  1586. int ret;
  1587. struct extent_buffer *eb;
  1588. int slot;
  1589. u32 item_size;
  1590. struct btrfs_dir_item *di;
  1591. struct btrfs_dir_item *log_di;
  1592. int name_len;
  1593. unsigned long ptr;
  1594. unsigned long ptr_end;
  1595. char *name;
  1596. struct inode *inode;
  1597. struct btrfs_key location;
  1598. again:
  1599. eb = path->nodes[0];
  1600. slot = path->slots[0];
  1601. item_size = btrfs_item_size_nr(eb, slot);
  1602. ptr = btrfs_item_ptr_offset(eb, slot);
  1603. ptr_end = ptr + item_size;
  1604. while (ptr < ptr_end) {
  1605. di = (struct btrfs_dir_item *)ptr;
  1606. if (verify_dir_item(root, eb, di)) {
  1607. ret = -EIO;
  1608. goto out;
  1609. }
  1610. name_len = btrfs_dir_name_len(eb, di);
  1611. name = kmalloc(name_len, GFP_NOFS);
  1612. if (!name) {
  1613. ret = -ENOMEM;
  1614. goto out;
  1615. }
  1616. read_extent_buffer(eb, name, (unsigned long)(di + 1),
  1617. name_len);
  1618. log_di = NULL;
  1619. if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
  1620. log_di = btrfs_lookup_dir_item(trans, log, log_path,
  1621. dir_key->objectid,
  1622. name, name_len, 0);
  1623. } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
  1624. log_di = btrfs_lookup_dir_index_item(trans, log,
  1625. log_path,
  1626. dir_key->objectid,
  1627. dir_key->offset,
  1628. name, name_len, 0);
  1629. }
  1630. if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
  1631. btrfs_dir_item_key_to_cpu(eb, di, &location);
  1632. btrfs_release_path(path);
  1633. btrfs_release_path(log_path);
  1634. inode = read_one_inode(root, location.objectid);
  1635. if (!inode) {
  1636. kfree(name);
  1637. return -EIO;
  1638. }
  1639. ret = link_to_fixup_dir(trans, root,
  1640. path, location.objectid);
  1641. if (ret) {
  1642. kfree(name);
  1643. iput(inode);
  1644. goto out;
  1645. }
  1646. inc_nlink(inode);
  1647. ret = btrfs_unlink_inode(trans, root, dir, inode,
  1648. name, name_len);
  1649. if (!ret)
  1650. ret = btrfs_run_delayed_items(trans, root);
  1651. kfree(name);
  1652. iput(inode);
  1653. if (ret)
  1654. goto out;
  1655. /* there might still be more names under this key
  1656. * check and repeat if required
  1657. */
  1658. ret = btrfs_search_slot(NULL, root, dir_key, path,
  1659. 0, 0);
  1660. if (ret == 0)
  1661. goto again;
  1662. ret = 0;
  1663. goto out;
  1664. } else if (IS_ERR(log_di)) {
  1665. kfree(name);
  1666. return PTR_ERR(log_di);
  1667. }
  1668. btrfs_release_path(log_path);
  1669. kfree(name);
  1670. ptr = (unsigned long)(di + 1);
  1671. ptr += name_len;
  1672. }
  1673. ret = 0;
  1674. out:
  1675. btrfs_release_path(path);
  1676. btrfs_release_path(log_path);
  1677. return ret;
  1678. }
  1679. /*
  1680. * deletion replay happens before we copy any new directory items
  1681. * out of the log or out of backreferences from inodes. It
  1682. * scans the log to find ranges of keys that log is authoritative for,
  1683. * and then scans the directory to find items in those ranges that are
  1684. * not present in the log.
  1685. *
  1686. * Anything we don't find in the log is unlinked and removed from the
  1687. * directory.
  1688. */
  1689. static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
  1690. struct btrfs_root *root,
  1691. struct btrfs_root *log,
  1692. struct btrfs_path *path,
  1693. u64 dirid, int del_all)
  1694. {
  1695. u64 range_start;
  1696. u64 range_end;
  1697. int key_type = BTRFS_DIR_LOG_ITEM_KEY;
  1698. int ret = 0;
  1699. struct btrfs_key dir_key;
  1700. struct btrfs_key found_key;
  1701. struct btrfs_path *log_path;
  1702. struct inode *dir;
  1703. dir_key.objectid = dirid;
  1704. dir_key.type = BTRFS_DIR_ITEM_KEY;
  1705. log_path = btrfs_alloc_path();
  1706. if (!log_path)
  1707. return -ENOMEM;
  1708. dir = read_one_inode(root, dirid);
  1709. /* it isn't an error if the inode isn't there, that can happen
  1710. * because we replay the deletes before we copy in the inode item
  1711. * from the log
  1712. */
  1713. if (!dir) {
  1714. btrfs_free_path(log_path);
  1715. return 0;
  1716. }
  1717. again:
  1718. range_start = 0;
  1719. range_end = 0;
  1720. while (1) {
  1721. if (del_all)
  1722. range_end = (u64)-1;
  1723. else {
  1724. ret = find_dir_range(log, path, dirid, key_type,
  1725. &range_start, &range_end);
  1726. if (ret != 0)
  1727. break;
  1728. }
  1729. dir_key.offset = range_start;
  1730. while (1) {
  1731. int nritems;
  1732. ret = btrfs_search_slot(NULL, root, &dir_key, path,
  1733. 0, 0);
  1734. if (ret < 0)
  1735. goto out;
  1736. nritems = btrfs_header_nritems(path->nodes[0]);
  1737. if (path->slots[0] >= nritems) {
  1738. ret = btrfs_next_leaf(root, path);
  1739. if (ret)
  1740. break;
  1741. }
  1742. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  1743. path->slots[0]);
  1744. if (found_key.objectid != dirid ||
  1745. found_key.type != dir_key.type)
  1746. goto next_type;
  1747. if (found_key.offset > range_end)
  1748. break;
  1749. ret = check_item_in_log(trans, root, log, path,
  1750. log_path, dir,
  1751. &found_key);
  1752. if (ret)
  1753. goto out;
  1754. if (found_key.offset == (u64)-1)
  1755. break;
  1756. dir_key.offset = found_key.offset + 1;
  1757. }
  1758. btrfs_release_path(path);
  1759. if (range_end == (u64)-1)
  1760. break;
  1761. range_start = range_end + 1;
  1762. }
  1763. next_type:
  1764. ret = 0;
  1765. if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
  1766. key_type = BTRFS_DIR_LOG_INDEX_KEY;
  1767. dir_key.type = BTRFS_DIR_INDEX_KEY;
  1768. btrfs_release_path(path);
  1769. goto again;
  1770. }
  1771. out:
  1772. btrfs_release_path(path);
  1773. btrfs_free_path(log_path);
  1774. iput(dir);
  1775. return ret;
  1776. }
  1777. /*
  1778. * the process_func used to replay items from the log tree. This
  1779. * gets called in two different stages. The first stage just looks
  1780. * for inodes and makes sure they are all copied into the subvolume.
  1781. *
  1782. * The second stage copies all the other item types from the log into
  1783. * the subvolume. The two stage approach is slower, but gets rid of
  1784. * lots of complexity around inodes referencing other inodes that exist
  1785. * only in the log (references come from either directory items or inode
  1786. * back refs).
  1787. */
  1788. static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
  1789. struct walk_control *wc, u64 gen)
  1790. {
  1791. int nritems;
  1792. struct btrfs_path *path;
  1793. struct btrfs_root *root = wc->replay_dest;
  1794. struct btrfs_key key;
  1795. int level;
  1796. int i;
  1797. int ret;
  1798. ret = btrfs_read_buffer(eb, gen);
  1799. if (ret)
  1800. return ret;
  1801. level = btrfs_header_level(eb);
  1802. if (level != 0)
  1803. return 0;
  1804. path = btrfs_alloc_path();
  1805. if (!path)
  1806. return -ENOMEM;
  1807. nritems = btrfs_header_nritems(eb);
  1808. for (i = 0; i < nritems; i++) {
  1809. btrfs_item_key_to_cpu(eb, &key, i);
  1810. /* inode keys are done during the first stage */
  1811. if (key.type == BTRFS_INODE_ITEM_KEY &&
  1812. wc->stage == LOG_WALK_REPLAY_INODES) {
  1813. struct btrfs_inode_item *inode_item;
  1814. u32 mode;
  1815. inode_item = btrfs_item_ptr(eb, i,
  1816. struct btrfs_inode_item);
  1817. mode = btrfs_inode_mode(eb, inode_item);
  1818. if (S_ISDIR(mode)) {
  1819. ret = replay_dir_deletes(wc->trans,
  1820. root, log, path, key.objectid, 0);
  1821. if (ret)
  1822. break;
  1823. }
  1824. ret = overwrite_item(wc->trans, root, path,
  1825. eb, i, &key);
  1826. if (ret)
  1827. break;
  1828. /* for regular files, make sure corresponding
  1829. * orhpan item exist. extents past the new EOF
  1830. * will be truncated later by orphan cleanup.
