file.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static int f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. int err;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. err = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return err;
  42. }
  43. static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. if (unlikely(f2fs_cp_error(sbi))) {
  51. err = -EIO;
  52. goto err;
  53. }
  54. sb_start_pagefault(inode->i_sb);
  55. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  56. /* block allocation */
  57. f2fs_lock_op(sbi);
  58. set_new_dnode(&dn, inode, NULL, NULL, 0);
  59. err = f2fs_reserve_block(&dn, page->index);
  60. if (err) {
  61. f2fs_unlock_op(sbi);
  62. goto out;
  63. }
  64. f2fs_put_dnode(&dn);
  65. f2fs_unlock_op(sbi);
  66. f2fs_balance_fs(sbi, dn.node_changed);
  67. file_update_time(vmf->vma->vm_file);
  68. down_read(&F2FS_I(inode)->i_mmap_sem);
  69. lock_page(page);
  70. if (unlikely(page->mapping != inode->i_mapping ||
  71. page_offset(page) > i_size_read(inode) ||
  72. !PageUptodate(page))) {
  73. unlock_page(page);
  74. err = -EFAULT;
  75. goto out_sem;
  76. }
  77. /*
  78. * check to see if the page is mapped already (no holes)
  79. */
  80. if (PageMappedToDisk(page))
  81. goto mapped;
  82. /* page is wholly or partially inside EOF */
  83. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  84. i_size_read(inode)) {
  85. unsigned offset;
  86. offset = i_size_read(inode) & ~PAGE_MASK;
  87. zero_user_segment(page, offset, PAGE_SIZE);
  88. }
  89. set_page_dirty(page);
  90. if (!PageUptodate(page))
  91. SetPageUptodate(page);
  92. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  93. trace_f2fs_vm_page_mkwrite(page, DATA);
  94. mapped:
  95. /* fill the page */
  96. f2fs_wait_on_page_writeback(page, DATA, false);
  97. /* wait for GCed encrypted page writeback */
  98. if (f2fs_encrypted_file(inode))
  99. f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
  100. out_sem:
  101. up_read(&F2FS_I(inode)->i_mmap_sem);
  102. out:
  103. sb_end_pagefault(inode->i_sb);
  104. f2fs_update_time(sbi, REQ_TIME);
  105. err:
  106. return block_page_mkwrite_return(err);
  107. }
  108. static const struct vm_operations_struct f2fs_file_vm_ops = {
  109. .fault = f2fs_filemap_fault,
  110. .map_pages = filemap_map_pages,
  111. .page_mkwrite = f2fs_vm_page_mkwrite,
  112. };
  113. static int get_parent_ino(struct inode *inode, nid_t *pino)
  114. {
  115. struct dentry *dentry;
  116. inode = igrab(inode);
  117. dentry = d_find_any_alias(inode);
  118. iput(inode);
  119. if (!dentry)
  120. return 0;
  121. *pino = parent_ino(dentry);
  122. dput(dentry);
  123. return 1;
  124. }
  125. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  126. {
  127. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  128. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  129. if (!S_ISREG(inode->i_mode))
  130. cp_reason = CP_NON_REGULAR;
  131. else if (inode->i_nlink != 1)
  132. cp_reason = CP_HARDLINK;
  133. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  134. cp_reason = CP_SB_NEED_CP;
  135. else if (file_wrong_pino(inode))
  136. cp_reason = CP_WRONG_PINO;
  137. else if (!space_for_roll_forward(sbi))
  138. cp_reason = CP_NO_SPC_ROLL;
  139. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  140. cp_reason = CP_NODE_NEED_CP;
  141. else if (test_opt(sbi, FASTBOOT))
  142. cp_reason = CP_FASTBOOT_MODE;
  143. else if (F2FS_OPTION(sbi).active_logs == 2)
  144. cp_reason = CP_SPEC_LOG_NUM;
  145. else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
  146. need_dentry_mark(sbi, inode->i_ino) &&
  147. exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
  148. cp_reason = CP_RECOVER_DIR;
  149. return cp_reason;
  150. }
  151. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  152. {
  153. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  154. bool ret = false;
  155. /* But we need to avoid that there are some inode updates */
  156. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  157. ret = true;
  158. f2fs_put_page(i, 0);
  159. return ret;
  160. }
  161. static void try_to_fix_pino(struct inode *inode)
  162. {
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. nid_t pino;
  165. down_write(&fi->i_sem);
  166. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  167. get_parent_ino(inode, &pino)) {
  168. f2fs_i_pino_write(inode, pino);
  169. file_got_pino(inode);
  170. }
  171. up_write(&fi->i_sem);
  172. }
  173. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  174. int datasync, bool atomic)
  175. {
  176. struct inode *inode = file->f_mapping->host;
  177. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  178. nid_t ino = inode->i_ino;
  179. int ret = 0;
  180. enum cp_reason_type cp_reason = 0;
  181. struct writeback_control wbc = {
  182. .sync_mode = WB_SYNC_ALL,
  183. .nr_to_write = LONG_MAX,
  184. .for_reclaim = 0,
  185. };
  186. if (unlikely(f2fs_readonly(inode->i_sb)))
  187. return 0;
  188. trace_f2fs_sync_file_enter(inode);
  189. /* if fdatasync is triggered, let's do in-place-update */
  190. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  191. set_inode_flag(inode, FI_NEED_IPU);
  192. ret = file_write_and_wait_range(file, start, end);
  193. clear_inode_flag(inode, FI_NEED_IPU);
  194. if (ret) {
  195. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  196. return ret;
  197. }
  198. /* if the inode is dirty, let's recover all the time */
  199. if (!f2fs_skip_inode_update(inode, datasync)) {
  200. f2fs_write_inode(inode, NULL);
  201. goto go_write;
  202. }
  203. /*
  204. * if there is no written data, don't waste time to write recovery info.
  205. */
  206. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  207. !exist_written_data(sbi, ino, APPEND_INO)) {
  208. /* it may call write_inode just prior to fsync */
  209. if (need_inode_page_update(sbi, ino))
  210. goto go_write;
  211. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  212. exist_written_data(sbi, ino, UPDATE_INO))
  213. goto flush_out;
  214. goto out;
  215. }
  216. go_write:
  217. /*
  218. * Both of fdatasync() and fsync() are able to be recovered from
  219. * sudden-power-off.
  220. */
  221. down_read(&F2FS_I(inode)->i_sem);
  222. cp_reason = need_do_checkpoint(inode);
  223. up_read(&F2FS_I(inode)->i_sem);
  224. if (cp_reason) {
  225. /* all the dirty node pages should be flushed for POR */
  226. ret = f2fs_sync_fs(inode->i_sb, 1);
  227. /*
  228. * We've secured consistency through sync_fs. Following pino
  229. * will be used only for fsynced inodes after checkpoint.
  230. */
  231. try_to_fix_pino(inode);
  232. clear_inode_flag(inode, FI_APPEND_WRITE);
  233. clear_inode_flag(inode, FI_UPDATE_WRITE);
  234. goto out;
  235. }
  236. sync_nodes:
  237. ret = fsync_node_pages(sbi, inode, &wbc, atomic);
  238. if (ret)
  239. goto out;
  240. /* if cp_error was enabled, we should avoid infinite loop */
  241. if (unlikely(f2fs_cp_error(sbi))) {
  242. ret = -EIO;
  243. goto out;
  244. }
  245. if (need_inode_block_update(sbi, ino)) {
  246. f2fs_mark_inode_dirty_sync(inode, true);
  247. f2fs_write_inode(inode, NULL);
  248. goto sync_nodes;
  249. }
  250. /*
  251. * If it's atomic_write, it's just fine to keep write ordering. So
  252. * here we don't need to wait for node write completion, since we use
  253. * node chain which serializes node blocks. If one of node writes are
  254. * reordered, we can see simply broken chain, resulting in stopping
  255. * roll-forward recovery. It means we'll recover all or none node blocks
  256. * given fsync mark.
