mips.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/kdebug.h>
  14. #include <linux/module.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/fs.h>
  17. #include <linux/bootmem.h>
  18. #include <asm/fpu.h>
  19. #include <asm/page.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/mmu_context.h>
  22. #include <asm/pgtable.h>
  23. #include <linux/kvm_host.h>
  24. #include "interrupt.h"
  25. #include "commpage.h"
  26. #define CREATE_TRACE_POINTS
  27. #include "trace.h"
  28. #ifndef VECTORSPACING
  29. #define VECTORSPACING 0x100 /* for EI/VI mode */
  30. #endif
  31. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  32. struct kvm_stats_debugfs_item debugfs_entries[] = {
  33. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  34. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  35. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  36. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  37. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  38. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  39. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  41. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  43. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  44. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  45. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  46. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  47. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  48. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  49. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  50. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  51. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  52. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  53. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  54. {NULL}
  55. };
  56. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  57. {
  58. int i;
  59. for_each_possible_cpu(i) {
  60. vcpu->arch.guest_kernel_asid[i] = 0;
  61. vcpu->arch.guest_user_asid[i] = 0;
  62. }
  63. return 0;
  64. }
  65. /*
  66. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  67. * Config7, so we are "runnable" if interrupts are pending
  68. */
  69. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  70. {
  71. return !!(vcpu->arch.pending_exceptions);
  72. }
  73. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  74. {
  75. return 1;
  76. }
  77. int kvm_arch_hardware_enable(void)
  78. {
  79. return 0;
  80. }
  81. int kvm_arch_hardware_setup(void)
  82. {
  83. return 0;
  84. }
  85. void kvm_arch_check_processor_compat(void *rtn)
  86. {
  87. *(int *)rtn = 0;
  88. }
  89. static void kvm_mips_init_tlbs(struct kvm *kvm)
  90. {
  91. unsigned long wired;
  92. /*
  93. * Add a wired entry to the TLB, it is used to map the commpage to
  94. * the Guest kernel
  95. */
  96. wired = read_c0_wired();
  97. write_c0_wired(wired + 1);
  98. mtc0_tlbw_hazard();
  99. kvm->arch.commpage_tlb = wired;
  100. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  101. kvm->arch.commpage_tlb);
  102. }
  103. static void kvm_mips_init_vm_percpu(void *arg)
  104. {
  105. struct kvm *kvm = (struct kvm *)arg;
  106. kvm_mips_init_tlbs(kvm);
  107. kvm_mips_callbacks->vm_init(kvm);
  108. }
  109. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  110. {
  111. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  112. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  113. __func__);
  114. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  115. }
  116. return 0;
  117. }
  118. void kvm_mips_free_vcpus(struct kvm *kvm)
  119. {
  120. unsigned int i;
  121. struct kvm_vcpu *vcpu;
  122. /* Put the pages we reserved for the guest pmap */
  123. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  124. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  125. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  126. }
  127. kfree(kvm->arch.guest_pmap);
  128. kvm_for_each_vcpu(i, vcpu, kvm) {
  129. kvm_arch_vcpu_free(vcpu);
  130. }
  131. mutex_lock(&kvm->lock);
  132. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  133. kvm->vcpus[i] = NULL;
  134. atomic_set(&kvm->online_vcpus, 0);
  135. mutex_unlock(&kvm->lock);
  136. }
  137. static void kvm_mips_uninit_tlbs(void *arg)
  138. {
  139. /* Restore wired count */
  140. write_c0_wired(0);
  141. mtc0_tlbw_hazard();
  142. /* Clear out all the TLBs */
  143. kvm_local_flush_tlb_all();
  144. }
  145. void kvm_arch_destroy_vm(struct kvm *kvm)
  146. {
  147. kvm_mips_free_vcpus(kvm);
  148. /* If this is the last instance, restore wired count */
  149. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  150. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  151. __func__);
  152. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  153. }
  154. }
  155. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  156. unsigned long arg)
  157. {
  158. return -ENOIOCTLCMD;
  159. }
  160. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  161. unsigned long npages)
  162. {
  163. return 0;
  164. }
  165. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  166. struct kvm_memory_slot *memslot,
  167. const struct kvm_userspace_memory_region *mem,
  168. enum kvm_mr_change change)
  169. {
  170. return 0;
  171. }
  172. void kvm_arch_commit_memory_region(struct kvm *kvm,
  173. const struct kvm_userspace_memory_region *mem,
  174. const struct kvm_memory_slot *old,
  175. const struct kvm_memory_slot *new,
  176. enum kvm_mr_change change)
  177. {
  178. unsigned long npages = 0;
  179. int i;
  180. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  181. __func__, kvm, mem->slot, mem->guest_phys_addr,
  182. mem->memory_size, mem->userspace_addr);
  183. /* Setup Guest PMAP table */
  184. if (!kvm->arch.guest_pmap) {
  185. if (mem->slot == 0)
