i40e_txrx.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2016 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. dev_kfree_skb_any(tx_buffer->skb);
  50. if (dma_unmap_len(tx_buffer, len))
  51. dma_unmap_single(ring->dev,
  52. dma_unmap_addr(tx_buffer, dma),
  53. dma_unmap_len(tx_buffer, len),
  54. DMA_TO_DEVICE);
  55. } else if (dma_unmap_len(tx_buffer, len)) {
  56. dma_unmap_page(ring->dev,
  57. dma_unmap_addr(tx_buffer, dma),
  58. dma_unmap_len(tx_buffer, len),
  59. DMA_TO_DEVICE);
  60. }
  61. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  62. kfree(tx_buffer->raw_buf);
  63. tx_buffer->next_to_watch = NULL;
  64. tx_buffer->skb = NULL;
  65. dma_unmap_len_set(tx_buffer, len, 0);
  66. /* tx_buffer must be completely set up in the transmit path */
  67. }
  68. /**
  69. * i40evf_clean_tx_ring - Free any empty Tx buffers
  70. * @tx_ring: ring to be cleaned
  71. **/
  72. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  73. {
  74. unsigned long bi_size;
  75. u16 i;
  76. /* ring already cleared, nothing to do */
  77. if (!tx_ring->tx_bi)
  78. return;
  79. /* Free all the Tx ring sk_buffs */
  80. for (i = 0; i < tx_ring->count; i++)
  81. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  82. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  83. memset(tx_ring->tx_bi, 0, bi_size);
  84. /* Zero out the descriptor ring */
  85. memset(tx_ring->desc, 0, tx_ring->size);
  86. tx_ring->next_to_use = 0;
  87. tx_ring->next_to_clean = 0;
  88. if (!tx_ring->netdev)
  89. return;
  90. /* cleanup Tx queue statistics */
  91. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  92. tx_ring->queue_index));
  93. }
  94. /**
  95. * i40evf_free_tx_resources - Free Tx resources per queue
  96. * @tx_ring: Tx descriptor ring for a specific queue
  97. *
  98. * Free all transmit software resources
  99. **/
  100. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  101. {
  102. i40evf_clean_tx_ring(tx_ring);
  103. kfree(tx_ring->tx_bi);
  104. tx_ring->tx_bi = NULL;
  105. if (tx_ring->desc) {
  106. dma_free_coherent(tx_ring->dev, tx_ring->size,
  107. tx_ring->desc, tx_ring->dma);
  108. tx_ring->desc = NULL;
  109. }
  110. }
  111. /**
  112. * i40evf_get_tx_pending - how many Tx descriptors not processed
  113. * @tx_ring: the ring of descriptors
  114. * @in_sw: is tx_pending being checked in SW or HW
  115. *
  116. * Since there is no access to the ring head register
  117. * in XL710, we need to use our local copies
  118. **/
  119. u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
  120. {
  121. u32 head, tail;
  122. if (!in_sw)
  123. head = i40e_get_head(ring);
  124. else
  125. head = ring->next_to_clean;
  126. tail = readl(ring->tail);
  127. if (head != tail)
  128. return (head < tail) ?
  129. tail - head : (tail + ring->count - head);
  130. return 0;
  131. }
  132. #define WB_STRIDE 0x3
  133. /**
  134. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  135. * @vsi: the VSI we care about
  136. * @tx_ring: Tx ring to clean
  137. * @napi_budget: Used to determine if we are in netpoll
  138. *
  139. * Returns true if there's any budget left (e.g. the clean is finished)
  140. **/
  141. static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
  142. struct i40e_ring *tx_ring, int napi_budget)
  143. {
  144. u16 i = tx_ring->next_to_clean;
  145. struct i40e_tx_buffer *tx_buf;
  146. struct i40e_tx_desc *tx_head;
  147. struct i40e_tx_desc *tx_desc;
  148. unsigned int total_bytes = 0, total_packets = 0;
  149. unsigned int budget = vsi->work_limit;
  150. tx_buf = &tx_ring->tx_bi[i];
  151. tx_desc = I40E_TX_DESC(tx_ring, i);
  152. i -= tx_ring->count;
  153. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  154. do {
  155. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  156. /* if next_to_watch is not set then there is no work pending */
  157. if (!eop_desc)
  158. break;
  159. /* prevent any other reads prior to eop_desc */
  160. read_barrier_depends();
  161. /* we have caught up to head, no work left to do */
  162. if (tx_head == tx_desc)
  163. break;
  164. /* clear next_to_watch to prevent false hangs */
  165. tx_buf->next_to_watch = NULL;
  166. /* update the statistics for this packet */
  167. total_bytes += tx_buf->bytecount;
  168. total_packets += tx_buf->gso_segs;
  169. /* free the skb */
  170. napi_consume_skb(tx_buf->skb, napi_budget);
  171. /* unmap skb header data */
  172. dma_unmap_single(tx_ring->dev,
  173. dma_unmap_addr(tx_buf, dma),
  174. dma_unmap_len(tx_buf, len),
  175. DMA_TO_DEVICE);
  176. /* clear tx_buffer data */
  177. tx_buf->skb = NULL;
  178. dma_unmap_len_set(tx_buf, len, 0);
  179. /* unmap remaining buffers */
  180. while (tx_desc != eop_desc) {
  181. tx_buf++;
  182. tx_desc++;
  183. i++;
  184. if (unlikely(!i)) {
  185. i -= tx_ring->count;
  186. tx_buf = tx_ring->tx_bi;
  187. tx_desc = I40E_TX_DESC(tx_ring, 0);
  188. }
  189. /* unmap any remaining paged data */
  190. if (dma_unmap_len(tx_buf, len)) {
  191. dma_unmap_page(tx_ring->dev,
  192. dma_unmap_addr(tx_buf, dma),
  193. dma_unmap_len(tx_buf, len),
  194. DMA_TO_DEVICE);
  195. dma_unmap_len_set(tx_buf, len, 0);
  196. }
  197. }
  198. /* move us one more past the eop_desc for start of next pkt */
  199. tx_buf++;
  200. tx_desc++;
  201. i++;
  202. if (unlikely(!i)) {
  203. i -= tx_ring->count;
  204. tx_buf = tx_ring->tx_bi;
  205. tx_desc = I40E_TX_DESC(tx_ring, 0);
  206. }
  207. prefetch(tx_desc);
  208. /* update budget accounting */
  209. budget--;
  210. } while (likely(budget));
  211. i += tx_ring->count;
  212. tx_ring->next_to_clean = i;
  213. u64_stats_update_begin(&tx_ring->syncp);
  214. tx_ring->stats.bytes += total_bytes;
  215. tx_ring->stats.packets += total_packets;
  216. u64_stats_update_end(&tx_ring->syncp);
  217. tx_ring->q_vector->tx.total_bytes += total_bytes;
  218. tx_ring->q_vector->tx.total_packets += total_packets;
  219. if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  220. unsigned int j = 0;
  221. /* check to see if there are < 4 descriptors
  222. * waiting to be written back, then kick the hardware to force
  223. * them to be written back in case we stay in NAPI.
  224. * In this mode on X722 we do not enable Interrupt.
  225. */
  226. j = i40evf_get_tx_pending(tx_ring, false);
  227. if (budget &&
  228. ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
  229. !test_bit(__I40E_DOWN, &vsi->state) &&
  230. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  231. tx_ring->arm_wb = true;
  232. }
  233. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  234. tx_ring->queue_index),
  235. total_packets, total_bytes);
  236. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  237. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  238. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  239. /* Make sure that anybody stopping the queue after this
  240. * sees the new next_to_clean.
