verbs.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <rdma/ib_verbs.h>
  47. #include <rdma/ib_cache.h>
  48. #include <rdma/ib_addr.h>
  49. #include "core_priv.h"
  50. static const char * const ib_events[] = {
  51. [IB_EVENT_CQ_ERR] = "CQ error",
  52. [IB_EVENT_QP_FATAL] = "QP fatal error",
  53. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  54. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  55. [IB_EVENT_COMM_EST] = "communication established",
  56. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  57. [IB_EVENT_PATH_MIG] = "path migration successful",
  58. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  59. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  60. [IB_EVENT_PORT_ACTIVE] = "port active",
  61. [IB_EVENT_PORT_ERR] = "port error",
  62. [IB_EVENT_LID_CHANGE] = "LID change",
  63. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  64. [IB_EVENT_SM_CHANGE] = "SM change",
  65. [IB_EVENT_SRQ_ERR] = "SRQ error",
  66. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  67. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  68. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  69. [IB_EVENT_GID_CHANGE] = "GID changed",
  70. };
  71. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  72. {
  73. size_t index = event;
  74. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  75. ib_events[index] : "unrecognized event";
  76. }
  77. EXPORT_SYMBOL(ib_event_msg);
  78. static const char * const wc_statuses[] = {
  79. [IB_WC_SUCCESS] = "success",
  80. [IB_WC_LOC_LEN_ERR] = "local length error",
  81. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  82. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  83. [IB_WC_LOC_PROT_ERR] = "local protection error",
  84. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  85. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  86. [IB_WC_BAD_RESP_ERR] = "bad response error",
  87. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  88. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  89. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  90. [IB_WC_REM_OP_ERR] = "remote operation error",
  91. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  92. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  93. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  94. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  95. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  96. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  97. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  98. [IB_WC_FATAL_ERR] = "fatal error",
  99. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  100. [IB_WC_GENERAL_ERR] = "general error",
  101. };
  102. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  103. {
  104. size_t index = status;
  105. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  106. wc_statuses[index] : "unrecognized status";
  107. }
  108. EXPORT_SYMBOL(ib_wc_status_msg);
  109. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  110. {
  111. switch (rate) {
  112. case IB_RATE_2_5_GBPS: return 1;
  113. case IB_RATE_5_GBPS: return 2;
  114. case IB_RATE_10_GBPS: return 4;
  115. case IB_RATE_20_GBPS: return 8;
  116. case IB_RATE_30_GBPS: return 12;
  117. case IB_RATE_40_GBPS: return 16;
  118. case IB_RATE_60_GBPS: return 24;
  119. case IB_RATE_80_GBPS: return 32;
  120. case IB_RATE_120_GBPS: return 48;
  121. default: return -1;
  122. }
  123. }
  124. EXPORT_SYMBOL(ib_rate_to_mult);
  125. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  126. {
  127. switch (mult) {
  128. case 1: return IB_RATE_2_5_GBPS;
  129. case 2: return IB_RATE_5_GBPS;
  130. case 4: return IB_RATE_10_GBPS;
  131. case 8: return IB_RATE_20_GBPS;
  132. case 12: return IB_RATE_30_GBPS;
  133. case 16: return IB_RATE_40_GBPS;
  134. case 24: return IB_RATE_60_GBPS;
  135. case 32: return IB_RATE_80_GBPS;
  136. case 48: return IB_RATE_120_GBPS;
  137. default: return IB_RATE_PORT_CURRENT;
  138. }
  139. }
  140. EXPORT_SYMBOL(mult_to_ib_rate);
  141. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  142. {
  143. switch (rate) {
  144. case IB_RATE_2_5_GBPS: return 2500;
  145. case IB_RATE_5_GBPS: return 5000;
  146. case IB_RATE_10_GBPS: return 10000;
  147. case IB_RATE_20_GBPS: return 20000;
  148. case IB_RATE_30_GBPS: return 30000;
  149. case IB_RATE_40_GBPS: return 40000;
  150. case IB_RATE_60_GBPS: return 60000;
  151. case IB_RATE_80_GBPS: return 80000;
  152. case IB_RATE_120_GBPS: return 120000;
  153. case IB_RATE_14_GBPS: return 14062;
  154. case IB_RATE_56_GBPS: return 56250;
  155. case IB_RATE_112_GBPS: return 112500;
  156. case IB_RATE_168_GBPS: return 168750;
  157. case IB_RATE_25_GBPS: return 25781;
  158. case IB_RATE_100_GBPS: return 103125;
  159. case IB_RATE_200_GBPS: return 206250;
  160. case IB_RATE_300_GBPS: return 309375;
  161. default: return -1;
  162. }
  163. }
  164. EXPORT_SYMBOL(ib_rate_to_mbps);
  165. __attribute_const__ enum rdma_transport_type
  166. rdma_node_get_transport(enum rdma_node_type node_type)
  167. {
  168. switch (node_type) {
  169. case RDMA_NODE_IB_CA:
  170. case RDMA_NODE_IB_SWITCH:
  171. case RDMA_NODE_IB_ROUTER:
  172. return RDMA_TRANSPORT_IB;
  173. case RDMA_NODE_RNIC:
  174. return RDMA_TRANSPORT_IWARP;
  175. case RDMA_NODE_USNIC:
  176. return RDMA_TRANSPORT_USNIC;
  177. case RDMA_NODE_USNIC_UDP:
  178. return RDMA_TRANSPORT_USNIC_UDP;
  179. default:
  180. BUG();
  181. return 0;
  182. }
  183. }
  184. EXPORT_SYMBOL(rdma_node_get_transport);
  185. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  186. {
  187. if (device->get_link_layer)
  188. return device->get_link_layer(device, port_num);
  189. switch (rdma_node_get_transport(device->node_type)) {
  190. case RDMA_TRANSPORT_IB:
  191. return IB_LINK_LAYER_INFINIBAND;
  192. case RDMA_TRANSPORT_IWARP:
  193. case RDMA_TRANSPORT_USNIC:
  194. case RDMA_TRANSPORT_USNIC_UDP:
  195. return IB_LINK_LAYER_ETHERNET;
  196. default:
  197. return IB_LINK_LAYER_UNSPECIFIED;
  198. }
  199. }
  200. EXPORT_SYMBOL(rdma_port_get_link_layer);
  201. /* Protection domains */
  202. /**
  203. * ib_alloc_pd - Allocates an unused protection domain.
  204. * @device: The device on which to allocate the protection domain.
  205. *
  206. * A protection domain object provides an association between QPs, shared
  207. * receive queues, address handles, memory regions, and memory windows.