  186. npages = mem->memory_size >> PAGE_SHIFT;
  187. if (npages) {
  188. kvm->arch.guest_pmap_npages = npages;
  189. kvm->arch.guest_pmap =
  190. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  191. if (!kvm->arch.guest_pmap) {
  192. kvm_err("Failed to allocate guest PMAP");
  193. return;
  194. }
  195. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  196. npages, kvm->arch.guest_pmap);
  197. /* Now setup the page table */
  198. for (i = 0; i < npages; i++)
  199. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  200. }
  201. }
  202. }
  203. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  204. {
  205. int err, size, offset;
  206. void *gebase;
  207. int i;
  208. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  209. if (!vcpu) {
  210. err = -ENOMEM;
  211. goto out;
  212. }
  213. err = kvm_vcpu_init(vcpu, kvm, id);
  214. if (err)
  215. goto out_free_cpu;
  216. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  217. /*
  218. * Allocate space for host mode exception handlers that handle
  219. * guest mode exits
  220. */
  221. if (cpu_has_veic || cpu_has_vint)
  222. size = 0x200 + VECTORSPACING * 64;
  223. else
  224. size = 0x4000;
  225. /* Save Linux EBASE */
  226. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  227. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  228. if (!gebase) {
  229. err = -ENOMEM;
  230. goto out_uninit_cpu;
  231. }
  232. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  233. ALIGN(size, PAGE_SIZE), gebase);
  234. /* Save new ebase */
  235. vcpu->arch.guest_ebase = gebase;
  236. /* Copy L1 Guest Exception handler to correct offset */
  237. /* TLB Refill, EXL = 0 */
  238. memcpy(gebase, mips32_exception,
  239. mips32_exceptionEnd - mips32_exception);
  240. /* General Exception Entry point */
  241. memcpy(gebase + 0x180, mips32_exception,
  242. mips32_exceptionEnd - mips32_exception);
  243. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  244. for (i = 0; i < 8; i++) {
  245. kvm_debug("L1 Vectored handler @ %p\n",
  246. gebase + 0x200 + (i * VECTORSPACING));
  247. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  248. mips32_exceptionEnd - mips32_exception);
  249. }
  250. /* General handler, relocate to unmapped space for sanity's sake */
  251. offset = 0x2000;
  252. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  253. gebase + offset,
  254. mips32_GuestExceptionEnd - mips32_GuestException);
  255. memcpy(gebase + offset, mips32_GuestException,
  256. mips32_GuestExceptionEnd - mips32_GuestException);
  257. /* Invalidate the icache for these ranges */
  258. local_flush_icache_range((unsigned long)gebase,
  259. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  260. /*
  261. * Allocate comm page for guest kernel, a TLB will be reserved for
  262. * mapping GVA @ 0xFFFF8000 to this page
  263. */
  264. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  265. if (!vcpu->arch.kseg0_commpage) {
  266. err = -ENOMEM;
  267. goto out_free_gebase;
  268. }
  269. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  270. kvm_mips_commpage_init(vcpu);
  271. /* Init */
  272. vcpu->arch.last_sched_cpu = -1;
  273. /* Start off the timer */
  274. kvm_mips_init_count(vcpu);
  275. return vcpu;
  276. out_free_gebase:
  277. kfree(gebase);
  278. out_uninit_cpu:
  279. kvm_vcpu_uninit(vcpu);
  280. out_free_cpu:
  281. kfree(vcpu);
  282. out:
  283. return ERR_PTR(err);
  284. }
  285. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  286. {
  287. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  288. kvm_vcpu_uninit(vcpu);
  289. kvm_mips_dump_stats(vcpu);
  290. kfree(vcpu->arch.guest_ebase);
  291. kfree(vcpu->arch.kseg0_commpage);
  292. kfree(vcpu);
  293. }
  294. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  295. {
  296. kvm_arch_vcpu_free(vcpu);
  297. }
  298. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  299. struct kvm_guest_debug *dbg)
  300. {
  301. return -ENOIOCTLCMD;
  302. }
  303. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  304. {
  305. int r = 0;
  306. sigset_t sigsaved;
  307. if (vcpu->sigset_active)
  308. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  309. if (vcpu->mmio_needed) {
  310. if (!vcpu->mmio_is_write)
  311. kvm_mips_complete_mmio_load(vcpu, run);
  312. vcpu->mmio_needed = 0;
  313. }
  314. lose_fpu(1);
  315. local_irq_disable();
  316. /* Check if we have any exceptions/interrupts pending */
  317. kvm_mips_deliver_interrupts(vcpu,
  318. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  319. __kvm_guest_enter();
  320. /* Disable hardware page table walking while in guest */
  321. htw_stop();
  322. r = __kvm_mips_vcpu_run(run, vcpu);
  323. /* Re-enable HTW before enabling interrupts */
  324. htw_start();
  325. __kvm_guest_exit();
  326. local_irq_enable();
  327. if (vcpu->sigset_active)
  328. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  329. return r;
  330. }
  331. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  332. struct kvm_mips_interrupt *irq)
  333. {
  334. int intr = (int)irq->irq;
  335. struct kvm_vcpu *dvcpu = NULL;
  336. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  337. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  338. (int)intr);
  339. if (irq->cpu == -1)
  340. dvcpu = vcpu;
  341. else
  342. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  343. if (intr == 2 || intr == 3 || intr == 4) {
  344. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  345. } else if (intr == -2 || intr == -3 || intr == -4) {
  346. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  347. } else {
  348. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  349. irq->cpu, irq->irq);
  350. return -EINVAL;
  351. }
  352. dvcpu->arch.wait = 0;
  353. if (waitqueue_active(&dvcpu->wq))
  354. wake_up_interruptible(&dvcpu->wq);