  241. */
  242. smp_mb();
  243. if (__netif_subqueue_stopped(tx_ring->netdev,
  244. tx_ring->queue_index) &&
  245. !test_bit(__I40E_DOWN, &vsi->state)) {
  246. netif_wake_subqueue(tx_ring->netdev,
  247. tx_ring->queue_index);
  248. ++tx_ring->tx_stats.restart_queue;
  249. }
  250. }
  251. return !!budget;
  252. }
  253. /**
  254. * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
  255. * @vsi: the VSI we care about
  256. * @q_vector: the vector on which to enable writeback
  257. *
  258. **/
  259. static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
  260. struct i40e_q_vector *q_vector)
  261. {
  262. u16 flags = q_vector->tx.ring[0].flags;
  263. u32 val;
  264. if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
  265. return;
  266. if (q_vector->arm_wb_state)
  267. return;
  268. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
  269. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
  270. wr32(&vsi->back->hw,
  271. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  272. vsi->base_vector - 1), val);
  273. q_vector->arm_wb_state = true;
  274. }
  275. /**
  276. * i40evf_force_wb - Issue SW Interrupt so HW does a wb
  277. * @vsi: the VSI we care about
  278. * @q_vector: the vector on which to force writeback
  279. *
  280. **/
  281. void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  282. {
  283. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  284. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  285. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  286. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
  287. /* allow 00 to be written to the index */;
  288. wr32(&vsi->back->hw,
  289. I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
  290. val);
  291. }
  292. /**
  293. * i40e_set_new_dynamic_itr - Find new ITR level
  294. * @rc: structure containing ring performance data
  295. *
  296. * Returns true if ITR changed, false if not
  297. *
  298. * Stores a new ITR value based on packets and byte counts during
  299. * the last interrupt. The advantage of per interrupt computation
  300. * is faster updates and more accurate ITR for the current traffic
  301. * pattern. Constants in this function were computed based on
  302. * theoretical maximum wire speed and thresholds were set based on
  303. * testing data as well as attempting to minimize response time
  304. * while increasing bulk throughput.
  305. **/
  306. static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  307. {
  308. enum i40e_latency_range new_latency_range = rc->latency_range;
  309. struct i40e_q_vector *qv = rc->ring->q_vector;
  310. u32 new_itr = rc->itr;
  311. int bytes_per_int;
  312. int usecs;
  313. if (rc->total_packets == 0 || !rc->itr)
  314. return false;
  315. /* simple throttlerate management
  316. * 0-10MB/s lowest (50000 ints/s)
  317. * 10-20MB/s low (20000 ints/s)
  318. * 20-1249MB/s bulk (18000 ints/s)
  319. * > 40000 Rx packets per second (8000 ints/s)
  320. *
  321. * The math works out because the divisor is in 10^(-6) which
  322. * turns the bytes/us input value into MB/s values, but
  323. * make sure to use usecs, as the register values written
  324. * are in 2 usec increments in the ITR registers, and make sure
  325. * to use the smoothed values that the countdown timer gives us.
  326. */
  327. usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
  328. bytes_per_int = rc->total_bytes / usecs;
  329. switch (new_latency_range) {
  330. case I40E_LOWEST_LATENCY:
  331. if (bytes_per_int > 10)
  332. new_latency_range = I40E_LOW_LATENCY;
  333. break;
  334. case I40E_LOW_LATENCY:
  335. if (bytes_per_int > 20)
  336. new_latency_range = I40E_BULK_LATENCY;
  337. else if (bytes_per_int <= 10)
  338. new_latency_range = I40E_LOWEST_LATENCY;
  339. break;
  340. case I40E_BULK_LATENCY:
  341. case I40E_ULTRA_LATENCY:
  342. default:
  343. if (bytes_per_int <= 20)
  344. new_latency_range = I40E_LOW_LATENCY;
  345. break;
  346. }
  347. /* this is to adjust RX more aggressively when streaming small
  348. * packets. The value of 40000 was picked as it is just beyond
  349. * what the hardware can receive per second if in low latency
  350. * mode.
  351. */
  352. #define RX_ULTRA_PACKET_RATE 40000
  353. if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
  354. (&qv->rx == rc))
  355. new_latency_range = I40E_ULTRA_LATENCY;
  356. rc->latency_range = new_latency_range;
  357. switch (new_latency_range) {
  358. case I40E_LOWEST_LATENCY:
  359. new_itr = I40E_ITR_50K;
  360. break;
  361. case I40E_LOW_LATENCY:
  362. new_itr = I40E_ITR_20K;
  363. break;
  364. case I40E_BULK_LATENCY:
  365. new_itr = I40E_ITR_18K;
  366. break;
  367. case I40E_ULTRA_LATENCY:
  368. new_itr = I40E_ITR_8K;
  369. break;
  370. default:
  371. break;
  372. }
  373. rc->total_bytes = 0;
  374. rc->total_packets = 0;
  375. if (new_itr != rc->itr) {
  376. rc->itr = new_itr;
  377. return true;
  378. }
  379. return false;
  380. }
  381. /**
  382. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  383. * @tx_ring: the tx ring to set up
  384. *
  385. * Return 0 on success, negative on error
  386. **/
  387. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  388. {
  389. struct device *dev = tx_ring->dev;
  390. int bi_size;
  391. if (!dev)
  392. return -ENOMEM;
  393. /* warn if we are about to overwrite the pointer */
  394. WARN_ON(tx_ring->tx_bi);
  395. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  396. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  397. if (!tx_ring->tx_bi)
  398. goto err;
  399. /* round up to nearest 4K */
  400. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  401. /* add u32 for head writeback, align after this takes care of
  402. * guaranteeing this is at least one cache line in size
  403. */
  404. tx_ring->size += sizeof(u32);
  405. tx_ring->size = ALIGN(tx_ring->size, 4096);
  406. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  407. &tx_ring->dma, GFP_KERNEL);
  408. if (!tx_ring->desc) {
  409. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  410. tx_ring->size);
  411. goto err;
  412. }
  413. tx_ring->next_to_use = 0;
  414. tx_ring->next_to_clean = 0;
  415. return 0;
  416. err:
  417. kfree(tx_ring->tx_bi);
  418. tx_ring->tx_bi = NULL;
  419. return -ENOMEM;
  420. }
  421. /**
  422. * i40evf_clean_rx_ring - Free Rx buffers
  423. * @rx_ring: ring to be cleaned
  424. **/
  425. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  426. {
  427. struct device *dev = rx_ring->dev;
  428. struct i40e_rx_buffer *rx_bi;
  429. unsigned long bi_size;
  430. u16 i;
  431. /* ring already cleared, nothing to do */
  432. if (!rx_ring->rx_bi)
  433. return;
  434. if (ring_is_ps_enabled(rx_ring)) {
  435. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  436. rx_bi = &rx_ring->rx_bi[0];
  437. if (rx_bi->hdr_buf) {
  438. dma_free_coherent(dev,
  439. bufsz,
  440. rx_bi->hdr_buf,
  441. rx_bi->dma);
  442. for (i = 0; i < rx_ring->count; i++) {
  443. rx_bi = &rx_ring->rx_bi[i];
  444. rx_bi->dma = 0;
  445. rx_bi->hdr_buf = NULL;
  446. }
  447. }
  448. }
  449. /* Free all the Rx ring sk_buffs */
  450. for (i = 0; i < rx_ring->count; i++) {
  451. rx_bi = &rx_ring->rx_bi[i];
  452. if (rx_bi->dma) {
  453. dma_unmap_single(dev,
  454. rx_bi->dma,
  455. rx_ring->rx_buf_len,
  456. DMA_FROM_DEVICE);
  457. rx_bi->dma = 0;
  458. }
  459. if (rx_bi->skb) {
  460. dev_kfree_skb(rx_bi->skb);
  461. rx_bi->skb = NULL;
  462. }
  463. if (rx_bi->page) {
  464. if (rx_bi->page_dma) {
  465. dma_unmap_page(dev,
  466. rx_bi->page_dma,
  467. PAGE_SIZE,
  468. DMA_FROM_DEVICE);
  469. rx_bi->page_dma = 0;
  470. }
  471. __free_page(rx_bi->page);
  472. rx_bi->page = NULL;
  473. rx_bi->page_offset = 0;
  474. }
  475. }
  476. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  477. memset(rx_ring->rx_bi, 0, bi_size);
  478. /* Zero out the descriptor ring */
  479. memset(rx_ring->desc, 0, rx_ring->size);
  480. rx_ring->next_to_clean = 0;
  481. rx_ring->next_to_use = 0;
  482. }
  483. /**
  484. * i40evf_free_rx_resources - Free Rx resources
  485. * @rx_ring: ring to clean the resources from
  486. *
  487. * Free all receive software resources
  488. **/
  489. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  490. {
  491. i40evf_clean_rx_ring(rx_ring);
  492. kfree(rx_ring->rx_bi);
  493. rx_ring->rx_bi = NULL;
  494. if (rx_ring->desc) {
  495. dma_free_coherent(rx_ring->dev, rx_ring->size,
  496. rx_ring->desc, rx_ring->dma);
  497. rx_ring->desc = NULL;
  498. }
  499. }
  500. /**
  501. * i40evf_alloc_rx_headers - allocate rx header buffers
  502. * @rx_ring: ring to alloc buffers
  503. *
  504. * Allocate rx header buffers for the entire ring. As these are static,
  505. * this is only called when setting up a new ring.
