intel_ringbuffer.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  329. /*
  330. * TLB invalidate requires a post-sync write.
  331. */
  332. flags |= PIPE_CONTROL_QW_WRITE;
  333. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  334. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  335. /* Workaround: we must issue a pipe_control with CS-stall bit
  336. * set before a pipe_control command that has the state cache
  337. * invalidate bit set. */
  338. gen7_render_ring_cs_stall_wa(ring);
  339. }
  340. ret = intel_ring_begin(ring, 4);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_advance(ring);
  348. if (!invalidate_domains && flush_domains)
  349. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  350. return 0;
  351. }
  352. static int
  353. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  354. u32 flags, u32 scratch_addr)
  355. {
  356. int ret;
  357. ret = intel_ring_begin(ring, 6);
  358. if (ret)
  359. return ret;
  360. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  361. intel_ring_emit(ring, flags);
  362. intel_ring_emit(ring, scratch_addr);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_emit(ring, 0);
  365. intel_ring_emit(ring, 0);
  366. intel_ring_advance(ring);
  367. return 0;
  368. }
  369. static int
  370. gen8_render_ring_flush(struct intel_engine_cs *ring,
  371. u32 invalidate_domains, u32 flush_domains)
  372. {
  373. u32 flags = 0;
  374. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  375. int ret;
  376. flags |= PIPE_CONTROL_CS_STALL;
  377. if (flush_domains) {
  378. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  379. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  380. }
  381. if (invalidate_domains) {
  382. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  383. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  387. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  388. flags |= PIPE_CONTROL_QW_WRITE;
  389. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  390. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  391. ret = gen8_emit_pipe_control(ring,
  392. PIPE_CONTROL_CS_STALL |
  393. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  394. 0);
  395. if (ret)
  396. return ret;
  397. }
  398. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  399. if (ret)
  400. return ret;
  401. if (!invalidate_domains && flush_domains)
  402. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  403. return 0;
  404. }
  405. static void ring_write_tail(struct intel_engine_cs *ring,
  406. u32 value)
  407. {
  408. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  409. I915_WRITE_TAIL(ring, value);
  410. }
  411. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  412. {
  413. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  414. u64 acthd;
  415. if (INTEL_INFO(ring->dev)->gen >= 8)
  416. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  417. RING_ACTHD_UDW(ring->mmio_base));
  418. else if (INTEL_INFO(ring->dev)->gen >= 4)
  419. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  420. else
  421. acthd = I915_READ(ACTHD);
  422. return acthd;
  423. }
  424. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  427. u32 addr;
  428. addr = dev_priv->status_page_dmah->busaddr;
  429. if (INTEL_INFO(ring->dev)->gen >= 4)
  430. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  431. I915_WRITE(HWS_PGA, addr);
  432. }
  433. static bool stop_ring(struct intel_engine_cs *ring)
  434. {
  435. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  436. if (!IS_GEN2(ring->dev)) {
  437. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  438. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  439. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  440. /* Sometimes we observe that the idle flag is not
  441. * set even though the ring is empty. So double
  442. * check before giving up.
  443. */
  444. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  445. return false;
  446. }
  447. }
  448. I915_WRITE_CTL(ring, 0);
  449. I915_WRITE_HEAD(ring, 0);
  450. ring->write_tail(ring, 0);
  451. if (!IS_GEN2(ring->dev)) {
  452. (void)I915_READ_CTL(ring);
  453. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  454. }
  455. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  456. }
  457. static int init_ring_common(struct intel_engine_cs *ring)
  458. {
  459. struct drm_device *dev = ring->dev;
  460. struct drm_i915_private *dev_priv = dev->dev_private;
  461. struct intel_ringbuffer *ringbuf = ring->buffer;
  462. struct drm_i915_gem_object *obj = ringbuf->obj;
  463. int ret = 0;
  464. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  465. if (!stop_ring(ring)) {
  466. /* G45 ring initialization often fails to reset head to zero */
  467. DRM_DEBUG_KMS("%s head not reset to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. ring->name,
  470. I915_READ_CTL(ring),
  471. I915_READ_HEAD(ring),
  472. I915_READ_TAIL(ring),
  473. I915_READ_START(ring));
  474. if (!stop_ring(ring)) {
  475. DRM_ERROR("failed to set %s head to zero "
  476. "ctl %08x head %08x tail %08x start %08x\n",
  477. ring->name,
  478. I915_READ_CTL(ring),
  479. I915_READ_HEAD(ring),
  480. I915_READ_TAIL(ring),
  481. I915_READ_START(ring));
  482. ret = -EIO;
  483. goto out;
  484. }
  485. }
  486. if (I915_NEED_GFX_HWS(dev))
  487. intel_ring_setup_status_page(ring);
  488. else
  489. ring_setup_phys_status_page(ring);
  490. /* Enforce ordering by reading HEAD register back */
  491. I915_READ_HEAD(ring);
  492. /* Initialize the ring. This must happen _after_ we've cleared the ring
  493. * registers with the above sequence (the readback of the HEAD registers
  494. * also enforces ordering), otherwise the hw might lose the new ring
  495. * register values. */
  496. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  497. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  498. if (I915_READ_HEAD(ring))
  499. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  500. ring->name, I915_READ_HEAD(ring));
  501. I915_WRITE_HEAD(ring, 0);
  502. (void)I915_READ_HEAD(ring);
  503. I915_WRITE_CTL(ring,
  504. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  505. | RING_VALID);
  506. /* If the head is still not zero, the ring is dead */
  507. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  508. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  509. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  510. DRM_ERROR("%s initialization failed "
  511. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  512. ring->name,
  513. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  514. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  515. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  516. ret = -EIO;
  517. goto out;
  518. }
  519. ringbuf->last_retired_head = -1;
  520. ringbuf->head = I915_READ_HEAD(ring);
  521. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  522. intel_ring_update_space(ringbuf);
  523. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  524. out:
  525. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  526. return ret;
  527. }
  528. void
  529. intel_fini_pipe_control(struct intel_engine_cs *ring)
  530. {
  531. struct drm_device *dev = ring->dev;
  532. if (ring->scratch.obj == NULL)
  533. return;
  534. if (INTEL_INFO(dev)->gen >= 5) {
  535. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  536. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  537. }
  538. drm_gem_object_unreference(&ring->scratch.obj->base);
  539. ring->scratch.obj = NULL;
  540. }
  541. int
  542. intel_init_pipe_control(struct intel_engine_cs *ring)
  543. {
  544. int ret;
  545. WARN_ON(ring->scratch.obj);
  546. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  547. if (ring->scratch.obj == NULL) {
  548. DRM_ERROR("Failed to allocate seqno page\n");
  549. ret = -ENOMEM;
  550. goto err;
  551. }
  552. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  553. if (ret)
  554. goto err_unref;
  555. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  556. if (ret)
  557. goto err_unref;
  558. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  559. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  560. if (ring->scratch.cpu_page == NULL) {
  561. ret = -ENOMEM;
  562. goto err_unpin;
  563. }
  564. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  565. ring->name, ring->scratch.gtt_offset);
  566. return 0;
  567. err_unpin:
  568. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  569. err_unref:
  570. drm_gem_object_unreference(&ring->scratch.obj->base);
  571. err:
  572. return ret;
  573. }
  574. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  575. struct intel_context *ctx)
  576. {
  577. int ret, i;
  578. struct drm_device *dev = ring->dev;
  579. struct drm_i915_private *dev_priv = dev->dev_private;
  580. struct i915_workarounds *w = &dev_priv->workarounds;
  581. if (WARN_ON_ONCE(w->count == 0))
  582. return 0;
  583. ring->gpu_caches_dirty = true;
  584. ret = intel_ring_flush_all_caches(ring);
  585. if (ret)
  586. return ret;
  587. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  588. if (ret)
  589. return ret;
  590. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  591. for (i = 0; i < w->count; i++) {
  592. intel_ring_emit(ring, w->reg[i].addr);
  593. intel_ring_emit(ring, w->reg[i].value);
  594. }
  595. intel_ring_emit(ring, MI_NOOP);
  596. intel_ring_advance(ring);
  597. ring->gpu_caches_dirty = true;
  598. ret = intel_ring_flush_all_caches(ring);
  599. if (ret)
  600. return ret;
  601. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  602. return 0;
  603. }
  604. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret;
  608. ret = intel_ring_workarounds_emit(ring, ctx);
  609. if (ret != 0)
  610. return ret;
  611. ret = i915_gem_render_state_init(ring);
  612. if (ret)
  613. DRM_ERROR("init render state: %d\n", ret);
  614. return ret;
  615. }
  616. static int wa_add(struct drm_i915_private *dev_priv,
  617. const u32 addr, const u32 mask, const u32 val)
  618. {
  619. const u32 idx = dev_priv->workarounds.count;
  620. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  621. return -ENOSPC;
  622. dev_priv->workarounds.reg[idx].addr = addr;
  623. dev_priv->workarounds.reg[idx].value = val;
  624. dev_priv->workarounds.reg[idx].mask = mask;
  625. dev_priv->workarounds.count++;
  626. return 0;
  627. }
  628. #define WA_REG(addr, mask, val) { \
  629. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  630. if (r) \
  631. return r; \
  632. }
  633. #define WA_SET_BIT_MASKED(addr, mask) \
  634. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  635. #define WA_CLR_BIT_MASKED(addr, mask) \
  636. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  637. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  638. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  639. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  640. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  641. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  642. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  643. {
  644. struct drm_device *dev = ring->dev;
  645. struct drm_i915_private *dev_priv = dev->dev_private;
  646. /* WaDisablePartialInstShootdown:bdw */
  647. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  648. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  649. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  650. STALL_DOP_GATING_DISABLE);
  651. /* WaDisableDopClockGating:bdw */
  652. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  653. DOP_CLOCK_GATING_DISABLE);
  654. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  655. GEN8_SAMPLER_POWER_BYPASS_DIS);
  656. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  657. * workaround for for a possible hang in the unlikely event a TLB
  658. * invalidation occurs during a PSD flush.