  208. *
  209. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  210. * memory operations.
  211. */
  212. struct ib_pd *ib_alloc_pd(struct ib_device *device)
  213. {
  214. struct ib_pd *pd;
  215. pd = device->alloc_pd(device, NULL, NULL);
  216. if (IS_ERR(pd))
  217. return pd;
  218. pd->device = device;
  219. pd->uobject = NULL;
  220. pd->local_mr = NULL;
  221. atomic_set(&pd->usecnt, 0);
  222. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  223. pd->local_dma_lkey = device->local_dma_lkey;
  224. else {
  225. struct ib_mr *mr;
  226. mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
  227. if (IS_ERR(mr)) {
  228. ib_dealloc_pd(pd);
  229. return (struct ib_pd *)mr;
  230. }
  231. pd->local_mr = mr;
  232. pd->local_dma_lkey = pd->local_mr->lkey;
  233. }
  234. return pd;
  235. }
  236. EXPORT_SYMBOL(ib_alloc_pd);
  237. /**
  238. * ib_dealloc_pd - Deallocates a protection domain.
  239. * @pd: The protection domain to deallocate.
  240. *
  241. * It is an error to call this function while any resources in the pd still
  242. * exist. The caller is responsible to synchronously destroy them and
  243. * guarantee no new allocations will happen.
  244. */
  245. void ib_dealloc_pd(struct ib_pd *pd)
  246. {
  247. int ret;
  248. if (pd->local_mr) {
  249. ret = ib_dereg_mr(pd->local_mr);
  250. WARN_ON(ret);
  251. pd->local_mr = NULL;
  252. }
  253. /* uverbs manipulates usecnt with proper locking, while the kabi
  254. requires the caller to guarantee we can't race here. */
  255. WARN_ON(atomic_read(&pd->usecnt));
  256. /* Making delalloc_pd a void return is a WIP, no driver should return
  257. an error here. */
  258. ret = pd->device->dealloc_pd(pd);
  259. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  260. }
  261. EXPORT_SYMBOL(ib_dealloc_pd);
  262. /* Address handles */
  263. struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
  264. {
  265. struct ib_ah *ah;
  266. ah = pd->device->create_ah(pd, ah_attr);
  267. if (!IS_ERR(ah)) {
  268. ah->device = pd->device;
  269. ah->pd = pd;
  270. ah->uobject = NULL;
  271. atomic_inc(&pd->usecnt);
  272. }
  273. return ah;
  274. }
  275. EXPORT_SYMBOL(ib_create_ah);
  276. static int ib_get_header_version(const union rdma_network_hdr *hdr)
  277. {
  278. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  279. struct iphdr ip4h_checked;
  280. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  281. /* If it's IPv6, the version must be 6, otherwise, the first
  282. * 20 bytes (before the IPv4 header) are garbled.
  283. */
  284. if (ip6h->version != 6)
  285. return (ip4h->version == 4) ? 4 : 0;
  286. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  287. /* RoCE v2 requires no options, thus header length
  288. * must be 5 words
  289. */
  290. if (ip4h->ihl != 5)
  291. return 6;
  292. /* Verify checksum.
  293. * We can't write on scattered buffers so we need to copy to
  294. * temp buffer.
  295. */
  296. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  297. ip4h_checked.check = 0;
  298. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  299. /* if IPv4 header checksum is OK, believe it */
  300. if (ip4h->check == ip4h_checked.check)
  301. return 4;
  302. return 6;
  303. }
  304. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  305. u8 port_num,
  306. const struct ib_grh *grh)
  307. {
  308. int grh_version;
  309. if (rdma_protocol_ib(device, port_num))
  310. return RDMA_NETWORK_IB;
  311. grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
  312. if (grh_version == 4)
  313. return RDMA_NETWORK_IPV4;
  314. if (grh->next_hdr == IPPROTO_UDP)
  315. return RDMA_NETWORK_IPV6;
  316. return RDMA_NETWORK_ROCE_V1;
  317. }
  318. struct find_gid_index_context {
  319. u16 vlan_id;
  320. enum ib_gid_type gid_type;
  321. };
  322. static bool find_gid_index(const union ib_gid *gid,
  323. const struct ib_gid_attr *gid_attr,
  324. void *context)
  325. {
  326. struct find_gid_index_context *ctx =
  327. (struct find_gid_index_context *)context;
  328. if (ctx->gid_type != gid_attr->gid_type)
  329. return false;
  330. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  331. (is_vlan_dev(gid_attr->ndev) &&
  332. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  333. return false;
  334. return true;
  335. }
  336. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  337. u16 vlan_id, const union ib_gid *sgid,
  338. enum ib_gid_type gid_type,
  339. u16 *gid_index)
  340. {
  341. struct find_gid_index_context context = {.vlan_id = vlan_id,
  342. .gid_type = gid_type};
  343. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  344. &context, gid_index);
  345. }
  346. static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
  347. enum rdma_network_type net_type,
  348. union ib_gid *sgid, union ib_gid *dgid)
  349. {
  350. struct sockaddr_in src_in;
  351. struct sockaddr_in dst_in;
  352. __be32 src_saddr, dst_saddr;
  353. if (!sgid || !dgid)
  354. return -EINVAL;
  355. if (net_type == RDMA_NETWORK_IPV4) {
  356. memcpy(&src_in.sin_addr.s_addr,
  357. &hdr->roce4grh.saddr, 4);
  358. memcpy(&dst_in.sin_addr.s_addr,
  359. &hdr->roce4grh.daddr, 4);
  360. src_saddr = src_in.sin_addr.s_addr;
  361. dst_saddr = dst_in.sin_addr.s_addr;
  362. ipv6_addr_set_v4mapped(src_saddr,
  363. (struct in6_addr *)sgid);
  364. ipv6_addr_set_v4mapped(dst_saddr,
  365. (struct in6_addr *)dgid);
  366. return 0;
  367. } else if (net_type == RDMA_NETWORK_IPV6 ||
  368. net_type == RDMA_NETWORK_IB) {
  369. *dgid = hdr->ibgrh.dgid;
  370. *sgid = hdr->ibgrh.sgid;
  371. return 0;
  372. } else {
  373. return -EINVAL;
  374. }
  375. }
  376. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  377. const struct ib_wc *wc, const struct ib_grh *grh,
  378. struct ib_ah_attr *ah_attr)
  379. {
  380. u32 flow_class;
  381. u16 gid_index;
  382. int ret;
  383. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  384. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  385. union ib_gid dgid;
  386. union ib_gid sgid;
  387. memset(ah_attr, 0, sizeof *ah_attr);
  388. if (rdma_cap_eth_ah(device, port_num)) {
  389. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  390. net_type = wc->network_hdr_type;
  391. else
  392. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  393. gid_type = ib_network_to_gid_type(net_type);
  394. }
  395. ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  396. &sgid, &dgid);
  397. if (ret)
  398. return ret;
  399. if (rdma_protocol_roce(device, port_num)) {
  400. int if_index = 0;
  401. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  402. wc->vlan_id : 0xffff;
  403. struct net_device *idev;
  404. struct net_device *resolved_dev;
  405. if (!(wc->wc_flags & IB_WC_GRH))
  406. return -EPROTOTYPE;
  407. if (!device->get_netdev)
  408. return -EOPNOTSUPP;
  409. idev = device->get_netdev(device, port_num);
  410. if (!idev)
  411. return -ENODEV;
  412. ret = rdma_addr_find_dmac_by_grh(&dgid, &sgid,
  413. ah_attr->dmac,
  414. wc->wc_flags & IB_WC_WITH_VLAN ?