  257. */
  258. if (!atomic) {
  259. ret = wait_on_node_pages_writeback(sbi, ino);
  260. if (ret)
  261. goto out;
  262. }
  263. /* once recovery info is written, don't need to tack this */
  264. remove_ino_entry(sbi, ino, APPEND_INO);
  265. clear_inode_flag(inode, FI_APPEND_WRITE);
  266. flush_out:
  267. if (!atomic)
  268. ret = f2fs_issue_flush(sbi, inode->i_ino);
  269. if (!ret) {
  270. remove_ino_entry(sbi, ino, UPDATE_INO);
  271. clear_inode_flag(inode, FI_UPDATE_WRITE);
  272. remove_ino_entry(sbi, ino, FLUSH_INO);
  273. }
  274. f2fs_update_time(sbi, REQ_TIME);
  275. out:
  276. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  277. f2fs_trace_ios(NULL, 1);
  278. return ret;
  279. }
  280. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  281. {
  282. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  283. return -EIO;
  284. return f2fs_do_sync_file(file, start, end, datasync, false);
  285. }
  286. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  287. pgoff_t pgofs, int whence)
  288. {
  289. struct page *page;
  290. int nr_pages;
  291. if (whence != SEEK_DATA)
  292. return 0;
  293. /* find first dirty page index */
  294. nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
  295. 1, &page);
  296. if (!nr_pages)
  297. return ULONG_MAX;
  298. pgofs = page->index;
  299. put_page(page);
  300. return pgofs;
  301. }
  302. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  303. int whence)
  304. {
  305. switch (whence) {
  306. case SEEK_DATA:
  307. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  308. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  309. return true;
  310. break;
  311. case SEEK_HOLE:
  312. if (blkaddr == NULL_ADDR)
  313. return true;
  314. break;
  315. }
  316. return false;
  317. }
  318. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  319. {
  320. struct inode *inode = file->f_mapping->host;
  321. loff_t maxbytes = inode->i_sb->s_maxbytes;
  322. struct dnode_of_data dn;
  323. pgoff_t pgofs, end_offset, dirty;
  324. loff_t data_ofs = offset;
  325. loff_t isize;
  326. int err = 0;
  327. inode_lock(inode);
  328. isize = i_size_read(inode);
  329. if (offset >= isize)
  330. goto fail;
  331. /* handle inline data case */
  332. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  333. if (whence == SEEK_HOLE)
  334. data_ofs = isize;
  335. goto found;
  336. }
  337. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  338. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  339. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  340. set_new_dnode(&dn, inode, NULL, NULL, 0);
  341. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  342. if (err && err != -ENOENT) {
  343. goto fail;
  344. } else if (err == -ENOENT) {
  345. /* direct node does not exists */
  346. if (whence == SEEK_DATA) {
  347. pgofs = get_next_page_offset(&dn, pgofs);
  348. continue;
  349. } else {
  350. goto found;
  351. }
  352. }
  353. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  354. /* find data/hole in dnode block */
  355. for (; dn.ofs_in_node < end_offset;
  356. dn.ofs_in_node++, pgofs++,
  357. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  358. block_t blkaddr;
  359. blkaddr = datablock_addr(dn.inode,
  360. dn.node_page, dn.ofs_in_node);
  361. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  362. f2fs_put_dnode(&dn);
  363. goto found;
  364. }
  365. }
  366. f2fs_put_dnode(&dn);
  367. }
  368. if (whence == SEEK_DATA)
  369. goto fail;
  370. found:
  371. if (whence == SEEK_HOLE && data_ofs > isize)
  372. data_ofs = isize;
  373. inode_unlock(inode);
  374. return vfs_setpos(file, data_ofs, maxbytes);
  375. fail:
  376. inode_unlock(inode);
  377. return -ENXIO;
  378. }
  379. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  380. {
  381. struct inode *inode = file->f_mapping->host;
  382. loff_t maxbytes = inode->i_sb->s_maxbytes;
  383. switch (whence) {
  384. case SEEK_SET:
  385. case SEEK_CUR:
  386. case SEEK_END:
  387. return generic_file_llseek_size(file, offset, whence,
  388. maxbytes, i_size_read(inode));
  389. case SEEK_DATA:
  390. case SEEK_HOLE:
  391. if (offset < 0)
  392. return -ENXIO;
  393. return f2fs_seek_block(file, offset, whence);
  394. }
  395. return -EINVAL;
  396. }
  397. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  398. {
  399. struct inode *inode = file_inode(file);
  400. int err;
  401. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  402. return -EIO;
  403. /* we don't need to use inline_data strictly */
  404. err = f2fs_convert_inline_inode(inode);
  405. if (err)
  406. return err;
  407. file_accessed(file);
  408. vma->vm_ops = &f2fs_file_vm_ops;
  409. return 0;
  410. }
  411. static int f2fs_file_open(struct inode *inode, struct file *filp)
  412. {
  413. int err = fscrypt_file_open(inode, filp);
  414. if (err)
  415. return err;
  416. filp->f_mode |= FMODE_NOWAIT;
  417. return dquot_file_open(inode, filp);
  418. }
  419. void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  420. {
  421. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  422. struct f2fs_node *raw_node;
  423. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  424. __le32 *addr;
  425. int base = 0;
  426. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  427. base = get_extra_isize(dn->inode);
  428. raw_node = F2FS_NODE(dn->node_page);
  429. addr = blkaddr_in_node(raw_node) + base + ofs;
  430. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  431. block_t blkaddr = le32_to_cpu(*addr);
  432. if (blkaddr == NULL_ADDR)
  433. continue;
  434. dn->data_blkaddr = NULL_ADDR;
  435. set_data_blkaddr(dn);
  436. invalidate_blocks(sbi, blkaddr);
  437. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  438. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  439. nr_free++;
  440. }
  441. if (nr_free) {
  442. pgoff_t fofs;
  443. /*
  444. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  445. * we will invalidate all blkaddr in the whole range.
  446. */
  447. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  448. dn->inode) + ofs;
  449. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  450. dec_valid_block_count(sbi, dn->inode, nr_free);
  451. }
  452. dn->ofs_in_node = ofs;
  453. f2fs_update_time(sbi, REQ_TIME);
  454. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  455. dn->ofs_in_node, nr_free);
  456. }
  457. void truncate_data_blocks(struct dnode_of_data *dn)
  458. {
  459. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  460. }
  461. static int truncate_partial_data_page(struct inode *inode, u64 from,
  462. bool cache_only)
  463. {
  464. unsigned offset = from & (PAGE_SIZE - 1);
  465. pgoff_t index = from >> PAGE_SHIFT;
  466. struct address_space *mapping = inode->i_mapping;
  467. struct page *page;
  468. if (!offset && !cache_only)
  469. return 0;
  470. if (cache_only) {
  471. page = find_lock_page(mapping, index);
  472. if (page && PageUptodate(page))
  473. goto truncate_out;
  474. f2fs_put_page(page, 1);
  475. return 0;
  476. }
  477. page = get_lock_data_page(inode, index, true);
  478. if (IS_ERR(page))
  479. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  480. truncate_out:
  481. f2fs_wait_on_page_writeback(page, DATA, true);
  482. zero_user(page, offset, PAGE_SIZE - offset);
  483. /* An encrypted inode should have a key and truncate the last page. */
  484. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  485. if (!cache_only)
  486. set_page_dirty(page);
  487. f2fs_put_page(page, 1);
  488. return 0;
  489. }
  490. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  491. {
  492. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  493. struct dnode_of_data dn;
  494. pgoff_t free_from;
  495. int count = 0, err = 0;
  496. struct page *ipage;
  497. bool truncate_page = false;
  498. trace_f2fs_truncate_blocks_enter(inode, from);
  499. free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
  500. if (free_from >= sbi->max_file_blocks)
  501. goto free_partial;
  502. if (lock)
  503. f2fs_lock_op(sbi);
  504. ipage = get_node_page(sbi, inode->i_ino);
  505. if (IS_ERR(ipage)) {
  506. err = PTR_ERR(ipage);
  507. goto out;
  508. }
  509. if (f2fs_has_inline_data(inode)) {
  510. truncate_inline_inode(inode, ipage, from);
  511. f2fs_put_page(ipage, 1);
  512. truncate_page = true;
  513. goto out;
  514. }
  515. set_new_dnode(&dn, inode, ipage, NULL, 0);
  516. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  517. if (err) {
  518. if (err == -ENOENT)
  519. goto free_next;
  520. goto out;
  521. }
  522. count = ADDRS_PER_PAGE(dn.node_page, inode);
  523. count -= dn.ofs_in_node;
  524. f2fs_bug_on(sbi, count < 0);
  525. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  526. truncate_data_blocks_range(&dn, count);
  527. free_from += count;
  528. }
  529. f2fs_put_dnode(&dn);
  530. free_next:
  531. err = truncate_inode_blocks(inode, free_from);
  532. out:
  533. if (lock)
  534. f2fs_unlock_op(sbi);
  535. free_partial:
  536. /* lastly zero out the first data page */
  537. if (!err)
  538. err = truncate_partial_data_page(inode, from, truncate_page);
  539. trace_f2fs_truncate_blocks_exit(inode, err);
  540. return err;
  541. }
  542. int f2fs_truncate(struct inode *inode)
  543. {
  544. int err;
  545. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  546. return -EIO;
  547. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  548. S_ISLNK(inode->i_mode)))
  549. return 0;
  550. trace_f2fs_truncate(inode);
  551. #ifdef CONFIG_F2FS_FAULT_INJECTION
  552. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  553. f2fs_show_injection_info(FAULT_TRUNCATE);
  554. return -EIO;
  555. }
  556. #endif
  557. /* we should check inline_data size */
  558. if (!f2fs_may_inline_data(inode)) {
  559. err = f2fs_convert_inline_inode(inode);
  560. if (err)
  561. return err;
  562. }
  563. err = truncate_blocks(inode, i_size_read(inode), true);
  564. if (err)
  565. return err;
  566. inode->i_mtime = inode->i_ctime = current_time(inode);
  567. f2fs_mark_inode_dirty_sync(inode, false);
  568. return 0;
  569. }
  570. int f2fs_getattr(const struct path *path, struct kstat *stat,
  571. u32 request_mask, unsigned int query_flags)
  572. {
  573. struct inode *inode = d_inode(path->dentry);
  574. struct f2fs_inode_info *fi = F2FS_I(inode);
  575. struct f2fs_inode *ri;
  576. unsigned int flags;
  577. if (f2fs_has_extra_attr(inode) &&
  578. f2fs_sb_has_inode_crtime(inode->i_sb) &&
  579. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  580. stat->result_mask |= STATX_BTIME;
  581. stat->btime.tv_sec = fi->i_crtime.tv_sec;
  582. stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
  583. }
  584. flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  585. if (flags & FS_APPEND_FL)
  586. stat->attributes |= STATX_ATTR_APPEND;
  587. if (flags & FS_COMPR_FL)
  588. stat->attributes |= STATX_ATTR_COMPRESSED;
  589. if (f2fs_encrypted_inode(inode))
  590. stat->attributes |= STATX_ATTR_ENCRYPTED;
  591. if (flags & FS_IMMUTABLE_FL)
  592. stat->attributes |= STATX_ATTR_IMMUTABLE;
  593. if (flags & FS_NODUMP_FL)
  594. stat->attributes |= STATX_ATTR_NODUMP;
  595. stat->attributes_mask |= (STATX_ATTR_APPEND |
  596. STATX_ATTR_COMPRESSED |
  597. STATX_ATTR_ENCRYPTED |
  598. STATX_ATTR_IMMUTABLE |
  599. STATX_ATTR_NODUMP);
  600. generic_fillattr(inode, stat);
  601. /* we need to show initial sectors used for inline_data/dentries */
  602. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  603. f2fs_has_inline_dentry(inode))
  604. stat->blocks += (stat->size + 511) >> 9;
  605. return 0;
  606. }
  607. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  608. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  609. {
  610. unsigned int ia_valid = attr->ia_valid;
  611. if (ia_valid & ATTR_UID)
  612. inode->i_uid = attr->ia_uid;
  613. if (ia_valid & ATTR_GID)
  614. inode->i_gid = attr->ia_gid;
  615. if (ia_valid & ATTR_ATIME)
  616. inode->i_atime = timespec64_trunc(attr->ia_atime,
  617. inode->i_sb->s_time_gran);
  618. if (ia_valid & ATTR_MTIME)
  619. inode->i_mtime = timespec64_trunc(attr->ia_mtime,
  620. inode->i_sb->s_time_gran);
  621. if (ia_valid & ATTR_CTIME)
  622. inode->i_ctime = timespec64_trunc(attr->ia_ctime,
  623. inode->i_sb->s_time_gran);
  624. if (ia_valid & ATTR_MODE) {
  625. umode_t mode = attr->ia_mode;
  626. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  627. mode &= ~S_ISGID;
  628. set_acl_inode(inode, mode);
  629. }
  630. }
  631. #else
  632. #define __setattr_copy setattr_copy
  633. #endif
  634. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  635. {
  636. struct inode *inode = d_inode(dentry);
  637. int err;
  638. bool size_changed = false;
  639. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  640. return -EIO;
  641. err = setattr_prepare(dentry, attr);
  642. if (err)
  643. return err;
  644. err = fscrypt_prepare_setattr(dentry, attr);
  645. if (err)
  646. return err;
  647. if (is_quota_modification(inode, attr)) {
  648. err = dquot_initialize(inode);
  649. if (err)
  650. return err;
  651. }
  652. if ((attr->ia_valid & ATTR_UID &&
  653. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  654. (attr->ia_valid & ATTR_GID &&
  655. !gid_eq(attr->ia_gid, inode->i_gid))) {
  656. err = dquot_transfer(inode, attr);
  657. if (err)
  658. return err;
  659. }
  660. if (attr->ia_valid & ATTR_SIZE) {
  661. if (attr->ia_size <= i_size_read(inode)) {
  662. down_write(&F2FS_I(inode)->i_mmap_sem);
  663. truncate_setsize(inode, attr->ia_size);
  664. err = f2fs_truncate(inode);
  665. up_write(&F2FS_I(inode)->i_mmap_sem);
  666. if (err)
  667. return err;
  668. } else {
  669. /*
  670. * do not trim all blocks after i_size if target size is
  671. * larger than i_size.