  659. */
  660. /* WaForceEnableNonCoherent:bdw */
  661. /* WaHdcDisableFetchWhenMasked:bdw */
  662. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  663. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  664. HDC_FORCE_NON_COHERENT |
  665. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  666. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  667. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  668. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  669. * polygons in the same 8x4 pixel/sample area to be processed without
  670. * stalling waiting for the earlier ones to write to Hierarchical Z
  671. * buffer."
  672. *
  673. * This optimization is off by default for Broadwell; turn it on.
  674. */
  675. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  676. /* Wa4x4STCOptimizationDisable:bdw */
  677. WA_SET_BIT_MASKED(CACHE_MODE_1,
  678. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  679. /*
  680. * BSpec recommends 8x4 when MSAA is used,
  681. * however in practice 16x4 seems fastest.
  682. *
  683. * Note that PS/WM thread counts depend on the WIZ hashing
  684. * disable bit, which we don't touch here, but it's good
  685. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  686. */
  687. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  688. GEN6_WIZ_HASHING_MASK,
  689. GEN6_WIZ_HASHING_16x4);
  690. return 0;
  691. }
  692. static int chv_init_workarounds(struct intel_engine_cs *ring)
  693. {
  694. struct drm_device *dev = ring->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. /* WaDisablePartialInstShootdown:chv */
  697. /* WaDisableThreadStallDopClockGating:chv */
  698. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  699. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  700. STALL_DOP_GATING_DISABLE);
  701. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  702. * workaround for a possible hang in the unlikely event a TLB
  703. * invalidation occurs during a PSD flush.
  704. */
  705. /* WaForceEnableNonCoherent:chv */
  706. /* WaHdcDisableFetchWhenMasked:chv */
  707. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  708. HDC_FORCE_NON_COHERENT |
  709. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  710. /* According to the CACHE_MODE_0 default value documentation, some
  711. * CHV platforms disable this optimization by default. Turn it on.
  712. */
  713. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  714. /* Wa4x4STCOptimizationDisable:chv */
  715. WA_SET_BIT_MASKED(CACHE_MODE_1,
  716. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  717. /* Improve HiZ throughput on CHV. */
  718. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  719. /*
  720. * BSpec recommends 8x4 when MSAA is used,
  721. * however in practice 16x4 seems fastest.
  722. *
  723. * Note that PS/WM thread counts depend on the WIZ hashing
  724. * disable bit, which we don't touch here, but it's good
  725. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  726. */
  727. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  728. GEN6_WIZ_HASHING_MASK,
  729. GEN6_WIZ_HASHING_16x4);
  730. return 0;
  731. }
  732. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  733. {
  734. struct drm_device *dev = ring->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. /* WaDisablePartialInstShootdown:skl */
  737. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  738. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  739. /* Syncing dependencies between camera and graphics */
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  742. if (INTEL_REVID(dev) == SKL_REVID_A0) {
  743. /*
  744. * WaDisableDgMirrorFixInHalfSliceChicken5:skl
  745. * This is a pre-production w/a.
  746. */
  747. I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
  748. I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
  749. ~GEN9_DG_MIRROR_FIX_ENABLE);
  750. }
  751. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  752. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  753. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  754. GEN9_ENABLE_YV12_BUGFIX);
  755. }
  756. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  757. /*
  758. *Use Force Non-Coherent whenever executing a 3D context. This
  759. * is a workaround for a possible hang in the unlikely event
  760. * a TLB invalidation occurs during a PSD flush.
  761. */
  762. /* WaForceEnableNonCoherent:skl */
  763. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  764. HDC_FORCE_NON_COHERENT);
  765. }
  766. /* Wa4x4STCOptimizationDisable:skl */
  767. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  768. return 0;
  769. }
  770. int init_workarounds_ring(struct intel_engine_cs *ring)
  771. {
  772. struct drm_device *dev = ring->dev;
  773. struct drm_i915_private *dev_priv = dev->dev_private;
  774. WARN_ON(ring->id != RCS);
  775. dev_priv->workarounds.count = 0;
  776. if (IS_BROADWELL(dev))
  777. return bdw_init_workarounds(ring);
  778. if (IS_CHERRYVIEW(dev))
  779. return chv_init_workarounds(ring);
  780. if (IS_GEN9(dev))
  781. return gen9_init_workarounds(ring);
  782. return 0;
  783. }
  784. static int init_render_ring(struct intel_engine_cs *ring)
  785. {
  786. struct drm_device *dev = ring->dev;
  787. struct drm_i915_private *dev_priv = dev->dev_private;
  788. int ret = init_ring_common(ring);
  789. if (ret)
  790. return ret;
  791. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  792. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  793. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  794. /* We need to disable the AsyncFlip performance optimisations in order
  795. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  796. * programmed to '1' on all products.
  797. *
  798. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  799. */
  800. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  801. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  802. /* Required for the hardware to program scanline values for waiting */
  803. /* WaEnableFlushTlbInvalidationMode:snb */
  804. if (INTEL_INFO(dev)->gen == 6)
  805. I915_WRITE(GFX_MODE,
  806. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  807. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  808. if (IS_GEN7(dev))
  809. I915_WRITE(GFX_MODE_GEN7,
  810. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  811. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  812. if (IS_GEN6(dev)) {
  813. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  814. * "If this bit is set, STCunit will have LRA as replacement
  815. * policy. [...] This bit must be reset. LRA replacement
  816. * policy is not supported."