  1831. */
  1832. if (S_ISREG(mode)) {
  1833. ret = insert_orphan_item(wc->trans, root,
  1834. key.objectid);
  1835. if (ret)
  1836. break;
  1837. }
  1838. ret = link_to_fixup_dir(wc->trans, root,
  1839. path, key.objectid);
  1840. if (ret)
  1841. break;
  1842. }
  1843. if (key.type == BTRFS_DIR_INDEX_KEY &&
  1844. wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
  1845. ret = replay_one_dir_item(wc->trans, root, path,
  1846. eb, i, &key);
  1847. if (ret)
  1848. break;
  1849. }
  1850. if (wc->stage < LOG_WALK_REPLAY_ALL)
  1851. continue;
  1852. /* these keys are simply copied */
  1853. if (key.type == BTRFS_XATTR_ITEM_KEY) {
  1854. ret = overwrite_item(wc->trans, root, path,
  1855. eb, i, &key);
  1856. if (ret)
  1857. break;
  1858. } else if (key.type == BTRFS_INODE_REF_KEY ||
  1859. key.type == BTRFS_INODE_EXTREF_KEY) {
  1860. ret = add_inode_ref(wc->trans, root, log, path,
  1861. eb, i, &key);
  1862. if (ret && ret != -ENOENT)
  1863. break;
  1864. ret = 0;
  1865. } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
  1866. ret = replay_one_extent(wc->trans, root, path,
  1867. eb, i, &key);
  1868. if (ret)
  1869. break;
  1870. } else if (key.type == BTRFS_DIR_ITEM_KEY) {
  1871. ret = replay_one_dir_item(wc->trans, root, path,
  1872. eb, i, &key);
  1873. if (ret)
  1874. break;
  1875. }
  1876. }
  1877. btrfs_free_path(path);
  1878. return ret;
  1879. }
  1880. static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
  1881. struct btrfs_root *root,
  1882. struct btrfs_path *path, int *level,
  1883. struct walk_control *wc)
  1884. {
  1885. u64 root_owner;
  1886. u64 bytenr;
  1887. u64 ptr_gen;
  1888. struct extent_buffer *next;
  1889. struct extent_buffer *cur;
  1890. struct extent_buffer *parent;
  1891. u32 blocksize;
  1892. int ret = 0;
  1893. WARN_ON(*level < 0);
  1894. WARN_ON(*level >= BTRFS_MAX_LEVEL);
  1895. while (*level > 0) {
  1896. WARN_ON(*level < 0);
  1897. WARN_ON(*level >= BTRFS_MAX_LEVEL);
  1898. cur = path->nodes[*level];
  1899. WARN_ON(btrfs_header_level(cur) != *level);
  1900. if (path->slots[*level] >=
  1901. btrfs_header_nritems(cur))
  1902. break;
  1903. bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
  1904. ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
  1905. blocksize = btrfs_level_size(root, *level - 1);
  1906. parent = path->nodes[*level];
  1907. root_owner = btrfs_header_owner(parent);
  1908. next = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1909. if (!next)
  1910. return -ENOMEM;
  1911. if (*level == 1) {
  1912. ret = wc->process_func(root, next, wc, ptr_gen);
  1913. if (ret) {
  1914. free_extent_buffer(next);
  1915. return ret;
  1916. }
  1917. path->slots[*level]++;
  1918. if (wc->free) {
  1919. ret = btrfs_read_buffer(next, ptr_gen);
  1920. if (ret) {
  1921. free_extent_buffer(next);
  1922. return ret;
  1923. }
  1924. if (trans) {
  1925. btrfs_tree_lock(next);
  1926. btrfs_set_lock_blocking(next);
  1927. clean_tree_block(trans, root, next);
  1928. btrfs_wait_tree_block_writeback(next);
  1929. btrfs_tree_unlock(next);
  1930. }
  1931. WARN_ON(root_owner !=
  1932. BTRFS_TREE_LOG_OBJECTID);
  1933. ret = btrfs_free_and_pin_reserved_extent(root,
  1934. bytenr, blocksize);
  1935. if (ret) {
  1936. free_extent_buffer(next);
  1937. return ret;
  1938. }
  1939. }
  1940. free_extent_buffer(next);
  1941. continue;
  1942. }
  1943. ret = btrfs_read_buffer(next, ptr_gen);
  1944. if (ret) {
  1945. free_extent_buffer(next);
  1946. return ret;
  1947. }
  1948. WARN_ON(*level <= 0);
  1949. if (path->nodes[*level-1])
  1950. free_extent_buffer(path->nodes[*level-1]);
  1951. path->nodes[*level-1] = next;
  1952. *level = btrfs_header_level(next);
  1953. path->slots[*level] = 0;
  1954. cond_resched();
  1955. }
  1956. WARN_ON(*level < 0);
  1957. WARN_ON(*level >= BTRFS_MAX_LEVEL);
  1958. path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
  1959. cond_resched();
  1960. return 0;
  1961. }
  1962. static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
  1963. struct btrfs_root *root,
  1964. struct btrfs_path *path, int *level,
  1965. struct walk_control *wc)
  1966. {
  1967. u64 root_owner;
  1968. int i;
  1969. int slot;
  1970. int ret;
  1971. for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
  1972. slot = path->slots[i];
  1973. if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
  1974. path->slots[i]++;
  1975. *level = i;
  1976. WARN_ON(*level == 0);
  1977. return 0;
  1978. } else {
  1979. struct extent_buffer *parent;
  1980. if (path->nodes[*level] == root->node)
  1981. parent = path->nodes[*level];
  1982. else
  1983. parent = path->nodes[*level + 1];
  1984. root_owner = btrfs_header_owner(parent);
  1985. ret = wc->process_func(root, path->nodes[*level], wc,
  1986. btrfs_header_generation(path->nodes[*level]));
  1987. if (ret)
  1988. return ret;
  1989. if (wc->free) {
  1990. struct extent_buffer *next;
  1991. next = path->nodes[*level];
  1992. if (trans) {
  1993. btrfs_tree_lock(next);
  1994. btrfs_set_lock_blocking(next);
  1995. clean_tree_block(trans, root, next);
  1996. btrfs_wait_tree_block_writeback(next);
  1997. btrfs_tree_unlock(next);
  1998. }
  1999. WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
  2000. ret = btrfs_free_and_pin_reserved_extent(root,
  2001. path->nodes[*level]->start,
  2002. path->nodes[*level]->len);
  2003. if (ret)
  2004. return ret;
  2005. }
  2006. free_extent_buffer(path->nodes[*level]);
  2007. path->nodes[*level] = NULL;
  2008. *level = i + 1;
  2009. }
  2010. }
  2011. return 1;
  2012. }
  2013. /*
  2014. * drop the reference count on the tree rooted at 'snap'. This traverses
  2015. * the tree freeing any blocks that have a ref count of zero after being
  2016. * decremented.
  2017. */
  2018. static int walk_log_tree(struct btrfs_trans_handle *trans,
  2019. struct btrfs_root *log, struct walk_control *wc)
  2020. {
  2021. int ret = 0;
  2022. int wret;
  2023. int level;
  2024. struct btrfs_path *path;
  2025. int orig_level;
  2026. path = btrfs_alloc_path();
  2027. if (!path)
  2028. return -ENOMEM;
  2029. level = btrfs_header_level(log->node);
  2030. orig_level = level;
  2031. path->nodes[level] = log->node;
  2032. extent_buffer_get(log->node);
  2033. path->slots[level] = 0;
  2034. while (1) {
  2035. wret = walk_down_log_tree(trans, log, path, &level, wc);
  2036. if (wret > 0)
  2037. break;
  2038. if (wret < 0) {
  2039. ret = wret;
  2040. goto out;
  2041. }
  2042. wret = walk_up_log_tree(trans, log, path, &level, wc);
  2043. if (wret > 0)
  2044. break;
  2045. if (wret < 0) {
  2046. ret = wret;
  2047. goto out;
  2048. }
  2049. }
  2050. /* was the root node processed? if not, catch it here */
  2051. if (path->nodes[orig_level]) {
  2052. ret = wc->process_func(log, path->nodes[orig_level], wc,
  2053. btrfs_header_generation(path->nodes[orig_level]));
  2054. if (ret)
  2055. goto out;
  2056. if (wc->free) {
  2057. struct extent_buffer *next;
  2058. next = path->nodes[orig_level];
  2059. if (trans) {
  2060. btrfs_tree_lock(next);
  2061. btrfs_set_lock_blocking(next);
  2062. clean_tree_block(trans, log, next);
  2063. btrfs_wait_tree_block_writeback(next);
  2064. btrfs_tree_unlock(next);
  2065. }
  2066. WARN_ON(log->root_key.objectid !=
  2067. BTRFS_TREE_LOG_OBJECTID);
  2068. ret = btrfs_free_and_pin_reserved_extent(log, next->start,
  2069. next->len);
  2070. if (ret)
  2071. goto out;
  2072. }
  2073. }
  2074. out:
  2075. btrfs_free_path(path);
  2076. return ret;
  2077. }
  2078. /*
  2079. * helper function to update the item for a given subvolumes log root
  2080. * in the tree of log roots
  2081. */
  2082. static int update_log_root(struct btrfs_trans_handle *trans,
  2083. struct btrfs_root *log)
  2084. {
  2085. int ret;
  2086. if (log->log_transid == 1) {
  2087. /* insert root item on the first sync */
  2088. ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
  2089. &log->root_key, &log->root_item);
  2090. } else {
  2091. ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
  2092. &log->root_key, &log->root_item);
  2093. }
  2094. return ret;
  2095. }
  2096. static int wait_log_commit(struct btrfs_trans_handle *trans,
  2097. struct btrfs_root *root, unsigned long transid)
  2098. {
  2099. DEFINE_WAIT(wait);
  2100. int index = transid % 2;
  2101. /*
  2102. * we only allow two pending log transactions at a time,
  2103. * so we know that if ours is more than 2 older than the
  2104. * current transaction, we're done
  2105. */
  2106. do {
  2107. prepare_to_wait(&root->log_commit_wait[index],
  2108. &wait, TASK_UNINTERRUPTIBLE);
  2109. mutex_unlock(&root->log_mutex);
  2110. if (root->fs_info->last_trans_log_full_commit !=
  2111. trans->transid && root->log_transid < transid + 2 &&
  2112. atomic_read(&root->log_commit[index]))
  2113. schedule();
  2114. finish_wait(&root->log_commit_wait[index], &wait);
  2115. mutex_lock(&root->log_mutex);
  2116. } while (root->fs_info->last_trans_log_full_commit !=
  2117. trans->transid && root->log_transid < transid + 2 &&
  2118. atomic_read(&root->log_commit[index]));
  2119. return 0;
  2120. }
  2121. static void wait_for_writer(struct btrfs_trans_handle *trans,
  2122. struct btrfs_root *root)
  2123. {
  2124. DEFINE_WAIT(wait);
  2125. while (root->fs_info->last_trans_log_full_commit !=
  2126. trans->transid && atomic_read(&root->log_writers)) {
  2127. prepare_to_wait(&root->log_writer_wait,
  2128. &wait, TASK_UNINTERRUPTIBLE);
  2129. mutex_unlock(&root->log_mutex);
  2130. if (root->fs_info->last_trans_log_full_commit !=
  2131. trans->transid && atomic_read(&root->log_writers))
  2132. schedule();
  2133. mutex_lock(&root->log_mutex);
  2134. finish_wait(&root->log_writer_wait, &wait);
  2135. }
  2136. }
  2137. /*
  2138. * btrfs_sync_log does sends a given tree log down to the disk and
  2139. * updates the super blocks to record it. When this call is done,
  2140. * you know that any inodes previously logged are safely on disk only
  2141. * if it returns 0.
  2142. *
  2143. * Any other return value means you need to call btrfs_commit_transaction.
  2144. * Some of the edge cases for fsyncing directories that have had unlinks
  2145. * or renames done in the past mean that sometimes the only safe
  2146. * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
  2147. * that has happened.