  355. return 0;
  356. }
  357. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  358. struct kvm_mp_state *mp_state)
  359. {
  360. return -ENOIOCTLCMD;
  361. }
  362. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  363. struct kvm_mp_state *mp_state)
  364. {
  365. return -ENOIOCTLCMD;
  366. }
  367. static u64 kvm_mips_get_one_regs[] = {
  368. KVM_REG_MIPS_R0,
  369. KVM_REG_MIPS_R1,
  370. KVM_REG_MIPS_R2,
  371. KVM_REG_MIPS_R3,
  372. KVM_REG_MIPS_R4,
  373. KVM_REG_MIPS_R5,
  374. KVM_REG_MIPS_R6,
  375. KVM_REG_MIPS_R7,
  376. KVM_REG_MIPS_R8,
  377. KVM_REG_MIPS_R9,
  378. KVM_REG_MIPS_R10,
  379. KVM_REG_MIPS_R11,
  380. KVM_REG_MIPS_R12,
  381. KVM_REG_MIPS_R13,
  382. KVM_REG_MIPS_R14,
  383. KVM_REG_MIPS_R15,
  384. KVM_REG_MIPS_R16,
  385. KVM_REG_MIPS_R17,
  386. KVM_REG_MIPS_R18,
  387. KVM_REG_MIPS_R19,
  388. KVM_REG_MIPS_R20,
  389. KVM_REG_MIPS_R21,
  390. KVM_REG_MIPS_R22,
  391. KVM_REG_MIPS_R23,
  392. KVM_REG_MIPS_R24,
  393. KVM_REG_MIPS_R25,
  394. KVM_REG_MIPS_R26,
  395. KVM_REG_MIPS_R27,
  396. KVM_REG_MIPS_R28,
  397. KVM_REG_MIPS_R29,
  398. KVM_REG_MIPS_R30,
  399. KVM_REG_MIPS_R31,
  400. KVM_REG_MIPS_HI,
  401. KVM_REG_MIPS_LO,
  402. KVM_REG_MIPS_PC,
  403. KVM_REG_MIPS_CP0_INDEX,
  404. KVM_REG_MIPS_CP0_CONTEXT,
  405. KVM_REG_MIPS_CP0_USERLOCAL,
  406. KVM_REG_MIPS_CP0_PAGEMASK,
  407. KVM_REG_MIPS_CP0_WIRED,
  408. KVM_REG_MIPS_CP0_HWRENA,
  409. KVM_REG_MIPS_CP0_BADVADDR,
  410. KVM_REG_MIPS_CP0_COUNT,
  411. KVM_REG_MIPS_CP0_ENTRYHI,
  412. KVM_REG_MIPS_CP0_COMPARE,
  413. KVM_REG_MIPS_CP0_STATUS,
  414. KVM_REG_MIPS_CP0_CAUSE,
  415. KVM_REG_MIPS_CP0_EPC,
  416. KVM_REG_MIPS_CP0_PRID,
  417. KVM_REG_MIPS_CP0_CONFIG,
  418. KVM_REG_MIPS_CP0_CONFIG1,
  419. KVM_REG_MIPS_CP0_CONFIG2,
  420. KVM_REG_MIPS_CP0_CONFIG3,
  421. KVM_REG_MIPS_CP0_CONFIG4,
  422. KVM_REG_MIPS_CP0_CONFIG5,
  423. KVM_REG_MIPS_CP0_CONFIG7,
  424. KVM_REG_MIPS_CP0_ERROREPC,
  425. KVM_REG_MIPS_COUNT_CTL,
  426. KVM_REG_MIPS_COUNT_RESUME,
  427. KVM_REG_MIPS_COUNT_HZ,
  428. };
  429. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  430. const struct kvm_one_reg *reg)
  431. {
  432. struct mips_coproc *cop0 = vcpu->arch.cop0;
  433. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  434. int ret;
  435. s64 v;
  436. s64 vs[2];
  437. unsigned int idx;
  438. switch (reg->id) {
  439. /* General purpose registers */
  440. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  441. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  442. break;
  443. case KVM_REG_MIPS_HI:
  444. v = (long)vcpu->arch.hi;
  445. break;
  446. case KVM_REG_MIPS_LO:
  447. v = (long)vcpu->arch.lo;
  448. break;
  449. case KVM_REG_MIPS_PC:
  450. v = (long)vcpu->arch.pc;
  451. break;
  452. /* Floating point registers */
  453. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  454. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  455. return -EINVAL;
  456. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  457. /* Odd singles in top of even double when FR=0 */
  458. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  459. v = get_fpr32(&fpu->fpr[idx], 0);
  460. else
  461. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  462. break;
  463. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  464. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  465. return -EINVAL;
  466. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  467. /* Can't access odd doubles in FR=0 mode */
  468. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  469. return -EINVAL;
  470. v = get_fpr64(&fpu->fpr[idx], 0);
  471. break;
  472. case KVM_REG_MIPS_FCR_IR:
  473. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  474. return -EINVAL;
  475. v = boot_cpu_data.fpu_id;
  476. break;
  477. case KVM_REG_MIPS_FCR_CSR:
  478. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  479. return -EINVAL;
  480. v = fpu->fcr31;
  481. break;
  482. /* MIPS SIMD Architecture (MSA) registers */
  483. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  484. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  485. return -EINVAL;
  486. /* Can't access MSA registers in FR=0 mode */
  487. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  488. return -EINVAL;
  489. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  490. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  491. /* least significant byte first */
  492. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  493. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  494. #else
  495. /* most significant byte first */
  496. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  497. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  498. #endif
  499. break;
  500. case KVM_REG_MIPS_MSA_IR:
  501. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  502. return -EINVAL;
  503. v = boot_cpu_data.msa_id;
  504. break;
  505. case KVM_REG_MIPS_MSA_CSR:
  506. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  507. return -EINVAL;
  508. v = fpu->msacsr;
  509. break;
  510. /* Co-processor 0 registers */
  511. case KVM_REG_MIPS_CP0_INDEX:
  512. v = (long)kvm_read_c0_guest_index(cop0);
  513. break;
  514. case KVM_REG_MIPS_CP0_CONTEXT:
  515. v = (long)kvm_read_c0_guest_context(cop0);
  516. break;
  517. case KVM_REG_MIPS_CP0_USERLOCAL:
  518. v = (long)kvm_read_c0_guest_userlocal(cop0);
  519. break;
  520. case KVM_REG_MIPS_CP0_PAGEMASK:
  521. v = (long)kvm_read_c0_guest_pagemask(cop0);
  522. break;
  523. case KVM_REG_MIPS_CP0_WIRED:
  524. v = (long)kvm_read_c0_guest_wired(cop0);
  525. break;
  526. case KVM_REG_MIPS_CP0_HWRENA:
  527. v = (long)kvm_read_c0_guest_hwrena(cop0);
  528. break;
  529. case KVM_REG_MIPS_CP0_BADVADDR:
  530. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  531. break;
  532. case KVM_REG_MIPS_CP0_ENTRYHI:
  533. v = (long)kvm_read_c0_guest_entryhi(cop0);