  817. */
  818. I915_WRITE(CACHE_MODE_0,
  819. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  820. }
  821. if (INTEL_INFO(dev)->gen >= 6)
  822. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  823. if (HAS_L3_DPF(dev))
  824. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  825. return init_workarounds_ring(ring);
  826. }
  827. static void render_ring_cleanup(struct intel_engine_cs *ring)
  828. {
  829. struct drm_device *dev = ring->dev;
  830. struct drm_i915_private *dev_priv = dev->dev_private;
  831. if (dev_priv->semaphore_obj) {
  832. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  833. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  834. dev_priv->semaphore_obj = NULL;
  835. }
  836. intel_fini_pipe_control(ring);
  837. }
  838. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  839. unsigned int num_dwords)
  840. {
  841. #define MBOX_UPDATE_DWORDS 8
  842. struct drm_device *dev = signaller->dev;
  843. struct drm_i915_private *dev_priv = dev->dev_private;
  844. struct intel_engine_cs *waiter;
  845. int i, ret, num_rings;
  846. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  847. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  848. #undef MBOX_UPDATE_DWORDS
  849. ret = intel_ring_begin(signaller, num_dwords);
  850. if (ret)
  851. return ret;
  852. for_each_ring(waiter, dev_priv, i) {
  853. u32 seqno;
  854. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  855. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  856. continue;
  857. seqno = i915_gem_request_get_seqno(
  858. signaller->outstanding_lazy_request);
  859. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  860. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  861. PIPE_CONTROL_QW_WRITE |
  862. PIPE_CONTROL_FLUSH_ENABLE);
  863. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  864. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  865. intel_ring_emit(signaller, seqno);
  866. intel_ring_emit(signaller, 0);
  867. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  868. MI_SEMAPHORE_TARGET(waiter->id));
  869. intel_ring_emit(signaller, 0);
  870. }
  871. return 0;
  872. }
  873. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  874. unsigned int num_dwords)
  875. {
  876. #define MBOX_UPDATE_DWORDS 6
  877. struct drm_device *dev = signaller->dev;
  878. struct drm_i915_private *dev_priv = dev->dev_private;
  879. struct intel_engine_cs *waiter;
  880. int i, ret, num_rings;
  881. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  882. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  883. #undef MBOX_UPDATE_DWORDS
  884. ret = intel_ring_begin(signaller, num_dwords);
  885. if (ret)
  886. return ret;
  887. for_each_ring(waiter, dev_priv, i) {
  888. u32 seqno;
  889. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  890. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  891. continue;
  892. seqno = i915_gem_request_get_seqno(
  893. signaller->outstanding_lazy_request);
  894. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  895. MI_FLUSH_DW_OP_STOREDW);
  896. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  897. MI_FLUSH_DW_USE_GTT);
  898. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  899. intel_ring_emit(signaller, seqno);
  900. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  901. MI_SEMAPHORE_TARGET(waiter->id));
  902. intel_ring_emit(signaller, 0);
  903. }
  904. return 0;
  905. }
  906. static int gen6_signal(struct intel_engine_cs *signaller,
  907. unsigned int num_dwords)
  908. {
  909. struct drm_device *dev = signaller->dev;
  910. struct drm_i915_private *dev_priv = dev->dev_private;
  911. struct intel_engine_cs *useless;
  912. int i, ret, num_rings;
  913. #define MBOX_UPDATE_DWORDS 3
  914. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  915. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  916. #undef MBOX_UPDATE_DWORDS
  917. ret = intel_ring_begin(signaller, num_dwords);
  918. if (ret)
  919. return ret;
  920. for_each_ring(useless, dev_priv, i) {
  921. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  922. if (mbox_reg != GEN6_NOSYNC) {
  923. u32 seqno = i915_gem_request_get_seqno(
  924. signaller->outstanding_lazy_request);
  925. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  926. intel_ring_emit(signaller, mbox_reg);
  927. intel_ring_emit(signaller, seqno);
  928. }
  929. }
  930. /* If num_dwords was rounded, make sure the tail pointer is correct */
  931. if (num_rings % 2 == 0)
  932. intel_ring_emit(signaller, MI_NOOP);
  933. return 0;
  934. }
  935. /**
  936. * gen6_add_request - Update the semaphore mailbox registers
  937. *
  938. * @ring - ring that is adding a request
  939. * @seqno - return seqno stuck into the ring
  940. *
  941. * Update the mailbox registers in the *other* rings with the current seqno.
  942. * This acts like a signal in the canonical semaphore.
  943. */
  944. static int
  945. gen6_add_request(struct intel_engine_cs *ring)
  946. {
  947. int ret;
  948. if (ring->semaphore.signal)
  949. ret = ring->semaphore.signal(ring, 4);
  950. else
  951. ret = intel_ring_begin(ring, 4);
  952. if (ret)
  953. return ret;
  954. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  955. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  956. intel_ring_emit(ring,
  957. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  958. intel_ring_emit(ring, MI_USER_INTERRUPT);
  959. __intel_ring_advance(ring);
  960. return 0;
  961. }
  962. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  963. u32 seqno)
  964. {
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. return dev_priv->last_seqno < seqno;
  967. }
  968. /**
  969. * intel_ring_sync - sync the waiter to the signaller on seqno
  970. *
  971. * @waiter - ring that is waiting
  972. * @signaller - ring which has, or will signal
  973. * @seqno - seqno which the waiter will block on
  974. */
  975. static int
  976. gen8_ring_sync(struct intel_engine_cs *waiter,
  977. struct intel_engine_cs *signaller,
  978. u32 seqno)
  979. {
  980. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  981. int ret;
  982. ret = intel_ring_begin(waiter, 4);
  983. if (ret)
  984. return ret;
  985. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  986. MI_SEMAPHORE_GLOBAL_GTT |
  987. MI_SEMAPHORE_POLL |
  988. MI_SEMAPHORE_SAD_GTE_SDD);
  989. intel_ring_emit(waiter, seqno);
  990. intel_ring_emit(waiter,
  991. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  992. intel_ring_emit(waiter,
  993. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  994. intel_ring_advance(waiter);
  995. return 0;
  996. }
  997. static int
  998. gen6_ring_sync(struct intel_engine_cs *waiter,
  999. struct intel_engine_cs *signaller,
  1000. u32 seqno)
  1001. {
  1002. u32 dw1 = MI_SEMAPHORE_MBOX |
  1003. MI_SEMAPHORE_COMPARE |
  1004. MI_SEMAPHORE_REGISTER;
  1005. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1006. int ret;
  1007. /* Throughout all of the GEM code, seqno passed implies our current
  1008. * seqno is >= the last seqno executed. However for hardware the
  1009. * comparison is strictly greater than.
  1010. */
  1011. seqno -= 1;
  1012. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1013. ret = intel_ring_begin(waiter, 4);
  1014. if (ret)
  1015. return ret;
  1016. /* If seqno wrap happened, omit the wait with no-ops */
  1017. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1018. intel_ring_emit(waiter, dw1 | wait_mbox);
  1019. intel_ring_emit(waiter, seqno);
  1020. intel_ring_emit(waiter, 0);
  1021. intel_ring_emit(waiter, MI_NOOP);
  1022. } else {
  1023. intel_ring_emit(waiter, MI_NOOP);
  1024. intel_ring_emit(waiter, MI_NOOP);
  1025. intel_ring_emit(waiter, MI_NOOP);
  1026. intel_ring_emit(waiter, MI_NOOP);
  1027. }
  1028. intel_ring_advance(waiter);
  1029. return 0;
  1030. }
  1031. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1032. do { \
  1033. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1034. PIPE_CONTROL_DEPTH_STALL); \
  1035. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1036. intel_ring_emit(ring__, 0); \
  1037. intel_ring_emit(ring__, 0); \
  1038. } while (0)
  1039. static int
  1040. pc_render_add_request(struct intel_engine_cs *ring)
  1041. {
  1042. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1043. int ret;
  1044. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1045. * incoherent with writes to memory, i.e. completely fubar,
  1046. * so we need to use PIPE_NOTIFY instead.
  1047. *
  1048. * However, we also need to workaround the qword write
  1049. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1050. * memory before requesting an interrupt.