  2148. */
  2149. int btrfs_sync_log(struct btrfs_trans_handle *trans,
  2150. struct btrfs_root *root)
  2151. {
  2152. int index1;
  2153. int index2;
  2154. int mark;
  2155. int ret;
  2156. struct btrfs_root *log = root->log_root;
  2157. struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
  2158. unsigned long log_transid = 0;
  2159. struct blk_plug plug;
  2160. mutex_lock(&root->log_mutex);
  2161. log_transid = root->log_transid;
  2162. index1 = root->log_transid % 2;
  2163. if (atomic_read(&root->log_commit[index1])) {
  2164. wait_log_commit(trans, root, root->log_transid);
  2165. mutex_unlock(&root->log_mutex);
  2166. return 0;
  2167. }
  2168. atomic_set(&root->log_commit[index1], 1);
  2169. /* wait for previous tree log sync to complete */
  2170. if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
  2171. wait_log_commit(trans, root, root->log_transid - 1);
  2172. while (1) {
  2173. int batch = atomic_read(&root->log_batch);
  2174. /* when we're on an ssd, just kick the log commit out */
  2175. if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
  2176. mutex_unlock(&root->log_mutex);
  2177. schedule_timeout_uninterruptible(1);
  2178. mutex_lock(&root->log_mutex);
  2179. }
  2180. wait_for_writer(trans, root);
  2181. if (batch == atomic_read(&root->log_batch))
  2182. break;
  2183. }
  2184. /* bail out if we need to do a full commit */
  2185. if (root->fs_info->last_trans_log_full_commit == trans->transid) {
  2186. ret = -EAGAIN;
  2187. btrfs_free_logged_extents(log, log_transid);
  2188. mutex_unlock(&root->log_mutex);
  2189. goto out;
  2190. }
  2191. if (log_transid % 2 == 0)
  2192. mark = EXTENT_DIRTY;
  2193. else
  2194. mark = EXTENT_NEW;
  2195. /* we start IO on all the marked extents here, but we don't actually
  2196. * wait for them until later.
  2197. */
  2198. blk_start_plug(&plug);
  2199. ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
  2200. if (ret) {
  2201. blk_finish_plug(&plug);
  2202. btrfs_abort_transaction(trans, root, ret);
  2203. btrfs_free_logged_extents(log, log_transid);
  2204. mutex_unlock(&root->log_mutex);
  2205. goto out;
  2206. }
  2207. btrfs_set_root_node(&log->root_item, log->node);
  2208. root->log_transid++;
  2209. log->log_transid = root->log_transid;
  2210. root->log_start_pid = 0;
  2211. smp_mb();
  2212. /*
  2213. * IO has been started, blocks of the log tree have WRITTEN flag set
  2214. * in their headers. new modifications of the log will be written to
  2215. * new positions. so it's safe to allow log writers to go in.
  2216. */
  2217. mutex_unlock(&root->log_mutex);
  2218. mutex_lock(&log_root_tree->log_mutex);
  2219. atomic_inc(&log_root_tree->log_batch);
  2220. atomic_inc(&log_root_tree->log_writers);
  2221. mutex_unlock(&log_root_tree->log_mutex);
  2222. ret = update_log_root(trans, log);
  2223. mutex_lock(&log_root_tree->log_mutex);
  2224. if (atomic_dec_and_test(&log_root_tree->log_writers)) {
  2225. smp_mb();
  2226. if (waitqueue_active(&log_root_tree->log_writer_wait))
  2227. wake_up(&log_root_tree->log_writer_wait);
  2228. }
  2229. if (ret) {
  2230. blk_finish_plug(&plug);
  2231. if (ret != -ENOSPC) {
  2232. btrfs_abort_transaction(trans, root, ret);
  2233. mutex_unlock(&log_root_tree->log_mutex);
  2234. goto out;
  2235. }
  2236. root->fs_info->last_trans_log_full_commit = trans->transid;
  2237. btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
  2238. btrfs_free_logged_extents(log, log_transid);
  2239. mutex_unlock(&log_root_tree->log_mutex);
  2240. ret = -EAGAIN;
  2241. goto out;
  2242. }
  2243. index2 = log_root_tree->log_transid % 2;
  2244. if (atomic_read(&log_root_tree->log_commit[index2])) {
  2245. blk_finish_plug(&plug);
  2246. btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
  2247. wait_log_commit(trans, log_root_tree,
  2248. log_root_tree->log_transid);
  2249. btrfs_free_logged_extents(log, log_transid);
  2250. mutex_unlock(&log_root_tree->log_mutex);
  2251. ret = 0;
  2252. goto out;
  2253. }
  2254. atomic_set(&log_root_tree->log_commit[index2], 1);
  2255. if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
  2256. wait_log_commit(trans, log_root_tree,
  2257. log_root_tree->log_transid - 1);
  2258. }
  2259. wait_for_writer(trans, log_root_tree);
  2260. /*
  2261. * now that we've moved on to the tree of log tree roots,
  2262. * check the full commit flag again
  2263. */
  2264. if (root->fs_info->last_trans_log_full_commit == trans->transid) {
  2265. blk_finish_plug(&plug);
  2266. btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
  2267. btrfs_free_logged_extents(log, log_transid);
  2268. mutex_unlock(&log_root_tree->log_mutex);
  2269. ret = -EAGAIN;
  2270. goto out_wake_log_root;
  2271. }
  2272. ret = btrfs_write_marked_extents(log_root_tree,
  2273. &log_root_tree->dirty_log_pages,
  2274. EXTENT_DIRTY | EXTENT_NEW);
  2275. blk_finish_plug(&plug);
  2276. if (ret) {
  2277. btrfs_abort_transaction(trans, root, ret);
  2278. btrfs_free_logged_extents(log, log_transid);
  2279. mutex_unlock(&log_root_tree->log_mutex);
  2280. goto out_wake_log_root;
  2281. }
  2282. btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
  2283. btrfs_wait_marked_extents(log_root_tree,
  2284. &log_root_tree->dirty_log_pages,
  2285. EXTENT_NEW | EXTENT_DIRTY);
  2286. btrfs_wait_logged_extents(log, log_transid);
  2287. btrfs_set_super_log_root(root->fs_info->super_for_commit,
  2288. log_root_tree->node->start);
  2289. btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
  2290. btrfs_header_level(log_root_tree->node));
  2291. log_root_tree->log_transid++;
  2292. smp_mb();
  2293. mutex_unlock(&log_root_tree->log_mutex);
  2294. /*
  2295. * nobody else is going to jump in and write the the ctree
  2296. * super here because the log_commit atomic below is protecting
  2297. * us. We must be called with a transaction handle pinning
  2298. * the running transaction open, so a full commit can't hop
  2299. * in and cause problems either.
  2300. */
  2301. ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
  2302. if (ret) {
  2303. btrfs_abort_transaction(trans, root, ret);
  2304. goto out_wake_log_root;
  2305. }
  2306. mutex_lock(&root->log_mutex);
  2307. if (root->last_log_commit < log_transid)
  2308. root->last_log_commit = log_transid;
  2309. mutex_unlock(&root->log_mutex);
  2310. out_wake_log_root:
  2311. atomic_set(&log_root_tree->log_commit[index2], 0);
  2312. smp_mb();
  2313. if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
  2314. wake_up(&log_root_tree->log_commit_wait[index2]);
  2315. out:
  2316. atomic_set(&root->log_commit[index1], 0);
  2317. smp_mb();
  2318. if (waitqueue_active(&root->log_commit_wait[index1]))
  2319. wake_up(&root->log_commit_wait[index1]);
  2320. return ret;
  2321. }
  2322. static void free_log_tree(struct btrfs_trans_handle *trans,
  2323. struct btrfs_root *log)
  2324. {
  2325. int ret;
  2326. u64 start;
  2327. u64 end;
  2328. struct walk_control wc = {
  2329. .free = 1,
  2330. .process_func = process_one_buffer
  2331. };
  2332. ret = walk_log_tree(trans, log, &wc);
  2333. /* I don't think this can happen but just in case */
  2334. if (ret)
  2335. btrfs_abort_transaction(trans, log, ret);
  2336. while (1) {
  2337. ret = find_first_extent_bit(&log->dirty_log_pages,
  2338. 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
  2339. NULL);
  2340. if (ret)
  2341. break;
  2342. clear_extent_bits(&log->dirty_log_pages, start, end,
  2343. EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
  2344. }
  2345. /*
  2346. * We may have short-circuited the log tree with the full commit logic
  2347. * and left ordered extents on our list, so clear these out to keep us
  2348. * from leaking inodes and memory.
  2349. */
  2350. btrfs_free_logged_extents(log, 0);
  2351. btrfs_free_logged_extents(log, 1);
  2352. free_extent_buffer(log->node);
  2353. kfree(log);
  2354. }
  2355. /*
  2356. * free all the extents used by the tree log. This should be called
  2357. * at commit time of the full transaction
  2358. */
  2359. int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
  2360. {
  2361. if (root->log_root) {
  2362. free_log_tree(trans, root->log_root);
  2363. root->log_root = NULL;
  2364. }
  2365. return 0;
  2366. }
  2367. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  2368. struct btrfs_fs_info *fs_info)
  2369. {
  2370. if (fs_info->log_root_tree) {
  2371. free_log_tree(trans, fs_info->log_root_tree);
  2372. fs_info->log_root_tree = NULL;
  2373. }
  2374. return 0;
  2375. }
  2376. /*
  2377. * If both a file and directory are logged, and unlinks or renames are
  2378. * mixed in, we have a few interesting corners:
  2379. *
  2380. * create file X in dir Y
  2381. * link file X to X.link in dir Y
  2382. * fsync file X
  2383. * unlink file X but leave X.link
  2384. * fsync dir Y
  2385. *
  2386. * After a crash we would expect only X.link to exist. But file X
  2387. * didn't get fsync'd again so the log has back refs for X and X.link.
  2388. *
  2389. * We solve this by removing directory entries and inode backrefs from the
  2390. * log when a file that was logged in the current transaction is
  2391. * unlinked. Any later fsync will include the updated log entries, and
  2392. * we'll be able to reconstruct the proper directory items from backrefs.
  2393. *
  2394. * This optimizations allows us to avoid relogging the entire inode
  2395. * or the entire directory.