  415. NULL : &vlan_id,
  416. &if_index);
  417. if (ret) {
  418. dev_put(idev);
  419. return ret;
  420. }
  421. resolved_dev = dev_get_by_index(&init_net, if_index);
  422. if (resolved_dev->flags & IFF_LOOPBACK) {
  423. dev_put(resolved_dev);
  424. resolved_dev = idev;
  425. dev_hold(resolved_dev);
  426. }
  427. rcu_read_lock();
  428. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  429. resolved_dev))
  430. ret = -EHOSTUNREACH;
  431. rcu_read_unlock();
  432. dev_put(idev);
  433. dev_put(resolved_dev);
  434. if (ret)
  435. return ret;
  436. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  437. &dgid, gid_type, &gid_index);
  438. if (ret)
  439. return ret;
  440. }
  441. ah_attr->dlid = wc->slid;
  442. ah_attr->sl = wc->sl;
  443. ah_attr->src_path_bits = wc->dlid_path_bits;
  444. ah_attr->port_num = port_num;
  445. if (wc->wc_flags & IB_WC_GRH) {
  446. ah_attr->ah_flags = IB_AH_GRH;
  447. ah_attr->grh.dgid = sgid;
  448. if (!rdma_cap_eth_ah(device, port_num)) {
  449. ret = ib_find_cached_gid_by_port(device, &dgid,
  450. IB_GID_TYPE_IB,
  451. port_num, NULL,
  452. &gid_index);
  453. if (ret)
  454. return ret;
  455. }
  456. ah_attr->grh.sgid_index = (u8) gid_index;
  457. flow_class = be32_to_cpu(grh->version_tclass_flow);
  458. ah_attr->grh.flow_label = flow_class & 0xFFFFF;
  459. ah_attr->grh.hop_limit = 0xFF;
  460. ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
  461. }
  462. return 0;
  463. }
  464. EXPORT_SYMBOL(ib_init_ah_from_wc);
  465. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  466. const struct ib_grh *grh, u8 port_num)
  467. {
  468. struct ib_ah_attr ah_attr;
  469. int ret;
  470. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  471. if (ret)
  472. return ERR_PTR(ret);
  473. return ib_create_ah(pd, &ah_attr);
  474. }
  475. EXPORT_SYMBOL(ib_create_ah_from_wc);
  476. int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  477. {
  478. return ah->device->modify_ah ?
  479. ah->device->modify_ah(ah, ah_attr) :
  480. -ENOSYS;
  481. }
  482. EXPORT_SYMBOL(ib_modify_ah);
  483. int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
  484. {
  485. return ah->device->query_ah ?
  486. ah->device->query_ah(ah, ah_attr) :
  487. -ENOSYS;
  488. }
  489. EXPORT_SYMBOL(ib_query_ah);
  490. int ib_destroy_ah(struct ib_ah *ah)
  491. {
  492. struct ib_pd *pd;
  493. int ret;
  494. pd = ah->pd;
  495. ret = ah->device->destroy_ah(ah);
  496. if (!ret)
  497. atomic_dec(&pd->usecnt);
  498. return ret;
  499. }
  500. EXPORT_SYMBOL(ib_destroy_ah);
  501. /* Shared receive queues */
  502. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  503. struct ib_srq_init_attr *srq_init_attr)
  504. {
  505. struct ib_srq *srq;
  506. if (!pd->device->create_srq)
  507. return ERR_PTR(-ENOSYS);
  508. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  509. if (!IS_ERR(srq)) {
  510. srq->device = pd->device;
  511. srq->pd = pd;
  512. srq->uobject = NULL;
  513. srq->event_handler = srq_init_attr->event_handler;
  514. srq->srq_context = srq_init_attr->srq_context;
  515. srq->srq_type = srq_init_attr->srq_type;
  516. if (srq->srq_type == IB_SRQT_XRC) {
  517. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  518. srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
  519. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  520. atomic_inc(&srq->ext.xrc.cq->usecnt);
  521. }
  522. atomic_inc(&pd->usecnt);
  523. atomic_set(&srq->usecnt, 0);
  524. }
  525. return srq;
  526. }
  527. EXPORT_SYMBOL(ib_create_srq);
  528. int ib_modify_srq(struct ib_srq *srq,
  529. struct ib_srq_attr *srq_attr,
  530. enum ib_srq_attr_mask srq_attr_mask)
  531. {
  532. return srq->device->modify_srq ?
  533. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  534. -ENOSYS;
  535. }
  536. EXPORT_SYMBOL(ib_modify_srq);
  537. int ib_query_srq(struct ib_srq *srq,
  538. struct ib_srq_attr *srq_attr)
  539. {
  540. return srq->device->query_srq ?