  534. break;
  535. case KVM_REG_MIPS_CP0_COMPARE:
  536. v = (long)kvm_read_c0_guest_compare(cop0);
  537. break;
  538. case KVM_REG_MIPS_CP0_STATUS:
  539. v = (long)kvm_read_c0_guest_status(cop0);
  540. break;
  541. case KVM_REG_MIPS_CP0_CAUSE:
  542. v = (long)kvm_read_c0_guest_cause(cop0);
  543. break;
  544. case KVM_REG_MIPS_CP0_EPC:
  545. v = (long)kvm_read_c0_guest_epc(cop0);
  546. break;
  547. case KVM_REG_MIPS_CP0_PRID:
  548. v = (long)kvm_read_c0_guest_prid(cop0);
  549. break;
  550. case KVM_REG_MIPS_CP0_CONFIG:
  551. v = (long)kvm_read_c0_guest_config(cop0);
  552. break;
  553. case KVM_REG_MIPS_CP0_CONFIG1:
  554. v = (long)kvm_read_c0_guest_config1(cop0);
  555. break;
  556. case KVM_REG_MIPS_CP0_CONFIG2:
  557. v = (long)kvm_read_c0_guest_config2(cop0);
  558. break;
  559. case KVM_REG_MIPS_CP0_CONFIG3:
  560. v = (long)kvm_read_c0_guest_config3(cop0);
  561. break;
  562. case KVM_REG_MIPS_CP0_CONFIG4:
  563. v = (long)kvm_read_c0_guest_config4(cop0);
  564. break;
  565. case KVM_REG_MIPS_CP0_CONFIG5:
  566. v = (long)kvm_read_c0_guest_config5(cop0);
  567. break;
  568. case KVM_REG_MIPS_CP0_CONFIG7:
  569. v = (long)kvm_read_c0_guest_config7(cop0);
  570. break;
  571. case KVM_REG_MIPS_CP0_ERROREPC:
  572. v = (long)kvm_read_c0_guest_errorepc(cop0);
  573. break;
  574. /* registers to be handled specially */
  575. case KVM_REG_MIPS_CP0_COUNT:
  576. case KVM_REG_MIPS_COUNT_CTL:
  577. case KVM_REG_MIPS_COUNT_RESUME:
  578. case KVM_REG_MIPS_COUNT_HZ:
  579. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  580. if (ret)
  581. return ret;
  582. break;
  583. default:
  584. return -EINVAL;
  585. }
  586. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  587. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  588. return put_user(v, uaddr64);
  589. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  590. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  591. u32 v32 = (u32)v;
  592. return put_user(v32, uaddr32);
  593. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  594. void __user *uaddr = (void __user *)(long)reg->addr;
  595. return copy_to_user(uaddr, vs, 16);
  596. } else {
  597. return -EINVAL;
  598. }
  599. }
  600. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  601. const struct kvm_one_reg *reg)
  602. {
  603. struct mips_coproc *cop0 = vcpu->arch.cop0;
  604. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  605. s64 v;
  606. s64 vs[2];
  607. unsigned int idx;
  608. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  609. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  610. if (get_user(v, uaddr64) != 0)
  611. return -EFAULT;
  612. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  613. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  614. s32 v32;
  615. if (get_user(v32, uaddr32) != 0)
  616. return -EFAULT;
  617. v = (s64)v32;
  618. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  619. void __user *uaddr = (void __user *)(long)reg->addr;
  620. return copy_from_user(vs, uaddr, 16);
  621. } else {
  622. return -EINVAL;
  623. }
  624. switch (reg->id) {
  625. /* General purpose registers */
  626. case KVM_REG_MIPS_R0:
  627. /* Silently ignore requests to set $0 */
  628. break;
  629. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  630. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  631. break;
  632. case KVM_REG_MIPS_HI:
  633. vcpu->arch.hi = v;
  634. break;
  635. case KVM_REG_MIPS_LO:
  636. vcpu->arch.lo = v;
  637. break;
  638. case KVM_REG_MIPS_PC:
  639. vcpu->arch.pc = v;
  640. break;
  641. /* Floating point registers */
  642. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  643. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  644. return -EINVAL;
  645. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  646. /* Odd singles in top of even double when FR=0 */
  647. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  648. set_fpr32(&fpu->fpr[idx], 0, v);
  649. else
  650. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  651. break;
  652. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  653. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  654. return -EINVAL;
  655. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  656. /* Can't access odd doubles in FR=0 mode */
  657. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  658. return -EINVAL;
  659. set_fpr64(&fpu->fpr[idx], 0, v);
  660. break;
  661. case KVM_REG_MIPS_FCR_IR:
  662. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  663. return -EINVAL;
  664. /* Read-only */
  665. break;
  666. case KVM_REG_MIPS_FCR_CSR:
  667. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  668. return -EINVAL;
  669. fpu->fcr31 = v;
  670. break;
  671. /* MIPS SIMD Architecture (MSA) registers */
  672. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  673. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  674. return -EINVAL;
  675. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  676. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  677. /* least significant byte first */
  678. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  679. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  680. #else
  681. /* most significant byte first */
  682. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  683. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  684. #endif
  685. break;
  686. case KVM_REG_MIPS_MSA_IR:
  687. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  688. return -EINVAL;
  689. /* Read-only */
  690. break;
  691. case KVM_REG_MIPS_MSA_CSR:
  692. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  693. return -EINVAL;
  694. fpu->msacsr = v;
  695. break;
  696. /* Co-processor 0 registers */
  697. case KVM_REG_MIPS_CP0_INDEX:
  698. kvm_write_c0_guest_index(cop0, v);