  672. */
  673. down_write(&F2FS_I(inode)->i_mmap_sem);
  674. truncate_setsize(inode, attr->ia_size);
  675. up_write(&F2FS_I(inode)->i_mmap_sem);
  676. /* should convert inline inode here */
  677. if (!f2fs_may_inline_data(inode)) {
  678. err = f2fs_convert_inline_inode(inode);
  679. if (err)
  680. return err;
  681. }
  682. inode->i_mtime = inode->i_ctime = current_time(inode);
  683. }
  684. down_write(&F2FS_I(inode)->i_sem);
  685. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  686. up_write(&F2FS_I(inode)->i_sem);
  687. size_changed = true;
  688. }
  689. __setattr_copy(inode, attr);
  690. if (attr->ia_valid & ATTR_MODE) {
  691. err = posix_acl_chmod(inode, get_inode_mode(inode));
  692. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  693. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  694. clear_inode_flag(inode, FI_ACL_MODE);
  695. }
  696. }
  697. /* file size may changed here */
  698. f2fs_mark_inode_dirty_sync(inode, size_changed);
  699. /* inode change will produce dirty node pages flushed by checkpoint */
  700. f2fs_balance_fs(F2FS_I_SB(inode), true);
  701. return err;
  702. }
  703. const struct inode_operations f2fs_file_inode_operations = {
  704. .getattr = f2fs_getattr,
  705. .setattr = f2fs_setattr,
  706. .get_acl = f2fs_get_acl,
  707. .set_acl = f2fs_set_acl,
  708. #ifdef CONFIG_F2FS_FS_XATTR
  709. .listxattr = f2fs_listxattr,
  710. #endif
  711. .fiemap = f2fs_fiemap,
  712. };
  713. static int fill_zero(struct inode *inode, pgoff_t index,
  714. loff_t start, loff_t len)
  715. {
  716. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  717. struct page *page;
  718. if (!len)
  719. return 0;
  720. f2fs_balance_fs(sbi, true);
  721. f2fs_lock_op(sbi);
  722. page = get_new_data_page(inode, NULL, index, false);
  723. f2fs_unlock_op(sbi);
  724. if (IS_ERR(page))
  725. return PTR_ERR(page);
  726. f2fs_wait_on_page_writeback(page, DATA, true);
  727. zero_user(page, start, len);
  728. set_page_dirty(page);
  729. f2fs_put_page(page, 1);
  730. return 0;
  731. }
  732. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  733. {
  734. int err;
  735. while (pg_start < pg_end) {
  736. struct dnode_of_data dn;
  737. pgoff_t end_offset, count;
  738. set_new_dnode(&dn, inode, NULL, NULL, 0);
  739. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  740. if (err) {
  741. if (err == -ENOENT) {
  742. pg_start = get_next_page_offset(&dn, pg_start);
  743. continue;
  744. }
  745. return err;
  746. }
  747. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  748. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  749. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  750. truncate_data_blocks_range(&dn, count);
  751. f2fs_put_dnode(&dn);
  752. pg_start += count;
  753. }
  754. return 0;
  755. }
  756. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  757. {
  758. pgoff_t pg_start, pg_end;
  759. loff_t off_start, off_end;
  760. int ret;
  761. ret = f2fs_convert_inline_inode(inode);
  762. if (ret)
  763. return ret;
  764. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  765. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  766. off_start = offset & (PAGE_SIZE - 1);
  767. off_end = (offset + len) & (PAGE_SIZE - 1);
  768. if (pg_start == pg_end) {
  769. ret = fill_zero(inode, pg_start, off_start,
  770. off_end - off_start);
  771. if (ret)
  772. return ret;
  773. } else {
  774. if (off_start) {
  775. ret = fill_zero(inode, pg_start++, off_start,
  776. PAGE_SIZE - off_start);
  777. if (ret)
  778. return ret;
  779. }
  780. if (off_end) {
  781. ret = fill_zero(inode, pg_end, 0, off_end);
  782. if (ret)
  783. return ret;
  784. }
  785. if (pg_start < pg_end) {
  786. struct address_space *mapping = inode->i_mapping;
  787. loff_t blk_start, blk_end;
  788. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  789. f2fs_balance_fs(sbi, true);
  790. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  791. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  792. down_write(&F2FS_I(inode)->i_mmap_sem);
  793. truncate_inode_pages_range(mapping, blk_start,
  794. blk_end - 1);
  795. f2fs_lock_op(sbi);
  796. ret = truncate_hole(inode, pg_start, pg_end);
  797. f2fs_unlock_op(sbi);
  798. up_write(&F2FS_I(inode)->i_mmap_sem);
  799. }
  800. }
  801. return ret;
  802. }
  803. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  804. int *do_replace, pgoff_t off, pgoff_t len)
  805. {
  806. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  807. struct dnode_of_data dn;
  808. int ret, done, i;
  809. next_dnode:
  810. set_new_dnode(&dn, inode, NULL, NULL, 0);
  811. ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  812. if (ret && ret != -ENOENT) {
  813. return ret;
  814. } else if (ret == -ENOENT) {
  815. if (dn.max_level == 0)
  816. return -ENOENT;
  817. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  818. blkaddr += done;
  819. do_replace += done;
  820. goto next;
  821. }
  822. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  823. dn.ofs_in_node, len);
  824. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  825. *blkaddr = datablock_addr(dn.inode,
  826. dn.node_page, dn.ofs_in_node);
  827. if (!is_checkpointed_data(sbi, *blkaddr)) {
  828. if (test_opt(sbi, LFS)) {
  829. f2fs_put_dnode(&dn);
  830. return -ENOTSUPP;
  831. }
  832. /* do not invalidate this block address */
  833. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  834. *do_replace = 1;
  835. }
  836. }
  837. f2fs_put_dnode(&dn);
  838. next:
  839. len -= done;
  840. off += done;
  841. if (len)
  842. goto next_dnode;
  843. return 0;
  844. }
  845. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  846. int *do_replace, pgoff_t off, int len)
  847. {
  848. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  849. struct dnode_of_data dn;
  850. int ret, i;
  851. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  852. if (*do_replace == 0)
  853. continue;
  854. set_new_dnode(&dn, inode, NULL, NULL, 0);
  855. ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  856. if (ret) {
  857. dec_valid_block_count(sbi, inode, 1);
  858. invalidate_blocks(sbi, *blkaddr);
  859. } else {
  860. f2fs_update_data_blkaddr(&dn, *blkaddr);
  861. }
  862. f2fs_put_dnode(&dn);
  863. }
  864. return 0;
  865. }
  866. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  867. block_t *blkaddr, int *do_replace,
  868. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  869. {
  870. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  871. pgoff_t i = 0;
  872. int ret;
  873. while (i < len) {
  874. if (blkaddr[i] == NULL_ADDR && !full) {
  875. i++;
  876. continue;
  877. }
  878. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  879. struct dnode_of_data dn;
  880. struct node_info ni;
  881. size_t new_size;
  882. pgoff_t ilen;
  883. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  884. ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  885. if (ret)
  886. return ret;
  887. get_node_info(sbi, dn.nid, &ni);
  888. ilen = min((pgoff_t)
  889. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  890. dn.ofs_in_node, len - i);
  891. do {
  892. dn.data_blkaddr = datablock_addr(dn.inode,
  893. dn.node_page, dn.ofs_in_node);
  894. truncate_data_blocks_range(&dn, 1);
  895. if (do_replace[i]) {
  896. f2fs_i_blocks_write(src_inode,
  897. 1, false, false);
  898. f2fs_i_blocks_write(dst_inode,
  899. 1, true, false);
  900. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  901. blkaddr[i], ni.version, true, false);
  902. do_replace[i] = 0;
  903. }
  904. dn.ofs_in_node++;
  905. i++;
  906. new_size = (dst + i) << PAGE_SHIFT;
  907. if (dst_inode->i_size < new_size)
  908. f2fs_i_size_write(dst_inode, new_size);
  909. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  910. f2fs_put_dnode(&dn);
  911. } else {
  912. struct page *psrc, *pdst;
  913. psrc = get_lock_data_page(src_inode, src + i, true);
  914. if (IS_ERR(psrc))
  915. return PTR_ERR(psrc);
  916. pdst = get_new_data_page(dst_inode, NULL, dst + i,
  917. true);
  918. if (IS_ERR(pdst)) {
  919. f2fs_put_page(psrc, 1);
  920. return PTR_ERR(pdst);
  921. }
  922. f2fs_copy_page(psrc, pdst);
  923. set_page_dirty(pdst);
  924. f2fs_put_page(pdst, 1);
  925. f2fs_put_page(psrc, 1);
  926. ret = truncate_hole(src_inode, src + i, src + i + 1);
  927. if (ret)
  928. return ret;
  929. i++;
  930. }
  931. }
  932. return 0;
  933. }
  934. static int __exchange_data_block(struct inode *src_inode,
  935. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  936. pgoff_t len, bool full)
  937. {
  938. block_t *src_blkaddr;
  939. int *do_replace;
  940. pgoff_t olen;
  941. int ret;
  942. while (len) {
  943. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  944. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  945. sizeof(block_t) * olen, GFP_KERNEL);
  946. if (!src_blkaddr)
  947. return -ENOMEM;
  948. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  949. sizeof(int) * olen, GFP_KERNEL);
  950. if (!do_replace) {
  951. kvfree(src_blkaddr);
  952. return -ENOMEM;
  953. }
  954. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  955. do_replace, src, olen);
  956. if (ret)
  957. goto roll_back;
  958. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  959. do_replace, src, dst, olen, full);
  960. if (ret)
  961. goto roll_back;
  962. src += olen;
  963. dst += olen;
  964. len -= olen;
  965. kvfree(src_blkaddr);
  966. kvfree(do_replace);
  967. }
  968. return 0;
  969. roll_back:
  970. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
  971. kvfree(src_blkaddr);
  972. kvfree(do_replace);
  973. return ret;
  974. }
  975. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  976. {
  977. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  978. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  979. int ret;
  980. f2fs_balance_fs(sbi, true);
  981. f2fs_lock_op(sbi);
  982. f2fs_drop_extent_tree(inode);
  983. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  984. f2fs_unlock_op(sbi);
  985. return ret;
  986. }
  987. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  988. {
  989. pgoff_t pg_start, pg_end;
  990. loff_t new_size;
  991. int ret;
  992. if (offset + len >= i_size_read(inode))
  993. return -EINVAL;
  994. /* collapse range should be aligned to block size of f2fs. */
  995. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  996. return -EINVAL;
  997. ret = f2fs_convert_inline_inode(inode);
  998. if (ret)
  999. return ret;
  1000. pg_start = offset >> PAGE_SHIFT;
  1001. pg_end = (offset + len) >> PAGE_SHIFT;
  1002. /* avoid gc operation during block exchange */
  1003. down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1004. down_write(&F2FS_I(inode)->i_mmap_sem);
  1005. /* write out all dirty pages from offset */
  1006. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1007. if (ret)
  1008. goto out_unlock;
  1009. truncate_pagecache(inode, offset);
  1010. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  1011. if (ret)
  1012. goto out_unlock;
  1013. /* write out all moved pages, if possible */
  1014. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1015. truncate_pagecache(inode, offset);
  1016. new_size = i_size_read(inode) - len;
  1017. truncate_pagecache(inode, new_size);
  1018. ret = truncate_blocks(inode, new_size, true);
  1019. if (!ret)
  1020. f2fs_i_size_write(inode, new_size);
  1021. out_unlock:
  1022. up_write(&F2FS_I(inode)->i_mmap_sem);
  1023. up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1024. return ret;
  1025. }
  1026. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1027. pgoff_t end)
  1028. {
  1029. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1030. pgoff_t index = start;
  1031. unsigned int ofs_in_node = dn->ofs_in_node;
  1032. blkcnt_t count = 0;
  1033. int ret;
  1034. for (; index < end; index++, dn->ofs_in_node++) {
  1035. if (datablock_addr(dn->inode, dn->node_page,
  1036. dn->ofs_in_node) == NULL_ADDR)
  1037. count++;
  1038. }
  1039. dn->ofs_in_node = ofs_in_node;
  1040. ret = reserve_new_blocks(dn, count);
  1041. if (ret)
  1042. return ret;
  1043. dn->ofs_in_node = ofs_in_node;
  1044. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1045. dn->data_blkaddr = datablock_addr(dn->inode,
  1046. dn->node_page, dn->ofs_in_node);
  1047. /*
  1048. * reserve_new_blocks will not guarantee entire block
  1049. * allocation.