  2396. */
  2397. int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
  2398. struct btrfs_root *root,
  2399. const char *name, int name_len,
  2400. struct inode *dir, u64 index)
  2401. {
  2402. struct btrfs_root *log;
  2403. struct btrfs_dir_item *di;
  2404. struct btrfs_path *path;
  2405. int ret;
  2406. int err = 0;
  2407. int bytes_del = 0;
  2408. u64 dir_ino = btrfs_ino(dir);
  2409. if (BTRFS_I(dir)->logged_trans < trans->transid)
  2410. return 0;
  2411. ret = join_running_log_trans(root);
  2412. if (ret)
  2413. return 0;
  2414. mutex_lock(&BTRFS_I(dir)->log_mutex);
  2415. log = root->log_root;
  2416. path = btrfs_alloc_path();
  2417. if (!path) {
  2418. err = -ENOMEM;
  2419. goto out_unlock;
  2420. }
  2421. di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
  2422. name, name_len, -1);
  2423. if (IS_ERR(di)) {
  2424. err = PTR_ERR(di);
  2425. goto fail;
  2426. }
  2427. if (di) {
  2428. ret = btrfs_delete_one_dir_name(trans, log, path, di);
  2429. bytes_del += name_len;
  2430. if (ret) {
  2431. err = ret;
  2432. goto fail;
  2433. }
  2434. }
  2435. btrfs_release_path(path);
  2436. di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
  2437. index, name, name_len, -1);
  2438. if (IS_ERR(di)) {
  2439. err = PTR_ERR(di);
  2440. goto fail;
  2441. }
  2442. if (di) {
  2443. ret = btrfs_delete_one_dir_name(trans, log, path, di);
  2444. bytes_del += name_len;
  2445. if (ret) {
  2446. err = ret;
  2447. goto fail;
  2448. }
  2449. }
  2450. /* update the directory size in the log to reflect the names
  2451. * we have removed
  2452. */
  2453. if (bytes_del) {
  2454. struct btrfs_key key;
  2455. key.objectid = dir_ino;
  2456. key.offset = 0;
  2457. key.type = BTRFS_INODE_ITEM_KEY;
  2458. btrfs_release_path(path);
  2459. ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
  2460. if (ret < 0) {
  2461. err = ret;
  2462. goto fail;
  2463. }
  2464. if (ret == 0) {
  2465. struct btrfs_inode_item *item;
  2466. u64 i_size;
  2467. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2468. struct btrfs_inode_item);
  2469. i_size = btrfs_inode_size(path->nodes[0], item);
  2470. if (i_size > bytes_del)
  2471. i_size -= bytes_del;
  2472. else
  2473. i_size = 0;
  2474. btrfs_set_inode_size(path->nodes[0], item, i_size);
  2475. btrfs_mark_buffer_dirty(path->nodes[0]);
  2476. } else
  2477. ret = 0;
  2478. btrfs_release_path(path);
  2479. }
  2480. fail:
  2481. btrfs_free_path(path);
  2482. out_unlock:
  2483. mutex_unlock(&BTRFS_I(dir)->log_mutex);
  2484. if (ret == -ENOSPC) {
  2485. root->fs_info->last_trans_log_full_commit = trans->transid;
  2486. ret = 0;
  2487. } else if (ret < 0)
  2488. btrfs_abort_transaction(trans, root, ret);
  2489. btrfs_end_log_trans(root);
  2490. return err;
  2491. }
  2492. /* see comments for btrfs_del_dir_entries_in_log */
  2493. int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
  2494. struct btrfs_root *root,
  2495. const char *name, int name_len,
  2496. struct inode *inode, u64 dirid)
  2497. {
  2498. struct btrfs_root *log;
  2499. u64 index;
  2500. int ret;
  2501. if (BTRFS_I(inode)->logged_trans < trans->transid)
  2502. return 0;
  2503. ret = join_running_log_trans(root);
  2504. if (ret)
  2505. return 0;
  2506. log = root->log_root;
  2507. mutex_lock(&BTRFS_I(inode)->log_mutex);
  2508. ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
  2509. dirid, &index);
  2510. mutex_unlock(&BTRFS_I(inode)->log_mutex);
  2511. if (ret == -ENOSPC) {
  2512. root->fs_info->last_trans_log_full_commit = trans->transid;
  2513. ret = 0;
  2514. } else if (ret < 0 && ret != -ENOENT)
  2515. btrfs_abort_transaction(trans, root, ret);
  2516. btrfs_end_log_trans(root);
  2517. return ret;
  2518. }
  2519. /*
  2520. * creates a range item in the log for 'dirid'. first_offset and
  2521. * last_offset tell us which parts of the key space the log should
  2522. * be considered authoritative for.
  2523. */
  2524. static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
  2525. struct btrfs_root *log,
  2526. struct btrfs_path *path,
  2527. int key_type, u64 dirid,
  2528. u64 first_offset, u64 last_offset)
  2529. {
  2530. int ret;
  2531. struct btrfs_key key;
  2532. struct btrfs_dir_log_item *item;
  2533. key.objectid = dirid;
  2534. key.offset = first_offset;
  2535. if (key_type == BTRFS_DIR_ITEM_KEY)
  2536. key.type = BTRFS_DIR_LOG_ITEM_KEY;
  2537. else
  2538. key.type = BTRFS_DIR_LOG_INDEX_KEY;
  2539. ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
  2540. if (ret)
  2541. return ret;
  2542. item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2543. struct btrfs_dir_log_item);
  2544. btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
  2545. btrfs_mark_buffer_dirty(path->nodes[0]);
  2546. btrfs_release_path(path);
  2547. return 0;
  2548. }
  2549. /*
  2550. * log all the items included in the current transaction for a given
  2551. * directory. This also creates the range items in the log tree required
  2552. * to replay anything deleted before the fsync
  2553. */
  2554. static noinline int log_dir_items(struct btrfs_trans_handle *trans,
  2555. struct btrfs_root *root, struct inode *inode,
  2556. struct btrfs_path *path,
  2557. struct btrfs_path *dst_path, int key_type,
  2558. u64 min_offset, u64 *last_offset_ret)
  2559. {
  2560. struct btrfs_key min_key;
  2561. struct btrfs_root *log = root->log_root;
  2562. struct extent_buffer *src;
  2563. int err = 0;
  2564. int ret;
  2565. int i;
  2566. int nritems;
  2567. u64 first_offset = min_offset;
  2568. u64 last_offset = (u64)-1;
  2569. u64 ino = btrfs_ino(inode);
  2570. log = root->log_root;
  2571. min_key.objectid = ino;
  2572. min_key.type = key_type;
  2573. min_key.offset = min_offset;
  2574. path->keep_locks = 1;
  2575. ret = btrfs_search_forward(root, &min_key, path, trans->transid);
  2576. /*
  2577. * we didn't find anything from this transaction, see if there
  2578. * is anything at all
  2579. */
  2580. if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
  2581. min_key.objectid = ino;
  2582. min_key.type = key_type;
  2583. min_key.offset = (u64)-1;
  2584. btrfs_release_path(path);
  2585. ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
  2586. if (ret < 0) {
  2587. btrfs_release_path(path);
  2588. return ret;
  2589. }
  2590. ret = btrfs_previous_item(root, path, ino, key_type);
  2591. /* if ret == 0 there are items for this type,
  2592. * create a range to tell us the last key of this type.
  2593. * otherwise, there are no items in this directory after
  2594. * *min_offset, and we create a range to indicate that.
  2595. */
  2596. if (ret == 0) {
  2597. struct btrfs_key tmp;
  2598. btrfs_item_key_to_cpu(path->nodes[0], &tmp,
  2599. path->slots[0]);
  2600. if (key_type == tmp.type)
  2601. first_offset = max(min_offset, tmp.offset) + 1;
  2602. }
  2603. goto done;
  2604. }
  2605. /* go backward to find any previous key */
  2606. ret = btrfs_previous_item(root, path, ino, key_type);
  2607. if (ret == 0) {
  2608. struct btrfs_key tmp;
  2609. btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
  2610. if (key_type == tmp.type) {
  2611. first_offset = tmp.offset;
  2612. ret = overwrite_item(trans, log, dst_path,
  2613. path->nodes[0], path->slots[0],
  2614. &tmp);
  2615. if (ret) {
  2616. err = ret;
  2617. goto done;
  2618. }
  2619. }
  2620. }
  2621. btrfs_release_path(path);
  2622. /* find the first key from this transaction again */
  2623. ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
  2624. if (WARN_ON(ret != 0))
  2625. goto done;
  2626. /*
  2627. * we have a block from this transaction, log every item in it
  2628. * from our directory
  2629. */
  2630. while (1) {
  2631. struct btrfs_key tmp;
  2632. src = path->nodes[0];
  2633. nritems = btrfs_header_nritems(src);
  2634. for (i = path->slots[0]; i < nritems; i++) {
  2635. btrfs_item_key_to_cpu(src, &min_key, i);
  2636. if (min_key.objectid != ino || min_key.type != key_type)
  2637. goto done;
  2638. ret = overwrite_item(trans, log, dst_path, src, i,
  2639. &min_key);
  2640. if (ret) {
  2641. err = ret;
  2642. goto done;
  2643. }
  2644. }
  2645. path->slots[0] = nritems;
  2646. /*
  2647. * look ahead to the next item and see if it is also
  2648. * from this directory and from this transaction
  2649. */
  2650. ret = btrfs_next_leaf(root, path);
  2651. if (ret == 1) {
  2652. last_offset = (u64)-1;
  2653. goto done;
  2654. }
  2655. btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
  2656. if (tmp.objectid != ino || tmp.type != key_type) {
  2657. last_offset = (u64)-1;
  2658. goto done;
  2659. }
  2660. if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
  2661. ret = overwrite_item(trans, log, dst_path,
  2662. path->nodes[0], path->slots[0],
  2663. &tmp);
  2664. if (ret)
  2665. err = ret;
  2666. else
  2667. last_offset = tmp.offset;
  2668. goto done;
  2669. }
  2670. }
  2671. done:
  2672. btrfs_release_path(path);
  2673. btrfs_release_path(dst_path);
  2674. if (err == 0) {
  2675. *last_offset_ret = last_offset;
  2676. /*
  2677. * insert the log range keys to indicate where the log
  2678. * is valid
  2679. */
  2680. ret = insert_dir_log_key(trans, log, path, key_type,
  2681. ino, first_offset, last_offset);
  2682. if (ret)
  2683. err = ret;
  2684. }
  2685. return err;
  2686. }
  2687. /*
  2688. * logging directories is very similar to logging inodes, We find all the items
  2689. * from the current transaction and write them to the log.
  2690. *
  2691. * The recovery code scans the directory in the subvolume, and if it finds a
  2692. * key in the range logged that is not present in the log tree, then it means
  2693. * that dir entry was unlinked during the transaction.
  2694. *
  2695. * In order for that scan to work, we must include one key smaller than
  2696. * the smallest logged by this transaction and one key larger than the largest
  2697. * key logged by this transaction.
  2698. */
  2699. static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
  2700. struct btrfs_root *root, struct inode *inode,
  2701. struct btrfs_path *path,
  2702. struct btrfs_path *dst_path)
  2703. {
  2704. u64 min_key;
  2705. u64 max_key;
  2706. int ret;
  2707. int key_type = BTRFS_DIR_ITEM_KEY;
  2708. again:
  2709. min_key = 0;
  2710. max_key = 0;
  2711. while (1) {
  2712. ret = log_dir_items(trans, root, inode, path,
  2713. dst_path, key_type, min_key,
  2714. &max_key);
  2715. if (ret)
  2716. return ret;
  2717. if (max_key == (u64)-1)
  2718. break;
  2719. min_key = max_key + 1;
  2720. }
  2721. if (key_type == BTRFS_DIR_ITEM_KEY) {
  2722. key_type = BTRFS_DIR_INDEX_KEY;
  2723. goto again;
  2724. }
  2725. return 0;
  2726. }
  2727. /*
  2728. * a helper function to drop items from the log before we relog an
  2729. * inode. max_key_type indicates the highest item type to remove.
  2730. * This cannot be run for file data extents because it does not
  2731. * free the extents they point to.