  699. break;
  700. case KVM_REG_MIPS_CP0_CONTEXT:
  701. kvm_write_c0_guest_context(cop0, v);
  702. break;
  703. case KVM_REG_MIPS_CP0_USERLOCAL:
  704. kvm_write_c0_guest_userlocal(cop0, v);
  705. break;
  706. case KVM_REG_MIPS_CP0_PAGEMASK:
  707. kvm_write_c0_guest_pagemask(cop0, v);
  708. break;
  709. case KVM_REG_MIPS_CP0_WIRED:
  710. kvm_write_c0_guest_wired(cop0, v);
  711. break;
  712. case KVM_REG_MIPS_CP0_HWRENA:
  713. kvm_write_c0_guest_hwrena(cop0, v);
  714. break;
  715. case KVM_REG_MIPS_CP0_BADVADDR:
  716. kvm_write_c0_guest_badvaddr(cop0, v);
  717. break;
  718. case KVM_REG_MIPS_CP0_ENTRYHI:
  719. kvm_write_c0_guest_entryhi(cop0, v);
  720. break;
  721. case KVM_REG_MIPS_CP0_STATUS:
  722. kvm_write_c0_guest_status(cop0, v);
  723. break;
  724. case KVM_REG_MIPS_CP0_EPC:
  725. kvm_write_c0_guest_epc(cop0, v);
  726. break;
  727. case KVM_REG_MIPS_CP0_PRID:
  728. kvm_write_c0_guest_prid(cop0, v);
  729. break;
  730. case KVM_REG_MIPS_CP0_ERROREPC:
  731. kvm_write_c0_guest_errorepc(cop0, v);
  732. break;
  733. /* registers to be handled specially */
  734. case KVM_REG_MIPS_CP0_COUNT:
  735. case KVM_REG_MIPS_CP0_COMPARE:
  736. case KVM_REG_MIPS_CP0_CAUSE:
  737. case KVM_REG_MIPS_CP0_CONFIG:
  738. case KVM_REG_MIPS_CP0_CONFIG1:
  739. case KVM_REG_MIPS_CP0_CONFIG2:
  740. case KVM_REG_MIPS_CP0_CONFIG3:
  741. case KVM_REG_MIPS_CP0_CONFIG4:
  742. case KVM_REG_MIPS_CP0_CONFIG5:
  743. case KVM_REG_MIPS_COUNT_CTL:
  744. case KVM_REG_MIPS_COUNT_RESUME:
  745. case KVM_REG_MIPS_COUNT_HZ:
  746. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  747. default:
  748. return -EINVAL;
  749. }
  750. return 0;
  751. }
  752. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  753. struct kvm_enable_cap *cap)
  754. {
  755. int r = 0;
  756. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  757. return -EINVAL;
  758. if (cap->flags)
  759. return -EINVAL;
  760. if (cap->args[0])
  761. return -EINVAL;
  762. switch (cap->cap) {
  763. case KVM_CAP_MIPS_FPU:
  764. vcpu->arch.fpu_enabled = true;
  765. break;
  766. case KVM_CAP_MIPS_MSA:
  767. vcpu->arch.msa_enabled = true;
  768. break;
  769. default:
  770. r = -EINVAL;
  771. break;
  772. }
  773. return r;
  774. }
  775. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  776. unsigned long arg)
  777. {
  778. struct kvm_vcpu *vcpu = filp->private_data;
  779. void __user *argp = (void __user *)arg;
  780. long r;
  781. switch (ioctl) {
  782. case KVM_SET_ONE_REG:
  783. case KVM_GET_ONE_REG: {
  784. struct kvm_one_reg reg;
  785. if (copy_from_user(&reg, argp, sizeof(reg)))
  786. return -EFAULT;
  787. if (ioctl == KVM_SET_ONE_REG)
  788. return kvm_mips_set_reg(vcpu, &reg);
  789. else
  790. return kvm_mips_get_reg(vcpu, &reg);
  791. }
  792. case KVM_GET_REG_LIST: {
  793. struct kvm_reg_list __user *user_list = argp;
  794. u64 __user *reg_dest;
  795. struct kvm_reg_list reg_list;
  796. unsigned n;
  797. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  798. return -EFAULT;
  799. n = reg_list.n;
  800. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  801. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  802. return -EFAULT;
  803. if (n < reg_list.n)
  804. return -E2BIG;
  805. reg_dest = user_list->reg;
  806. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  807. sizeof(kvm_mips_get_one_regs)))
  808. return -EFAULT;
  809. return 0;
  810. }
  811. case KVM_NMI:
  812. /* Treat the NMI as a CPU reset */
  813. r = kvm_mips_reset_vcpu(vcpu);
  814. break;
  815. case KVM_INTERRUPT:
  816. {
  817. struct kvm_mips_interrupt irq;
  818. r = -EFAULT;
  819. if (copy_from_user(&irq, argp, sizeof(irq)))
  820. goto out;
  821. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  822. irq.irq);
  823. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  824. break;
  825. }
  826. case KVM_ENABLE_CAP: {
  827. struct kvm_enable_cap cap;
  828. r = -EFAULT;
  829. if (copy_from_user(&cap, argp, sizeof(cap)))
  830. goto out;
  831. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  832. break;
  833. }
  834. default:
  835. r = -ENOIOCTLCMD;
  836. }
  837. out:
  838. return r;
  839. }
  840. /* Get (and clear) the dirty memory log for a memory slot. */
  841. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  842. {
  843. struct kvm_memslots *slots;
  844. struct kvm_memory_slot *memslot;
  845. unsigned long ga, ga_end;
  846. int is_dirty = 0;
  847. int r;
  848. unsigned long n;
  849. mutex_lock(&kvm->slots_lock);
  850. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  851. if (r)
  852. goto out;
  853. /* If nothing is dirty, don't bother messing with page tables. */
  854. if (is_dirty) {
  855. slots = kvm_memslots(kvm);
  856. memslot = id_to_memslot(slots, log->slot);
  857. ga = memslot->base_gfn << PAGE_SHIFT;
  858. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  859. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  860. ga_end);
  861. n = kvm_dirty_bitmap_bytes(memslot);
  862. memset(memslot->dirty_bitmap, 0, n);
  863. }
  864. r = 0;
  865. out:
  866. mutex_unlock(&kvm->slots_lock);
  867. return r;
  868. }
  869. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  870. {
  871. long r;
  872. switch (ioctl) {
  873. default:
  874. r = -ENOIOCTLCMD;
  875. }
  876. return r;
  877. }
  878. int kvm_arch_init(void *opaque)
  879. {
  880. if (kvm_mips_callbacks) {
  881. kvm_err("kvm: module already exists\n");
  882. return -EEXIST;
  883. }
  884. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  885. }
  886. void kvm_arch_exit(void)
  887. {
  888. kvm_mips_callbacks = NULL;
  889. }
  890. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  891. struct kvm_sregs *sregs)
  892. {
  893. return -ENOIOCTLCMD;
  894. }
  895. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  896. struct kvm_sregs *sregs)