  506. **/
  507. void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
  508. {
  509. struct device *dev = rx_ring->dev;
  510. struct i40e_rx_buffer *rx_bi;
  511. dma_addr_t dma;
  512. void *buffer;
  513. int buf_size;
  514. int i;
  515. if (rx_ring->rx_bi[0].hdr_buf)
  516. return;
  517. /* Make sure the buffers don't cross cache line boundaries. */
  518. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  519. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  520. &dma, GFP_KERNEL);
  521. if (!buffer)
  522. return;
  523. for (i = 0; i < rx_ring->count; i++) {
  524. rx_bi = &rx_ring->rx_bi[i];
  525. rx_bi->dma = dma + (i * buf_size);
  526. rx_bi->hdr_buf = buffer + (i * buf_size);
  527. }
  528. }
  529. /**
  530. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  531. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  532. *
  533. * Returns 0 on success, negative on failure
  534. **/
  535. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  536. {
  537. struct device *dev = rx_ring->dev;
  538. int bi_size;
  539. /* warn if we are about to overwrite the pointer */
  540. WARN_ON(rx_ring->rx_bi);
  541. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  542. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  543. if (!rx_ring->rx_bi)
  544. goto err;
  545. u64_stats_init(&rx_ring->syncp);
  546. /* Round up to nearest 4K */
  547. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  548. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  549. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  550. rx_ring->size = ALIGN(rx_ring->size, 4096);
  551. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  552. &rx_ring->dma, GFP_KERNEL);
  553. if (!rx_ring->desc) {
  554. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  555. rx_ring->size);
  556. goto err;
  557. }
  558. rx_ring->next_to_clean = 0;
  559. rx_ring->next_to_use = 0;
  560. return 0;
  561. err:
  562. kfree(rx_ring->rx_bi);
  563. rx_ring->rx_bi = NULL;
  564. return -ENOMEM;
  565. }
  566. /**
  567. * i40e_release_rx_desc - Store the new tail and head values
  568. * @rx_ring: ring to bump
  569. * @val: new head index
  570. **/
  571. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  572. {
  573. rx_ring->next_to_use = val;
  574. /* Force memory writes to complete before letting h/w
  575. * know there are new descriptors to fetch. (Only
  576. * applicable for weak-ordered memory model archs,
  577. * such as IA-64).
  578. */
  579. wmb();
  580. writel(val, rx_ring->tail);
  581. }
  582. /**
  583. * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  584. * @rx_ring: ring to place buffers on
  585. * @cleaned_count: number of buffers to replace
  586. *
  587. * Returns true if any errors on allocation
  588. **/
  589. bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  590. {
  591. u16 i = rx_ring->next_to_use;
  592. union i40e_rx_desc *rx_desc;
  593. struct i40e_rx_buffer *bi;
  594. const int current_node = numa_node_id();
  595. /* do nothing if no valid netdev defined */
  596. if (!rx_ring->netdev || !cleaned_count)
  597. return false;
  598. while (cleaned_count--) {
  599. rx_desc = I40E_RX_DESC(rx_ring, i);
  600. bi = &rx_ring->rx_bi[i];
  601. if (bi->skb) /* desc is in use */
  602. goto no_buffers;
  603. /* If we've been moved to a different NUMA node, release the
  604. * page so we can get a new one on the current node.
  605. */
  606. if (bi->page && page_to_nid(bi->page) != current_node) {
  607. dma_unmap_page(rx_ring->dev,
  608. bi->page_dma,
  609. PAGE_SIZE,
  610. DMA_FROM_DEVICE);
  611. __free_page(bi->page);
  612. bi->page = NULL;
  613. bi->page_dma = 0;
  614. rx_ring->rx_stats.realloc_count++;
  615. } else if (bi->page) {
  616. rx_ring->rx_stats.page_reuse_count++;
  617. }
  618. if (!bi->page) {
  619. bi->page = alloc_page(GFP_ATOMIC);
  620. if (!bi->page) {
  621. rx_ring->rx_stats.alloc_page_failed++;
  622. goto no_buffers;
  623. }
  624. bi->page_dma = dma_map_page(rx_ring->dev,
  625. bi->page,
  626. 0,
  627. PAGE_SIZE,
  628. DMA_FROM_DEVICE);
  629. if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
  630. rx_ring->rx_stats.alloc_page_failed++;
  631. __free_page(bi->page);
  632. bi->page = NULL;
  633. bi->page_dma = 0;
  634. bi->page_offset = 0;
  635. goto no_buffers;
  636. }
  637. bi->page_offset = 0;
  638. }
  639. /* Refresh the desc even if buffer_addrs didn't change
  640. * because each write-back erases this info.
  641. */
  642. rx_desc->read.pkt_addr =
  643. cpu_to_le64(bi->page_dma + bi->page_offset);
  644. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  645. i++;
  646. if (i == rx_ring->count)
  647. i = 0;
  648. }
  649. if (rx_ring->next_to_use != i)
  650. i40e_release_rx_desc(rx_ring, i);
  651. return false;
  652. no_buffers:
  653. if (rx_ring->next_to_use != i)
  654. i40e_release_rx_desc(rx_ring, i);
  655. /* make sure to come back via polling to try again after
  656. * allocation failure
  657. */
  658. return true;
  659. }
  660. /**
  661. * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  662. * @rx_ring: ring to place buffers on
  663. * @cleaned_count: number of buffers to replace
  664. *
  665. * Returns true if any errors on allocation
  666. **/
  667. bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  668. {
  669. u16 i = rx_ring->next_to_use;
  670. union i40e_rx_desc *rx_desc;
  671. struct i40e_rx_buffer *bi;
  672. struct sk_buff *skb;
  673. /* do nothing if no valid netdev defined */
  674. if (!rx_ring->netdev || !cleaned_count)
  675. return false;
  676. while (cleaned_count--) {
  677. rx_desc = I40E_RX_DESC(rx_ring, i);
  678. bi = &rx_ring->rx_bi[i];
  679. skb = bi->skb;
  680. if (!skb) {
  681. skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
  682. rx_ring->rx_buf_len,
  683. GFP_ATOMIC |
  684. __GFP_NOWARN);
  685. if (!skb) {
  686. rx_ring->rx_stats.alloc_buff_failed++;
  687. goto no_buffers;
  688. }
  689. /* initialize queue mapping */
  690. skb_record_rx_queue(skb, rx_ring->queue_index);
  691. bi->skb = skb;
  692. }
  693. if (!bi->dma) {
  694. bi->dma = dma_map_single(rx_ring->dev,
  695. skb->data,
  696. rx_ring->rx_buf_len,
  697. DMA_FROM_DEVICE);
  698. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  699. rx_ring->rx_stats.alloc_buff_failed++;
  700. bi->dma = 0;
  701. dev_kfree_skb(bi->skb);
  702. bi->skb = NULL;
  703. goto no_buffers;
  704. }
  705. }
  706. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  707. rx_desc->read.hdr_addr = 0;
  708. i++;
  709. if (i == rx_ring->count)
  710. i = 0;
  711. }
  712. if (rx_ring->next_to_use != i)
  713. i40e_release_rx_desc(rx_ring, i);
  714. return false;
  715. no_buffers:
  716. if (rx_ring->next_to_use != i)
  717. i40e_release_rx_desc(rx_ring, i);
  718. /* make sure to come back via polling to try again after
  719. * allocation failure
  720. */
  721. return true;
  722. }
  723. /**
  724. * i40e_receive_skb - Send a completed packet up the stack
  725. * @rx_ring: rx ring in play
  726. * @skb: packet to send up
  727. * @vlan_tag: vlan tag for packet
  728. **/
  729. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  730. struct sk_buff *skb, u16 vlan_tag)
  731. {
  732. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  733. if (vlan_tag & VLAN_VID_MASK)
  734. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  735. napi_gro_receive(&q_vector->napi, skb);
  736. }
  737. /**
  738. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  739. * @vsi: the VSI we care about
  740. * @skb: skb currently being received and modified
  741. * @rx_status: status value of last descriptor in packet
  742. * @rx_error: error value of last descriptor in packet
  743. * @rx_ptype: ptype value of last descriptor in packet
  744. **/
  745. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  746. struct sk_buff *skb,
  747. u32 rx_status,
  748. u32 rx_error,
  749. u16 rx_ptype)
  750. {
  751. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  752. bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
  753. skb->ip_summed = CHECKSUM_NONE;
  754. /* Rx csum enabled and ip headers found? */
  755. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  756. return;
  757. /* did the hardware decode the packet and checksum? */
  758. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  759. return;
  760. /* both known and outer_ip must be set for the below code to work */
  761. if (!(decoded.known && decoded.outer_ip))
  762. return;
  763. ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  764. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
  765. ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
  766. (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
  767. if (ipv4 &&
  768. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  769. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  770. goto checksum_fail;
  771. /* likely incorrect csum if alternate IP extension headers found */
  772. if (ipv6 &&
  773. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  774. /* don't increment checksum err here, non-fatal err */
  775. return;
  776. /* there was some L4 error, count error and punt packet to the stack */
  777. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  778. goto checksum_fail;
  779. /* handle packets that were not able to be checksummed due
  780. * to arrival speed, in this case the stack can compute
  781. * the csum.