  541. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  542. }
  543. EXPORT_SYMBOL(ib_query_srq);
  544. int ib_destroy_srq(struct ib_srq *srq)
  545. {
  546. struct ib_pd *pd;
  547. enum ib_srq_type srq_type;
  548. struct ib_xrcd *uninitialized_var(xrcd);
  549. struct ib_cq *uninitialized_var(cq);
  550. int ret;
  551. if (atomic_read(&srq->usecnt))
  552. return -EBUSY;
  553. pd = srq->pd;
  554. srq_type = srq->srq_type;
  555. if (srq_type == IB_SRQT_XRC) {
  556. xrcd = srq->ext.xrc.xrcd;
  557. cq = srq->ext.xrc.cq;
  558. }
  559. ret = srq->device->destroy_srq(srq);
  560. if (!ret) {
  561. atomic_dec(&pd->usecnt);
  562. if (srq_type == IB_SRQT_XRC) {
  563. atomic_dec(&xrcd->usecnt);
  564. atomic_dec(&cq->usecnt);
  565. }
  566. }
  567. return ret;
  568. }
  569. EXPORT_SYMBOL(ib_destroy_srq);
  570. /* Queue pairs */
  571. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  572. {
  573. struct ib_qp *qp = context;
  574. unsigned long flags;
  575. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  576. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  577. if (event->element.qp->event_handler)
  578. event->element.qp->event_handler(event, event->element.qp->qp_context);
  579. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  580. }
  581. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  582. {
  583. mutex_lock(&xrcd->tgt_qp_mutex);
  584. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  585. mutex_unlock(&xrcd->tgt_qp_mutex);
  586. }
  587. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  588. void (*event_handler)(struct ib_event *, void *),
  589. void *qp_context)
  590. {
  591. struct ib_qp *qp;
  592. unsigned long flags;
  593. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  594. if (!qp)
  595. return ERR_PTR(-ENOMEM);
  596. qp->real_qp = real_qp;
  597. atomic_inc(&real_qp->usecnt);
  598. qp->device = real_qp->device;
  599. qp->event_handler = event_handler;
  600. qp->qp_context = qp_context;
  601. qp->qp_num = real_qp->qp_num;
  602. qp->qp_type = real_qp->qp_type;
  603. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  604. list_add(&qp->open_list, &real_qp->open_list);
  605. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  606. return qp;
  607. }
  608. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  609. struct ib_qp_open_attr *qp_open_attr)
  610. {
  611. struct ib_qp *qp, *real_qp;
  612. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  613. return ERR_PTR(-EINVAL);
  614. qp = ERR_PTR(-EINVAL);
  615. mutex_lock(&xrcd->tgt_qp_mutex);
  616. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  617. if (real_qp->qp_num == qp_open_attr->qp_num) {
  618. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  619. qp_open_attr->qp_context);
  620. break;
  621. }
  622. }
  623. mutex_unlock(&xrcd->tgt_qp_mutex);
  624. return qp;
  625. }
  626. EXPORT_SYMBOL(ib_open_qp);
  627. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  628. struct ib_qp_init_attr *qp_init_attr)
  629. {
  630. struct ib_qp *qp, *real_qp;
  631. struct ib_device *device;
  632. device = pd ? pd->device : qp_init_attr->xrcd->device;
  633. qp = device->create_qp(pd, qp_init_attr, NULL);
  634. if (!IS_ERR(qp)) {
  635. qp->device = device;
  636. qp->real_qp = qp;
  637. qp->uobject = NULL;
  638. qp->qp_type = qp_init_attr->qp_type;
  639. atomic_set(&qp->usecnt, 0);
  640. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
  641. qp->event_handler = __ib_shared_qp_event_handler;
  642. qp->qp_context = qp;
  643. qp->pd = NULL;
  644. qp->send_cq = qp->recv_cq = NULL;
  645. qp->srq = NULL;
  646. qp->xrcd = qp_init_attr->xrcd;
  647. atomic_inc(&qp_init_attr->xrcd->usecnt);
  648. INIT_LIST_HEAD(&qp->open_list);
  649. real_qp = qp;
  650. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  651. qp_init_attr->qp_context);
  652. if (!IS_ERR(qp))
  653. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  654. else
  655. real_qp->device->destroy_qp(real_qp);
  656. } else {
  657. qp->event_handler = qp_init_attr->event_handler;
  658. qp->qp_context = qp_init_attr->qp_context;
  659. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  660. qp->recv_cq = NULL;
  661. qp->srq = NULL;
  662. } else {
  663. qp->recv_cq = qp_init_attr->recv_cq;
  664. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  665. qp->srq = qp_init_attr->srq;
  666. if (qp->srq)
  667. atomic_inc(&qp_init_attr->srq->usecnt);
  668. }
  669. qp->pd = pd;
  670. qp->send_cq = qp_init_attr->send_cq;
  671. qp->xrcd = NULL;
  672. atomic_inc(&pd->usecnt);
  673. atomic_inc(&qp_init_attr->send_cq->usecnt);
  674. }
  675. }
  676. return qp;
  677. }
  678. EXPORT_SYMBOL(ib_create_qp);
  679. static const struct {
  680. int valid;
  681. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  682. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  683. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  684. [IB_QPS_RESET] = {
  685. [IB_QPS_RESET] = { .valid = 1 },
  686. [IB_QPS_INIT] = {
  687. .valid = 1,
  688. .req_param = {
  689. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  690. IB_QP_PORT |
  691. IB_QP_QKEY),
  692. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  693. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  694. IB_QP_PORT |
  695. IB_QP_ACCESS_FLAGS),
  696. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  697. IB_QP_PORT |
  698. IB_QP_ACCESS_FLAGS),
  699. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  700. IB_QP_PORT |
  701. IB_QP_ACCESS_FLAGS),
  702. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  703. IB_QP_PORT |
  704. IB_QP_ACCESS_FLAGS),
  705. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  706. IB_QP_QKEY),