  897. {
  898. return -ENOIOCTLCMD;
  899. }
  900. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  901. {
  902. }
  903. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  904. {
  905. return -ENOIOCTLCMD;
  906. }
  907. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  908. {
  909. return -ENOIOCTLCMD;
  910. }
  911. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  912. {
  913. return VM_FAULT_SIGBUS;
  914. }
  915. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  916. {
  917. int r;
  918. switch (ext) {
  919. case KVM_CAP_ONE_REG:
  920. case KVM_CAP_ENABLE_CAP:
  921. r = 1;
  922. break;
  923. case KVM_CAP_COALESCED_MMIO:
  924. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  925. break;
  926. case KVM_CAP_MIPS_FPU:
  927. r = !!cpu_has_fpu;
  928. break;
  929. case KVM_CAP_MIPS_MSA:
  930. /*
  931. * We don't support MSA vector partitioning yet:
  932. * 1) It would require explicit support which can't be tested
  933. * yet due to lack of support in current hardware.
  934. * 2) It extends the state that would need to be saved/restored
  935. * by e.g. QEMU for migration.
  936. *
  937. * When vector partitioning hardware becomes available, support
  938. * could be added by requiring a flag when enabling
  939. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  940. * to save/restore the appropriate extra state.
  941. */
  942. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  943. break;
  944. default:
  945. r = 0;
  946. break;
  947. }
  948. return r;
  949. }
  950. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  951. {
  952. return kvm_mips_pending_timer(vcpu);
  953. }
  954. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  955. {
  956. int i;
  957. struct mips_coproc *cop0;
  958. if (!vcpu)
  959. return -1;
  960. kvm_debug("VCPU Register Dump:\n");
  961. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  962. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  963. for (i = 0; i < 32; i += 4) {
  964. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  965. vcpu->arch.gprs[i],
  966. vcpu->arch.gprs[i + 1],
  967. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  968. }
  969. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  970. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  971. cop0 = vcpu->arch.cop0;
  972. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  973. kvm_read_c0_guest_status(cop0),
  974. kvm_read_c0_guest_cause(cop0));
  975. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  976. return 0;
  977. }
  978. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  979. {
  980. int i;
  981. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  982. vcpu->arch.gprs[i] = regs->gpr[i];
  983. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  984. vcpu->arch.hi = regs->hi;
  985. vcpu->arch.lo = regs->lo;
  986. vcpu->arch.pc = regs->pc;
  987. return 0;
  988. }
  989. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  990. {
  991. int i;
  992. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  993. regs->gpr[i] = vcpu->arch.gprs[i];
  994. regs->hi = vcpu->arch.hi;
  995. regs->lo = vcpu->arch.lo;
  996. regs->pc = vcpu->arch.pc;
  997. return 0;
  998. }
  999. static void kvm_mips_comparecount_func(unsigned long data)
  1000. {
  1001. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1002. kvm_mips_callbacks->queue_timer_int(vcpu);
  1003. vcpu->arch.wait = 0;
  1004. if (waitqueue_active(&vcpu->wq))
  1005. wake_up_interruptible(&vcpu->wq);
  1006. }
  1007. /* low level hrtimer wake routine */
  1008. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1009. {
  1010. struct kvm_vcpu *vcpu;
  1011. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1012. kvm_mips_comparecount_func((unsigned long) vcpu);
  1013. return kvm_mips_count_timeout(vcpu);
  1014. }
  1015. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1016. {
  1017. kvm_mips_callbacks->vcpu_init(vcpu);
  1018. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1019. HRTIMER_MODE_REL);
  1020. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1021. return 0;
  1022. }
  1023. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1024. struct kvm_translation *tr)
  1025. {
  1026. return 0;
  1027. }
  1028. /* Initial guest state */
  1029. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1030. {
  1031. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1032. }
  1033. static void kvm_mips_set_c0_status(void)
  1034. {
  1035. uint32_t status = read_c0_status();
  1036. if (cpu_has_dsp)
  1037. status |= (ST0_MX);
  1038. write_c0_status(status);
  1039. ehb();
  1040. }
  1041. /*
  1042. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1043. */
  1044. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1045. {
  1046. uint32_t cause = vcpu->arch.host_cp0_cause;
  1047. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1048. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  1049. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1050. enum emulation_result er = EMULATE_DONE;
  1051. int ret = RESUME_GUEST;
  1052. /* re-enable HTW before enabling interrupts */
  1053. htw_start();
  1054. /* Set a default exit reason */
  1055. run->exit_reason = KVM_EXIT_UNKNOWN;
  1056. run->ready_for_interrupt_injection = 1;
  1057. /*
  1058. * Set the appropriate status bits based on host CPU features,
  1059. * before we hit the scheduler
  1060. */
  1061. kvm_mips_set_c0_status();
  1062. local_irq_enable();
  1063. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1064. cause, opc, run, vcpu);
  1065. /*
  1066. * Do a privilege check, if in UM most of these exit conditions end up
  1067. * causing an exception to be delivered to the Guest Kernel
  1068. */
  1069. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1070. if (er == EMULATE_PRIV_FAIL) {