  782. */
  783. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  784. return;
  785. /* The hardware supported by this driver does not validate outer
  786. * checksums for tunneled VXLAN or GENEVE frames. I don't agree
  787. * with it but the specification states that you "MAY validate", it
  788. * doesn't make it a hard requirement so if we have validated the
  789. * inner checksum report CHECKSUM_UNNECESSARY.
  790. */
  791. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  792. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  793. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  794. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  795. skb->ip_summed = CHECKSUM_UNNECESSARY;
  796. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  797. return;
  798. checksum_fail:
  799. vsi->back->hw_csum_rx_error++;
  800. }
  801. /**
  802. * i40e_ptype_to_htype - get a hash type
  803. * @ptype: the ptype value from the descriptor
  804. *
  805. * Returns a hash type to be used by skb_set_hash
  806. **/
  807. static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
  808. {
  809. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  810. if (!decoded.known)
  811. return PKT_HASH_TYPE_NONE;
  812. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  813. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  814. return PKT_HASH_TYPE_L4;
  815. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  816. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  817. return PKT_HASH_TYPE_L3;
  818. else
  819. return PKT_HASH_TYPE_L2;
  820. }
  821. /**
  822. * i40e_rx_hash - set the hash value in the skb
  823. * @ring: descriptor ring
  824. * @rx_desc: specific descriptor
  825. **/
  826. static inline void i40e_rx_hash(struct i40e_ring *ring,
  827. union i40e_rx_desc *rx_desc,
  828. struct sk_buff *skb,
  829. u8 rx_ptype)
  830. {
  831. u32 hash;
  832. const __le64 rss_mask =
  833. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  834. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  835. if (ring->netdev->features & NETIF_F_RXHASH)
  836. return;
  837. if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
  838. hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  839. skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
  840. }
  841. }
  842. /**
  843. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  844. * @rx_ring: rx ring to clean
  845. * @budget: how many cleans we're allowed
  846. *
  847. * Returns true if there's any budget left (e.g. the clean is finished)
  848. **/
  849. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
  850. {
  851. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  852. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  853. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  854. struct i40e_vsi *vsi = rx_ring->vsi;
  855. u16 i = rx_ring->next_to_clean;
  856. union i40e_rx_desc *rx_desc;
  857. u32 rx_error, rx_status;
  858. bool failure = false;
  859. u8 rx_ptype;
  860. u64 qword;
  861. u32 copysize;
  862. do {
  863. struct i40e_rx_buffer *rx_bi;
  864. struct sk_buff *skb;
  865. u16 vlan_tag;
  866. /* return some buffers to hardware, one at a time is too slow */
  867. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  868. failure = failure ||
  869. i40evf_alloc_rx_buffers_ps(rx_ring,
  870. cleaned_count);
  871. cleaned_count = 0;
  872. }
  873. i = rx_ring->next_to_clean;
  874. rx_desc = I40E_RX_DESC(rx_ring, i);
  875. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  876. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  877. I40E_RXD_QW1_STATUS_SHIFT;
  878. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  879. break;
  880. /* This memory barrier is needed to keep us from reading
  881. * any other fields out of the rx_desc until we know the
  882. * DD bit is set.
  883. */
  884. dma_rmb();
  885. /* sync header buffer for reading */
  886. dma_sync_single_range_for_cpu(rx_ring->dev,
  887. rx_ring->rx_bi[0].dma,
  888. i * rx_ring->rx_hdr_len,
  889. rx_ring->rx_hdr_len,
  890. DMA_FROM_DEVICE);
  891. rx_bi = &rx_ring->rx_bi[i];
  892. skb = rx_bi->skb;
  893. if (likely(!skb)) {
  894. skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
  895. rx_ring->rx_hdr_len,
  896. GFP_ATOMIC |
  897. __GFP_NOWARN);
  898. if (!skb) {
  899. rx_ring->rx_stats.alloc_buff_failed++;
  900. failure = true;
  901. break;
  902. }
  903. /* initialize queue mapping */
  904. skb_record_rx_queue(skb, rx_ring->queue_index);
  905. /* we are reusing so sync this buffer for CPU use */
  906. dma_sync_single_range_for_cpu(rx_ring->dev,
  907. rx_ring->rx_bi[0].dma,
  908. i * rx_ring->rx_hdr_len,
  909. rx_ring->rx_hdr_len,
  910. DMA_FROM_DEVICE);
  911. }
  912. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  913. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  914. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  915. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  916. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  917. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  918. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  919. I40E_RXD_QW1_ERROR_SHIFT;
  920. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  921. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  922. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  923. I40E_RXD_QW1_PTYPE_SHIFT;
  924. /* sync half-page for reading */
  925. dma_sync_single_range_for_cpu(rx_ring->dev,
  926. rx_bi->page_dma,
  927. rx_bi->page_offset,
  928. PAGE_SIZE / 2,
  929. DMA_FROM_DEVICE);
  930. prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
  931. rx_bi->skb = NULL;
  932. cleaned_count++;
  933. copysize = 0;
  934. if (rx_hbo || rx_sph) {
  935. int len;
  936. if (rx_hbo)
  937. len = I40E_RX_HDR_SIZE;
  938. else
  939. len = rx_header_len;
  940. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  941. } else if (skb->len == 0) {
  942. int len;
  943. unsigned char *va = page_address(rx_bi->page) +
  944. rx_bi->page_offset;
  945. len = min(rx_packet_len, rx_ring->rx_hdr_len);
  946. memcpy(__skb_put(skb, len), va, len);
  947. copysize = len;
  948. rx_packet_len -= len;
  949. }
  950. /* Get the rest of the data if this was a header split */
  951. if (rx_packet_len) {
  952. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
  953. rx_bi->page,
  954. rx_bi->page_offset + copysize,
  955. rx_packet_len, I40E_RXBUFFER_2048);
  956. /* If the page count is more than 2, then both halves
  957. * of the page are used and we need to free it. Do it
  958. * here instead of in the alloc code. Otherwise one
  959. * of the half-pages might be released between now and
  960. * then, and we wouldn't know which one to use.
  961. * Don't call get_page and free_page since those are
  962. * both expensive atomic operations that just change
  963. * the refcount in opposite directions. Just give the
  964. * page to the stack; he can have our refcount.
  965. */
  966. if (page_count(rx_bi->page) > 2) {
  967. dma_unmap_page(rx_ring->dev,
  968. rx_bi->page_dma,
  969. PAGE_SIZE,
  970. DMA_FROM_DEVICE);
  971. rx_bi->page = NULL;
  972. rx_bi->page_dma = 0;
  973. rx_ring->rx_stats.realloc_count++;
  974. } else {
  975. get_page(rx_bi->page);
  976. /* switch to the other half-page here; the
  977. * allocation code programs the right addr
  978. * into HW. If we haven't used this half-page,
  979. * the address won't be changed, and HW can
  980. * just use it next time through.