  2732. */
  2733. static int drop_objectid_items(struct btrfs_trans_handle *trans,
  2734. struct btrfs_root *log,
  2735. struct btrfs_path *path,
  2736. u64 objectid, int max_key_type)
  2737. {
  2738. int ret;
  2739. struct btrfs_key key;
  2740. struct btrfs_key found_key;
  2741. int start_slot;
  2742. key.objectid = objectid;
  2743. key.type = max_key_type;
  2744. key.offset = (u64)-1;
  2745. while (1) {
  2746. ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
  2747. BUG_ON(ret == 0); /* Logic error */
  2748. if (ret < 0)
  2749. break;
  2750. if (path->slots[0] == 0)
  2751. break;
  2752. path->slots[0]--;
  2753. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  2754. path->slots[0]);
  2755. if (found_key.objectid != objectid)
  2756. break;
  2757. found_key.offset = 0;
  2758. found_key.type = 0;
  2759. ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
  2760. &start_slot);
  2761. ret = btrfs_del_items(trans, log, path, start_slot,
  2762. path->slots[0] - start_slot + 1);
  2763. /*
  2764. * If start slot isn't 0 then we don't need to re-search, we've
  2765. * found the last guy with the objectid in this tree.
  2766. */
  2767. if (ret || start_slot != 0)
  2768. break;
  2769. btrfs_release_path(path);
  2770. }
  2771. btrfs_release_path(path);
  2772. if (ret > 0)
  2773. ret = 0;
  2774. return ret;
  2775. }
  2776. static void fill_inode_item(struct btrfs_trans_handle *trans,
  2777. struct extent_buffer *leaf,
  2778. struct btrfs_inode_item *item,
  2779. struct inode *inode, int log_inode_only)
  2780. {
  2781. struct btrfs_map_token token;
  2782. btrfs_init_map_token(&token);
  2783. if (log_inode_only) {
  2784. /* set the generation to zero so the recover code
  2785. * can tell the difference between an logging
  2786. * just to say 'this inode exists' and a logging
  2787. * to say 'update this inode with these values'
  2788. */
  2789. btrfs_set_token_inode_generation(leaf, item, 0, &token);
  2790. btrfs_set_token_inode_size(leaf, item, 0, &token);
  2791. } else {
  2792. btrfs_set_token_inode_generation(leaf, item,
  2793. BTRFS_I(inode)->generation,
  2794. &token);
  2795. btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
  2796. }
  2797. btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
  2798. btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
  2799. btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
  2800. btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
  2801. btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
  2802. inode->i_atime.tv_sec, &token);
  2803. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
  2804. inode->i_atime.tv_nsec, &token);
  2805. btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
  2806. inode->i_mtime.tv_sec, &token);
  2807. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
  2808. inode->i_mtime.tv_nsec, &token);
  2809. btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
  2810. inode->i_ctime.tv_sec, &token);
  2811. btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
  2812. inode->i_ctime.tv_nsec, &token);
  2813. btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
  2814. &token);
  2815. btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
  2816. btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
  2817. btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
  2818. btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
  2819. btrfs_set_token_inode_block_group(leaf, item, 0, &token);
  2820. }
  2821. static int log_inode_item(struct btrfs_trans_handle *trans,
  2822. struct btrfs_root *log, struct btrfs_path *path,
  2823. struct inode *inode)
  2824. {
  2825. struct btrfs_inode_item *inode_item;
  2826. int ret;
  2827. ret = btrfs_insert_empty_item(trans, log, path,
  2828. &BTRFS_I(inode)->location,
  2829. sizeof(*inode_item));
  2830. if (ret && ret != -EEXIST)
  2831. return ret;
  2832. inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
  2833. struct btrfs_inode_item);
  2834. fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
  2835. btrfs_release_path(path);
  2836. return 0;
  2837. }
  2838. static noinline int copy_items(struct btrfs_trans_handle *trans,
  2839. struct inode *inode,
  2840. struct btrfs_path *dst_path,
  2841. struct btrfs_path *src_path, u64 *last_extent,
  2842. int start_slot, int nr, int inode_only)
  2843. {
  2844. unsigned long src_offset;
  2845. unsigned long dst_offset;
  2846. struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
  2847. struct btrfs_file_extent_item *extent;
  2848. struct btrfs_inode_item *inode_item;
  2849. struct extent_buffer *src = src_path->nodes[0];
  2850. struct btrfs_key first_key, last_key, key;
  2851. int ret;
  2852. struct btrfs_key *ins_keys;
  2853. u32 *ins_sizes;
  2854. char *ins_data;
  2855. int i;
  2856. struct list_head ordered_sums;
  2857. int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  2858. bool has_extents = false;
  2859. bool need_find_last_extent = (*last_extent == 0);
  2860. bool done = false;
  2861. INIT_LIST_HEAD(&ordered_sums);
  2862. ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
  2863. nr * sizeof(u32), GFP_NOFS);
  2864. if (!ins_data)
  2865. return -ENOMEM;
  2866. first_key.objectid = (u64)-1;
  2867. ins_sizes = (u32 *)ins_data;
  2868. ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
  2869. for (i = 0; i < nr; i++) {
  2870. ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
  2871. btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
  2872. }
  2873. ret = btrfs_insert_empty_items(trans, log, dst_path,
  2874. ins_keys, ins_sizes, nr);
  2875. if (ret) {
  2876. kfree(ins_data);
  2877. return ret;
  2878. }
  2879. for (i = 0; i < nr; i++, dst_path->slots[0]++) {
  2880. dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
  2881. dst_path->slots[0]);
  2882. src_offset = btrfs_item_ptr_offset(src, start_slot + i);
  2883. if ((i == (nr - 1)))
  2884. last_key = ins_keys[i];
  2885. if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
  2886. inode_item = btrfs_item_ptr(dst_path->nodes[0],
  2887. dst_path->slots[0],
  2888. struct btrfs_inode_item);
  2889. fill_inode_item(trans, dst_path->nodes[0], inode_item,
  2890. inode, inode_only == LOG_INODE_EXISTS);
  2891. } else {
  2892. copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
  2893. src_offset, ins_sizes[i]);
  2894. }
  2895. /*
  2896. * We set need_find_last_extent here in case we know we were
  2897. * processing other items and then walk into the first extent in
  2898. * the inode. If we don't hit an extent then nothing changes,
  2899. * we'll do the last search the next time around.
  2900. */
  2901. if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
  2902. has_extents = true;
  2903. if (need_find_last_extent &&
  2904. first_key.objectid == (u64)-1)
  2905. first_key = ins_keys[i];
  2906. } else {
  2907. need_find_last_extent = false;
  2908. }
  2909. /* take a reference on file data extents so that truncates
  2910. * or deletes of this inode don't have to relog the inode
  2911. * again
  2912. */
  2913. if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
  2914. !skip_csum) {
  2915. int found_type;
  2916. extent = btrfs_item_ptr(src, start_slot + i,
  2917. struct btrfs_file_extent_item);
  2918. if (btrfs_file_extent_generation(src, extent) < trans->transid)
  2919. continue;
  2920. found_type = btrfs_file_extent_type(src, extent);
  2921. if (found_type == BTRFS_FILE_EXTENT_REG) {
  2922. u64 ds, dl, cs, cl;
  2923. ds = btrfs_file_extent_disk_bytenr(src,
  2924. extent);
  2925. /* ds == 0 is a hole */
  2926. if (ds == 0)
  2927. continue;
  2928. dl = btrfs_file_extent_disk_num_bytes(src,
  2929. extent);
  2930. cs = btrfs_file_extent_offset(src, extent);
  2931. cl = btrfs_file_extent_num_bytes(src,
  2932. extent);
  2933. if (btrfs_file_extent_compression(src,
  2934. extent)) {
  2935. cs = 0;
  2936. cl = dl;
  2937. }
  2938. ret = btrfs_lookup_csums_range(
  2939. log->fs_info->csum_root,
  2940. ds + cs, ds + cs + cl - 1,
  2941. &ordered_sums, 0);
  2942. if (ret) {
  2943. btrfs_release_path(dst_path);
  2944. kfree(ins_data);
  2945. return ret;
  2946. }
  2947. }
  2948. }
  2949. }
  2950. btrfs_mark_buffer_dirty(dst_path->nodes[0]);
  2951. btrfs_release_path(dst_path);
  2952. kfree(ins_data);
  2953. /*
  2954. * we have to do this after the loop above to avoid changing the
  2955. * log tree while trying to change the log tree.
  2956. */
  2957. ret = 0;
  2958. while (!list_empty(&ordered_sums)) {
  2959. struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
  2960. struct btrfs_ordered_sum,
  2961. list);
  2962. if (!ret)
  2963. ret = btrfs_csum_file_blocks(trans, log, sums);
  2964. list_del(&sums->list);
  2965. kfree(sums);
  2966. }
  2967. if (!has_extents)
  2968. return ret;
  2969. /*
  2970. * Because we use btrfs_search_forward we could skip leaves that were
  2971. * not modified and then assume *last_extent is valid when it really
  2972. * isn't. So back up to the previous leaf and read the end of the last
  2973. * extent before we go and fill in holes.
  2974. */
  2975. if (need_find_last_extent) {
  2976. u64 len;
  2977. ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
  2978. if (ret < 0)
  2979. return ret;
  2980. if (ret)
  2981. goto fill_holes;
  2982. if (src_path->slots[0])
  2983. src_path->slots[0]--;
  2984. src = src_path->nodes[0];
  2985. btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
  2986. if (key.objectid != btrfs_ino(inode) ||
  2987. key.type != BTRFS_EXTENT_DATA_KEY)
  2988. goto fill_holes;
  2989. extent = btrfs_item_ptr(src, src_path->slots[0],
  2990. struct btrfs_file_extent_item);
  2991. if (btrfs_file_extent_type(src, extent) ==
  2992. BTRFS_FILE_EXTENT_INLINE) {
  2993. len = btrfs_file_extent_inline_len(src, extent);
  2994. *last_extent = ALIGN(key.offset + len,
  2995. log->sectorsize);
  2996. } else {
  2997. len = btrfs_file_extent_num_bytes(src, extent);
  2998. *last_extent = key.offset + len;
  2999. }
  3000. }
  3001. fill_holes:
  3002. /* So we did prev_leaf, now we need to move to the next leaf, but a few
  3003. * things could have happened
  3004. *
  3005. * 1) A merge could have happened, so we could currently be on a leaf
  3006. * that holds what we were copying in the first place.
  3007. * 2) A split could have happened, and now not all of the items we want
  3008. * are on the same leaf.
  3009. *
  3010. * So we need to adjust how we search for holes, we need to drop the
  3011. * path and re-search for the first extent key we found, and then walk
  3012. * forward until we hit the last one we copied.
  3013. */
  3014. if (need_find_last_extent) {
  3015. /* btrfs_prev_leaf could return 1 without releasing the path */
  3016. btrfs_release_path(src_path);
  3017. ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
  3018. src_path, 0, 0);
  3019. if (ret < 0)
  3020. return ret;
  3021. ASSERT(ret == 0);
  3022. src = src_path->nodes[0];
  3023. i = src_path->slots[0];
  3024. } else {
  3025. i = start_slot;
  3026. }
  3027. /*
  3028. * Ok so here we need to go through and fill in any holes we may have
  3029. * to make sure that holes are punched for those areas in case they had
  3030. * extents previously.