  1050. */
  1051. if (dn->data_blkaddr == NULL_ADDR) {
  1052. ret = -ENOSPC;
  1053. break;
  1054. }
  1055. if (dn->data_blkaddr != NEW_ADDR) {
  1056. invalidate_blocks(sbi, dn->data_blkaddr);
  1057. dn->data_blkaddr = NEW_ADDR;
  1058. set_data_blkaddr(dn);
  1059. }
  1060. }
  1061. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1062. return ret;
  1063. }
  1064. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1065. int mode)
  1066. {
  1067. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1068. struct address_space *mapping = inode->i_mapping;
  1069. pgoff_t index, pg_start, pg_end;
  1070. loff_t new_size = i_size_read(inode);
  1071. loff_t off_start, off_end;
  1072. int ret = 0;
  1073. ret = inode_newsize_ok(inode, (len + offset));
  1074. if (ret)
  1075. return ret;
  1076. ret = f2fs_convert_inline_inode(inode);
  1077. if (ret)
  1078. return ret;
  1079. down_write(&F2FS_I(inode)->i_mmap_sem);
  1080. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1081. if (ret)
  1082. goto out_sem;
  1083. truncate_pagecache_range(inode, offset, offset + len - 1);
  1084. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1085. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1086. off_start = offset & (PAGE_SIZE - 1);
  1087. off_end = (offset + len) & (PAGE_SIZE - 1);
  1088. if (pg_start == pg_end) {
  1089. ret = fill_zero(inode, pg_start, off_start,
  1090. off_end - off_start);
  1091. if (ret)
  1092. goto out_sem;
  1093. new_size = max_t(loff_t, new_size, offset + len);
  1094. } else {
  1095. if (off_start) {
  1096. ret = fill_zero(inode, pg_start++, off_start,
  1097. PAGE_SIZE - off_start);
  1098. if (ret)
  1099. goto out_sem;
  1100. new_size = max_t(loff_t, new_size,
  1101. (loff_t)pg_start << PAGE_SHIFT);
  1102. }
  1103. for (index = pg_start; index < pg_end;) {
  1104. struct dnode_of_data dn;
  1105. unsigned int end_offset;
  1106. pgoff_t end;
  1107. f2fs_lock_op(sbi);
  1108. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1109. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  1110. if (ret) {
  1111. f2fs_unlock_op(sbi);
  1112. goto out;
  1113. }
  1114. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1115. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1116. ret = f2fs_do_zero_range(&dn, index, end);
  1117. f2fs_put_dnode(&dn);
  1118. f2fs_unlock_op(sbi);
  1119. f2fs_balance_fs(sbi, dn.node_changed);
  1120. if (ret)
  1121. goto out;
  1122. index = end;
  1123. new_size = max_t(loff_t, new_size,
  1124. (loff_t)index << PAGE_SHIFT);
  1125. }
  1126. if (off_end) {
  1127. ret = fill_zero(inode, pg_end, 0, off_end);
  1128. if (ret)
  1129. goto out;
  1130. new_size = max_t(loff_t, new_size, offset + len);
  1131. }
  1132. }
  1133. out:
  1134. if (new_size > i_size_read(inode)) {
  1135. if (mode & FALLOC_FL_KEEP_SIZE)
  1136. file_set_keep_isize(inode);
  1137. else
  1138. f2fs_i_size_write(inode, new_size);
  1139. }
  1140. out_sem:
  1141. up_write(&F2FS_I(inode)->i_mmap_sem);
  1142. return ret;
  1143. }
  1144. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1145. {
  1146. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1147. pgoff_t nr, pg_start, pg_end, delta, idx;
  1148. loff_t new_size;
  1149. int ret = 0;
  1150. new_size = i_size_read(inode) + len;
  1151. ret = inode_newsize_ok(inode, new_size);
  1152. if (ret)
  1153. return ret;
  1154. if (offset >= i_size_read(inode))
  1155. return -EINVAL;
  1156. /* insert range should be aligned to block size of f2fs. */
  1157. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1158. return -EINVAL;
  1159. ret = f2fs_convert_inline_inode(inode);
  1160. if (ret)
  1161. return ret;
  1162. f2fs_balance_fs(sbi, true);
  1163. /* avoid gc operation during block exchange */
  1164. down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1165. down_write(&F2FS_I(inode)->i_mmap_sem);
  1166. ret = truncate_blocks(inode, i_size_read(inode), true);
  1167. if (ret)
  1168. goto out;
  1169. /* write out all dirty pages from offset */
  1170. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1171. if (ret)
  1172. goto out;
  1173. truncate_pagecache(inode, offset);
  1174. pg_start = offset >> PAGE_SHIFT;
  1175. pg_end = (offset + len) >> PAGE_SHIFT;
  1176. delta = pg_end - pg_start;
  1177. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1178. while (!ret && idx > pg_start) {
  1179. nr = idx - pg_start;
  1180. if (nr > delta)
  1181. nr = delta;
  1182. idx -= nr;
  1183. f2fs_lock_op(sbi);
  1184. f2fs_drop_extent_tree(inode);
  1185. ret = __exchange_data_block(inode, inode, idx,
  1186. idx + delta, nr, false);
  1187. f2fs_unlock_op(sbi);
  1188. }
  1189. /* write out all moved pages, if possible */
  1190. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1191. truncate_pagecache(inode, offset);
  1192. if (!ret)
  1193. f2fs_i_size_write(inode, new_size);
  1194. out:
  1195. up_write(&F2FS_I(inode)->i_mmap_sem);
  1196. up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1197. return ret;
  1198. }
  1199. static int expand_inode_data(struct inode *inode, loff_t offset,
  1200. loff_t len, int mode)
  1201. {
  1202. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1203. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1204. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
  1205. pgoff_t pg_end;
  1206. loff_t new_size = i_size_read(inode);
  1207. loff_t off_end;
  1208. int err;
  1209. err = inode_newsize_ok(inode, (len + offset));
  1210. if (err)
  1211. return err;
  1212. err = f2fs_convert_inline_inode(inode);
  1213. if (err)
  1214. return err;
  1215. f2fs_balance_fs(sbi, true);
  1216. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1217. off_end = (offset + len) & (PAGE_SIZE - 1);
  1218. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1219. map.m_len = pg_end - map.m_lblk;
  1220. if (off_end)
  1221. map.m_len++;
  1222. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1223. if (err) {
  1224. pgoff_t last_off;
  1225. if (!map.m_len)
  1226. return err;
  1227. last_off = map.m_lblk + map.m_len - 1;
  1228. /* update new size to the failed position */
  1229. new_size = (last_off == pg_end) ? offset + len:
  1230. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1231. } else {
  1232. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1233. }
  1234. if (new_size > i_size_read(inode)) {
  1235. if (mode & FALLOC_FL_KEEP_SIZE)
  1236. file_set_keep_isize(inode);
  1237. else
  1238. f2fs_i_size_write(inode, new_size);
  1239. }
  1240. return err;
  1241. }
  1242. static long f2fs_fallocate(struct file *file, int mode,
  1243. loff_t offset, loff_t len)
  1244. {
  1245. struct inode *inode = file_inode(file);
  1246. long ret = 0;
  1247. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1248. return -EIO;
  1249. /* f2fs only support ->fallocate for regular file */
  1250. if (!S_ISREG(inode->i_mode))
  1251. return -EINVAL;
  1252. if (f2fs_encrypted_inode(inode) &&
  1253. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1254. return -EOPNOTSUPP;
  1255. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1256. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1257. FALLOC_FL_INSERT_RANGE))
  1258. return -EOPNOTSUPP;
  1259. inode_lock(inode);
  1260. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1261. if (offset >= inode->i_size)
  1262. goto out;
  1263. ret = punch_hole(inode, offset, len);
  1264. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1265. ret = f2fs_collapse_range(inode, offset, len);
  1266. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1267. ret = f2fs_zero_range(inode, offset, len, mode);
  1268. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1269. ret = f2fs_insert_range(inode, offset, len);
  1270. } else {
  1271. ret = expand_inode_data(inode, offset, len, mode);
  1272. }
  1273. if (!ret) {
  1274. inode->i_mtime = inode->i_ctime = current_time(inode);
  1275. f2fs_mark_inode_dirty_sync(inode, false);
  1276. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1277. }
  1278. out:
  1279. inode_unlock(inode);
  1280. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1281. return ret;
  1282. }
  1283. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1284. {
  1285. /*
  1286. * f2fs_relase_file is called at every close calls. So we should
  1287. * not drop any inmemory pages by close called by other process.