  1051. */
  1052. ret = intel_ring_begin(ring, 32);
  1053. if (ret)
  1054. return ret;
  1055. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1056. PIPE_CONTROL_WRITE_FLUSH |
  1057. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1058. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1059. intel_ring_emit(ring,
  1060. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1061. intel_ring_emit(ring, 0);
  1062. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1063. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1064. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1065. scratch_addr += 2 * CACHELINE_BYTES;
  1066. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1067. scratch_addr += 2 * CACHELINE_BYTES;
  1068. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1069. scratch_addr += 2 * CACHELINE_BYTES;
  1070. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1071. scratch_addr += 2 * CACHELINE_BYTES;
  1072. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1073. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1074. PIPE_CONTROL_WRITE_FLUSH |
  1075. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1076. PIPE_CONTROL_NOTIFY);
  1077. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1078. intel_ring_emit(ring,
  1079. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1080. intel_ring_emit(ring, 0);
  1081. __intel_ring_advance(ring);
  1082. return 0;
  1083. }
  1084. static u32
  1085. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1086. {
  1087. /* Workaround to force correct ordering between irq and seqno writes on
  1088. * ivb (and maybe also on snb) by reading from a CS register (like
  1089. * ACTHD) before reading the status page. */
  1090. if (!lazy_coherency) {
  1091. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1092. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1093. }
  1094. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1095. }
  1096. static u32
  1097. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1098. {
  1099. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1100. }
  1101. static void
  1102. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1103. {
  1104. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1105. }
  1106. static u32
  1107. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1108. {
  1109. return ring->scratch.cpu_page[0];
  1110. }
  1111. static void
  1112. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1113. {
  1114. ring->scratch.cpu_page[0] = seqno;
  1115. }
  1116. static bool
  1117. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1118. {
  1119. struct drm_device *dev = ring->dev;
  1120. struct drm_i915_private *dev_priv = dev->dev_private;
  1121. unsigned long flags;
  1122. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1123. return false;
  1124. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1125. if (ring->irq_refcount++ == 0)
  1126. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1127. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1128. return true;
  1129. }
  1130. static void
  1131. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1132. {
  1133. struct drm_device *dev = ring->dev;
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. unsigned long flags;
  1136. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1137. if (--ring->irq_refcount == 0)
  1138. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1139. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1140. }
  1141. static bool
  1142. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1143. {
  1144. struct drm_device *dev = ring->dev;
  1145. struct drm_i915_private *dev_priv = dev->dev_private;
  1146. unsigned long flags;
  1147. if (!intel_irqs_enabled(dev_priv))
  1148. return false;
  1149. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1150. if (ring->irq_refcount++ == 0) {
  1151. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1152. I915_WRITE(IMR, dev_priv->irq_mask);
  1153. POSTING_READ(IMR);
  1154. }
  1155. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1156. return true;
  1157. }
  1158. static void
  1159. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1160. {
  1161. struct drm_device *dev = ring->dev;
  1162. struct drm_i915_private *dev_priv = dev->dev_private;
  1163. unsigned long flags;
  1164. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1165. if (--ring->irq_refcount == 0) {
  1166. dev_priv->irq_mask |= ring->irq_enable_mask;
  1167. I915_WRITE(IMR, dev_priv->irq_mask);
  1168. POSTING_READ(IMR);
  1169. }
  1170. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1171. }
  1172. static bool
  1173. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1174. {
  1175. struct drm_device *dev = ring->dev;
  1176. struct drm_i915_private *dev_priv = dev->dev_private;
  1177. unsigned long flags;
  1178. if (!intel_irqs_enabled(dev_priv))
  1179. return false;
  1180. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1181. if (ring->irq_refcount++ == 0) {
  1182. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1183. I915_WRITE16(IMR, dev_priv->irq_mask);
  1184. POSTING_READ16(IMR);
  1185. }
  1186. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1187. return true;
  1188. }
  1189. static void
  1190. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1191. {
  1192. struct drm_device *dev = ring->dev;
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. unsigned long flags;
  1195. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1196. if (--ring->irq_refcount == 0) {
  1197. dev_priv->irq_mask |= ring->irq_enable_mask;
  1198. I915_WRITE16(IMR, dev_priv->irq_mask);
  1199. POSTING_READ16(IMR);
  1200. }
  1201. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1202. }
  1203. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1204. {
  1205. struct drm_device *dev = ring->dev;
  1206. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1207. u32 mmio = 0;
  1208. /* The ring status page addresses are no longer next to the rest of
  1209. * the ring registers as of gen7.
  1210. */
  1211. if (IS_GEN7(dev)) {
  1212. switch (ring->id) {
  1213. case RCS:
  1214. mmio = RENDER_HWS_PGA_GEN7;
  1215. break;
  1216. case BCS:
  1217. mmio = BLT_HWS_PGA_GEN7;
  1218. break;
  1219. /*
  1220. * VCS2 actually doesn't exist on Gen7. Only shut up
  1221. * gcc switch check warning
  1222. */
  1223. case VCS2:
  1224. case VCS:
  1225. mmio = BSD_HWS_PGA_GEN7;
  1226. break;
  1227. case VECS:
  1228. mmio = VEBOX_HWS_PGA_GEN7;
  1229. break;
  1230. }
  1231. } else if (IS_GEN6(ring->dev)) {
  1232. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1233. } else {
  1234. /* XXX: gen8 returns to sanity */
  1235. mmio = RING_HWS_PGA(ring->mmio_base);
  1236. }
  1237. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1238. POSTING_READ(mmio);
  1239. /*
  1240. * Flush the TLB for this page
  1241. *
  1242. * FIXME: These two bits have disappeared on gen8, so a question
  1243. * arises: do we still need this and if so how should we go about
  1244. * invalidating the TLB?
  1245. */
  1246. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1247. u32 reg = RING_INSTPM(ring->mmio_base);
  1248. /* ring should be idle before issuing a sync flush*/
  1249. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1250. I915_WRITE(reg,
  1251. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1252. INSTPM_SYNC_FLUSH));
  1253. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1254. 1000))
  1255. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1256. ring->name);
  1257. }
  1258. }
  1259. static int
  1260. bsd_ring_flush(struct intel_engine_cs *ring,
  1261. u32 invalidate_domains,
  1262. u32 flush_domains)
  1263. {
  1264. int ret;
  1265. ret = intel_ring_begin(ring, 2);
  1266. if (ret)
  1267. return ret;
  1268. intel_ring_emit(ring, MI_FLUSH);
  1269. intel_ring_emit(ring, MI_NOOP);
  1270. intel_ring_advance(ring);
  1271. return 0;
  1272. }
  1273. static int
  1274. i9xx_add_request(struct intel_engine_cs *ring)
  1275. {
  1276. int ret;
  1277. ret = intel_ring_begin(ring, 4);
  1278. if (ret)
  1279. return ret;
  1280. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1281. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1282. intel_ring_emit(ring,
  1283. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1284. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1285. __intel_ring_advance(ring);
  1286. return 0;
  1287. }
  1288. static bool
  1289. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1290. {
  1291. struct drm_device *dev = ring->dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. unsigned long flags;
  1294. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1295. return false;
  1296. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1297. if (ring->irq_refcount++ == 0) {
  1298. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1299. I915_WRITE_IMR(ring,
  1300. ~(ring->irq_enable_mask |
  1301. GT_PARITY_ERROR(dev)));
  1302. else
  1303. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1304. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1305. }
  1306. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1307. return true;
  1308. }
  1309. static void
  1310. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1311. {
  1312. struct drm_device *dev = ring->dev;
  1313. struct drm_i915_private *dev_priv = dev->dev_private;
  1314. unsigned long flags;
  1315. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1316. if (--ring->irq_refcount == 0) {
  1317. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1318. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1319. else
  1320. I915_WRITE_IMR(ring, ~0);
  1321. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1322. }
  1323. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1324. }
  1325. static bool
  1326. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1327. {
  1328. struct drm_device *dev = ring->dev;
  1329. struct drm_i915_private *dev_priv = dev->dev_private;
  1330. unsigned long flags;
  1331. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1332. return false;
  1333. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1334. if (ring->irq_refcount++ == 0) {
  1335. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1336. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1337. }
  1338. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1339. return true;
  1340. }
  1341. static void
  1342. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1343. {
  1344. struct drm_device *dev = ring->dev;
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. unsigned long flags;
  1347. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1348. if (--ring->irq_refcount == 0) {
  1349. I915_WRITE_IMR(ring, ~0);
  1350. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1351. }
  1352. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1353. }
  1354. static bool
  1355. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1356. {
  1357. struct drm_device *dev = ring->dev;
  1358. struct drm_i915_private *dev_priv = dev->dev_private;
  1359. unsigned long flags;
  1360. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1361. return false;
  1362. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1363. if (ring->irq_refcount++ == 0) {
  1364. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1365. I915_WRITE_IMR(ring,
  1366. ~(ring->irq_enable_mask |
  1367. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1368. } else {
  1369. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1370. }
  1371. POSTING_READ(RING_IMR(ring->mmio_base));
  1372. }
  1373. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1374. return true;
  1375. }
  1376. static void
  1377. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1378. {
  1379. struct drm_device *dev = ring->dev;
  1380. struct drm_i915_private *dev_priv = dev->dev_private;
  1381. unsigned long flags;
  1382. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1383. if (--ring->irq_refcount == 0) {
  1384. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1385. I915_WRITE_IMR(ring,
  1386. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1387. } else {
  1388. I915_WRITE_IMR(ring, ~0);
  1389. }
  1390. POSTING_READ(RING_IMR(ring->mmio_base));
  1391. }
  1392. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1393. }
  1394. static int
  1395. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1396. u64 offset, u32 length,
  1397. unsigned flags)
  1398. {
  1399. int ret;
  1400. ret = intel_ring_begin(ring, 2);
  1401. if (ret)
  1402. return ret;
  1403. intel_ring_emit(ring,
  1404. MI_BATCH_BUFFER_START |
  1405. MI_BATCH_GTT |
  1406. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1407. intel_ring_emit(ring, offset);
  1408. intel_ring_advance(ring);
  1409. return 0;
  1410. }
  1411. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1412. #define I830_BATCH_LIMIT (256*1024)
  1413. #define I830_TLB_ENTRIES (2)
  1414. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1415. static int
  1416. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1417. u64 offset, u32 len,
  1418. unsigned flags)
  1419. {
  1420. u32 cs_offset = ring->scratch.gtt_offset;
  1421. int ret;
  1422. ret = intel_ring_begin(ring, 6);
  1423. if (ret)
  1424. return ret;
  1425. /* Evict the invalid PTE TLBs */
  1426. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1427. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1428. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1429. intel_ring_emit(ring, cs_offset);
  1430. intel_ring_emit(ring, 0xdeadbeef);
  1431. intel_ring_emit(ring, MI_NOOP);
  1432. intel_ring_advance(ring);
  1433. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1434. if (len > I830_BATCH_LIMIT)
  1435. return -ENOSPC;
  1436. ret = intel_ring_begin(ring, 6 + 2);
  1437. if (ret)
  1438. return ret;
  1439. /* Blit the batch (which has now all relocs applied) to the
  1440. * stable batch scratch bo area (so that the CS never
  1441. * stumbles over its tlb invalidation bug) ...