  3031. */
  3032. while (!done) {
  3033. u64 offset, len;
  3034. u64 extent_end;
  3035. if (i >= btrfs_header_nritems(src_path->nodes[0])) {
  3036. ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
  3037. if (ret < 0)
  3038. return ret;
  3039. ASSERT(ret == 0);
  3040. src = src_path->nodes[0];
  3041. i = 0;
  3042. }
  3043. btrfs_item_key_to_cpu(src, &key, i);
  3044. if (!btrfs_comp_cpu_keys(&key, &last_key))
  3045. done = true;
  3046. if (key.objectid != btrfs_ino(inode) ||
  3047. key.type != BTRFS_EXTENT_DATA_KEY) {
  3048. i++;
  3049. continue;
  3050. }
  3051. extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
  3052. if (btrfs_file_extent_type(src, extent) ==
  3053. BTRFS_FILE_EXTENT_INLINE) {
  3054. len = btrfs_file_extent_inline_len(src, extent);
  3055. extent_end = ALIGN(key.offset + len, log->sectorsize);
  3056. } else {
  3057. len = btrfs_file_extent_num_bytes(src, extent);
  3058. extent_end = key.offset + len;
  3059. }
  3060. i++;
  3061. if (*last_extent == key.offset) {
  3062. *last_extent = extent_end;
  3063. continue;
  3064. }
  3065. offset = *last_extent;
  3066. len = key.offset - *last_extent;
  3067. ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
  3068. offset, 0, 0, len, 0, len, 0,
  3069. 0, 0);
  3070. if (ret)
  3071. break;
  3072. *last_extent = offset + len;
  3073. }
  3074. /*
  3075. * Need to let the callers know we dropped the path so they should
  3076. * re-search.
  3077. */
  3078. if (!ret && need_find_last_extent)
  3079. ret = 1;
  3080. return ret;
  3081. }
  3082. static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
  3083. {
  3084. struct extent_map *em1, *em2;
  3085. em1 = list_entry(a, struct extent_map, list);
  3086. em2 = list_entry(b, struct extent_map, list);
  3087. if (em1->start < em2->start)
  3088. return -1;
  3089. else if (em1->start > em2->start)
  3090. return 1;
  3091. return 0;
  3092. }
  3093. static int log_one_extent(struct btrfs_trans_handle *trans,
  3094. struct inode *inode, struct btrfs_root *root,
  3095. struct extent_map *em, struct btrfs_path *path)
  3096. {
  3097. struct btrfs_root *log = root->log_root;
  3098. struct btrfs_file_extent_item *fi;
  3099. struct extent_buffer *leaf;
  3100. struct btrfs_ordered_extent *ordered;
  3101. struct list_head ordered_sums;
  3102. struct btrfs_map_token token;
  3103. struct btrfs_key key;
  3104. u64 mod_start = em->mod_start;
  3105. u64 mod_len = em->mod_len;
  3106. u64 csum_offset;
  3107. u64 csum_len;
  3108. u64 extent_offset = em->start - em->orig_start;
  3109. u64 block_len;
  3110. int ret;
  3111. int index = log->log_transid % 2;
  3112. bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
  3113. ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
  3114. em->start + em->len, NULL, 0);
  3115. if (ret)
  3116. return ret;
  3117. INIT_LIST_HEAD(&ordered_sums);
  3118. btrfs_init_map_token(&token);
  3119. key.objectid = btrfs_ino(inode);
  3120. key.type = BTRFS_EXTENT_DATA_KEY;
  3121. key.offset = em->start;
  3122. ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
  3123. if (ret)
  3124. return ret;
  3125. leaf = path->nodes[0];
  3126. fi = btrfs_item_ptr(leaf, path->slots[0],
  3127. struct btrfs_file_extent_item);
  3128. btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
  3129. &token);
  3130. if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
  3131. skip_csum = true;
  3132. btrfs_set_token_file_extent_type(leaf, fi,
  3133. BTRFS_FILE_EXTENT_PREALLOC,
  3134. &token);
  3135. } else {
  3136. btrfs_set_token_file_extent_type(leaf, fi,
  3137. BTRFS_FILE_EXTENT_REG,
  3138. &token);
  3139. if (em->block_start == EXTENT_MAP_HOLE)
  3140. skip_csum = true;
  3141. }
  3142. block_len = max(em->block_len, em->orig_block_len);
  3143. if (em->compress_type != BTRFS_COMPRESS_NONE) {
  3144. btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
  3145. em->block_start,
  3146. &token);
  3147. btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
  3148. &token);
  3149. } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
  3150. btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
  3151. em->block_start -
  3152. extent_offset, &token);
  3153. btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
  3154. &token);
  3155. } else {
  3156. btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
  3157. btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
  3158. &token);
  3159. }
  3160. btrfs_set_token_file_extent_offset(leaf, fi,
  3161. em->start - em->orig_start,
  3162. &token);
  3163. btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
  3164. btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
  3165. btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
  3166. &token);
  3167. btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
  3168. btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
  3169. btrfs_mark_buffer_dirty(leaf);
  3170. btrfs_release_path(path);
  3171. if (ret) {
  3172. return ret;
  3173. }
  3174. if (skip_csum)
  3175. return 0;
  3176. /*
  3177. * First check and see if our csums are on our outstanding ordered
  3178. * extents.
  3179. */
  3180. again:
  3181. spin_lock_irq(&log->log_extents_lock[index]);
  3182. list_for_each_entry(ordered, &log->logged_list[index], log_list) {
  3183. struct btrfs_ordered_sum *sum;
  3184. if (!mod_len)
  3185. break;
  3186. if (ordered->inode != inode)
  3187. continue;
  3188. if (ordered->file_offset + ordered->len <= mod_start ||
  3189. mod_start + mod_len <= ordered->file_offset)
  3190. continue;
  3191. /*
  3192. * We are going to copy all the csums on this ordered extent, so
  3193. * go ahead and adjust mod_start and mod_len in case this
  3194. * ordered extent has already been logged.
  3195. */
  3196. if (ordered->file_offset > mod_start) {
  3197. if (ordered->file_offset + ordered->len >=
  3198. mod_start + mod_len)
  3199. mod_len = ordered->file_offset - mod_start;
  3200. /*
  3201. * If we have this case
  3202. *
  3203. * |--------- logged extent ---------|
  3204. * |----- ordered extent ----|
  3205. *
  3206. * Just don't mess with mod_start and mod_len, we'll
  3207. * just end up logging more csums than we need and it
  3208. * will be ok.
  3209. */
  3210. } else {
  3211. if (ordered->file_offset + ordered->len <
  3212. mod_start + mod_len) {
  3213. mod_len = (mod_start + mod_len) -
  3214. (ordered->file_offset + ordered->len);
  3215. mod_start = ordered->file_offset +
  3216. ordered->len;
  3217. } else {
  3218. mod_len = 0;
  3219. }
  3220. }
  3221. /*
  3222. * To keep us from looping for the above case of an ordered
  3223. * extent that falls inside of the logged extent.
  3224. */
  3225. if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
  3226. &ordered->flags))
  3227. continue;
  3228. atomic_inc(&ordered->refs);
  3229. spin_unlock_irq(&log->log_extents_lock[index]);
  3230. /*
  3231. * we've dropped the lock, we must either break or
  3232. * start over after this.
  3233. */
  3234. wait_event(ordered->wait, ordered->csum_bytes_left == 0);
  3235. list_for_each_entry(sum, &ordered->list, list) {
  3236. ret = btrfs_csum_file_blocks(trans, log, sum);
  3237. if (ret) {
  3238. btrfs_put_ordered_extent(ordered);
  3239. goto unlocked;
  3240. }
  3241. }
  3242. btrfs_put_ordered_extent(ordered);
  3243. goto again;
  3244. }
  3245. spin_unlock_irq(&log->log_extents_lock[index]);
  3246. unlocked:
  3247. if (!mod_len || ret)
  3248. return ret;
  3249. if (em->compress_type) {
  3250. csum_offset = 0;
  3251. csum_len = block_len;
  3252. } else {
  3253. csum_offset = mod_start - em->start;
  3254. csum_len = mod_len;
  3255. }
  3256. /* block start is already adjusted for the file extent offset. */
  3257. ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
  3258. em->block_start + csum_offset,
  3259. em->block_start + csum_offset +
  3260. csum_len - 1, &ordered_sums, 0);
  3261. if (ret)
  3262. return ret;
  3263. while (!list_empty(&ordered_sums)) {
  3264. struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
  3265. struct btrfs_ordered_sum,
  3266. list);
  3267. if (!ret)
  3268. ret = btrfs_csum_file_blocks(trans, log, sums);
  3269. list_del(&sums->list);
  3270. kfree(sums);
  3271. }
  3272. return ret;
  3273. }
  3274. static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
  3275. struct btrfs_root *root,
  3276. struct inode *inode,
  3277. struct btrfs_path *path)
  3278. {
  3279. struct extent_map *em, *n;
  3280. struct list_head extents;
  3281. struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
  3282. u64 test_gen;
  3283. int ret = 0;
  3284. int num = 0;
  3285. INIT_LIST_HEAD(&extents);
  3286. write_lock(&tree->lock);
  3287. test_gen = root->fs_info->last_trans_committed;
  3288. list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
  3289. list_del_init(&em->list);
  3290. /*
  3291. * Just an arbitrary number, this can be really CPU intensive
  3292. * once we start getting a lot of extents, and really once we
  3293. * have a bunch of extents we just want to commit since it will
  3294. * be faster.
  3295. */
  3296. if (++num > 32768) {
  3297. list_del_init(&tree->modified_extents);
  3298. ret = -EFBIG;
  3299. goto process;
  3300. }
  3301. if (em->generation <= test_gen)
  3302. continue;
  3303. /* Need a ref to keep it from getting evicted from cache */
  3304. atomic_inc(&em->refs);
  3305. set_bit(EXTENT_FLAG_LOGGING, &em->flags);
  3306. list_add_tail(&em->list, &extents);
  3307. num++;
  3308. }
  3309. list_sort(NULL, &extents, extent_cmp);
  3310. process:
  3311. while (!list_empty(&extents)) {
  3312. em = list_entry(extents.next, struct extent_map, list);
  3313. list_del_init(&em->list);
  3314. /*
  3315. * If we had an error we just need to delete everybody from our
  3316. * private list.
  3317. */
  3318. if (ret) {
  3319. clear_em_logging(tree, em);
  3320. free_extent_map(em);
  3321. continue;
  3322. }
  3323. write_unlock(&tree->lock);
  3324. ret = log_one_extent(trans, inode, root, em, path);
  3325. write_lock(&tree->lock);
  3326. clear_em_logging(tree, em);
  3327. free_extent_map(em);
  3328. }
  3329. WARN_ON(!list_empty(&extents));
  3330. write_unlock(&tree->lock);
  3331. btrfs_release_path(path);
  3332. return ret;
  3333. }
  3334. /* log a single inode in the tree log.