  707. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  708. IB_QP_QKEY),
  709. }
  710. },
  711. },
  712. [IB_QPS_INIT] = {
  713. [IB_QPS_RESET] = { .valid = 1 },
  714. [IB_QPS_ERR] = { .valid = 1 },
  715. [IB_QPS_INIT] = {
  716. .valid = 1,
  717. .opt_param = {
  718. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  719. IB_QP_PORT |
  720. IB_QP_QKEY),
  721. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  722. IB_QP_PORT |
  723. IB_QP_ACCESS_FLAGS),
  724. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  725. IB_QP_PORT |
  726. IB_QP_ACCESS_FLAGS),
  727. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  728. IB_QP_PORT |
  729. IB_QP_ACCESS_FLAGS),
  730. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  731. IB_QP_PORT |
  732. IB_QP_ACCESS_FLAGS),
  733. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  734. IB_QP_QKEY),
  735. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  736. IB_QP_QKEY),
  737. }
  738. },
  739. [IB_QPS_RTR] = {
  740. .valid = 1,
  741. .req_param = {
  742. [IB_QPT_UC] = (IB_QP_AV |
  743. IB_QP_PATH_MTU |
  744. IB_QP_DEST_QPN |
  745. IB_QP_RQ_PSN),
  746. [IB_QPT_RC] = (IB_QP_AV |
  747. IB_QP_PATH_MTU |
  748. IB_QP_DEST_QPN |
  749. IB_QP_RQ_PSN |
  750. IB_QP_MAX_DEST_RD_ATOMIC |
  751. IB_QP_MIN_RNR_TIMER),
  752. [IB_QPT_XRC_INI] = (IB_QP_AV |
  753. IB_QP_PATH_MTU |
  754. IB_QP_DEST_QPN |
  755. IB_QP_RQ_PSN),
  756. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  757. IB_QP_PATH_MTU |
  758. IB_QP_DEST_QPN |
  759. IB_QP_RQ_PSN |
  760. IB_QP_MAX_DEST_RD_ATOMIC |
  761. IB_QP_MIN_RNR_TIMER),
  762. },
  763. .opt_param = {
  764. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  765. IB_QP_QKEY),
  766. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  767. IB_QP_ACCESS_FLAGS |
  768. IB_QP_PKEY_INDEX),
  769. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  770. IB_QP_ACCESS_FLAGS |
  771. IB_QP_PKEY_INDEX),
  772. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  773. IB_QP_ACCESS_FLAGS |
  774. IB_QP_PKEY_INDEX),
  775. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  776. IB_QP_ACCESS_FLAGS |
  777. IB_QP_PKEY_INDEX),
  778. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  779. IB_QP_QKEY),
  780. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  781. IB_QP_QKEY),
  782. },
  783. },
  784. },
  785. [IB_QPS_RTR] = {
  786. [IB_QPS_RESET] = { .valid = 1 },
  787. [IB_QPS_ERR] = { .valid = 1 },
  788. [IB_QPS_RTS] = {
  789. .valid = 1,
  790. .req_param = {
  791. [IB_QPT_UD] = IB_QP_SQ_PSN,
  792. [IB_QPT_UC] = IB_QP_SQ_PSN,
  793. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  794. IB_QP_RETRY_CNT |
  795. IB_QP_RNR_RETRY |
  796. IB_QP_SQ_PSN |
  797. IB_QP_MAX_QP_RD_ATOMIC),
  798. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  799. IB_QP_RETRY_CNT |
  800. IB_QP_RNR_RETRY |
  801. IB_QP_SQ_PSN |
  802. IB_QP_MAX_QP_RD_ATOMIC),
  803. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  804. IB_QP_SQ_PSN),
  805. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  806. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  807. },
  808. .opt_param = {
  809. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  810. IB_QP_QKEY),
  811. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  812. IB_QP_ALT_PATH |
  813. IB_QP_ACCESS_FLAGS |
  814. IB_QP_PATH_MIG_STATE),
  815. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  816. IB_QP_ALT_PATH |
  817. IB_QP_ACCESS_FLAGS |
  818. IB_QP_MIN_RNR_TIMER |
  819. IB_QP_PATH_MIG_STATE),
  820. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  821. IB_QP_ALT_PATH |
  822. IB_QP_ACCESS_FLAGS |
  823. IB_QP_PATH_MIG_STATE),
  824. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  825. IB_QP_ALT_PATH |
  826. IB_QP_ACCESS_FLAGS |
  827. IB_QP_MIN_RNR_TIMER |
  828. IB_QP_PATH_MIG_STATE),
  829. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  830. IB_QP_QKEY),
  831. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  832. IB_QP_QKEY),
  833. }
  834. }
  835. },
  836. [IB_QPS_RTS] = {
  837. [IB_QPS_RESET] = { .valid = 1 },
  838. [IB_QPS_ERR] = { .valid = 1 },
  839. [IB_QPS_RTS] = {
  840. .valid = 1,
  841. .opt_param = {
  842. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  843. IB_QP_QKEY),
  844. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  845. IB_QP_ACCESS_FLAGS |
  846. IB_QP_ALT_PATH |
  847. IB_QP_PATH_MIG_STATE),
  848. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  849. IB_QP_ACCESS_FLAGS |
  850. IB_QP_ALT_PATH |
  851. IB_QP_PATH_MIG_STATE |
  852. IB_QP_MIN_RNR_TIMER),
  853. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  854. IB_QP_ACCESS_FLAGS |
  855. IB_QP_ALT_PATH |
  856. IB_QP_PATH_MIG_STATE),
  857. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  858. IB_QP_ACCESS_FLAGS |
  859. IB_QP_ALT_PATH |
  860. IB_QP_PATH_MIG_STATE |
  861. IB_QP_MIN_RNR_TIMER),
  862. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  863. IB_QP_QKEY),
  864. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  865. IB_QP_QKEY),
  866. }
  867. },
  868. [IB_QPS_SQD] = {
  869. .valid = 1,
  870. .opt_param = {
  871. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  872. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  873. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  874. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  875. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  876. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  877. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  878. }
  879. },
  880. },
  881. [IB_QPS_SQD] = {
  882. [IB_QPS_RESET] = { .valid = 1 },
  883. [IB_QPS_ERR] = { .valid = 1 },
  884. [IB_QPS_RTS] = {
  885. .valid = 1,
  886. .opt_param = {
  887. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  888. IB_QP_QKEY),