  1442. */
  1443. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1444. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1445. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1446. intel_ring_emit(ring, cs_offset);
  1447. intel_ring_emit(ring, 4096);
  1448. intel_ring_emit(ring, offset);
  1449. intel_ring_emit(ring, MI_FLUSH);
  1450. intel_ring_emit(ring, MI_NOOP);
  1451. intel_ring_advance(ring);
  1452. /* ... and execute it. */
  1453. offset = cs_offset;
  1454. }
  1455. ret = intel_ring_begin(ring, 4);
  1456. if (ret)
  1457. return ret;
  1458. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1459. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1460. intel_ring_emit(ring, offset + len - 8);
  1461. intel_ring_emit(ring, MI_NOOP);
  1462. intel_ring_advance(ring);
  1463. return 0;
  1464. }
  1465. static int
  1466. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1467. u64 offset, u32 len,
  1468. unsigned flags)
  1469. {
  1470. int ret;
  1471. ret = intel_ring_begin(ring, 2);
  1472. if (ret)
  1473. return ret;
  1474. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1475. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1476. intel_ring_advance(ring);
  1477. return 0;
  1478. }
  1479. static void cleanup_status_page(struct intel_engine_cs *ring)
  1480. {
  1481. struct drm_i915_gem_object *obj;
  1482. obj = ring->status_page.obj;
  1483. if (obj == NULL)
  1484. return;
  1485. kunmap(sg_page(obj->pages->sgl));
  1486. i915_gem_object_ggtt_unpin(obj);
  1487. drm_gem_object_unreference(&obj->base);
  1488. ring->status_page.obj = NULL;
  1489. }
  1490. static int init_status_page(struct intel_engine_cs *ring)
  1491. {
  1492. struct drm_i915_gem_object *obj;
  1493. if ((obj = ring->status_page.obj) == NULL) {
  1494. unsigned flags;
  1495. int ret;
  1496. obj = i915_gem_alloc_object(ring->dev, 4096);
  1497. if (obj == NULL) {
  1498. DRM_ERROR("Failed to allocate status page\n");
  1499. return -ENOMEM;
  1500. }
  1501. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1502. if (ret)
  1503. goto err_unref;
  1504. flags = 0;
  1505. if (!HAS_LLC(ring->dev))
  1506. /* On g33, we cannot place HWS above 256MiB, so
  1507. * restrict its pinning to the low mappable arena.
  1508. * Though this restriction is not documented for
  1509. * gen4, gen5, or byt, they also behave similarly
  1510. * and hang if the HWS is placed at the top of the
  1511. * GTT. To generalise, it appears that all !llc
  1512. * platforms have issues with us placing the HWS
  1513. * above the mappable region (even though we never
  1514. * actualy map it).
  1515. */
  1516. flags |= PIN_MAPPABLE;
  1517. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1518. if (ret) {
  1519. err_unref:
  1520. drm_gem_object_unreference(&obj->base);
  1521. return ret;
  1522. }
  1523. ring->status_page.obj = obj;
  1524. }
  1525. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1526. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1527. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1528. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1529. ring->name, ring->status_page.gfx_addr);
  1530. return 0;
  1531. }
  1532. static int init_phys_status_page(struct intel_engine_cs *ring)
  1533. {
  1534. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1535. if (!dev_priv->status_page_dmah) {
  1536. dev_priv->status_page_dmah =
  1537. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1538. if (!dev_priv->status_page_dmah)
  1539. return -ENOMEM;
  1540. }
  1541. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1542. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1543. return 0;
  1544. }
  1545. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1546. {
  1547. iounmap(ringbuf->virtual_start);
  1548. ringbuf->virtual_start = NULL;
  1549. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1550. }
  1551. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1552. struct intel_ringbuffer *ringbuf)
  1553. {
  1554. struct drm_i915_private *dev_priv = to_i915(dev);
  1555. struct drm_i915_gem_object *obj = ringbuf->obj;
  1556. int ret;
  1557. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1558. if (ret)
  1559. return ret;
  1560. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1561. if (ret) {
  1562. i915_gem_object_ggtt_unpin(obj);
  1563. return ret;
  1564. }
  1565. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1566. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1567. if (ringbuf->virtual_start == NULL) {
  1568. i915_gem_object_ggtt_unpin(obj);
  1569. return -EINVAL;
  1570. }
  1571. return 0;
  1572. }
  1573. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1574. {
  1575. drm_gem_object_unreference(&ringbuf->obj->base);
  1576. ringbuf->obj = NULL;
  1577. }
  1578. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1579. struct intel_ringbuffer *ringbuf)
  1580. {
  1581. struct drm_i915_gem_object *obj;
  1582. obj = NULL;
  1583. if (!HAS_LLC(dev))
  1584. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1585. if (obj == NULL)
  1586. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1587. if (obj == NULL)
  1588. return -ENOMEM;
  1589. /* mark ring buffers as read-only from GPU side by default */
  1590. obj->gt_ro = 1;
  1591. ringbuf->obj = obj;
  1592. return 0;
  1593. }
  1594. static int intel_init_ring_buffer(struct drm_device *dev,
  1595. struct intel_engine_cs *ring)
  1596. {
  1597. struct intel_ringbuffer *ringbuf;
  1598. int ret;
  1599. WARN_ON(ring->buffer);
  1600. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1601. if (!ringbuf)
  1602. return -ENOMEM;
  1603. ring->buffer = ringbuf;
  1604. ring->dev = dev;
  1605. INIT_LIST_HEAD(&ring->active_list);
  1606. INIT_LIST_HEAD(&ring->request_list);
  1607. INIT_LIST_HEAD(&ring->execlist_queue);
  1608. ringbuf->size = 32 * PAGE_SIZE;
  1609. ringbuf->ring = ring;
  1610. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1611. init_waitqueue_head(&ring->irq_queue);
  1612. if (I915_NEED_GFX_HWS(dev)) {
  1613. ret = init_status_page(ring);
  1614. if (ret)
  1615. goto error;
  1616. } else {
  1617. BUG_ON(ring->id != RCS);
  1618. ret = init_phys_status_page(ring);
  1619. if (ret)
  1620. goto error;
  1621. }
  1622. WARN_ON(ringbuf->obj);
  1623. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1624. if (ret) {
  1625. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1626. ring->name, ret);
  1627. goto error;
  1628. }
  1629. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1630. if (ret) {
  1631. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1632. ring->name, ret);
  1633. intel_destroy_ringbuffer_obj(ringbuf);
  1634. goto error;
  1635. }
  1636. /* Workaround an erratum on the i830 which causes a hang if
  1637. * the TAIL pointer points to within the last 2 cachelines
  1638. * of the buffer.