  1288. */
  1289. if (!(filp->f_mode & FMODE_WRITE) ||
  1290. atomic_read(&inode->i_writecount) != 1)
  1291. return 0;
  1292. /* some remained atomic pages should discarded */
  1293. if (f2fs_is_atomic_file(inode))
  1294. drop_inmem_pages(inode);
  1295. if (f2fs_is_volatile_file(inode)) {
  1296. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1297. stat_dec_volatile_write(inode);
  1298. set_inode_flag(inode, FI_DROP_CACHE);
  1299. filemap_fdatawrite(inode->i_mapping);
  1300. clear_inode_flag(inode, FI_DROP_CACHE);
  1301. }
  1302. return 0;
  1303. }
  1304. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1305. {
  1306. struct inode *inode = file_inode(file);
  1307. /*
  1308. * If the process doing a transaction is crashed, we should do
  1309. * roll-back. Otherwise, other reader/write can see corrupted database
  1310. * until all the writers close its file. Since this should be done
  1311. * before dropping file lock, it needs to do in ->flush.
  1312. */
  1313. if (f2fs_is_atomic_file(inode) &&
  1314. F2FS_I(inode)->inmem_task == current)
  1315. drop_inmem_pages(inode);
  1316. return 0;
  1317. }
  1318. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1319. {
  1320. struct inode *inode = file_inode(filp);
  1321. struct f2fs_inode_info *fi = F2FS_I(inode);
  1322. unsigned int flags = fi->i_flags &
  1323. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
  1324. return put_user(flags, (int __user *)arg);
  1325. }
  1326. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1327. {
  1328. struct f2fs_inode_info *fi = F2FS_I(inode);
  1329. unsigned int oldflags;
  1330. /* Is it quota file? Do not allow user to mess with it */
  1331. if (IS_NOQUOTA(inode))
  1332. return -EPERM;
  1333. flags = f2fs_mask_flags(inode->i_mode, flags);
  1334. oldflags = fi->i_flags;
  1335. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
  1336. if (!capable(CAP_LINUX_IMMUTABLE))
  1337. return -EPERM;
  1338. flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1339. flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
  1340. fi->i_flags = flags;
  1341. if (fi->i_flags & FS_PROJINHERIT_FL)
  1342. set_inode_flag(inode, FI_PROJ_INHERIT);
  1343. else
  1344. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1345. inode->i_ctime = current_time(inode);
  1346. f2fs_set_inode_flags(inode);
  1347. f2fs_mark_inode_dirty_sync(inode, false);
  1348. return 0;
  1349. }
  1350. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1351. {
  1352. struct inode *inode = file_inode(filp);
  1353. unsigned int flags;
  1354. int ret;
  1355. if (!inode_owner_or_capable(inode))
  1356. return -EACCES;
  1357. if (get_user(flags, (int __user *)arg))
  1358. return -EFAULT;
  1359. ret = mnt_want_write_file(filp);
  1360. if (ret)
  1361. return ret;
  1362. inode_lock(inode);
  1363. ret = __f2fs_ioc_setflags(inode, flags);
  1364. inode_unlock(inode);
  1365. mnt_drop_write_file(filp);
  1366. return ret;
  1367. }
  1368. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1369. {
  1370. struct inode *inode = file_inode(filp);
  1371. return put_user(inode->i_generation, (int __user *)arg);
  1372. }
  1373. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1374. {
  1375. struct inode *inode = file_inode(filp);
  1376. int ret;
  1377. if (!inode_owner_or_capable(inode))
  1378. return -EACCES;
  1379. if (!S_ISREG(inode->i_mode))
  1380. return -EINVAL;
  1381. ret = mnt_want_write_file(filp);
  1382. if (ret)
  1383. return ret;
  1384. inode_lock(inode);
  1385. if (f2fs_is_atomic_file(inode))
  1386. goto out;
  1387. ret = f2fs_convert_inline_inode(inode);
  1388. if (ret)
  1389. goto out;
  1390. set_inode_flag(inode, FI_ATOMIC_FILE);
  1391. set_inode_flag(inode, FI_HOT_DATA);
  1392. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1393. if (!get_dirty_pages(inode))
  1394. goto inc_stat;
  1395. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1396. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1397. inode->i_ino, get_dirty_pages(inode));
  1398. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1399. if (ret) {
  1400. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1401. clear_inode_flag(inode, FI_HOT_DATA);
  1402. goto out;
  1403. }
  1404. inc_stat:
  1405. F2FS_I(inode)->inmem_task = current;
  1406. stat_inc_atomic_write(inode);
  1407. stat_update_max_atomic_write(inode);
  1408. out:
  1409. inode_unlock(inode);
  1410. mnt_drop_write_file(filp);
  1411. return ret;
  1412. }
  1413. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1414. {
  1415. struct inode *inode = file_inode(filp);
  1416. int ret;
  1417. if (!inode_owner_or_capable(inode))
  1418. return -EACCES;
  1419. ret = mnt_want_write_file(filp);
  1420. if (ret)
  1421. return ret;
  1422. inode_lock(inode);
  1423. down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1424. if (f2fs_is_volatile_file(inode))
  1425. goto err_out;
  1426. if (f2fs_is_atomic_file(inode)) {
  1427. ret = commit_inmem_pages(inode);
  1428. if (ret)
  1429. goto err_out;
  1430. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1431. if (!ret) {
  1432. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1433. clear_inode_flag(inode, FI_HOT_DATA);
  1434. stat_dec_atomic_write(inode);
  1435. }
  1436. } else {
  1437. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1438. }
  1439. err_out:
  1440. up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
  1441. inode_unlock(inode);
  1442. mnt_drop_write_file(filp);
  1443. return ret;
  1444. }
  1445. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1446. {
  1447. struct inode *inode = file_inode(filp);
  1448. int ret;
  1449. if (!inode_owner_or_capable(inode))
  1450. return -EACCES;
  1451. if (!S_ISREG(inode->i_mode))
  1452. return -EINVAL;
  1453. ret = mnt_want_write_file(filp);
  1454. if (ret)
  1455. return ret;
  1456. inode_lock(inode);
  1457. if (f2fs_is_volatile_file(inode))
  1458. goto out;
  1459. ret = f2fs_convert_inline_inode(inode);
  1460. if (ret)
  1461. goto out;
  1462. stat_inc_volatile_write(inode);
  1463. stat_update_max_volatile_write(inode);
  1464. set_inode_flag(inode, FI_VOLATILE_FILE);
  1465. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1466. out:
  1467. inode_unlock(inode);
  1468. mnt_drop_write_file(filp);
  1469. return ret;
  1470. }
  1471. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1472. {
  1473. struct inode *inode = file_inode(filp);
  1474. int ret;
  1475. if (!inode_owner_or_capable(inode))
  1476. return -EACCES;
  1477. ret = mnt_want_write_file(filp);
  1478. if (ret)
  1479. return ret;
  1480. inode_lock(inode);
  1481. if (!f2fs_is_volatile_file(inode))
  1482. goto out;
  1483. if (!f2fs_is_first_block_written(inode)) {
  1484. ret = truncate_partial_data_page(inode, 0, true);
  1485. goto out;
  1486. }
  1487. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1488. out:
  1489. inode_unlock(inode);
  1490. mnt_drop_write_file(filp);
  1491. return ret;
  1492. }
  1493. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1494. {
  1495. struct inode *inode = file_inode(filp);
  1496. int ret;
  1497. if (!inode_owner_or_capable(inode))
  1498. return -EACCES;
  1499. ret = mnt_want_write_file(filp);
  1500. if (ret)
  1501. return ret;
  1502. inode_lock(inode);
  1503. if (f2fs_is_atomic_file(inode))
  1504. drop_inmem_pages(inode);
  1505. if (f2fs_is_volatile_file(inode)) {
  1506. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1507. stat_dec_volatile_write(inode);
  1508. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1509. }
  1510. inode_unlock(inode);
  1511. mnt_drop_write_file(filp);
  1512. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1513. return ret;
  1514. }
  1515. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1516. {
  1517. struct inode *inode = file_inode(filp);
  1518. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1519. struct super_block *sb = sbi->sb;
  1520. __u32 in;
  1521. int ret;
  1522. if (!capable(CAP_SYS_ADMIN))
  1523. return -EPERM;
  1524. if (get_user(in, (__u32 __user *)arg))
  1525. return -EFAULT;
  1526. ret = mnt_want_write_file(filp);
  1527. if (ret)
  1528. return ret;
  1529. switch (in) {
  1530. case F2FS_GOING_DOWN_FULLSYNC:
  1531. sb = freeze_bdev(sb->s_bdev);
  1532. if (IS_ERR(sb)) {
  1533. ret = PTR_ERR(sb);
  1534. goto out;
  1535. }
  1536. if (sb) {
  1537. f2fs_stop_checkpoint(sbi, false);
  1538. thaw_bdev(sb->s_bdev, sb);
  1539. }
  1540. break;
  1541. case F2FS_GOING_DOWN_METASYNC:
  1542. /* do checkpoint only */
  1543. ret = f2fs_sync_fs(sb, 1);
  1544. if (ret)
  1545. goto out;
  1546. f2fs_stop_checkpoint(sbi, false);
  1547. break;
  1548. case F2FS_GOING_DOWN_NOSYNC:
  1549. f2fs_stop_checkpoint(sbi, false);
  1550. break;
  1551. case F2FS_GOING_DOWN_METAFLUSH:
  1552. sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1553. f2fs_stop_checkpoint(sbi, false);
  1554. break;
  1555. default:
  1556. ret = -EINVAL;
  1557. goto out;
  1558. }
  1559. stop_gc_thread(sbi);
  1560. stop_discard_thread(sbi);
  1561. drop_discard_cmd(sbi);
  1562. clear_opt(sbi, DISCARD);
  1563. f2fs_update_time(sbi, REQ_TIME);
  1564. out:
  1565. mnt_drop_write_file(filp);
  1566. return ret;
  1567. }
  1568. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1569. {
  1570. struct inode *inode = file_inode(filp);
  1571. struct super_block *sb = inode->i_sb;
  1572. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1573. struct fstrim_range range;
  1574. int ret;
  1575. if (!capable(CAP_SYS_ADMIN))
  1576. return -EPERM;
  1577. if (!blk_queue_discard(q))
  1578. return -EOPNOTSUPP;
  1579. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1580. sizeof(range)))
  1581. return -EFAULT;
  1582. ret = mnt_want_write_file(filp);
  1583. if (ret)
  1584. return ret;
  1585. range.minlen = max((unsigned int)range.minlen,
  1586. q->limits.discard_granularity);
  1587. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1588. mnt_drop_write_file(filp);
  1589. if (ret < 0)
  1590. return ret;
  1591. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1592. sizeof(range)))
  1593. return -EFAULT;