  889. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  890. IB_QP_ALT_PATH |
  891. IB_QP_ACCESS_FLAGS |
  892. IB_QP_PATH_MIG_STATE),
  893. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  894. IB_QP_ALT_PATH |
  895. IB_QP_ACCESS_FLAGS |
  896. IB_QP_MIN_RNR_TIMER |
  897. IB_QP_PATH_MIG_STATE),
  898. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  899. IB_QP_ALT_PATH |
  900. IB_QP_ACCESS_FLAGS |
  901. IB_QP_PATH_MIG_STATE),
  902. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  903. IB_QP_ALT_PATH |
  904. IB_QP_ACCESS_FLAGS |
  905. IB_QP_MIN_RNR_TIMER |
  906. IB_QP_PATH_MIG_STATE),
  907. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  908. IB_QP_QKEY),
  909. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  910. IB_QP_QKEY),
  911. }
  912. },
  913. [IB_QPS_SQD] = {
  914. .valid = 1,
  915. .opt_param = {
  916. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  917. IB_QP_QKEY),
  918. [IB_QPT_UC] = (IB_QP_AV |
  919. IB_QP_ALT_PATH |
  920. IB_QP_ACCESS_FLAGS |
  921. IB_QP_PKEY_INDEX |
  922. IB_QP_PATH_MIG_STATE),
  923. [IB_QPT_RC] = (IB_QP_PORT |
  924. IB_QP_AV |
  925. IB_QP_TIMEOUT |
  926. IB_QP_RETRY_CNT |
  927. IB_QP_RNR_RETRY |
  928. IB_QP_MAX_QP_RD_ATOMIC |
  929. IB_QP_MAX_DEST_RD_ATOMIC |
  930. IB_QP_ALT_PATH |
  931. IB_QP_ACCESS_FLAGS |
  932. IB_QP_PKEY_INDEX |
  933. IB_QP_MIN_RNR_TIMER |
  934. IB_QP_PATH_MIG_STATE),
  935. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  936. IB_QP_AV |
  937. IB_QP_TIMEOUT |
  938. IB_QP_RETRY_CNT |
  939. IB_QP_RNR_RETRY |
  940. IB_QP_MAX_QP_RD_ATOMIC |
  941. IB_QP_ALT_PATH |
  942. IB_QP_ACCESS_FLAGS |
  943. IB_QP_PKEY_INDEX |
  944. IB_QP_PATH_MIG_STATE),
  945. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  946. IB_QP_AV |
  947. IB_QP_TIMEOUT |
  948. IB_QP_MAX_DEST_RD_ATOMIC |
  949. IB_QP_ALT_PATH |
  950. IB_QP_ACCESS_FLAGS |
  951. IB_QP_PKEY_INDEX |
  952. IB_QP_MIN_RNR_TIMER |
  953. IB_QP_PATH_MIG_STATE),
  954. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  955. IB_QP_QKEY),
  956. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  957. IB_QP_QKEY),
  958. }
  959. }
  960. },
  961. [IB_QPS_SQE] = {
  962. [IB_QPS_RESET] = { .valid = 1 },
  963. [IB_QPS_ERR] = { .valid = 1 },
  964. [IB_QPS_RTS] = {
  965. .valid = 1,
  966. .opt_param = {
  967. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  968. IB_QP_QKEY),
  969. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  970. IB_QP_ACCESS_FLAGS),
  971. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  972. IB_QP_QKEY),
  973. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  974. IB_QP_QKEY),
  975. }
  976. }
  977. },
  978. [IB_QPS_ERR] = {
  979. [IB_QPS_RESET] = { .valid = 1 },
  980. [IB_QPS_ERR] = { .valid = 1 }
  981. }
  982. };
  983. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  984. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  985. enum rdma_link_layer ll)
  986. {
  987. enum ib_qp_attr_mask req_param, opt_param;
  988. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  989. next_state < 0 || next_state > IB_QPS_ERR)
  990. return 0;
  991. if (mask & IB_QP_CUR_STATE &&
  992. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  993. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  994. return 0;
  995. if (!qp_state_table[cur_state][next_state].valid)
  996. return 0;
  997. req_param = qp_state_table[cur_state][next_state].req_param[type];
  998. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  999. if ((mask & req_param) != req_param)
  1000. return 0;
  1001. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1002. return 0;
  1003. return 1;
  1004. }
  1005. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1006. int ib_resolve_eth_dmac(struct ib_qp *qp,
  1007. struct ib_qp_attr *qp_attr, int *qp_attr_mask)
  1008. {
  1009. int ret = 0;
  1010. if (*qp_attr_mask & IB_QP_AV) {
  1011. if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
  1012. qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
  1013. return -EINVAL;
  1014. if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
  1015. return 0;
  1016. if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
  1017. rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
  1018. qp_attr->ah_attr.dmac);
  1019. } else {
  1020. union ib_gid sgid;
  1021. struct ib_gid_attr sgid_attr;
  1022. int ifindex;
  1023. ret = ib_query_gid(qp->device,
  1024. qp_attr->ah_attr.port_num,
  1025. qp_attr->ah_attr.grh.sgid_index,
  1026. &sgid, &sgid_attr);
  1027. if (ret || !sgid_attr.ndev) {
  1028. if (!ret)
  1029. ret = -ENXIO;
  1030. goto out;
  1031. }
  1032. if (sgid_attr.gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
  1033. /* TODO: get the hoplimit from the inet/inet6
  1034. * device
  1035. */
  1036. qp_attr->ah_attr.grh.hop_limit =
  1037. IPV6_DEFAULT_HOPLIMIT;
  1038. ifindex = sgid_attr.ndev->ifindex;
  1039. ret = rdma_addr_find_dmac_by_grh(&sgid,
  1040. &qp_attr->ah_attr.grh.dgid,
  1041. qp_attr->ah_attr.dmac,
  1042. NULL, &ifindex);
  1043. dev_put(sgid_attr.ndev);
  1044. }
  1045. }
  1046. out:
  1047. return ret;
  1048. }
  1049. EXPORT_SYMBOL(ib_resolve_eth_dmac);
  1050. int ib_modify_qp(struct ib_qp *qp,
  1051. struct ib_qp_attr *qp_attr,
  1052. int qp_attr_mask)
  1053. {
  1054. int ret;
  1055. ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
  1056. if (ret)
  1057. return ret;
  1058. return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
  1059. }
  1060. EXPORT_SYMBOL(ib_modify_qp);
  1061. int ib_query_qp(struct ib_qp *qp,
  1062. struct ib_qp_attr *qp_attr,
  1063. int qp_attr_mask,
  1064. struct ib_qp_init_attr *qp_init_attr)
  1065. {
  1066. return qp->device->query_qp ?