  3335. * At least one parent directory for this inode must exist in the tree
  3336. * or be logged already.
  3337. *
  3338. * Any items from this inode changed by the current transaction are copied
  3339. * to the log tree. An extra reference is taken on any extents in this
  3340. * file, allowing us to avoid a whole pile of corner cases around logging
  3341. * blocks that have been removed from the tree.
  3342. *
  3343. * See LOG_INODE_ALL and related defines for a description of what inode_only
  3344. * does.
  3345. *
  3346. * This handles both files and directories.
  3347. */
  3348. static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  3349. struct btrfs_root *root, struct inode *inode,
  3350. int inode_only)
  3351. {
  3352. struct btrfs_path *path;
  3353. struct btrfs_path *dst_path;
  3354. struct btrfs_key min_key;
  3355. struct btrfs_key max_key;
  3356. struct btrfs_root *log = root->log_root;
  3357. struct extent_buffer *src = NULL;
  3358. u64 last_extent = 0;
  3359. int err = 0;
  3360. int ret;
  3361. int nritems;
  3362. int ins_start_slot = 0;
  3363. int ins_nr;
  3364. bool fast_search = false;
  3365. u64 ino = btrfs_ino(inode);
  3366. path = btrfs_alloc_path();
  3367. if (!path)
  3368. return -ENOMEM;
  3369. dst_path = btrfs_alloc_path();
  3370. if (!dst_path) {
  3371. btrfs_free_path(path);
  3372. return -ENOMEM;
  3373. }
  3374. min_key.objectid = ino;
  3375. min_key.type = BTRFS_INODE_ITEM_KEY;
  3376. min_key.offset = 0;
  3377. max_key.objectid = ino;
  3378. /* today the code can only do partial logging of directories */
  3379. if (S_ISDIR(inode->i_mode) ||
  3380. (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  3381. &BTRFS_I(inode)->runtime_flags) &&
  3382. inode_only == LOG_INODE_EXISTS))
  3383. max_key.type = BTRFS_XATTR_ITEM_KEY;
  3384. else
  3385. max_key.type = (u8)-1;
  3386. max_key.offset = (u64)-1;
  3387. /* Only run delayed items if we are a dir or a new file */
  3388. if (S_ISDIR(inode->i_mode) ||
  3389. BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
  3390. ret = btrfs_commit_inode_delayed_items(trans, inode);
  3391. if (ret) {
  3392. btrfs_free_path(path);
  3393. btrfs_free_path(dst_path);
  3394. return ret;
  3395. }
  3396. }
  3397. mutex_lock(&BTRFS_I(inode)->log_mutex);
  3398. btrfs_get_logged_extents(log, inode);
  3399. /*
  3400. * a brute force approach to making sure we get the most uptodate
  3401. * copies of everything.
  3402. */
  3403. if (S_ISDIR(inode->i_mode)) {
  3404. int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
  3405. if (inode_only == LOG_INODE_EXISTS)
  3406. max_key_type = BTRFS_XATTR_ITEM_KEY;
  3407. ret = drop_objectid_items(trans, log, path, ino, max_key_type);
  3408. } else {
  3409. if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  3410. &BTRFS_I(inode)->runtime_flags)) {
  3411. clear_bit(BTRFS_INODE_COPY_EVERYTHING,
  3412. &BTRFS_I(inode)->runtime_flags);
  3413. ret = btrfs_truncate_inode_items(trans, log,
  3414. inode, 0, 0);
  3415. } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
  3416. &BTRFS_I(inode)->runtime_flags) ||
  3417. inode_only == LOG_INODE_EXISTS) {
  3418. if (inode_only == LOG_INODE_ALL)
  3419. fast_search = true;
  3420. max_key.type = BTRFS_XATTR_ITEM_KEY;
  3421. ret = drop_objectid_items(trans, log, path, ino,
  3422. max_key.type);
  3423. } else {
  3424. if (inode_only == LOG_INODE_ALL)
  3425. fast_search = true;
  3426. ret = log_inode_item(trans, log, dst_path, inode);
  3427. if (ret) {
  3428. err = ret;
  3429. goto out_unlock;
  3430. }
  3431. goto log_extents;
  3432. }
  3433. }
  3434. if (ret) {
  3435. err = ret;
  3436. goto out_unlock;
  3437. }
  3438. path->keep_locks = 1;
  3439. while (1) {
  3440. ins_nr = 0;
  3441. ret = btrfs_search_forward(root, &min_key,
  3442. path, trans->transid);
  3443. if (ret != 0)
  3444. break;
  3445. again:
  3446. /* note, ins_nr might be > 0 here, cleanup outside the loop */
  3447. if (min_key.objectid != ino)
  3448. break;
  3449. if (min_key.type > max_key.type)
  3450. break;
  3451. src = path->nodes[0];
  3452. if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
  3453. ins_nr++;
  3454. goto next_slot;
  3455. } else if (!ins_nr) {
  3456. ins_start_slot = path->slots[0];
  3457. ins_nr = 1;
  3458. goto next_slot;
  3459. }
  3460. ret = copy_items(trans, inode, dst_path, path, &last_extent,
  3461. ins_start_slot, ins_nr, inode_only);
  3462. if (ret < 0) {
  3463. err = ret;
  3464. goto out_unlock;
  3465. } if (ret) {
  3466. ins_nr = 0;
  3467. btrfs_release_path(path);
  3468. continue;
  3469. }
  3470. ins_nr = 1;
  3471. ins_start_slot = path->slots[0];
  3472. next_slot:
  3473. nritems = btrfs_header_nritems(path->nodes[0]);
  3474. path->slots[0]++;
  3475. if (path->slots[0] < nritems) {
  3476. btrfs_item_key_to_cpu(path->nodes[0], &min_key,
  3477. path->slots[0]);
  3478. goto again;
  3479. }
  3480. if (ins_nr) {
  3481. ret = copy_items(trans, inode, dst_path, path,
  3482. &last_extent, ins_start_slot,
  3483. ins_nr, inode_only);
  3484. if (ret < 0) {
  3485. err = ret;
  3486. goto out_unlock;
  3487. }
  3488. ret = 0;
  3489. ins_nr = 0;
  3490. }
  3491. btrfs_release_path(path);
  3492. if (min_key.offset < (u64)-1) {
  3493. min_key.offset++;
  3494. } else if (min_key.type < max_key.type) {
  3495. min_key.type++;
  3496. min_key.offset = 0;
  3497. } else {
  3498. break;
  3499. }
  3500. }
  3501. if (ins_nr) {
  3502. ret = copy_items(trans, inode, dst_path, path, &last_extent,
  3503. ins_start_slot, ins_nr, inode_only);
  3504. if (ret < 0) {
  3505. err = ret;
  3506. goto out_unlock;
  3507. }
  3508. ret = 0;
  3509. ins_nr = 0;
  3510. }
  3511. log_extents:
  3512. btrfs_release_path(path);
  3513. btrfs_release_path(dst_path);
  3514. if (fast_search) {
  3515. ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
  3516. if (ret) {
  3517. err = ret;
  3518. goto out_unlock;
  3519. }
  3520. } else if (inode_only == LOG_INODE_ALL) {
  3521. struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
  3522. struct extent_map *em, *n;
  3523. write_lock(&tree->lock);
  3524. list_for_each_entry_safe(em, n, &tree->modified_extents, list)
  3525. list_del_init(&em->list);
  3526. write_unlock(&tree->lock);
  3527. }
  3528. if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
  3529. ret = log_directory_changes(trans, root, inode, path, dst_path);
  3530. if (ret) {
  3531. err = ret;
  3532. goto out_unlock;
  3533. }
  3534. }
  3535. BTRFS_I(inode)->logged_trans = trans->transid;
  3536. BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
  3537. out_unlock:
  3538. if (err)
  3539. btrfs_free_logged_extents(log, log->log_transid);
  3540. mutex_unlock(&BTRFS_I(inode)->log_mutex);
  3541. btrfs_free_path(path);
  3542. btrfs_free_path(dst_path);
  3543. return err;
  3544. }
  3545. /*
  3546. * follow the dentry parent pointers up the chain and see if any
  3547. * of the directories in it require a full commit before they can
  3548. * be logged. Returns zero if nothing special needs to be done or 1 if
  3549. * a full commit is required.
  3550. */
  3551. static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
  3552. struct inode *inode,
  3553. struct dentry *parent,
  3554. struct super_block *sb,
  3555. u64 last_committed)
  3556. {
  3557. int ret = 0;
  3558. struct btrfs_root *root;
  3559. struct dentry *old_parent = NULL;
  3560. struct inode *orig_inode = inode;
  3561. /*
  3562. * for regular files, if its inode is already on disk, we don't
  3563. * have to worry about the parents at all. This is because
  3564. * we can use the last_unlink_trans field to record renames
  3565. * and other fun in this file.
  3566. */
  3567. if (S_ISREG(inode->i_mode) &&
  3568. BTRFS_I(inode)->generation <= last_committed &&
  3569. BTRFS_I(inode)->last_unlink_trans <= last_committed)
  3570. goto out;
  3571. if (!S_ISDIR(inode->i_mode)) {
  3572. if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
  3573. goto out;
  3574. inode = parent->d_inode;
  3575. }
  3576. while (1) {
  3577. /*
  3578. * If we are logging a directory then we start with our inode,
  3579. * not our parents inode, so we need to skipp setting the
  3580. * logged_trans so that further down in the log code we don't
  3581. * think this inode has already been logged.
  3582. */
  3583. if (inode != orig_inode)
  3584. BTRFS_I(inode)->logged_trans = trans->transid;
  3585. smp_mb();
  3586. if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
  3587. root = BTRFS_I(inode)->root;
  3588. /*
  3589. * make sure any commits to the log are forced
  3590. * to be full commits
  3591. */
  3592. root->fs_info->last_trans_log_full_commit =
  3593. trans->transid;
  3594. ret = 1;
  3595. break;
  3596. }
  3597. if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
  3598. break;
  3599. if (IS_ROOT(parent))
  3600. break;
  3601. parent = dget_parent(parent);
  3602. dput(old_parent);
  3603. old_parent = parent;
  3604. inode = parent->d_inode;
  3605. }
  3606. dput(old_parent);
  3607. out:
  3608. return ret;
  3609. }
  3610. /*
  3611. * helper function around btrfs_log_inode to make sure newly created
  3612. * parent directories also end up in the log. A minimal inode and backref
  3613. * only logging is done of any parent directories that are older than
  3614. * the last committed transaction
  3615. */
  3616. static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
  3617. struct btrfs_root *root, struct inode *inode,
  3618. struct dentry *parent, int exists_only)
  3619. {
  3620. int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
  3621. struct super_block *sb;
  3622. struct dentry *old_parent = NULL;
  3623. int ret = 0;
  3624. u64 last_committed = root->fs_info->last_trans_committed;
  3625. sb = inode->i_sb;
  3626. if (btrfs_test_opt(root, NOTREELOG)) {
  3627. ret = 1;
  3628. goto end_no_trans;
  3629. }
  3630. if (root->fs_info->last_trans_log_full_commit >
  3631. root->fs_info->last_trans_committed) {
  3632. ret = 1;
  3633. goto end_no_trans;
  3634. }
  3635. if (root != BTRFS_I(inode)->root ||
  3636. btrfs_root_refs(&root->root_item) == 0) {
  3637. ret = 1;
  3638. goto end_no_trans;
  3639. }
  3640. ret = check_parent_dirs_for_sync(trans, inode, parent,
  3641. sb, last_committed);
  3642. if (ret)
  3643. goto end_no_trans;
  3644. if (btrfs_inode_in_log(inode, trans->transid)) {
  3645. ret = BTRFS_NO_LOG_SYNC;
  3646. goto end_no_trans;
  3647. }
  3648. ret = start_log_trans(trans, root);
  3649. if (ret)
  3650. goto end_trans;
  3651. ret = btrfs_log_inode(trans, root, inode, inode_only);
  3652. if (ret)
  3653. goto end_trans;
  3654. /*
  3655. * for regular files, if its inode is already on disk, we don't
  3656. * have to worry about the parents at all. This is because
  3657. * we can use the last_unlink_trans field to record renames
  3658. * and other fun in this file.