  1594. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1595. return 0;
  1596. }
  1597. static bool uuid_is_nonzero(__u8 u[16])
  1598. {
  1599. int i;
  1600. for (i = 0; i < 16; i++)
  1601. if (u[i])
  1602. return true;
  1603. return false;
  1604. }
  1605. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1606. {
  1607. struct inode *inode = file_inode(filp);
  1608. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1609. return -EOPNOTSUPP;
  1610. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1611. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1612. }
  1613. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1614. {
  1615. if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
  1616. return -EOPNOTSUPP;
  1617. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1618. }
  1619. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1620. {
  1621. struct inode *inode = file_inode(filp);
  1622. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1623. int err;
  1624. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1625. return -EOPNOTSUPP;
  1626. err = mnt_want_write_file(filp);
  1627. if (err)
  1628. return err;
  1629. down_write(&sbi->sb_lock);
  1630. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1631. goto got_it;
  1632. /* update superblock with uuid */
  1633. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1634. err = f2fs_commit_super(sbi, false);
  1635. if (err) {
  1636. /* undo new data */
  1637. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1638. goto out_err;
  1639. }
  1640. got_it:
  1641. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1642. 16))
  1643. err = -EFAULT;
  1644. out_err:
  1645. up_write(&sbi->sb_lock);
  1646. mnt_drop_write_file(filp);
  1647. return err;
  1648. }
  1649. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1650. {
  1651. struct inode *inode = file_inode(filp);
  1652. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1653. __u32 sync;
  1654. int ret;
  1655. if (!capable(CAP_SYS_ADMIN))
  1656. return -EPERM;
  1657. if (get_user(sync, (__u32 __user *)arg))
  1658. return -EFAULT;
  1659. if (f2fs_readonly(sbi->sb))
  1660. return -EROFS;
  1661. ret = mnt_want_write_file(filp);
  1662. if (ret)
  1663. return ret;
  1664. if (!sync) {
  1665. if (!mutex_trylock(&sbi->gc_mutex)) {
  1666. ret = -EBUSY;
  1667. goto out;
  1668. }
  1669. } else {
  1670. mutex_lock(&sbi->gc_mutex);
  1671. }
  1672. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1673. out:
  1674. mnt_drop_write_file(filp);
  1675. return ret;
  1676. }
  1677. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1678. {
  1679. struct inode *inode = file_inode(filp);
  1680. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1681. struct f2fs_gc_range range;
  1682. u64 end;
  1683. int ret;
  1684. if (!capable(CAP_SYS_ADMIN))
  1685. return -EPERM;
  1686. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1687. sizeof(range)))
  1688. return -EFAULT;
  1689. if (f2fs_readonly(sbi->sb))
  1690. return -EROFS;
  1691. ret = mnt_want_write_file(filp);
  1692. if (ret)
  1693. return ret;
  1694. end = range.start + range.len;
  1695. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
  1696. ret = -EINVAL;
  1697. goto out;
  1698. }
  1699. do_more:
  1700. if (!range.sync) {
  1701. if (!mutex_trylock(&sbi->gc_mutex)) {
  1702. ret = -EBUSY;
  1703. goto out;
  1704. }
  1705. } else {
  1706. mutex_lock(&sbi->gc_mutex);
  1707. }
  1708. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1709. range.start += sbi->blocks_per_seg;
  1710. if (range.start <= end)
  1711. goto do_more;
  1712. out:
  1713. mnt_drop_write_file(filp);
  1714. return ret;
  1715. }
  1716. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1717. {
  1718. struct inode *inode = file_inode(filp);
  1719. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1720. int ret;
  1721. if (!capable(CAP_SYS_ADMIN))
  1722. return -EPERM;
  1723. if (f2fs_readonly(sbi->sb))
  1724. return -EROFS;
  1725. ret = mnt_want_write_file(filp);
  1726. if (ret)
  1727. return ret;
  1728. ret = f2fs_sync_fs(sbi->sb, 1);
  1729. mnt_drop_write_file(filp);
  1730. return ret;
  1731. }
  1732. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1733. struct file *filp,
  1734. struct f2fs_defragment *range)
  1735. {
  1736. struct inode *inode = file_inode(filp);
  1737. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  1738. .m_seg_type = NO_CHECK_TYPE };
  1739. struct extent_info ei = {0,0,0};
  1740. pgoff_t pg_start, pg_end, next_pgofs;
  1741. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1742. unsigned int total = 0, sec_num;
  1743. block_t blk_end = 0;
  1744. bool fragmented = false;
  1745. int err;
  1746. /* if in-place-update policy is enabled, don't waste time here */
  1747. if (should_update_inplace(inode, NULL))
  1748. return -EINVAL;
  1749. pg_start = range->start >> PAGE_SHIFT;
  1750. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1751. f2fs_balance_fs(sbi, true);
  1752. inode_lock(inode);
  1753. /* writeback all dirty pages in the range */
  1754. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1755. range->start + range->len - 1);
  1756. if (err)
  1757. goto out;
  1758. /*
  1759. * lookup mapping info in extent cache, skip defragmenting if physical
  1760. * block addresses are continuous.
  1761. */
  1762. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1763. if (ei.fofs + ei.len >= pg_end)
  1764. goto out;
  1765. }
  1766. map.m_lblk = pg_start;
  1767. map.m_next_pgofs = &next_pgofs;
  1768. /*
  1769. * lookup mapping info in dnode page cache, skip defragmenting if all
  1770. * physical block addresses are continuous even if there are hole(s)
  1771. * in logical blocks.
  1772. */
  1773. while (map.m_lblk < pg_end) {
  1774. map.m_len = pg_end - map.m_lblk;
  1775. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1776. if (err)
  1777. goto out;
  1778. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1779. map.m_lblk = next_pgofs;
  1780. continue;
  1781. }
  1782. if (blk_end && blk_end != map.m_pblk)
  1783. fragmented = true;
  1784. /* record total count of block that we're going to move */
  1785. total += map.m_len;
  1786. blk_end = map.m_pblk + map.m_len;
  1787. map.m_lblk += map.m_len;
  1788. }
  1789. if (!fragmented)
  1790. goto out;
  1791. sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1792. /*
  1793. * make sure there are enough free section for LFS allocation, this can
  1794. * avoid defragment running in SSR mode when free section are allocated
  1795. * intensively
  1796. */
  1797. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1798. err = -EAGAIN;
  1799. goto out;
  1800. }
  1801. map.m_lblk = pg_start;
  1802. map.m_len = pg_end - pg_start;
  1803. total = 0;
  1804. while (map.m_lblk < pg_end) {
  1805. pgoff_t idx;
  1806. int cnt = 0;
  1807. do_map:
  1808. map.m_len = pg_end - map.m_lblk;
  1809. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1810. if (err)
  1811. goto clear_out;
  1812. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1813. map.m_lblk = next_pgofs;
  1814. continue;
  1815. }
  1816. set_inode_flag(inode, FI_DO_DEFRAG);
  1817. idx = map.m_lblk;
  1818. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1819. struct page *page;
  1820. page = get_lock_data_page(inode, idx, true);
  1821. if (IS_ERR(page)) {
  1822. err = PTR_ERR(page);
  1823. goto clear_out;
  1824. }
  1825. set_page_dirty(page);
  1826. f2fs_put_page(page, 1);
  1827. idx++;
  1828. cnt++;
  1829. total++;
  1830. }
  1831. map.m_lblk = idx;
  1832. if (idx < pg_end && cnt < blk_per_seg)
  1833. goto do_map;
  1834. clear_inode_flag(inode, FI_DO_DEFRAG);
  1835. err = filemap_fdatawrite(inode->i_mapping);
  1836. if (err)
  1837. goto out;
  1838. }
  1839. clear_out:
  1840. clear_inode_flag(inode, FI_DO_DEFRAG);
  1841. out:
  1842. inode_unlock(inode);
  1843. if (!err)
  1844. range->len = (u64)total << PAGE_SHIFT;
  1845. return err;
  1846. }
  1847. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1848. {
  1849. struct inode *inode = file_inode(filp);
  1850. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1851. struct f2fs_defragment range;
  1852. int err;
  1853. if (!capable(CAP_SYS_ADMIN))
  1854. return -EPERM;
  1855. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1856. return -EINVAL;
  1857. if (f2fs_readonly(sbi->sb))
  1858. return -EROFS;
  1859. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1860. sizeof(range)))
  1861. return -EFAULT;
  1862. /* verify alignment of offset & size */
  1863. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1864. return -EINVAL;
  1865. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1866. sbi->max_file_blocks))
  1867. return -EINVAL;
  1868. err = mnt_want_write_file(filp);
  1869. if (err)
  1870. return err;
  1871. err = f2fs_defragment_range(sbi, filp, &range);
  1872. mnt_drop_write_file(filp);
  1873. f2fs_update_time(sbi, REQ_TIME);
  1874. if (err < 0)
  1875. return err;
  1876. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1877. sizeof(range)))
  1878. return -EFAULT;
  1879. return 0;
  1880. }
  1881. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1882. struct file *file_out, loff_t pos_out, size_t len)
  1883. {
  1884. struct inode *src = file_inode(file_in);
  1885. struct inode *dst = file_inode(file_out);
  1886. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1887. size_t olen = len, dst_max_i_size = 0;
  1888. size_t dst_osize;
  1889. int ret;
  1890. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1891. src->i_sb != dst->i_sb)
  1892. return -EXDEV;
  1893. if (unlikely(f2fs_readonly(src->i_sb)))
  1894. return -EROFS;
  1895. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1896. return -EINVAL;
  1897. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1898. return -EOPNOTSUPP;
  1899. if (src == dst) {
  1900. if (pos_in == pos_out)
  1901. return 0;
  1902. if (pos_out > pos_in && pos_out < pos_in + len)
  1903. return -EINVAL;
  1904. }
  1905. inode_lock(src);
  1906. down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
  1907. if (src != dst) {
  1908. ret = -EBUSY;
  1909. if (!inode_trylock(dst))