  1071. goto skip_emul;
  1072. } else if (er == EMULATE_FAIL) {
  1073. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1074. ret = RESUME_HOST;
  1075. goto skip_emul;
  1076. }
  1077. switch (exccode) {
  1078. case EXCCODE_INT:
  1079. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1080. ++vcpu->stat.int_exits;
  1081. trace_kvm_exit(vcpu, INT_EXITS);
  1082. if (need_resched())
  1083. cond_resched();
  1084. ret = RESUME_GUEST;
  1085. break;
  1086. case EXCCODE_CPU:
  1087. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1088. ++vcpu->stat.cop_unusable_exits;
  1089. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  1090. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1091. /* XXXKYMA: Might need to return to user space */
  1092. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1093. ret = RESUME_HOST;
  1094. break;
  1095. case EXCCODE_MOD:
  1096. ++vcpu->stat.tlbmod_exits;
  1097. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  1098. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1099. break;
  1100. case EXCCODE_TLBS:
  1101. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1102. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1103. badvaddr);
  1104. ++vcpu->stat.tlbmiss_st_exits;
  1105. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  1106. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1107. break;
  1108. case EXCCODE_TLBL:
  1109. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1110. cause, opc, badvaddr);
  1111. ++vcpu->stat.tlbmiss_ld_exits;
  1112. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  1113. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1114. break;
  1115. case EXCCODE_ADES:
  1116. ++vcpu->stat.addrerr_st_exits;
  1117. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  1118. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1119. break;
  1120. case EXCCODE_ADEL:
  1121. ++vcpu->stat.addrerr_ld_exits;
  1122. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  1123. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1124. break;
  1125. case EXCCODE_SYS:
  1126. ++vcpu->stat.syscall_exits;
  1127. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  1128. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1129. break;
  1130. case EXCCODE_RI:
  1131. ++vcpu->stat.resvd_inst_exits;
  1132. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  1133. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1134. break;
  1135. case EXCCODE_BP:
  1136. ++vcpu->stat.break_inst_exits;
  1137. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  1138. ret = kvm_mips_callbacks->handle_break(vcpu);
  1139. break;
  1140. case EXCCODE_TR:
  1141. ++vcpu->stat.trap_inst_exits;
  1142. trace_kvm_exit(vcpu, TRAP_INST_EXITS);
  1143. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1144. break;
  1145. case EXCCODE_MSAFPE:
  1146. ++vcpu->stat.msa_fpe_exits;
  1147. trace_kvm_exit(vcpu, MSA_FPE_EXITS);
  1148. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1149. break;
  1150. case EXCCODE_FPE:
  1151. ++vcpu->stat.fpe_exits;
  1152. trace_kvm_exit(vcpu, FPE_EXITS);
  1153. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1154. break;
  1155. case EXCCODE_MSADIS:
  1156. ++vcpu->stat.msa_disabled_exits;
  1157. trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
  1158. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1159. break;
  1160. default:
  1161. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1162. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1163. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1164. kvm_arch_vcpu_dump_regs(vcpu);
  1165. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1166. ret = RESUME_HOST;
  1167. break;
  1168. }
  1169. skip_emul:
  1170. local_irq_disable();
  1171. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1172. kvm_mips_deliver_interrupts(vcpu, cause);
  1173. if (!(ret & RESUME_HOST)) {
  1174. /* Only check for signals if not already exiting to userspace */
  1175. if (signal_pending(current)) {
  1176. run->exit_reason = KVM_EXIT_INTR;
  1177. ret = (-EINTR << 2) | RESUME_HOST;
  1178. ++vcpu->stat.signal_exits;
  1179. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  1180. }
  1181. }
  1182. if (ret == RESUME_GUEST) {
  1183. /*
  1184. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1185. * is live), restore FCR31 / MSACSR.
  1186. *
  1187. * This should be before returning to the guest exception
  1188. * vector, as it may well cause an [MSA] FP exception if there
  1189. * are pending exception bits unmasked. (see
  1190. * kvm_mips_csr_die_notifier() for how that is handled).
  1191. */
  1192. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1193. read_c0_status() & ST0_CU1)
  1194. __kvm_restore_fcsr(&vcpu->arch);
  1195. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1196. read_c0_config5() & MIPS_CONF5_MSAEN)
  1197. __kvm_restore_msacsr(&vcpu->arch);
  1198. }
  1199. /* Disable HTW before returning to guest or host */
  1200. htw_stop();
  1201. return ret;
  1202. }
  1203. /* Enable FPU for guest and restore context */
  1204. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1205. {
  1206. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1207. unsigned int sr, cfg5;
  1208. preempt_disable();
  1209. sr = kvm_read_c0_guest_status(cop0);
  1210. /*
  1211. * If MSA state is already live, it is undefined how it interacts with
  1212. * FR=0 FPU state, and we don't want to hit reserved instruction
  1213. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1214. * play it safe and save it first.
  1215. *
  1216. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1217. * get called when guest CU1 is set, however we can't trust the guest
  1218. * not to clobber the status register directly via the commpage.