  1067. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1068. -ENOSYS;
  1069. }
  1070. EXPORT_SYMBOL(ib_query_qp);
  1071. int ib_close_qp(struct ib_qp *qp)
  1072. {
  1073. struct ib_qp *real_qp;
  1074. unsigned long flags;
  1075. real_qp = qp->real_qp;
  1076. if (real_qp == qp)
  1077. return -EINVAL;
  1078. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1079. list_del(&qp->open_list);
  1080. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1081. atomic_dec(&real_qp->usecnt);
  1082. kfree(qp);
  1083. return 0;
  1084. }
  1085. EXPORT_SYMBOL(ib_close_qp);
  1086. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1087. {
  1088. struct ib_xrcd *xrcd;
  1089. struct ib_qp *real_qp;
  1090. int ret;
  1091. real_qp = qp->real_qp;
  1092. xrcd = real_qp->xrcd;
  1093. mutex_lock(&xrcd->tgt_qp_mutex);
  1094. ib_close_qp(qp);
  1095. if (atomic_read(&real_qp->usecnt) == 0)
  1096. list_del(&real_qp->xrcd_list);
  1097. else
  1098. real_qp = NULL;
  1099. mutex_unlock(&xrcd->tgt_qp_mutex);
  1100. if (real_qp) {
  1101. ret = ib_destroy_qp(real_qp);
  1102. if (!ret)
  1103. atomic_dec(&xrcd->usecnt);
  1104. else
  1105. __ib_insert_xrcd_qp(xrcd, real_qp);
  1106. }
  1107. return 0;
  1108. }
  1109. int ib_destroy_qp(struct ib_qp *qp)
  1110. {
  1111. struct ib_pd *pd;
  1112. struct ib_cq *scq, *rcq;
  1113. struct ib_srq *srq;
  1114. int ret;
  1115. if (atomic_read(&qp->usecnt))
  1116. return -EBUSY;
  1117. if (qp->real_qp != qp)
  1118. return __ib_destroy_shared_qp(qp);
  1119. pd = qp->pd;
  1120. scq = qp->send_cq;
  1121. rcq = qp->recv_cq;
  1122. srq = qp->srq;
  1123. ret = qp->device->destroy_qp(qp);
  1124. if (!ret) {
  1125. if (pd)
  1126. atomic_dec(&pd->usecnt);
  1127. if (scq)
  1128. atomic_dec(&scq->usecnt);
  1129. if (rcq)
  1130. atomic_dec(&rcq->usecnt);
  1131. if (srq)
  1132. atomic_dec(&srq->usecnt);
  1133. }
  1134. return ret;
  1135. }
  1136. EXPORT_SYMBOL(ib_destroy_qp);
  1137. /* Completion queues */
  1138. struct ib_cq *ib_create_cq(struct ib_device *device,
  1139. ib_comp_handler comp_handler,
  1140. void (*event_handler)(struct ib_event *, void *),
  1141. void *cq_context,
  1142. const struct ib_cq_init_attr *cq_attr)
  1143. {
  1144. struct ib_cq *cq;
  1145. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1146. if (!IS_ERR(cq)) {
  1147. cq->device = device;
  1148. cq->uobject = NULL;
  1149. cq->comp_handler = comp_handler;
  1150. cq->event_handler = event_handler;
  1151. cq->cq_context = cq_context;
  1152. atomic_set(&cq->usecnt, 0);
  1153. }
  1154. return cq;
  1155. }
  1156. EXPORT_SYMBOL(ib_create_cq);
  1157. int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1158. {
  1159. return cq->device->modify_cq ?
  1160. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1161. }
  1162. EXPORT_SYMBOL(ib_modify_cq);
  1163. int ib_destroy_cq(struct ib_cq *cq)
  1164. {
  1165. if (atomic_read(&cq->usecnt))
  1166. return -EBUSY;
  1167. return cq->device->destroy_cq(cq);
  1168. }
  1169. EXPORT_SYMBOL(ib_destroy_cq);
  1170. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1171. {
  1172. return cq->device->resize_cq ?
  1173. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1174. }
  1175. EXPORT_SYMBOL(ib_resize_cq);
  1176. /* Memory regions */
  1177. struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
  1178. {
  1179. struct ib_mr *mr;
  1180. int err;
  1181. err = ib_check_mr_access(mr_access_flags);
  1182. if (err)
  1183. return ERR_PTR(err);
  1184. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  1185. if (!IS_ERR(mr)) {
  1186. mr->device = pd->device;
  1187. mr->pd = pd;
  1188. mr->uobject = NULL;
  1189. atomic_inc(&pd->usecnt);
  1190. }
  1191. return mr;
  1192. }
  1193. EXPORT_SYMBOL(ib_get_dma_mr);
  1194. int ib_dereg_mr(struct ib_mr *mr)
  1195. {
  1196. struct ib_pd *pd = mr->pd;
  1197. int ret;
  1198. ret = mr->device->dereg_mr(mr);
  1199. if (!ret)
  1200. atomic_dec(&pd->usecnt);
  1201. return ret;
  1202. }
  1203. EXPORT_SYMBOL(ib_dereg_mr);
  1204. /**
  1205. * ib_alloc_mr() - Allocates a memory region
  1206. * @pd: protection domain associated with the region
  1207. * @mr_type: memory region type
  1208. * @max_num_sg: maximum sg entries available for registration.
  1209. *
  1210. * Notes:
  1211. * Memory registeration page/sg lists must not exceed max_num_sg.
  1212. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1213. * max_num_sg * used_page_size.
  1214. *
  1215. */
  1216. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1217. enum ib_mr_type mr_type,
  1218. u32 max_num_sg)
  1219. {
  1220. struct ib_mr *mr;
  1221. if (!pd->device->alloc_mr)
  1222. return ERR_PTR(-ENOSYS);
  1223. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1224. if (!IS_ERR(mr)) {
  1225. mr->device = pd->device;
  1226. mr->pd = pd;
  1227. mr->uobject = NULL;
  1228. atomic_inc(&pd->usecnt);
  1229. }
  1230. return mr;
  1231. }
  1232. EXPORT_SYMBOL(ib_alloc_mr);
  1233. /* "Fast" memory regions */
  1234. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1235. int mr_access_flags,
  1236. struct ib_fmr_attr *fmr_attr)
  1237. {
  1238. struct ib_fmr *fmr;
  1239. if (!pd->device->alloc_fmr)
  1240. return ERR_PTR(-ENOSYS);
  1241. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1242. if (!IS_ERR(fmr)) {
  1243. fmr->device = pd->device;
  1244. fmr->pd = pd;
  1245. atomic_inc(&pd->usecnt);
  1246. }
  1247. return fmr;
  1248. }
  1249. EXPORT_SYMBOL(ib_alloc_fmr);
  1250. int ib_unmap_fmr(struct list_head *fmr_list)
  1251. {
  1252. struct ib_fmr *fmr;
  1253. if (list_empty(fmr_list))
  1254. return 0;
  1255. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1256. return fmr->device->unmap_fmr(fmr_list);
  1257. }
  1258. EXPORT_SYMBOL(ib_unmap_fmr);
  1259. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1260. {
  1261. struct ib_pd *pd;
  1262. int ret;
  1263. pd = fmr->pd;
  1264. ret = fmr->device->dealloc_fmr(fmr);
  1265. if (!ret)
  1266. atomic_dec(&pd->usecnt);
  1267. return ret;
  1268. }
  1269. EXPORT_SYMBOL(ib_dealloc_fmr);
  1270. /* Multicast groups */
  1271. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1272. {
  1273. int ret;
  1274. if (!qp->device->attach_mcast)
  1275. return -ENOSYS;