  3659. */
  3660. if (S_ISREG(inode->i_mode) &&
  3661. BTRFS_I(inode)->generation <= last_committed &&
  3662. BTRFS_I(inode)->last_unlink_trans <= last_committed) {
  3663. ret = 0;
  3664. goto end_trans;
  3665. }
  3666. inode_only = LOG_INODE_EXISTS;
  3667. while (1) {
  3668. if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
  3669. break;
  3670. inode = parent->d_inode;
  3671. if (root != BTRFS_I(inode)->root)
  3672. break;
  3673. if (BTRFS_I(inode)->generation >
  3674. root->fs_info->last_trans_committed) {
  3675. ret = btrfs_log_inode(trans, root, inode, inode_only);
  3676. if (ret)
  3677. goto end_trans;
  3678. }
  3679. if (IS_ROOT(parent))
  3680. break;
  3681. parent = dget_parent(parent);
  3682. dput(old_parent);
  3683. old_parent = parent;
  3684. }
  3685. ret = 0;
  3686. end_trans:
  3687. dput(old_parent);
  3688. if (ret < 0) {
  3689. root->fs_info->last_trans_log_full_commit = trans->transid;
  3690. ret = 1;
  3691. }
  3692. btrfs_end_log_trans(root);
  3693. end_no_trans:
  3694. return ret;
  3695. }
  3696. /*
  3697. * it is not safe to log dentry if the chunk root has added new
  3698. * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
  3699. * If this returns 1, you must commit the transaction to safely get your
  3700. * data on disk.
  3701. */
  3702. int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
  3703. struct btrfs_root *root, struct dentry *dentry)
  3704. {
  3705. struct dentry *parent = dget_parent(dentry);
  3706. int ret;
  3707. ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
  3708. dput(parent);
  3709. return ret;
  3710. }
  3711. /*
  3712. * should be called during mount to recover any replay any log trees
  3713. * from the FS
  3714. */
  3715. int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
  3716. {
  3717. int ret;
  3718. struct btrfs_path *path;
  3719. struct btrfs_trans_handle *trans;
  3720. struct btrfs_key key;
  3721. struct btrfs_key found_key;
  3722. struct btrfs_key tmp_key;
  3723. struct btrfs_root *log;
  3724. struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
  3725. struct walk_control wc = {
  3726. .process_func = process_one_buffer,
  3727. .stage = 0,
  3728. };
  3729. path = btrfs_alloc_path();
  3730. if (!path)
  3731. return -ENOMEM;
  3732. fs_info->log_root_recovering = 1;
  3733. trans = btrfs_start_transaction(fs_info->tree_root, 0);
  3734. if (IS_ERR(trans)) {
  3735. ret = PTR_ERR(trans);
  3736. goto error;
  3737. }
  3738. wc.trans = trans;
  3739. wc.pin = 1;
  3740. ret = walk_log_tree(trans, log_root_tree, &wc);
  3741. if (ret) {
  3742. btrfs_error(fs_info, ret, "Failed to pin buffers while "
  3743. "recovering log root tree.");
  3744. goto error;
  3745. }
  3746. again:
  3747. key.objectid = BTRFS_TREE_LOG_OBJECTID;
  3748. key.offset = (u64)-1;
  3749. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  3750. while (1) {
  3751. ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
  3752. if (ret < 0) {
  3753. btrfs_error(fs_info, ret,
  3754. "Couldn't find tree log root.");
  3755. goto error;
  3756. }
  3757. if (ret > 0) {
  3758. if (path->slots[0] == 0)
  3759. break;
  3760. path->slots[0]--;
  3761. }
  3762. btrfs_item_key_to_cpu(path->nodes[0], &found_key,
  3763. path->slots[0]);
  3764. btrfs_release_path(path);
  3765. if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
  3766. break;
  3767. log = btrfs_read_fs_root(log_root_tree, &found_key);
  3768. if (IS_ERR(log)) {
  3769. ret = PTR_ERR(log);
  3770. btrfs_error(fs_info, ret,
  3771. "Couldn't read tree log root.");
  3772. goto error;
  3773. }
  3774. tmp_key.objectid = found_key.offset;
  3775. tmp_key.type = BTRFS_ROOT_ITEM_KEY;
  3776. tmp_key.offset = (u64)-1;
  3777. wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
  3778. if (IS_ERR(wc.replay_dest)) {
  3779. ret = PTR_ERR(wc.replay_dest);
  3780. free_extent_buffer(log->node);
  3781. free_extent_buffer(log->commit_root);
  3782. kfree(log);
  3783. btrfs_error(fs_info, ret, "Couldn't read target root "
  3784. "for tree log recovery.");
  3785. goto error;
  3786. }
  3787. wc.replay_dest->log_root = log;
  3788. btrfs_record_root_in_trans(trans, wc.replay_dest);
  3789. ret = walk_log_tree(trans, log, &wc);
  3790. if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
  3791. ret = fixup_inode_link_counts(trans, wc.replay_dest,
  3792. path);
  3793. }
  3794. key.offset = found_key.offset - 1;
  3795. wc.replay_dest->log_root = NULL;
  3796. free_extent_buffer(log->node);
  3797. free_extent_buffer(log->commit_root);
  3798. kfree(log);
  3799. if (ret)
  3800. goto error;
  3801. if (found_key.offset == 0)
  3802. break;
  3803. }
  3804. btrfs_release_path(path);
  3805. /* step one is to pin it all, step two is to replay just inodes */
  3806. if (wc.pin) {
  3807. wc.pin = 0;
  3808. wc.process_func = replay_one_buffer;
  3809. wc.stage = LOG_WALK_REPLAY_INODES;
  3810. goto again;
  3811. }
  3812. /* step three is to replay everything */
  3813. if (wc.stage < LOG_WALK_REPLAY_ALL) {
  3814. wc.stage++;
  3815. goto again;
  3816. }
  3817. btrfs_free_path(path);
  3818. /* step 4: commit the transaction, which also unpins the blocks */
  3819. ret = btrfs_commit_transaction(trans, fs_info->tree_root);
  3820. if (ret)
  3821. return ret;
  3822. free_extent_buffer(log_root_tree->node);
  3823. log_root_tree->log_root = NULL;
  3824. fs_info->log_root_recovering = 0;
  3825. kfree(log_root_tree);
  3826. return 0;
  3827. error:
  3828. if (wc.trans)
  3829. btrfs_end_transaction(wc.trans, fs_info->tree_root);
  3830. btrfs_free_path(path);
  3831. return ret;
  3832. }
  3833. /*
  3834. * there are some corner cases where we want to force a full
  3835. * commit instead of allowing a directory to be logged.
  3836. *
  3837. * They revolve around files there were unlinked from the directory, and
  3838. * this function updates the parent directory so that a full commit is
  3839. * properly done if it is fsync'd later after the unlinks are done.
  3840. */
  3841. void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
  3842. struct inode *dir, struct inode *inode,
  3843. int for_rename)
  3844. {
  3845. /*
  3846. * when we're logging a file, if it hasn't been renamed
  3847. * or unlinked, and its inode is fully committed on disk,
  3848. * we don't have to worry about walking up the directory chain
  3849. * to log its parents.
  3850. *
  3851. * So, we use the last_unlink_trans field to put this transid
  3852. * into the file. When the file is logged we check it and
  3853. * don't log the parents if the file is fully on disk.
  3854. */
  3855. if (S_ISREG(inode->i_mode))
  3856. BTRFS_I(inode)->last_unlink_trans = trans->transid;
  3857. /*
  3858. * if this directory was already logged any new
  3859. * names for this file/dir will get recorded
  3860. */
  3861. smp_mb();
  3862. if (BTRFS_I(dir)->logged_trans == trans->transid)
  3863. return;
  3864. /*
  3865. * if the inode we're about to unlink was logged,
  3866. * the log will be properly updated for any new names
  3867. */
  3868. if (BTRFS_I(inode)->logged_trans == trans->transid)
  3869. return;
  3870. /*
  3871. * when renaming files across directories, if the directory
  3872. * there we're unlinking from gets fsync'd later on, there's
  3873. * no way to find the destination directory later and fsync it
  3874. * properly. So, we have to be conservative and force commits
  3875. * so the new name gets discovered.
  3876. */
  3877. if (for_rename)
  3878. goto record;
  3879. /* we can safely do the unlink without any special recording */
  3880. return;
  3881. record:
  3882. BTRFS_I(dir)->last_unlink_trans = trans->transid;
  3883. }
  3884. /*
  3885. * Call this after adding a new name for a file and it will properly
  3886. * update the log to reflect the new name.
  3887. *
  3888. * It will return zero if all goes well, and it will return 1 if a
  3889. * full transaction commit is required.
  3890. */
  3891. int btrfs_log_new_name(struct btrfs_trans_handle *trans,
  3892. struct inode *inode, struct inode *old_dir,
  3893. struct dentry *parent)
  3894. {
  3895. struct btrfs_root * root = BTRFS_I(inode)->root;
  3896. /*
  3897. * this will force the logging code to walk the dentry chain
  3898. * up for the file
  3899. */
  3900. if (S_ISREG(inode->i_mode))
  3901. BTRFS_I(inode)->last_unlink_trans = trans->transid;
  3902. /*
  3903. * if this inode hasn't been logged and directory we're renaming it
  3904. * from hasn't been logged, we don't need to log it
  3905. */
  3906. if (BTRFS_I(inode)->logged_trans <=
  3907. root->fs_info->last_trans_committed &&
  3908. (!old_dir || BTRFS_I(old_dir)->logged_trans <=
  3909. root->fs_info->last_trans_committed))
  3910. return 0;
  3911. return btrfs_log_inode_parent(trans, root, inode, parent, 1);
  3912. }