  1219. */
  1220. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1221. vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
  1222. kvm_lose_fpu(vcpu);
  1223. /*
  1224. * Enable FPU for guest
  1225. * We set FR and FRE according to guest context
  1226. */
  1227. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1228. if (cpu_has_fre) {
  1229. cfg5 = kvm_read_c0_guest_config5(cop0);
  1230. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1231. }
  1232. enable_fpu_hazard();
  1233. /* If guest FPU state not active, restore it now */
  1234. if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
  1235. __kvm_restore_fpu(&vcpu->arch);
  1236. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1237. }
  1238. preempt_enable();
  1239. }
  1240. #ifdef CONFIG_CPU_HAS_MSA
  1241. /* Enable MSA for guest and restore context */
  1242. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1243. {
  1244. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1245. unsigned int sr, cfg5;
  1246. preempt_disable();
  1247. /*
  1248. * Enable FPU if enabled in guest, since we're restoring FPU context
  1249. * anyway. We set FR and FRE according to guest context.
  1250. */
  1251. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1252. sr = kvm_read_c0_guest_status(cop0);
  1253. /*
  1254. * If FR=0 FPU state is already live, it is undefined how it
  1255. * interacts with MSA state, so play it safe and save it first.
  1256. */
  1257. if (!(sr & ST0_FR) &&
  1258. (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
  1259. KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
  1260. kvm_lose_fpu(vcpu);
  1261. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1262. if (sr & ST0_CU1 && cpu_has_fre) {
  1263. cfg5 = kvm_read_c0_guest_config5(cop0);
  1264. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1265. }
  1266. }
  1267. /* Enable MSA for guest */
  1268. set_c0_config5(MIPS_CONF5_MSAEN);
  1269. enable_fpu_hazard();
  1270. switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
  1271. case KVM_MIPS_FPU_FPU:
  1272. /*
  1273. * Guest FPU state already loaded, only restore upper MSA state
  1274. */
  1275. __kvm_restore_msa_upper(&vcpu->arch);
  1276. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1277. break;
  1278. case 0:
  1279. /* Neither FPU or MSA already active, restore full MSA state */
  1280. __kvm_restore_msa(&vcpu->arch);
  1281. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1282. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1283. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1284. break;
  1285. default:
  1286. break;
  1287. }
  1288. preempt_enable();
  1289. }
  1290. #endif
  1291. /* Drop FPU & MSA without saving it */
  1292. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1293. {
  1294. preempt_disable();
  1295. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1296. disable_msa();
  1297. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
  1298. }
  1299. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1300. clear_c0_status(ST0_CU1 | ST0_FR);
  1301. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1302. }
  1303. preempt_enable();
  1304. }
  1305. /* Save and disable FPU & MSA */
  1306. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1307. {
  1308. /*
  1309. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1310. * in guest context (software), but the register state in the hardware
  1311. * may still be in use. This is why we explicitly re-enable the hardware
  1312. * before saving.
  1313. */
  1314. preempt_disable();
  1315. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1316. set_c0_config5(MIPS_CONF5_MSAEN);
  1317. enable_fpu_hazard();
  1318. __kvm_save_msa(&vcpu->arch);
  1319. /* Disable MSA & FPU */
  1320. disable_msa();
  1321. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
  1322. clear_c0_status(ST0_CU1 | ST0_FR);
  1323. vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
  1324. } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1325. set_c0_status(ST0_CU1);
  1326. enable_fpu_hazard();
  1327. __kvm_save_fpu(&vcpu->arch);
  1328. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1329. /* Disable FPU */
  1330. clear_c0_status(ST0_CU1 | ST0_FR);
  1331. }
  1332. preempt_enable();
  1333. }
  1334. /*
  1335. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1336. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1337. * exception if cause bits are set in the value being written.
  1338. */
  1339. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1340. unsigned long cmd, void *ptr)
  1341. {
  1342. struct die_args *args = (struct die_args *)ptr;
  1343. struct pt_regs *regs = args->regs;
  1344. unsigned long pc;
  1345. /* Only interested in FPE and MSAFPE */
  1346. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1347. return NOTIFY_DONE;
  1348. /* Return immediately if guest context isn't active */
  1349. if (!(current->flags & PF_VCPU))
  1350. return NOTIFY_DONE;
  1351. /* Should never get here from user mode */
  1352. BUG_ON(user_mode(regs));
  1353. pc = instruction_pointer(regs);
  1354. switch (cmd) {
  1355. case DIE_FP:
  1356. /* match 2nd instruction in __kvm_restore_fcsr */
  1357. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1358. return NOTIFY_DONE;
  1359. break;
  1360. case DIE_MSAFP:
  1361. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1362. if (!cpu_has_msa ||
  1363. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1364. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1365. return NOTIFY_DONE;
  1366. break;
  1367. }
  1368. /* Move PC forward a little and continue executing */
  1369. instruction_pointer(regs) += 4;
  1370. return NOTIFY_STOP;
  1371. }
  1372. static struct notifier_block kvm_mips_csr_die_notifier = {
  1373. .notifier_call = kvm_mips_csr_die_notify,
  1374. };
  1375. static int __init kvm_mips_init(void)
  1376. {
  1377. int ret;
  1378. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1379. if (ret)
  1380. return ret;
  1381. register_die_notifier(&kvm_mips_csr_die_notifier);
  1382. /*
  1383. * On MIPS, kernel modules are executed from "mapped space", which
  1384. * requires TLBs. The TLB handling code is statically linked with
  1385. * the rest of the kernel (tlb.c) to avoid the possibility of
  1386. * double faulting. The issue is that the TLB code references
  1387. * routines that are part of the the KVM module, which are only
  1388. * available once the module is loaded.
  1389. */
  1390. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  1391. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  1392. kvm_mips_is_error_pfn = is_error_pfn;
  1393. return 0;
  1394. }
  1395. static void __exit kvm_mips_exit(void)
  1396. {
  1397. kvm_exit();
  1398. kvm_mips_gfn_to_pfn = NULL;
  1399. kvm_mips_release_pfn_clean = NULL;
  1400. kvm_mips_is_error_pfn = NULL;
  1401. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1402. }
  1403. module_init(kvm_mips_init);
  1404. module_exit(kvm_mips_exit);
  1405. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);