  981. */
  982. rx_bi->page_offset ^= PAGE_SIZE / 2;
  983. }
  984. }
  985. I40E_RX_INCREMENT(rx_ring, i);
  986. if (unlikely(
  987. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  988. struct i40e_rx_buffer *next_buffer;
  989. next_buffer = &rx_ring->rx_bi[i];
  990. next_buffer->skb = skb;
  991. rx_ring->rx_stats.non_eop_descs++;
  992. continue;
  993. }
  994. /* ERR_MASK will only have valid bits if EOP set */
  995. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  996. dev_kfree_skb_any(skb);
  997. continue;
  998. }
  999. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1000. /* probably a little skewed due to removing CRC */
  1001. total_rx_bytes += skb->len;
  1002. total_rx_packets++;
  1003. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1004. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1005. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1006. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1007. : 0;
  1008. #ifdef I40E_FCOE
  1009. if (unlikely(
  1010. i40e_rx_is_fcoe(rx_ptype) &&
  1011. !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
  1012. dev_kfree_skb_any(skb);
  1013. continue;
  1014. }
  1015. #endif
  1016. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1017. rx_desc->wb.qword1.status_error_len = 0;
  1018. } while (likely(total_rx_packets < budget));
  1019. u64_stats_update_begin(&rx_ring->syncp);
  1020. rx_ring->stats.packets += total_rx_packets;
  1021. rx_ring->stats.bytes += total_rx_bytes;
  1022. u64_stats_update_end(&rx_ring->syncp);
  1023. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1024. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1025. return failure ? budget : total_rx_packets;
  1026. }
  1027. /**
  1028. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  1029. * @rx_ring: rx ring to clean
  1030. * @budget: how many cleans we're allowed
  1031. *
  1032. * Returns number of packets cleaned
  1033. **/
  1034. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  1035. {
  1036. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  1037. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  1038. struct i40e_vsi *vsi = rx_ring->vsi;
  1039. union i40e_rx_desc *rx_desc;
  1040. u32 rx_error, rx_status;
  1041. u16 rx_packet_len;
  1042. bool failure = false;
  1043. u8 rx_ptype;
  1044. u64 qword;
  1045. u16 i;
  1046. do {
  1047. struct i40e_rx_buffer *rx_bi;
  1048. struct sk_buff *skb;
  1049. u16 vlan_tag;
  1050. /* return some buffers to hardware, one at a time is too slow */
  1051. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  1052. failure = failure ||
  1053. i40evf_alloc_rx_buffers_1buf(rx_ring,
  1054. cleaned_count);
  1055. cleaned_count = 0;
  1056. }
  1057. i = rx_ring->next_to_clean;
  1058. rx_desc = I40E_RX_DESC(rx_ring, i);
  1059. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  1060. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  1061. I40E_RXD_QW1_STATUS_SHIFT;
  1062. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  1063. break;
  1064. /* This memory barrier is needed to keep us from reading
  1065. * any other fields out of the rx_desc until we know the
  1066. * DD bit is set.
  1067. */
  1068. dma_rmb();
  1069. rx_bi = &rx_ring->rx_bi[i];
  1070. skb = rx_bi->skb;
  1071. prefetch(skb->data);
  1072. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  1073. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  1074. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  1075. I40E_RXD_QW1_ERROR_SHIFT;
  1076. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  1077. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  1078. I40E_RXD_QW1_PTYPE_SHIFT;
  1079. rx_bi->skb = NULL;
  1080. cleaned_count++;
  1081. /* Get the header and possibly the whole packet
  1082. * If this is an skb from previous receive dma will be 0
  1083. */
  1084. skb_put(skb, rx_packet_len);
  1085. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  1086. DMA_FROM_DEVICE);
  1087. rx_bi->dma = 0;
  1088. I40E_RX_INCREMENT(rx_ring, i);
  1089. if (unlikely(
  1090. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1091. rx_ring->rx_stats.non_eop_descs++;
  1092. continue;
  1093. }
  1094. /* ERR_MASK will only have valid bits if EOP set */
  1095. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1096. dev_kfree_skb_any(skb);
  1097. continue;
  1098. }
  1099. i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
  1100. /* probably a little skewed due to removing CRC */
  1101. total_rx_bytes += skb->len;
  1102. total_rx_packets++;
  1103. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1104. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1105. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1106. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1107. : 0;
  1108. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1109. rx_desc->wb.qword1.status_error_len = 0;
  1110. } while (likely(total_rx_packets < budget));
  1111. u64_stats_update_begin(&rx_ring->syncp);
  1112. rx_ring->stats.packets += total_rx_packets;
  1113. rx_ring->stats.bytes += total_rx_bytes;
  1114. u64_stats_update_end(&rx_ring->syncp);
  1115. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1116. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1117. return failure ? budget : total_rx_packets;
  1118. }
  1119. static u32 i40e_buildreg_itr(const int type, const u16 itr)
  1120. {
  1121. u32 val;
  1122. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1123. /* Don't clear PBA because that can cause lost interrupts that
  1124. * came in while we were cleaning/polling
  1125. */
  1126. (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1127. (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1128. return val;
  1129. }
  1130. /* a small macro to shorten up some long lines */
  1131. #define INTREG I40E_VFINT_DYN_CTLN1
  1132. /**
  1133. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1134. * @vsi: the VSI we care about
  1135. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1136. *
  1137. **/
  1138. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1139. struct i40e_q_vector *q_vector)
  1140. {
  1141. struct i40e_hw *hw = &vsi->back->hw;
  1142. bool rx = false, tx = false;
  1143. u32 rxval, txval;
  1144. int vector;
  1145. vector = (q_vector->v_idx + vsi->base_vector);
  1146. /* avoid dynamic calculation if in countdown mode OR if
  1147. * all dynamic is disabled
  1148. */
  1149. rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
  1150. if (q_vector->itr_countdown > 0 ||
  1151. (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
  1152. !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
  1153. goto enable_int;
  1154. }
  1155. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1156. rx = i40e_set_new_dynamic_itr(&q_vector->rx);
  1157. rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
  1158. }
  1159. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1160. tx = i40e_set_new_dynamic_itr(&q_vector->tx);
  1161. txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
  1162. }
  1163. if (rx || tx) {
  1164. /* get the higher of the two ITR adjustments and
  1165. * use the same value for both ITR registers
  1166. * when in adaptive mode (Rx and/or Tx)
  1167. */
  1168. u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
  1169. q_vector->tx.itr = q_vector->rx.itr = itr;
  1170. txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
  1171. tx = true;
  1172. rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
  1173. rx = true;
  1174. }
  1175. /* only need to enable the interrupt once, but need
  1176. * to possibly update both ITR values
  1177. */
  1178. if (rx) {
  1179. /* set the INTENA_MSK_MASK so that this first write
  1180. * won't actually enable the interrupt, instead just
  1181. * updating the ITR (it's bit 31 PF and VF)
  1182. */
  1183. rxval |= BIT(31);
  1184. /* don't check _DOWN because interrupt isn't being enabled */
  1185. wr32(hw, INTREG(vector - 1), rxval);
  1186. }
  1187. enable_int:
  1188. if (!test_bit(__I40E_DOWN, &vsi->state))
  1189. wr32(hw, INTREG(vector - 1), txval);
  1190. if (q_vector->itr_countdown)
  1191. q_vector->itr_countdown--;
  1192. else
  1193. q_vector->itr_countdown = ITR_COUNTDOWN_START;
  1194. }
  1195. /**
  1196. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1197. * @napi: napi struct with our devices info in it
  1198. * @budget: amount of work driver is allowed to do this pass, in packets
  1199. *
  1200. * This function will clean all queues associated with a q_vector.
  1201. *
  1202. * Returns the amount of work done
  1203. **/
  1204. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1205. {
  1206. struct i40e_q_vector *q_vector =
  1207. container_of(napi, struct i40e_q_vector, napi);
  1208. struct i40e_vsi *vsi = q_vector->vsi;
  1209. struct i40e_ring *ring;
  1210. bool clean_complete = true;
  1211. bool arm_wb = false;
  1212. int budget_per_ring;
  1213. int work_done = 0;
  1214. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1215. napi_complete(napi);
  1216. return 0;
  1217. }
  1218. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1219. * budget and be more aggressive about cleaning up the Tx descriptors.