  1910. goto out;
  1911. if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
  1912. inode_unlock(dst);
  1913. goto out;
  1914. }
  1915. }
  1916. ret = -EINVAL;
  1917. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1918. goto out_unlock;
  1919. if (len == 0)
  1920. olen = len = src->i_size - pos_in;
  1921. if (pos_in + len == src->i_size)
  1922. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1923. if (len == 0) {
  1924. ret = 0;
  1925. goto out_unlock;
  1926. }
  1927. dst_osize = dst->i_size;
  1928. if (pos_out + olen > dst->i_size)
  1929. dst_max_i_size = pos_out + olen;
  1930. /* verify the end result is block aligned */
  1931. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1932. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1933. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1934. goto out_unlock;
  1935. ret = f2fs_convert_inline_inode(src);
  1936. if (ret)
  1937. goto out_unlock;
  1938. ret = f2fs_convert_inline_inode(dst);
  1939. if (ret)
  1940. goto out_unlock;
  1941. /* write out all dirty pages from offset */
  1942. ret = filemap_write_and_wait_range(src->i_mapping,
  1943. pos_in, pos_in + len);
  1944. if (ret)
  1945. goto out_unlock;
  1946. ret = filemap_write_and_wait_range(dst->i_mapping,
  1947. pos_out, pos_out + len);
  1948. if (ret)
  1949. goto out_unlock;
  1950. f2fs_balance_fs(sbi, true);
  1951. f2fs_lock_op(sbi);
  1952. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1953. pos_out >> F2FS_BLKSIZE_BITS,
  1954. len >> F2FS_BLKSIZE_BITS, false);
  1955. if (!ret) {
  1956. if (dst_max_i_size)
  1957. f2fs_i_size_write(dst, dst_max_i_size);
  1958. else if (dst_osize != dst->i_size)
  1959. f2fs_i_size_write(dst, dst_osize);
  1960. }
  1961. f2fs_unlock_op(sbi);
  1962. out_unlock:
  1963. if (src != dst) {
  1964. up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
  1965. inode_unlock(dst);
  1966. }
  1967. out:
  1968. up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
  1969. inode_unlock(src);
  1970. return ret;
  1971. }
  1972. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1973. {
  1974. struct f2fs_move_range range;
  1975. struct fd dst;
  1976. int err;
  1977. if (!(filp->f_mode & FMODE_READ) ||
  1978. !(filp->f_mode & FMODE_WRITE))
  1979. return -EBADF;
  1980. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  1981. sizeof(range)))
  1982. return -EFAULT;
  1983. dst = fdget(range.dst_fd);
  1984. if (!dst.file)
  1985. return -EBADF;
  1986. if (!(dst.file->f_mode & FMODE_WRITE)) {
  1987. err = -EBADF;
  1988. goto err_out;
  1989. }
  1990. err = mnt_want_write_file(filp);
  1991. if (err)
  1992. goto err_out;
  1993. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  1994. range.pos_out, range.len);
  1995. mnt_drop_write_file(filp);
  1996. if (err)
  1997. goto err_out;
  1998. if (copy_to_user((struct f2fs_move_range __user *)arg,
  1999. &range, sizeof(range)))
  2000. err = -EFAULT;
  2001. err_out:
  2002. fdput(dst);
  2003. return err;
  2004. }
  2005. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  2006. {
  2007. struct inode *inode = file_inode(filp);
  2008. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2009. struct sit_info *sm = SIT_I(sbi);
  2010. unsigned int start_segno = 0, end_segno = 0;
  2011. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  2012. struct f2fs_flush_device range;
  2013. int ret;
  2014. if (!capable(CAP_SYS_ADMIN))
  2015. return -EPERM;
  2016. if (f2fs_readonly(sbi->sb))
  2017. return -EROFS;
  2018. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  2019. sizeof(range)))
  2020. return -EFAULT;
  2021. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  2022. sbi->segs_per_sec != 1) {
  2023. f2fs_msg(sbi->sb, KERN_WARNING,
  2024. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  2025. range.dev_num, sbi->s_ndevs,
  2026. sbi->segs_per_sec);
  2027. return -EINVAL;
  2028. }
  2029. ret = mnt_want_write_file(filp);
  2030. if (ret)
  2031. return ret;
  2032. if (range.dev_num != 0)
  2033. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2034. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2035. start_segno = sm->last_victim[FLUSH_DEVICE];
  2036. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2037. start_segno = dev_start_segno;
  2038. end_segno = min(start_segno + range.segments, dev_end_segno);
  2039. while (start_segno < end_segno) {
  2040. if (!mutex_trylock(&sbi->gc_mutex)) {
  2041. ret = -EBUSY;
  2042. goto out;
  2043. }
  2044. sm->last_victim[GC_CB] = end_segno + 1;
  2045. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2046. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2047. ret = f2fs_gc(sbi, true, true, start_segno);
  2048. if (ret == -EAGAIN)
  2049. ret = 0;
  2050. else if (ret < 0)
  2051. break;
  2052. start_segno++;
  2053. }
  2054. out:
  2055. mnt_drop_write_file(filp);
  2056. return ret;
  2057. }
  2058. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2059. {
  2060. struct inode *inode = file_inode(filp);
  2061. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2062. /* Must validate to set it with SQLite behavior in Android. */
  2063. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2064. return put_user(sb_feature, (u32 __user *)arg);
  2065. }
  2066. #ifdef CONFIG_QUOTA
  2067. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2068. {
  2069. struct inode *inode = file_inode(filp);
  2070. struct f2fs_inode_info *fi = F2FS_I(inode);
  2071. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2072. struct super_block *sb = sbi->sb;
  2073. struct dquot *transfer_to[MAXQUOTAS] = {};
  2074. struct page *ipage;
  2075. kprojid_t kprojid;
  2076. int err;
  2077. if (!f2fs_sb_has_project_quota(sb)) {
  2078. if (projid != F2FS_DEF_PROJID)
  2079. return -EOPNOTSUPP;
  2080. else
  2081. return 0;
  2082. }
  2083. if (!f2fs_has_extra_attr(inode))
  2084. return -EOPNOTSUPP;
  2085. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2086. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2087. return 0;
  2088. err = mnt_want_write_file(filp);
  2089. if (err)
  2090. return err;
  2091. err = -EPERM;
  2092. inode_lock(inode);
  2093. /* Is it quota file? Do not allow user to mess with it */
  2094. if (IS_NOQUOTA(inode))
  2095. goto out_unlock;
  2096. ipage = get_node_page(sbi, inode->i_ino);
  2097. if (IS_ERR(ipage)) {
  2098. err = PTR_ERR(ipage);
  2099. goto out_unlock;
  2100. }
  2101. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2102. i_projid)) {
  2103. err = -EOVERFLOW;
  2104. f2fs_put_page(ipage, 1);
  2105. goto out_unlock;
  2106. }
  2107. f2fs_put_page(ipage, 1);
  2108. dquot_initialize(inode);
  2109. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2110. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2111. err = __dquot_transfer(inode, transfer_to);
  2112. dqput(transfer_to[PRJQUOTA]);
  2113. if (err)
  2114. goto out_dirty;
  2115. }
  2116. F2FS_I(inode)->i_projid = kprojid;
  2117. inode->i_ctime = current_time(inode);
  2118. out_dirty:
  2119. f2fs_mark_inode_dirty_sync(inode, true);
  2120. out_unlock:
  2121. inode_unlock(inode);
  2122. mnt_drop_write_file(filp);
  2123. return err;
  2124. }
  2125. #else
  2126. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2127. {
  2128. if (projid != F2FS_DEF_PROJID)
  2129. return -EOPNOTSUPP;
  2130. return 0;
  2131. }
  2132. #endif
  2133. /* Transfer internal flags to xflags */
  2134. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2135. {
  2136. __u32 xflags = 0;
  2137. if (iflags & FS_SYNC_FL)
  2138. xflags |= FS_XFLAG_SYNC;
  2139. if (iflags & FS_IMMUTABLE_FL)
  2140. xflags |= FS_XFLAG_IMMUTABLE;
  2141. if (iflags & FS_APPEND_FL)
  2142. xflags |= FS_XFLAG_APPEND;
  2143. if (iflags & FS_NODUMP_FL)
  2144. xflags |= FS_XFLAG_NODUMP;
  2145. if (iflags & FS_NOATIME_FL)
  2146. xflags |= FS_XFLAG_NOATIME;
  2147. if (iflags & FS_PROJINHERIT_FL)
  2148. xflags |= FS_XFLAG_PROJINHERIT;
  2149. return xflags;
  2150. }
  2151. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2152. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2153. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2154. /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
  2155. #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
  2156. FS_IMMUTABLE_FL | \
  2157. FS_APPEND_FL | \
  2158. FS_NODUMP_FL | \
  2159. FS_NOATIME_FL | \
  2160. FS_PROJINHERIT_FL)
  2161. /* Transfer xflags flags to internal */
  2162. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2163. {
  2164. unsigned long iflags = 0;
  2165. if (xflags & FS_XFLAG_SYNC)
  2166. iflags |= FS_SYNC_FL;
  2167. if (xflags & FS_XFLAG_IMMUTABLE)
  2168. iflags |= FS_IMMUTABLE_FL;
  2169. if (xflags & FS_XFLAG_APPEND)
  2170. iflags |= FS_APPEND_FL;
  2171. if (xflags & FS_XFLAG_NODUMP)
  2172. iflags |= FS_NODUMP_FL;
  2173. if (xflags & FS_XFLAG_NOATIME)
  2174. iflags |= FS_NOATIME_FL;
  2175. if (xflags & FS_XFLAG_PROJINHERIT)
  2176. iflags |= FS_PROJINHERIT_FL;
  2177. return iflags;
  2178. }
  2179. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2180. {
  2181. struct inode *inode = file_inode(filp);
  2182. struct f2fs_inode_info *fi = F2FS_I(inode);
  2183. struct fsxattr fa;
  2184. memset(&fa, 0, sizeof(struct fsxattr));
  2185. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2186. (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
  2187. if (f2fs_sb_has_project_quota(inode->i_sb))
  2188. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2189. fi->i_projid);
  2190. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2191. return -EFAULT;
  2192. return 0;
  2193. }
  2194. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2195. {
  2196. struct inode *inode = file_inode(filp);
  2197. struct f2fs_inode_info *fi = F2FS_I(inode);
  2198. struct fsxattr fa;
  2199. unsigned int flags;
  2200. int err;
  2201. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2202. return -EFAULT;
  2203. /* Make sure caller has proper permission */
  2204. if (!inode_owner_or_capable(inode))
  2205. return -EACCES;
  2206. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2207. return -EOPNOTSUPP;