  1639. */
  1640. ringbuf->effective_size = ringbuf->size;
  1641. if (IS_I830(dev) || IS_845G(dev))
  1642. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1643. ret = i915_cmd_parser_init_ring(ring);
  1644. if (ret)
  1645. goto error;
  1646. return 0;
  1647. error:
  1648. kfree(ringbuf);
  1649. ring->buffer = NULL;
  1650. return ret;
  1651. }
  1652. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1653. {
  1654. struct drm_i915_private *dev_priv;
  1655. struct intel_ringbuffer *ringbuf;
  1656. if (!intel_ring_initialized(ring))
  1657. return;
  1658. dev_priv = to_i915(ring->dev);
  1659. ringbuf = ring->buffer;
  1660. intel_stop_ring_buffer(ring);
  1661. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1662. intel_unpin_ringbuffer_obj(ringbuf);
  1663. intel_destroy_ringbuffer_obj(ringbuf);
  1664. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1665. if (ring->cleanup)
  1666. ring->cleanup(ring);
  1667. cleanup_status_page(ring);
  1668. i915_cmd_parser_fini_ring(ring);
  1669. kfree(ringbuf);
  1670. ring->buffer = NULL;
  1671. }
  1672. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1673. {
  1674. struct intel_ringbuffer *ringbuf = ring->buffer;
  1675. struct drm_i915_gem_request *request;
  1676. int ret;
  1677. if (intel_ring_space(ringbuf) >= n)
  1678. return 0;
  1679. list_for_each_entry(request, &ring->request_list, list) {
  1680. if (__intel_ring_space(request->postfix, ringbuf->tail,
  1681. ringbuf->size) >= n) {
  1682. break;
  1683. }
  1684. }
  1685. if (&request->list == &ring->request_list)
  1686. return -ENOSPC;
  1687. ret = i915_wait_request(request);
  1688. if (ret)
  1689. return ret;
  1690. i915_gem_retire_requests_ring(ring);
  1691. return 0;
  1692. }
  1693. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1694. {
  1695. struct drm_device *dev = ring->dev;
  1696. struct drm_i915_private *dev_priv = dev->dev_private;
  1697. struct intel_ringbuffer *ringbuf = ring->buffer;
  1698. unsigned long end;
  1699. int ret;
  1700. ret = intel_ring_wait_request(ring, n);
  1701. if (ret != -ENOSPC)
  1702. return ret;
  1703. /* force the tail write in case we have been skipping them */
  1704. __intel_ring_advance(ring);
  1705. /* With GEM the hangcheck timer should kick us out of the loop,
  1706. * leaving it early runs the risk of corrupting GEM state (due
  1707. * to running on almost untested codepaths). But on resume
  1708. * timers don't work yet, so prevent a complete hang in that
  1709. * case by choosing an insanely large timeout. */
  1710. end = jiffies + 60 * HZ;
  1711. ret = 0;
  1712. trace_i915_ring_wait_begin(ring);
  1713. do {
  1714. if (intel_ring_space(ringbuf) >= n)
  1715. break;
  1716. ringbuf->head = I915_READ_HEAD(ring);
  1717. if (intel_ring_space(ringbuf) >= n)
  1718. break;
  1719. msleep(1);
  1720. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1721. ret = -ERESTARTSYS;
  1722. break;
  1723. }
  1724. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1725. dev_priv->mm.interruptible);
  1726. if (ret)
  1727. break;
  1728. if (time_after(jiffies, end)) {
  1729. ret = -EBUSY;
  1730. break;
  1731. }
  1732. } while (1);
  1733. trace_i915_ring_wait_end(ring);
  1734. return ret;
  1735. }
  1736. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1737. {
  1738. uint32_t __iomem *virt;
  1739. struct intel_ringbuffer *ringbuf = ring->buffer;
  1740. int rem = ringbuf->size - ringbuf->tail;
  1741. if (ringbuf->space < rem) {
  1742. int ret = ring_wait_for_space(ring, rem);
  1743. if (ret)
  1744. return ret;
  1745. }
  1746. virt = ringbuf->virtual_start + ringbuf->tail;
  1747. rem /= 4;
  1748. while (rem--)
  1749. iowrite32(MI_NOOP, virt++);
  1750. ringbuf->tail = 0;
  1751. intel_ring_update_space(ringbuf);
  1752. return 0;
  1753. }
  1754. int intel_ring_idle(struct intel_engine_cs *ring)
  1755. {
  1756. struct drm_i915_gem_request *req;
  1757. int ret;
  1758. /* We need to add any requests required to flush the objects and ring */
  1759. if (ring->outstanding_lazy_request) {
  1760. ret = i915_add_request(ring);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. /* Wait upon the last request to be completed */
  1765. if (list_empty(&ring->request_list))
  1766. return 0;
  1767. req = list_entry(ring->request_list.prev,
  1768. struct drm_i915_gem_request,
  1769. list);
  1770. return i915_wait_request(req);
  1771. }
  1772. static int
  1773. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1774. {
  1775. int ret;
  1776. struct drm_i915_gem_request *request;
  1777. struct drm_i915_private *dev_private = ring->dev->dev_private;
  1778. if (ring->outstanding_lazy_request)
  1779. return 0;
  1780. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1781. if (request == NULL)
  1782. return -ENOMEM;
  1783. kref_init(&request->ref);
  1784. request->ring = ring;
  1785. request->uniq = dev_private->request_uniq++;
  1786. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1787. if (ret) {
  1788. kfree(request);
  1789. return ret;
  1790. }
  1791. ring->outstanding_lazy_request = request;
  1792. return 0;
  1793. }
  1794. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1795. int bytes)
  1796. {
  1797. struct intel_ringbuffer *ringbuf = ring->buffer;
  1798. int ret;
  1799. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1800. ret = intel_wrap_ring_buffer(ring);
  1801. if (unlikely(ret))
  1802. return ret;
  1803. }
  1804. if (unlikely(ringbuf->space < bytes)) {
  1805. ret = ring_wait_for_space(ring, bytes);
  1806. if (unlikely(ret))
  1807. return ret;
  1808. }
  1809. return 0;
  1810. }
  1811. int intel_ring_begin(struct intel_engine_cs *ring,
  1812. int num_dwords)
  1813. {
  1814. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1815. int ret;
  1816. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1817. dev_priv->mm.interruptible);
  1818. if (ret)
  1819. return ret;
  1820. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1821. if (ret)
  1822. return ret;
  1823. /* Preallocate the olr before touching the ring */
  1824. ret = intel_ring_alloc_request(ring);
  1825. if (ret)
  1826. return ret;
  1827. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1828. return 0;
  1829. }
  1830. /* Align the ring tail to a cacheline boundary */
  1831. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1832. {
  1833. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1834. int ret;
  1835. if (num_dwords == 0)
  1836. return 0;
  1837. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1838. ret = intel_ring_begin(ring, num_dwords);
  1839. if (ret)
  1840. return ret;
  1841. while (num_dwords--)
  1842. intel_ring_emit(ring, MI_NOOP);
  1843. intel_ring_advance(ring);
  1844. return 0;
  1845. }
  1846. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1847. {
  1848. struct drm_device *dev = ring->dev;
  1849. struct drm_i915_private *dev_priv = dev->dev_private;
  1850. BUG_ON(ring->outstanding_lazy_request);
  1851. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1852. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1853. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1854. if (HAS_VEBOX(dev))
  1855. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1856. }
  1857. ring->set_seqno(ring, seqno);
  1858. ring->hangcheck.seqno = seqno;
  1859. }
  1860. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1861. u32 value)
  1862. {
  1863. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1864. /* Every tail move must follow the sequence below */
  1865. /* Disable notification that the ring is IDLE. The GT
  1866. * will then assume that it is busy and bring it out of rc6.
  1867. */
  1868. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1869. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1870. /* Clear the context id. Here be magic! */
  1871. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1872. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1873. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1874. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1875. 50))
  1876. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1877. /* Now that the ring is fully powered up, update the tail */
  1878. I915_WRITE_TAIL(ring, value);
  1879. POSTING_READ(RING_TAIL(ring->mmio_base));
  1880. /* Let the ring send IDLE messages to the GT again,
  1881. * and so let it sleep to conserve power when idle.
  1882. */
  1883. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1884. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1885. }
  1886. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1887. u32 invalidate, u32 flush)
  1888. {
  1889. uint32_t cmd;
  1890. int ret;
  1891. ret = intel_ring_begin(ring, 4);
  1892. if (ret)
  1893. return ret;
  1894. cmd = MI_FLUSH_DW;
  1895. if (INTEL_INFO(ring->dev)->gen >= 8)
  1896. cmd += 1;
  1897. /*
  1898. * Bspec vol 1c.5 - video engine command streamer:
  1899. * "If ENABLED, all TLBs will be invalidated once the flush
  1900. * operation is complete. This bit is only valid when the
  1901. * Post-Sync Operation field is a value of 1h or 3h."