  1220. */
  1221. i40e_for_each_ring(ring, q_vector->tx) {
  1222. if (!i40e_clean_tx_irq(vsi, ring, budget)) {
  1223. clean_complete = false;
  1224. continue;
  1225. }
  1226. arm_wb |= ring->arm_wb;
  1227. ring->arm_wb = false;
  1228. }
  1229. /* Handle case where we are called by netpoll with a budget of 0 */
  1230. if (budget <= 0)
  1231. goto tx_only;
  1232. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1233. * allow the budget to go below 1 because that would exit polling early.
  1234. */
  1235. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1236. i40e_for_each_ring(ring, q_vector->rx) {
  1237. int cleaned;
  1238. if (ring_is_ps_enabled(ring))
  1239. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1240. else
  1241. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1242. work_done += cleaned;
  1243. /* if we clean as many as budgeted, we must not be done */
  1244. if (cleaned >= budget_per_ring)
  1245. clean_complete = false;
  1246. }
  1247. /* If work not completed, return budget and polling will return */
  1248. if (!clean_complete) {
  1249. tx_only:
  1250. if (arm_wb) {
  1251. q_vector->tx.ring[0].tx_stats.tx_force_wb++;
  1252. i40e_enable_wb_on_itr(vsi, q_vector);
  1253. }
  1254. return budget;
  1255. }
  1256. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1257. q_vector->arm_wb_state = false;
  1258. /* Work is done so exit the polling mode and re-enable the interrupt */
  1259. napi_complete_done(napi, work_done);
  1260. i40e_update_enable_itr(vsi, q_vector);
  1261. return 0;
  1262. }
  1263. /**
  1264. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1265. * @skb: send buffer
  1266. * @tx_ring: ring to send buffer on
  1267. * @flags: the tx flags to be set
  1268. *
  1269. * Checks the skb and set up correspondingly several generic transmit flags
  1270. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1271. *
  1272. * Returns error code indicate the frame should be dropped upon error and the
  1273. * otherwise returns 0 to indicate the flags has been set properly.
  1274. **/
  1275. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1276. struct i40e_ring *tx_ring,
  1277. u32 *flags)
  1278. {
  1279. __be16 protocol = skb->protocol;
  1280. u32 tx_flags = 0;
  1281. if (protocol == htons(ETH_P_8021Q) &&
  1282. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1283. /* When HW VLAN acceleration is turned off by the user the
  1284. * stack sets the protocol to 8021q so that the driver
  1285. * can take any steps required to support the SW only
  1286. * VLAN handling. In our case the driver doesn't need
  1287. * to take any further steps so just set the protocol
  1288. * to the encapsulated ethertype.
  1289. */
  1290. skb->protocol = vlan_get_protocol(skb);
  1291. goto out;
  1292. }
  1293. /* if we have a HW VLAN tag being added, default to the HW one */
  1294. if (skb_vlan_tag_present(skb)) {
  1295. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1296. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1297. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1298. } else if (protocol == htons(ETH_P_8021Q)) {
  1299. struct vlan_hdr *vhdr, _vhdr;
  1300. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1301. if (!vhdr)
  1302. return -EINVAL;
  1303. protocol = vhdr->h_vlan_encapsulated_proto;
  1304. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1305. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1306. }
  1307. out:
  1308. *flags = tx_flags;
  1309. return 0;
  1310. }
  1311. /**
  1312. * i40e_tso - set up the tso context descriptor
  1313. * @skb: ptr to the skb we're sending
  1314. * @hdr_len: ptr to the size of the packet header
  1315. * @cd_type_cmd_tso_mss: Quad Word 1
  1316. *
  1317. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1318. **/
  1319. static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
  1320. {
  1321. u64 cd_cmd, cd_tso_len, cd_mss;
  1322. union {
  1323. struct iphdr *v4;
  1324. struct ipv6hdr *v6;
  1325. unsigned char *hdr;
  1326. } ip;
  1327. union {
  1328. struct tcphdr *tcp;
  1329. struct udphdr *udp;
  1330. unsigned char *hdr;
  1331. } l4;
  1332. u32 paylen, l4_offset;
  1333. int err;
  1334. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1335. return 0;
  1336. if (!skb_is_gso(skb))
  1337. return 0;
  1338. err = skb_cow_head(skb, 0);
  1339. if (err < 0)
  1340. return err;
  1341. ip.hdr = skb_network_header(skb);
  1342. l4.hdr = skb_transport_header(skb);
  1343. /* initialize outer IP header fields */
  1344. if (ip.v4->version == 4) {
  1345. ip.v4->tot_len = 0;
  1346. ip.v4->check = 0;
  1347. } else {
  1348. ip.v6->payload_len = 0;
  1349. }
  1350. if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
  1351. SKB_GSO_UDP_TUNNEL_CSUM)) {
  1352. if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
  1353. /* determine offset of outer transport header */
  1354. l4_offset = l4.hdr - skb->data;
  1355. /* remove payload length from outer checksum */
  1356. paylen = skb->len - l4_offset;
  1357. csum_replace_by_diff(&l4.udp->check, htonl(paylen));
  1358. }
  1359. /* reset pointers to inner headers */
  1360. ip.hdr = skb_inner_network_header(skb);
  1361. l4.hdr = skb_inner_transport_header(skb);
  1362. /* initialize inner IP header fields */
  1363. if (ip.v4->version == 4) {
  1364. ip.v4->tot_len = 0;
  1365. ip.v4->check = 0;
  1366. } else {
  1367. ip.v6->payload_len = 0;
  1368. }
  1369. }
  1370. /* determine offset of inner transport header */
  1371. l4_offset = l4.hdr - skb->data;
  1372. /* remove payload length from inner checksum */
  1373. paylen = skb->len - l4_offset;
  1374. csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
  1375. /* compute length of segmentation header */
  1376. *hdr_len = (l4.tcp->doff * 4) + l4_offset;
  1377. /* find the field values */
  1378. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1379. cd_tso_len = skb->len - *hdr_len;
  1380. cd_mss = skb_shinfo(skb)->gso_size;
  1381. *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1382. (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1383. (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1384. return 1;
  1385. }
  1386. /**
  1387. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1388. * @skb: send buffer
  1389. * @tx_flags: pointer to Tx flags currently set
  1390. * @td_cmd: Tx descriptor command bits to set
  1391. * @td_offset: Tx descriptor header offsets to set
  1392. * @tx_ring: Tx descriptor ring
  1393. * @cd_tunneling: ptr to context desc bits
  1394. **/
  1395. static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1396. u32 *td_cmd, u32 *td_offset,
  1397. struct i40e_ring *tx_ring,
  1398. u32 *cd_tunneling)
  1399. {
  1400. union {
  1401. struct iphdr *v4;
  1402. struct ipv6hdr *v6;
  1403. unsigned char *hdr;
  1404. } ip;
  1405. union {
  1406. struct tcphdr *tcp;
  1407. struct udphdr *udp;
  1408. unsigned char *hdr;
  1409. } l4;
  1410. unsigned char *exthdr;
  1411. u32 offset, cmd = 0;
  1412. __be16 frag_off;
  1413. u8 l4_proto = 0;
  1414. if (skb->ip_summed != CHECKSUM_PARTIAL)
  1415. return 0;
  1416. ip.hdr = skb_network_header(skb);
  1417. l4.hdr = skb_transport_header(skb);
  1418. /* compute outer L2 header size */
  1419. offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1420. if (skb->encapsulation) {
  1421. u32 tunnel = 0;
  1422. /* define outer network header type */
  1423. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1424. tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1425. I40E_TX_CTX_EXT_IP_IPV4 :
  1426. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1427. l4_proto = ip.v4->protocol;
  1428. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1429. tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
  1430. exthdr = ip.hdr + sizeof(*ip.v6);
  1431. l4_proto = ip.v6->nexthdr;
  1432. if (l4.hdr != exthdr)
  1433. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1434. &l4_proto, &frag_off);
  1435. }
  1436. /* compute outer L3 header size */
  1437. tunnel |= ((l4.hdr - ip.hdr) / 4) <<
  1438. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
  1439. /* switch IP header pointer from outer to inner header */
  1440. ip.hdr = skb_inner_network_header(skb);
  1441. /* define outer transport */
  1442. switch (l4_proto) {
  1443. case IPPROTO_UDP:
  1444. tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
  1445. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1446. break;
  1447. case IPPROTO_GRE:
  1448. tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
  1449. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1450. break;
  1451. default:
  1452. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1453. return -1;
  1454. skb_checksum_help(skb);
  1455. return 0;
  1456. }
  1457. /* compute tunnel header size */
  1458. tunnel |= ((ip.hdr - l4.hdr) / 2) <<
  1459. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1460. /* indicate if we need to offload outer UDP header */
  1461. if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
  1462. (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
  1463. tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1464. /* record tunnel offload values */
  1465. *cd_tunneling |= tunnel;
  1466. /* switch L4 header pointer from outer to inner */
  1467. l4.hdr = skb_inner_transport_header(skb);
  1468. l4_proto = 0;
  1469. /* reset type as we transition from outer to inner headers */
  1470. *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
  1471. if (ip.v4->version == 4)
  1472. *tx_flags |= I40E_TX_FLAGS_IPV4;
  1473. if (ip.v6->version == 6)
  1474. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1475. }
  1476. /* Enable IP checksum offloads */
  1477. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1478. l4_proto = ip.v4->protocol;
  1479. /* the stack computes the IP header already, the only time we
  1480. * need the hardware to recompute it is in the case of TSO.