  2208. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2209. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2210. return -EOPNOTSUPP;
  2211. err = mnt_want_write_file(filp);
  2212. if (err)
  2213. return err;
  2214. inode_lock(inode);
  2215. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2216. (flags & F2FS_FL_XFLAG_VISIBLE);
  2217. err = __f2fs_ioc_setflags(inode, flags);
  2218. inode_unlock(inode);
  2219. mnt_drop_write_file(filp);
  2220. if (err)
  2221. return err;
  2222. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2223. if (err)
  2224. return err;
  2225. return 0;
  2226. }
  2227. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2228. {
  2229. struct f2fs_inode_info *fi = F2FS_I(inode);
  2230. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2231. /* Use i_gc_failures for normal file as a risk signal. */
  2232. if (inc)
  2233. f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
  2234. if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
  2235. f2fs_msg(sbi->sb, KERN_WARNING,
  2236. "%s: Enable GC = ino %lx after %x GC trials\n",
  2237. __func__, inode->i_ino, fi->i_gc_failures);
  2238. clear_inode_flag(inode, FI_PIN_FILE);
  2239. return -EAGAIN;
  2240. }
  2241. return 0;
  2242. }
  2243. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2244. {
  2245. struct inode *inode = file_inode(filp);
  2246. __u32 pin;
  2247. int ret = 0;
  2248. if (!inode_owner_or_capable(inode))
  2249. return -EACCES;
  2250. if (get_user(pin, (__u32 __user *)arg))
  2251. return -EFAULT;
  2252. if (!S_ISREG(inode->i_mode))
  2253. return -EINVAL;
  2254. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2255. return -EROFS;
  2256. ret = mnt_want_write_file(filp);
  2257. if (ret)
  2258. return ret;
  2259. inode_lock(inode);
  2260. if (should_update_outplace(inode, NULL)) {
  2261. ret = -EINVAL;
  2262. goto out;
  2263. }
  2264. if (!pin) {
  2265. clear_inode_flag(inode, FI_PIN_FILE);
  2266. F2FS_I(inode)->i_gc_failures = 1;
  2267. goto done;
  2268. }
  2269. if (f2fs_pin_file_control(inode, false)) {
  2270. ret = -EAGAIN;
  2271. goto out;
  2272. }
  2273. ret = f2fs_convert_inline_inode(inode);
  2274. if (ret)
  2275. goto out;
  2276. set_inode_flag(inode, FI_PIN_FILE);
  2277. ret = F2FS_I(inode)->i_gc_failures;
  2278. done:
  2279. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2280. out:
  2281. inode_unlock(inode);
  2282. mnt_drop_write_file(filp);
  2283. return ret;
  2284. }
  2285. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2286. {
  2287. struct inode *inode = file_inode(filp);
  2288. __u32 pin = 0;
  2289. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2290. pin = F2FS_I(inode)->i_gc_failures;
  2291. return put_user(pin, (u32 __user *)arg);
  2292. }
  2293. int f2fs_precache_extents(struct inode *inode)
  2294. {
  2295. struct f2fs_inode_info *fi = F2FS_I(inode);
  2296. struct f2fs_map_blocks map;
  2297. pgoff_t m_next_extent;
  2298. loff_t end;
  2299. int err;
  2300. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2301. return -EOPNOTSUPP;
  2302. map.m_lblk = 0;
  2303. map.m_next_pgofs = NULL;
  2304. map.m_next_extent = &m_next_extent;
  2305. map.m_seg_type = NO_CHECK_TYPE;
  2306. end = F2FS_I_SB(inode)->max_file_blocks;
  2307. while (map.m_lblk < end) {
  2308. map.m_len = end - map.m_lblk;
  2309. down_write(&fi->dio_rwsem[WRITE]);
  2310. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2311. up_write(&fi->dio_rwsem[WRITE]);
  2312. if (err)
  2313. return err;
  2314. map.m_lblk = m_next_extent;
  2315. }
  2316. return err;
  2317. }
  2318. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2319. {
  2320. return f2fs_precache_extents(file_inode(filp));
  2321. }
  2322. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2323. {
  2324. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  2325. return -EIO;
  2326. switch (cmd) {
  2327. case F2FS_IOC_GETFLAGS:
  2328. return f2fs_ioc_getflags(filp, arg);
  2329. case F2FS_IOC_SETFLAGS:
  2330. return f2fs_ioc_setflags(filp, arg);
  2331. case F2FS_IOC_GETVERSION:
  2332. return f2fs_ioc_getversion(filp, arg);
  2333. case F2FS_IOC_START_ATOMIC_WRITE:
  2334. return f2fs_ioc_start_atomic_write(filp);
  2335. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2336. return f2fs_ioc_commit_atomic_write(filp);
  2337. case F2FS_IOC_START_VOLATILE_WRITE:
  2338. return f2fs_ioc_start_volatile_write(filp);
  2339. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2340. return f2fs_ioc_release_volatile_write(filp);
  2341. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2342. return f2fs_ioc_abort_volatile_write(filp);
  2343. case F2FS_IOC_SHUTDOWN:
  2344. return f2fs_ioc_shutdown(filp, arg);
  2345. case FITRIM:
  2346. return f2fs_ioc_fitrim(filp, arg);
  2347. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2348. return f2fs_ioc_set_encryption_policy(filp, arg);
  2349. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2350. return f2fs_ioc_get_encryption_policy(filp, arg);
  2351. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2352. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2353. case F2FS_IOC_GARBAGE_COLLECT:
  2354. return f2fs_ioc_gc(filp, arg);
  2355. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2356. return f2fs_ioc_gc_range(filp, arg);
  2357. case F2FS_IOC_WRITE_CHECKPOINT:
  2358. return f2fs_ioc_write_checkpoint(filp, arg);
  2359. case F2FS_IOC_DEFRAGMENT:
  2360. return f2fs_ioc_defragment(filp, arg);
  2361. case F2FS_IOC_MOVE_RANGE:
  2362. return f2fs_ioc_move_range(filp, arg);
  2363. case F2FS_IOC_FLUSH_DEVICE:
  2364. return f2fs_ioc_flush_device(filp, arg);
  2365. case F2FS_IOC_GET_FEATURES:
  2366. return f2fs_ioc_get_features(filp, arg);
  2367. case F2FS_IOC_FSGETXATTR:
  2368. return f2fs_ioc_fsgetxattr(filp, arg);
  2369. case F2FS_IOC_FSSETXATTR:
  2370. return f2fs_ioc_fssetxattr(filp, arg);
  2371. case F2FS_IOC_GET_PIN_FILE:
  2372. return f2fs_ioc_get_pin_file(filp, arg);
  2373. case F2FS_IOC_SET_PIN_FILE:
  2374. return f2fs_ioc_set_pin_file(filp, arg);
  2375. case F2FS_IOC_PRECACHE_EXTENTS:
  2376. return f2fs_ioc_precache_extents(filp, arg);
  2377. default:
  2378. return -ENOTTY;
  2379. }
  2380. }
  2381. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2382. {
  2383. struct file *file = iocb->ki_filp;
  2384. struct inode *inode = file_inode(file);
  2385. struct blk_plug plug;
  2386. ssize_t ret;
  2387. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  2388. return -EIO;
  2389. if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
  2390. return -EINVAL;
  2391. if (!inode_trylock(inode)) {
  2392. if (iocb->ki_flags & IOCB_NOWAIT)
  2393. return -EAGAIN;
  2394. inode_lock(inode);
  2395. }
  2396. ret = generic_write_checks(iocb, from);
  2397. if (ret > 0) {
  2398. bool preallocated = false;
  2399. size_t target_size = 0;
  2400. int err;
  2401. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2402. set_inode_flag(inode, FI_NO_PREALLOC);
  2403. if ((iocb->ki_flags & IOCB_NOWAIT) &&
  2404. (iocb->ki_flags & IOCB_DIRECT)) {
  2405. if (!f2fs_overwrite_io(inode, iocb->ki_pos,
  2406. iov_iter_count(from)) ||
  2407. f2fs_has_inline_data(inode) ||
  2408. f2fs_force_buffered_io(inode, WRITE)) {
  2409. inode_unlock(inode);
  2410. return -EAGAIN;
  2411. }
  2412. } else {
  2413. preallocated = true;
  2414. target_size = iocb->ki_pos + iov_iter_count(from);
  2415. err = f2fs_preallocate_blocks(iocb, from);
  2416. if (err) {
  2417. clear_inode_flag(inode, FI_NO_PREALLOC);
  2418. inode_unlock(inode);
  2419. return err;
  2420. }
  2421. }
  2422. blk_start_plug(&plug);
  2423. ret = __generic_file_write_iter(iocb, from);
  2424. blk_finish_plug(&plug);
  2425. clear_inode_flag(inode, FI_NO_PREALLOC);
  2426. /* if we couldn't write data, we should deallocate blocks. */
  2427. if (preallocated && i_size_read(inode) < target_size)
  2428. f2fs_truncate(inode);
  2429. if (ret > 0)
  2430. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2431. }
  2432. inode_unlock(inode);
  2433. if (ret > 0)
  2434. ret = generic_write_sync(iocb, ret);
  2435. return ret;
  2436. }
  2437. #ifdef CONFIG_COMPAT
  2438. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2439. {
  2440. switch (cmd) {
  2441. case F2FS_IOC32_GETFLAGS:
  2442. cmd = F2FS_IOC_GETFLAGS;
  2443. break;
  2444. case F2FS_IOC32_SETFLAGS:
  2445. cmd = F2FS_IOC_SETFLAGS;
  2446. break;
  2447. case F2FS_IOC32_GETVERSION:
  2448. cmd = F2FS_IOC_GETVERSION;
  2449. break;
  2450. case F2FS_IOC_START_ATOMIC_WRITE:
  2451. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2452. case F2FS_IOC_START_VOLATILE_WRITE:
  2453. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2454. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2455. case F2FS_IOC_SHUTDOWN:
  2456. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2457. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2458. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2459. case F2FS_IOC_GARBAGE_COLLECT:
  2460. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2461. case F2FS_IOC_WRITE_CHECKPOINT:
  2462. case F2FS_IOC_DEFRAGMENT:
  2463. case F2FS_IOC_MOVE_RANGE:
  2464. case F2FS_IOC_FLUSH_DEVICE:
  2465. case F2FS_IOC_GET_FEATURES:
  2466. case F2FS_IOC_FSGETXATTR:
  2467. case F2FS_IOC_FSSETXATTR:
  2468. case F2FS_IOC_GET_PIN_FILE:
  2469. case F2FS_IOC_SET_PIN_FILE:
  2470. case F2FS_IOC_PRECACHE_EXTENTS:
  2471. break;
  2472. default:
  2473. return -ENOIOCTLCMD;
  2474. }
  2475. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2476. }
  2477. #endif
  2478. const struct file_operations f2fs_file_operations = {
  2479. .llseek = f2fs_llseek,
  2480. .read_iter = generic_file_read_iter,
  2481. .write_iter = f2fs_file_write_iter,
  2482. .open = f2fs_file_open,
  2483. .release = f2fs_release_file,
  2484. .mmap = f2fs_file_mmap,
  2485. .flush = f2fs_file_flush,
  2486. .fsync = f2fs_sync_file,
  2487. .fallocate = f2fs_fallocate,
  2488. .unlocked_ioctl = f2fs_ioctl,
  2489. #ifdef CONFIG_COMPAT
  2490. .compat_ioctl = f2fs_compat_ioctl,
  2491. #endif
  2492. .splice_read = generic_file_splice_read,
  2493. .splice_write = iter_file_splice_write,
  2494. };