  1902. */
  1903. if (invalidate & I915_GEM_GPU_DOMAINS)
  1904. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1905. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1906. intel_ring_emit(ring, cmd);
  1907. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1908. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1909. intel_ring_emit(ring, 0); /* upper addr */
  1910. intel_ring_emit(ring, 0); /* value */
  1911. } else {
  1912. intel_ring_emit(ring, 0);
  1913. intel_ring_emit(ring, MI_NOOP);
  1914. }
  1915. intel_ring_advance(ring);
  1916. return 0;
  1917. }
  1918. static int
  1919. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1920. u64 offset, u32 len,
  1921. unsigned flags)
  1922. {
  1923. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1924. int ret;
  1925. ret = intel_ring_begin(ring, 4);
  1926. if (ret)
  1927. return ret;
  1928. /* FIXME(BDW): Address space and security selectors. */
  1929. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1930. intel_ring_emit(ring, lower_32_bits(offset));
  1931. intel_ring_emit(ring, upper_32_bits(offset));
  1932. intel_ring_emit(ring, MI_NOOP);
  1933. intel_ring_advance(ring);
  1934. return 0;
  1935. }
  1936. static int
  1937. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1938. u64 offset, u32 len,
  1939. unsigned flags)
  1940. {
  1941. int ret;
  1942. ret = intel_ring_begin(ring, 2);
  1943. if (ret)
  1944. return ret;
  1945. intel_ring_emit(ring,
  1946. MI_BATCH_BUFFER_START |
  1947. (flags & I915_DISPATCH_SECURE ?
  1948. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1949. /* bit0-7 is the length on GEN6+ */
  1950. intel_ring_emit(ring, offset);
  1951. intel_ring_advance(ring);
  1952. return 0;
  1953. }
  1954. static int
  1955. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1956. u64 offset, u32 len,
  1957. unsigned flags)
  1958. {
  1959. int ret;
  1960. ret = intel_ring_begin(ring, 2);
  1961. if (ret)
  1962. return ret;
  1963. intel_ring_emit(ring,
  1964. MI_BATCH_BUFFER_START |
  1965. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1966. /* bit0-7 is the length on GEN6+ */
  1967. intel_ring_emit(ring, offset);
  1968. intel_ring_advance(ring);
  1969. return 0;
  1970. }
  1971. /* Blitter support (SandyBridge+) */
  1972. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1973. u32 invalidate, u32 flush)
  1974. {
  1975. struct drm_device *dev = ring->dev;
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. uint32_t cmd;
  1978. int ret;
  1979. ret = intel_ring_begin(ring, 4);
  1980. if (ret)
  1981. return ret;
  1982. cmd = MI_FLUSH_DW;
  1983. if (INTEL_INFO(ring->dev)->gen >= 8)
  1984. cmd += 1;
  1985. /*
  1986. * Bspec vol 1c.3 - blitter engine command streamer:
  1987. * "If ENABLED, all TLBs will be invalidated once the flush
  1988. * operation is complete. This bit is only valid when the
  1989. * Post-Sync Operation field is a value of 1h or 3h."
  1990. */
  1991. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1992. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1993. MI_FLUSH_DW_OP_STOREDW;
  1994. intel_ring_emit(ring, cmd);
  1995. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1996. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1997. intel_ring_emit(ring, 0); /* upper addr */
  1998. intel_ring_emit(ring, 0); /* value */
  1999. } else {
  2000. intel_ring_emit(ring, 0);
  2001. intel_ring_emit(ring, MI_NOOP);
  2002. }
  2003. intel_ring_advance(ring);
  2004. if (!invalidate && flush) {
  2005. if (IS_GEN7(dev))
  2006. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  2007. else if (IS_BROADWELL(dev))
  2008. dev_priv->fbc.need_sw_cache_clean = true;
  2009. }
  2010. return 0;
  2011. }
  2012. int intel_init_render_ring_buffer(struct drm_device *dev)
  2013. {
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2016. struct drm_i915_gem_object *obj;
  2017. int ret;
  2018. ring->name = "render ring";
  2019. ring->id = RCS;
  2020. ring->mmio_base = RENDER_RING_BASE;
  2021. if (INTEL_INFO(dev)->gen >= 8) {
  2022. if (i915_semaphore_is_enabled(dev)) {
  2023. obj = i915_gem_alloc_object(dev, 4096);
  2024. if (obj == NULL) {
  2025. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2026. i915.semaphores = 0;
  2027. } else {
  2028. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2029. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2030. if (ret != 0) {
  2031. drm_gem_object_unreference(&obj->base);
  2032. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2033. i915.semaphores = 0;
  2034. } else
  2035. dev_priv->semaphore_obj = obj;
  2036. }
  2037. }
  2038. ring->init_context = intel_rcs_ctx_init;
  2039. ring->add_request = gen6_add_request;
  2040. ring->flush = gen8_render_ring_flush;
  2041. ring->irq_get = gen8_ring_get_irq;
  2042. ring->irq_put = gen8_ring_put_irq;
  2043. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2044. ring->get_seqno = gen6_ring_get_seqno;
  2045. ring->set_seqno = ring_set_seqno;
  2046. if (i915_semaphore_is_enabled(dev)) {
  2047. WARN_ON(!dev_priv->semaphore_obj);
  2048. ring->semaphore.sync_to = gen8_ring_sync;
  2049. ring->semaphore.signal = gen8_rcs_signal;
  2050. GEN8_RING_SEMAPHORE_INIT;
  2051. }
  2052. } else if (INTEL_INFO(dev)->gen >= 6) {
  2053. ring->add_request = gen6_add_request;
  2054. ring->flush = gen7_render_ring_flush;
  2055. if (INTEL_INFO(dev)->gen == 6)
  2056. ring->flush = gen6_render_ring_flush;
  2057. ring->irq_get = gen6_ring_get_irq;
  2058. ring->irq_put = gen6_ring_put_irq;
  2059. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2060. ring->get_seqno = gen6_ring_get_seqno;
  2061. ring->set_seqno = ring_set_seqno;
  2062. if (i915_semaphore_is_enabled(dev)) {
  2063. ring->semaphore.sync_to = gen6_ring_sync;
  2064. ring->semaphore.signal = gen6_signal;
  2065. /*
  2066. * The current semaphore is only applied on pre-gen8
  2067. * platform. And there is no VCS2 ring on the pre-gen8
  2068. * platform. So the semaphore between RCS and VCS2 is
  2069. * initialized as INVALID. Gen8 will initialize the
  2070. * sema between VCS2 and RCS later.
  2071. */
  2072. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2073. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2074. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2075. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2076. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2077. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2078. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2079. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2080. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2081. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2082. }
  2083. } else if (IS_GEN5(dev)) {
  2084. ring->add_request = pc_render_add_request;
  2085. ring->flush = gen4_render_ring_flush;
  2086. ring->get_seqno = pc_render_get_seqno;
  2087. ring->set_seqno = pc_render_set_seqno;
  2088. ring->irq_get = gen5_ring_get_irq;
  2089. ring->irq_put = gen5_ring_put_irq;
  2090. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2091. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2092. } else {
  2093. ring->add_request = i9xx_add_request;
  2094. if (INTEL_INFO(dev)->gen < 4)
  2095. ring->flush = gen2_render_ring_flush;
  2096. else
  2097. ring->flush = gen4_render_ring_flush;
  2098. ring->get_seqno = ring_get_seqno;
  2099. ring->set_seqno = ring_set_seqno;
  2100. if (IS_GEN2(dev)) {
  2101. ring->irq_get = i8xx_ring_get_irq;
  2102. ring->irq_put = i8xx_ring_put_irq;
  2103. } else {
  2104. ring->irq_get = i9xx_ring_get_irq;
  2105. ring->irq_put = i9xx_ring_put_irq;
  2106. }
  2107. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2108. }
  2109. ring->write_tail = ring_write_tail;
  2110. if (IS_HASWELL(dev))
  2111. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2112. else if (IS_GEN8(dev))
  2113. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2114. else if (INTEL_INFO(dev)->gen >= 6)
  2115. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2116. else if (INTEL_INFO(dev)->gen >= 4)
  2117. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2118. else if (IS_I830(dev) || IS_845G(dev))
  2119. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2120. else
  2121. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2122. ring->init_hw = init_render_ring;
  2123. ring->cleanup = render_ring_cleanup;
  2124. /* Workaround batchbuffer to combat CS tlb bug. */
  2125. if (HAS_BROKEN_CS_TLB(dev)) {
  2126. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2127. if (obj == NULL) {
  2128. DRM_ERROR("Failed to allocate batch bo\n");
  2129. return -ENOMEM;
  2130. }
  2131. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2132. if (ret != 0) {
  2133. drm_gem_object_unreference(&obj->base);
  2134. DRM_ERROR("Failed to ping batch bo\n");
  2135. return ret;
  2136. }
  2137. ring->scratch.obj = obj;
  2138. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2139. }
  2140. ret = intel_init_ring_buffer(dev, ring);
  2141. if (ret)
  2142. return ret;
  2143. if (INTEL_INFO(dev)->gen >= 5) {
  2144. ret = intel_init_pipe_control(ring);
  2145. if (ret)
  2146. return ret;
  2147. }
  2148. return 0;
  2149. }