  1481. */
  1482. cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
  1483. I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
  1484. I40E_TX_DESC_CMD_IIPT_IPV4;
  1485. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1486. cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1487. exthdr = ip.hdr + sizeof(*ip.v6);
  1488. l4_proto = ip.v6->nexthdr;
  1489. if (l4.hdr != exthdr)
  1490. ipv6_skip_exthdr(skb, exthdr - skb->data,
  1491. &l4_proto, &frag_off);
  1492. }
  1493. /* compute inner L3 header size */
  1494. offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1495. /* Enable L4 checksum offloads */
  1496. switch (l4_proto) {
  1497. case IPPROTO_TCP:
  1498. /* enable checksum offloads */
  1499. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1500. offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1501. break;
  1502. case IPPROTO_SCTP:
  1503. /* enable SCTP checksum offload */
  1504. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1505. offset |= (sizeof(struct sctphdr) >> 2) <<
  1506. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1507. break;
  1508. case IPPROTO_UDP:
  1509. /* enable UDP checksum offload */
  1510. cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1511. offset |= (sizeof(struct udphdr) >> 2) <<
  1512. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1513. break;
  1514. default:
  1515. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1516. return -1;
  1517. skb_checksum_help(skb);
  1518. return 0;
  1519. }
  1520. *td_cmd |= cmd;
  1521. *td_offset |= offset;
  1522. return 1;
  1523. }
  1524. /**
  1525. * i40e_create_tx_ctx Build the Tx context descriptor
  1526. * @tx_ring: ring to create the descriptor on
  1527. * @cd_type_cmd_tso_mss: Quad Word 1
  1528. * @cd_tunneling: Quad Word 0 - bits 0-31
  1529. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1530. **/
  1531. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1532. const u64 cd_type_cmd_tso_mss,
  1533. const u32 cd_tunneling, const u32 cd_l2tag2)
  1534. {
  1535. struct i40e_tx_context_desc *context_desc;
  1536. int i = tx_ring->next_to_use;
  1537. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1538. !cd_tunneling && !cd_l2tag2)
  1539. return;
  1540. /* grab the next descriptor */
  1541. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1542. i++;
  1543. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1544. /* cpu_to_le32 and assign to struct fields */
  1545. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1546. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1547. context_desc->rsvd = cpu_to_le16(0);
  1548. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1549. }
  1550. /**
  1551. * __i40evf_chk_linearize - Check if there are more than 8 fragments per packet
  1552. * @skb: send buffer
  1553. *
  1554. * Note: Our HW can't scatter-gather more than 8 fragments to build
  1555. * a packet on the wire and so we need to figure out the cases where we
  1556. * need to linearize the skb.
  1557. **/
  1558. bool __i40evf_chk_linearize(struct sk_buff *skb)
  1559. {
  1560. const struct skb_frag_struct *frag, *stale;
  1561. int gso_size, nr_frags, sum;
  1562. /* check to see if TSO is enabled, if so we may get a repreive */
  1563. gso_size = skb_shinfo(skb)->gso_size;
  1564. if (unlikely(!gso_size))
  1565. return true;
  1566. /* no need to check if number of frags is less than 8 */
  1567. nr_frags = skb_shinfo(skb)->nr_frags;
  1568. if (nr_frags < I40E_MAX_BUFFER_TXD)
  1569. return false;
  1570. /* We need to walk through the list and validate that each group
  1571. * of 6 fragments totals at least gso_size. However we don't need
  1572. * to perform such validation on the first or last 6 since the first
  1573. * 6 cannot inherit any data from a descriptor before them, and the
  1574. * last 6 cannot inherit any data from a descriptor after them.
  1575. */
  1576. nr_frags -= I40E_MAX_BUFFER_TXD - 1;
  1577. frag = &skb_shinfo(skb)->frags[0];
  1578. /* Initialize size to the negative value of gso_size minus 1. We
  1579. * use this as the worst case scenerio in which the frag ahead
  1580. * of us only provides one byte which is why we are limited to 6
  1581. * descriptors for a single transmit as the header and previous
  1582. * fragment are already consuming 2 descriptors.
  1583. */
  1584. sum = 1 - gso_size;
  1585. /* Add size of frags 1 through 5 to create our initial sum */
  1586. sum += skb_frag_size(++frag);
  1587. sum += skb_frag_size(++frag);
  1588. sum += skb_frag_size(++frag);
  1589. sum += skb_frag_size(++frag);
  1590. sum += skb_frag_size(++frag);
  1591. /* Walk through fragments adding latest fragment, testing it, and
  1592. * then removing stale fragments from the sum.