  1276. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
  1277. return -EINVAL;
  1278. ret = qp->device->attach_mcast(qp, gid, lid);
  1279. if (!ret)
  1280. atomic_inc(&qp->usecnt);
  1281. return ret;
  1282. }
  1283. EXPORT_SYMBOL(ib_attach_mcast);
  1284. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1285. {
  1286. int ret;
  1287. if (!qp->device->detach_mcast)
  1288. return -ENOSYS;
  1289. if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
  1290. return -EINVAL;
  1291. ret = qp->device->detach_mcast(qp, gid, lid);
  1292. if (!ret)
  1293. atomic_dec(&qp->usecnt);
  1294. return ret;
  1295. }
  1296. EXPORT_SYMBOL(ib_detach_mcast);
  1297. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1298. {
  1299. struct ib_xrcd *xrcd;
  1300. if (!device->alloc_xrcd)
  1301. return ERR_PTR(-ENOSYS);
  1302. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1303. if (!IS_ERR(xrcd)) {
  1304. xrcd->device = device;
  1305. xrcd->inode = NULL;
  1306. atomic_set(&xrcd->usecnt, 0);
  1307. mutex_init(&xrcd->tgt_qp_mutex);
  1308. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1309. }
  1310. return xrcd;
  1311. }
  1312. EXPORT_SYMBOL(ib_alloc_xrcd);
  1313. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1314. {
  1315. struct ib_qp *qp;
  1316. int ret;
  1317. if (atomic_read(&xrcd->usecnt))
  1318. return -EBUSY;
  1319. while (!list_empty(&xrcd->tgt_qp_list)) {
  1320. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1321. ret = ib_destroy_qp(qp);
  1322. if (ret)
  1323. return ret;
  1324. }
  1325. return xrcd->device->dealloc_xrcd(xrcd);
  1326. }
  1327. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1328. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1329. struct ib_flow_attr *flow_attr,
  1330. int domain)
  1331. {
  1332. struct ib_flow *flow_id;
  1333. if (!qp->device->create_flow)
  1334. return ERR_PTR(-ENOSYS);
  1335. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1336. if (!IS_ERR(flow_id))
  1337. atomic_inc(&qp->usecnt);
  1338. return flow_id;
  1339. }
  1340. EXPORT_SYMBOL(ib_create_flow);
  1341. int ib_destroy_flow(struct ib_flow *flow_id)
  1342. {
  1343. int err;
  1344. struct ib_qp *qp = flow_id->qp;
  1345. err = qp->device->destroy_flow(flow_id);
  1346. if (!err)
  1347. atomic_dec(&qp->usecnt);
  1348. return err;
  1349. }
  1350. EXPORT_SYMBOL(ib_destroy_flow);
  1351. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1352. struct ib_mr_status *mr_status)
  1353. {
  1354. return mr->device->check_mr_status ?
  1355. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1356. }
  1357. EXPORT_SYMBOL(ib_check_mr_status);
  1358. /**
  1359. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1360. * and set it the memory region.
  1361. * @mr: memory region
  1362. * @sg: dma mapped scatterlist
  1363. * @sg_nents: number of entries in sg
  1364. * @page_size: page vector desired page size
  1365. *
  1366. * Constraints:
  1367. * - The first sg element is allowed to have an offset.
  1368. * - Each sg element must be aligned to page_size (or physically
  1369. * contiguous to the previous element). In case an sg element has a
  1370. * non contiguous offset, the mapping prefix will not include it.
  1371. * - The last sg element is allowed to have length less than page_size.
  1372. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1373. * then only max_num_sg entries will be mapped.
  1374. *
  1375. * Returns the number of sg elements that were mapped to the memory region.
  1376. *
  1377. * After this completes successfully, the memory region
  1378. * is ready for registration.
  1379. */
  1380. int ib_map_mr_sg(struct ib_mr *mr,
  1381. struct scatterlist *sg,
  1382. int sg_nents,
  1383. unsigned int page_size)
  1384. {
  1385. if (unlikely(!mr->device->map_mr_sg))
  1386. return -ENOSYS;
  1387. mr->page_size = page_size;
  1388. return mr->device->map_mr_sg(mr, sg, sg_nents);
  1389. }
  1390. EXPORT_SYMBOL(ib_map_mr_sg);
  1391. /**
  1392. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1393. * to a page vector
  1394. * @mr: memory region
  1395. * @sgl: dma mapped scatterlist
  1396. * @sg_nents: number of entries in sg
  1397. * @set_page: driver page assignment function pointer
  1398. *
  1399. * Core service helper for drivers to convert the largest
  1400. * prefix of given sg list to a page vector. The sg list
  1401. * prefix converted is the prefix that meet the requirements
  1402. * of ib_map_mr_sg.
  1403. *
  1404. * Returns the number of sg elements that were assigned to
  1405. * a page vector.
  1406. */
  1407. int ib_sg_to_pages(struct ib_mr *mr,
  1408. struct scatterlist *sgl,
  1409. int sg_nents,
  1410. int (*set_page)(struct ib_mr *, u64))
  1411. {
  1412. struct scatterlist *sg;
  1413. u64 last_end_dma_addr = 0, last_page_addr = 0;
  1414. unsigned int last_page_off = 0;
  1415. u64 page_mask = ~((u64)mr->page_size - 1);
  1416. int i, ret;
  1417. mr->iova = sg_dma_address(&sgl[0]);
  1418. mr->length = 0;
  1419. for_each_sg(sgl, sg, sg_nents, i) {
  1420. u64 dma_addr = sg_dma_address(sg);
  1421. unsigned int dma_len = sg_dma_len(sg);
  1422. u64 end_dma_addr = dma_addr + dma_len;
  1423. u64 page_addr = dma_addr & page_mask;
  1424. /*
  1425. * For the second and later elements, check whether either the
  1426. * end of element i-1 or the start of element i is not aligned
  1427. * on a page boundary.
  1428. */
  1429. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1430. /* Stop mapping if there is a gap. */
  1431. if (last_end_dma_addr != dma_addr)
  1432. break;
  1433. /*
  1434. * Coalesce this element with the last. If it is small
  1435. * enough just update mr->length. Otherwise start
  1436. * mapping from the next page.
  1437. */
  1438. goto next_page;
  1439. }
  1440. do {
  1441. ret = set_page(mr, page_addr);
  1442. if (unlikely(ret < 0))
  1443. return i ? : ret;
  1444. next_page:
  1445. page_addr += mr->page_size;
  1446. } while (page_addr < end_dma_addr);
  1447. mr->length += dma_len;
  1448. last_end_dma_addr = end_dma_addr;
  1449. last_page_addr = end_dma_addr & page_mask;
  1450. last_page_off = end_dma_addr & ~page_mask;
  1451. }
  1452. return i;
  1453. }
  1454. EXPORT_SYMBOL(ib_sg_to_pages);