  1593. */
  1594. stale = &skb_shinfo(skb)->frags[0];
  1595. for (;;) {
  1596. sum += skb_frag_size(++frag);
  1597. /* if sum is negative we failed to make sufficient progress */
  1598. if (sum < 0)
  1599. return true;
  1600. /* use pre-decrement to avoid processing last fragment */
  1601. if (!--nr_frags)
  1602. break;
  1603. sum -= skb_frag_size(++stale);
  1604. }
  1605. return false;
  1606. }
  1607. /**
  1608. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1609. * @tx_ring: the ring to be checked
  1610. * @size: the size buffer we want to assure is available
  1611. *
  1612. * Returns -EBUSY if a stop is needed, else 0
  1613. **/
  1614. int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1615. {
  1616. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1617. /* Memory barrier before checking head and tail */
  1618. smp_mb();
  1619. /* Check again in a case another CPU has just made room available. */
  1620. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1621. return -EBUSY;
  1622. /* A reprieve! - use start_queue because it doesn't call schedule */
  1623. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1624. ++tx_ring->tx_stats.restart_queue;
  1625. return 0;
  1626. }
  1627. /**
  1628. * i40evf_tx_map - Build the Tx descriptor
  1629. * @tx_ring: ring to send buffer on
  1630. * @skb: send buffer
  1631. * @first: first buffer info buffer to use
  1632. * @tx_flags: collected send information
  1633. * @hdr_len: size of the packet header
  1634. * @td_cmd: the command field in the descriptor
  1635. * @td_offset: offset for checksum or crc
  1636. **/
  1637. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1638. struct i40e_tx_buffer *first, u32 tx_flags,
  1639. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1640. {
  1641. unsigned int data_len = skb->data_len;
  1642. unsigned int size = skb_headlen(skb);
  1643. struct skb_frag_struct *frag;
  1644. struct i40e_tx_buffer *tx_bi;
  1645. struct i40e_tx_desc *tx_desc;
  1646. u16 i = tx_ring->next_to_use;
  1647. u32 td_tag = 0;
  1648. dma_addr_t dma;
  1649. u16 gso_segs;
  1650. u16 desc_count = 0;
  1651. bool tail_bump = true;
  1652. bool do_rs = false;
  1653. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1654. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1655. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1656. I40E_TX_FLAGS_VLAN_SHIFT;
  1657. }
  1658. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1659. gso_segs = skb_shinfo(skb)->gso_segs;
  1660. else
  1661. gso_segs = 1;
  1662. /* multiply data chunks by size of headers */
  1663. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1664. first->gso_segs = gso_segs;
  1665. first->skb = skb;
  1666. first->tx_flags = tx_flags;
  1667. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1668. tx_desc = I40E_TX_DESC(tx_ring, i);
  1669. tx_bi = first;
  1670. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1671. unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  1672. if (dma_mapping_error(tx_ring->dev, dma))
  1673. goto dma_error;
  1674. /* record length, and DMA address */
  1675. dma_unmap_len_set(tx_bi, len, size);
  1676. dma_unmap_addr_set(tx_bi, dma, dma);
  1677. /* align size to end of page */
  1678. max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
  1679. tx_desc->buffer_addr = cpu_to_le64(dma);
  1680. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1681. tx_desc->cmd_type_offset_bsz =
  1682. build_ctob(td_cmd, td_offset,
  1683. max_data, td_tag);
  1684. tx_desc++;
  1685. i++;
  1686. desc_count++;
  1687. if (i == tx_ring->count) {
  1688. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1689. i = 0;
  1690. }
  1691. dma += max_data;
  1692. size -= max_data;
  1693. max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
  1694. tx_desc->buffer_addr = cpu_to_le64(dma);
  1695. }
  1696. if (likely(!data_len))
  1697. break;
  1698. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1699. size, td_tag);
  1700. tx_desc++;
  1701. i++;
  1702. desc_count++;
  1703. if (i == tx_ring->count) {
  1704. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1705. i = 0;
  1706. }
  1707. size = skb_frag_size(frag);
  1708. data_len -= size;
  1709. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1710. DMA_TO_DEVICE);
  1711. tx_bi = &tx_ring->tx_bi[i];
  1712. }
  1713. /* set next_to_watch value indicating a packet is present */
  1714. first->next_to_watch = tx_desc;
  1715. i++;
  1716. if (i == tx_ring->count)
  1717. i = 0;
  1718. tx_ring->next_to_use = i;
  1719. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1720. tx_ring->queue_index),
  1721. first->bytecount);
  1722. i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1723. /* Algorithm to optimize tail and RS bit setting:
  1724. * if xmit_more is supported
  1725. * if xmit_more is true
  1726. * do not update tail and do not mark RS bit.
  1727. * if xmit_more is false and last xmit_more was false
  1728. * if every packet spanned less than 4 desc
  1729. * then set RS bit on 4th packet and update tail
  1730. * on every packet
  1731. * else
  1732. * update tail and set RS bit on every packet.
  1733. * if xmit_more is false and last_xmit_more was true
  1734. * update tail and set RS bit.
  1735. *
  1736. * Optimization: wmb to be issued only in case of tail update.
  1737. * Also optimize the Descriptor WB path for RS bit with the same
  1738. * algorithm.
  1739. *
  1740. * Note: If there are less than 4 packets
  1741. * pending and interrupts were disabled the service task will
  1742. * trigger a force WB.
  1743. */
  1744. if (skb->xmit_more &&
  1745. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1746. tx_ring->queue_index))) {
  1747. tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1748. tail_bump = false;
  1749. } else if (!skb->xmit_more &&
  1750. !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1751. tx_ring->queue_index)) &&
  1752. (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
  1753. (tx_ring->packet_stride < WB_STRIDE) &&
  1754. (desc_count < WB_STRIDE)) {
  1755. tx_ring->packet_stride++;
  1756. } else {
  1757. tx_ring->packet_stride = 0;
  1758. tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
  1759. do_rs = true;
  1760. }
  1761. if (do_rs)
  1762. tx_ring->packet_stride = 0;
  1763. tx_desc->cmd_type_offset_bsz =
  1764. build_ctob(td_cmd, td_offset, size, td_tag) |
  1765. cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
  1766. I40E_TX_DESC_CMD_EOP) <<
  1767. I40E_TXD_QW1_CMD_SHIFT);
  1768. /* notify HW of packet */
  1769. if (!tail_bump)
  1770. prefetchw(tx_desc + 1);
  1771. if (tail_bump) {
  1772. /* Force memory writes to complete before letting h/w
  1773. * know there are new descriptors to fetch. (Only
  1774. * applicable for weak-ordered memory model archs,
  1775. * such as IA-64).
  1776. */
  1777. wmb();
  1778. writel(i, tx_ring->tail);
  1779. }
  1780. return;
  1781. dma_error:
  1782. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1783. /* clear dma mappings for failed tx_bi map */
  1784. for (;;) {
  1785. tx_bi = &tx_ring->tx_bi[i];
  1786. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1787. if (tx_bi == first)
  1788. break;
  1789. if (i == 0)
  1790. i = tx_ring->count;
  1791. i--;
  1792. }
  1793. tx_ring->next_to_use = i;
  1794. }
  1795. /**
  1796. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1797. * @skb: send buffer
  1798. * @tx_ring: ring to send buffer on
  1799. *
  1800. * Returns NETDEV_TX_OK if sent, else an error code
  1801. **/
  1802. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1803. struct i40e_ring *tx_ring)
  1804. {
  1805. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1806. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1807. struct i40e_tx_buffer *first;
  1808. u32 td_offset = 0;
  1809. u32 tx_flags = 0;
  1810. __be16 protocol;
  1811. u32 td_cmd = 0;
  1812. u8 hdr_len = 0;
  1813. int tso, count;
  1814. /* prefetch the data, we'll need it later */
  1815. prefetch(skb->data);
  1816. count = i40e_xmit_descriptor_count(skb);
  1817. if (i40e_chk_linearize(skb, count)) {
  1818. if (__skb_linearize(skb))
  1819. goto out_drop;
  1820. count = i40e_txd_use_count(skb->len);
  1821. tx_ring->tx_stats.tx_linearize++;
  1822. }
  1823. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1824. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1825. * + 4 desc gap to avoid the cache line where head is,
  1826. * + 1 desc for context descriptor,
  1827. * otherwise try next time
  1828. */
  1829. if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1830. tx_ring->tx_stats.tx_busy++;
  1831. return NETDEV_TX_BUSY;
  1832. }
  1833. /* prepare the xmit flags */
  1834. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1835. goto out_drop;
  1836. /* obtain protocol of skb */
  1837. protocol = vlan_get_protocol(skb);
  1838. /* record the location of the first descriptor for this packet */
  1839. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1840. /* setup IPv4/IPv6 offloads */
  1841. if (protocol == htons(ETH_P_IP))
  1842. tx_flags |= I40E_TX_FLAGS_IPV4;
  1843. else if (protocol == htons(ETH_P_IPV6))
  1844. tx_flags |= I40E_TX_FLAGS_IPV6;
  1845. tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
  1846. if (tso < 0)
  1847. goto out_drop;
  1848. else if (tso)
  1849. tx_flags |= I40E_TX_FLAGS_TSO;
  1850. /* Always offload the checksum, since it's in the data descriptor */
  1851. tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1852. tx_ring, &cd_tunneling);
  1853. if (tso < 0)
  1854. goto out_drop;
  1855. skb_tx_timestamp(skb);
  1856. /* always enable CRC insertion offload */
  1857. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1858. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1859. cd_tunneling, cd_l2tag2);
  1860. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1861. td_cmd, td_offset);
  1862. return NETDEV_TX_OK;
  1863. out_drop:
  1864. dev_kfree_skb_any(skb);
  1865. return NETDEV_TX_OK;
  1866. }
  1867. /**
  1868. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1869. * @skb: send buffer
  1870. * @netdev: network interface device structure
  1871. *
  1872. * Returns NETDEV_TX_OK if sent, else an error code
  1873. **/
  1874. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1875. {
  1876. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1877. struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
  1878. /* hardware can't handle really short frames, hardware padding works
  1879. * beyond this point
  1880. */
  1881. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1882. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1883. return NETDEV_TX_OK;
  1884. skb->len = I40E_MIN_TX_LEN;
  1885. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1886. }
  1887. return i40e_xmit_frame_ring(skb, tx_ring);
  1888. }