  2150. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2151. {
  2152. struct drm_i915_private *dev_priv = dev->dev_private;
  2153. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2154. ring->name = "bsd ring";
  2155. ring->id = VCS;
  2156. ring->write_tail = ring_write_tail;
  2157. if (INTEL_INFO(dev)->gen >= 6) {
  2158. ring->mmio_base = GEN6_BSD_RING_BASE;
  2159. /* gen6 bsd needs a special wa for tail updates */
  2160. if (IS_GEN6(dev))
  2161. ring->write_tail = gen6_bsd_ring_write_tail;
  2162. ring->flush = gen6_bsd_ring_flush;
  2163. ring->add_request = gen6_add_request;
  2164. ring->get_seqno = gen6_ring_get_seqno;
  2165. ring->set_seqno = ring_set_seqno;
  2166. if (INTEL_INFO(dev)->gen >= 8) {
  2167. ring->irq_enable_mask =
  2168. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2169. ring->irq_get = gen8_ring_get_irq;
  2170. ring->irq_put = gen8_ring_put_irq;
  2171. ring->dispatch_execbuffer =
  2172. gen8_ring_dispatch_execbuffer;
  2173. if (i915_semaphore_is_enabled(dev)) {
  2174. ring->semaphore.sync_to = gen8_ring_sync;
  2175. ring->semaphore.signal = gen8_xcs_signal;
  2176. GEN8_RING_SEMAPHORE_INIT;
  2177. }
  2178. } else {
  2179. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2180. ring->irq_get = gen6_ring_get_irq;
  2181. ring->irq_put = gen6_ring_put_irq;
  2182. ring->dispatch_execbuffer =
  2183. gen6_ring_dispatch_execbuffer;
  2184. if (i915_semaphore_is_enabled(dev)) {
  2185. ring->semaphore.sync_to = gen6_ring_sync;
  2186. ring->semaphore.signal = gen6_signal;
  2187. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2188. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2189. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2190. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2191. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2192. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2193. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2194. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2195. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2196. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2197. }
  2198. }
  2199. } else {
  2200. ring->mmio_base = BSD_RING_BASE;
  2201. ring->flush = bsd_ring_flush;
  2202. ring->add_request = i9xx_add_request;
  2203. ring->get_seqno = ring_get_seqno;
  2204. ring->set_seqno = ring_set_seqno;
  2205. if (IS_GEN5(dev)) {
  2206. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2207. ring->irq_get = gen5_ring_get_irq;
  2208. ring->irq_put = gen5_ring_put_irq;
  2209. } else {
  2210. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2211. ring->irq_get = i9xx_ring_get_irq;
  2212. ring->irq_put = i9xx_ring_put_irq;
  2213. }
  2214. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2215. }
  2216. ring->init_hw = init_ring_common;
  2217. return intel_init_ring_buffer(dev, ring);
  2218. }
  2219. /**
  2220. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2221. */
  2222. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2223. {
  2224. struct drm_i915_private *dev_priv = dev->dev_private;
  2225. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2226. ring->name = "bsd2 ring";
  2227. ring->id = VCS2;
  2228. ring->write_tail = ring_write_tail;
  2229. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2230. ring->flush = gen6_bsd_ring_flush;
  2231. ring->add_request = gen6_add_request;
  2232. ring->get_seqno = gen6_ring_get_seqno;
  2233. ring->set_seqno = ring_set_seqno;
  2234. ring->irq_enable_mask =
  2235. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2236. ring->irq_get = gen8_ring_get_irq;
  2237. ring->irq_put = gen8_ring_put_irq;
  2238. ring->dispatch_execbuffer =
  2239. gen8_ring_dispatch_execbuffer;
  2240. if (i915_semaphore_is_enabled(dev)) {
  2241. ring->semaphore.sync_to = gen8_ring_sync;
  2242. ring->semaphore.signal = gen8_xcs_signal;
  2243. GEN8_RING_SEMAPHORE_INIT;
  2244. }
  2245. ring->init_hw = init_ring_common;
  2246. return intel_init_ring_buffer(dev, ring);
  2247. }
  2248. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2249. {
  2250. struct drm_i915_private *dev_priv = dev->dev_private;
  2251. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2252. ring->name = "blitter ring";
  2253. ring->id = BCS;
  2254. ring->mmio_base = BLT_RING_BASE;
  2255. ring->write_tail = ring_write_tail;
  2256. ring->flush = gen6_ring_flush;
  2257. ring->add_request = gen6_add_request;
  2258. ring->get_seqno = gen6_ring_get_seqno;
  2259. ring->set_seqno = ring_set_seqno;
  2260. if (INTEL_INFO(dev)->gen >= 8) {
  2261. ring->irq_enable_mask =
  2262. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2263. ring->irq_get = gen8_ring_get_irq;
  2264. ring->irq_put = gen8_ring_put_irq;
  2265. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2266. if (i915_semaphore_is_enabled(dev)) {
  2267. ring->semaphore.sync_to = gen8_ring_sync;
  2268. ring->semaphore.signal = gen8_xcs_signal;
  2269. GEN8_RING_SEMAPHORE_INIT;
  2270. }
  2271. } else {
  2272. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2273. ring->irq_get = gen6_ring_get_irq;
  2274. ring->irq_put = gen6_ring_put_irq;
  2275. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2276. if (i915_semaphore_is_enabled(dev)) {
  2277. ring->semaphore.signal = gen6_signal;
  2278. ring->semaphore.sync_to = gen6_ring_sync;
  2279. /*
  2280. * The current semaphore is only applied on pre-gen8
  2281. * platform. And there is no VCS2 ring on the pre-gen8
  2282. * platform. So the semaphore between BCS and VCS2 is
  2283. * initialized as INVALID. Gen8 will initialize the
  2284. * sema between BCS and VCS2 later.
  2285. */
  2286. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2287. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2288. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2289. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2290. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2291. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2292. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2293. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2294. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2295. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2296. }
  2297. }
  2298. ring->init_hw = init_ring_common;
  2299. return intel_init_ring_buffer(dev, ring);
  2300. }
  2301. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2302. {
  2303. struct drm_i915_private *dev_priv = dev->dev_private;
  2304. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2305. ring->name = "video enhancement ring";
  2306. ring->id = VECS;
  2307. ring->mmio_base = VEBOX_RING_BASE;
  2308. ring->write_tail = ring_write_tail;
  2309. ring->flush = gen6_ring_flush;
  2310. ring->add_request = gen6_add_request;
  2311. ring->get_seqno = gen6_ring_get_seqno;
  2312. ring->set_seqno = ring_set_seqno;
  2313. if (INTEL_INFO(dev)->gen >= 8) {
  2314. ring->irq_enable_mask =
  2315. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2316. ring->irq_get = gen8_ring_get_irq;
  2317. ring->irq_put = gen8_ring_put_irq;
  2318. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2319. if (i915_semaphore_is_enabled(dev)) {
  2320. ring->semaphore.sync_to = gen8_ring_sync;
  2321. ring->semaphore.signal = gen8_xcs_signal;
  2322. GEN8_RING_SEMAPHORE_INIT;
  2323. }
  2324. } else {
  2325. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2326. ring->irq_get = hsw_vebox_get_irq;
  2327. ring->irq_put = hsw_vebox_put_irq;
  2328. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2329. if (i915_semaphore_is_enabled(dev)) {
  2330. ring->semaphore.sync_to = gen6_ring_sync;
  2331. ring->semaphore.signal = gen6_signal;
  2332. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2333. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2334. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2335. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2336. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2337. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2338. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2339. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2340. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2341. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2342. }
  2343. }
  2344. ring->init_hw = init_ring_common;
  2345. return intel_init_ring_buffer(dev, ring);
  2346. }
  2347. int
  2348. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2349. {
  2350. int ret;
  2351. if (!ring->gpu_caches_dirty)
  2352. return 0;
  2353. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2354. if (ret)
  2355. return ret;
  2356. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2357. ring->gpu_caches_dirty = false;
  2358. return 0;
  2359. }
  2360. int
  2361. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2362. {
  2363. uint32_t flush_domains;
  2364. int ret;
  2365. flush_domains = 0;
  2366. if (ring->gpu_caches_dirty)
  2367. flush_domains = I915_GEM_GPU_DOMAINS;
  2368. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2369. if (ret)
  2370. return ret;
  2371. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2372. ring->gpu_caches_dirty = false;
  2373. return 0;
  2374. }
  2375. void
  2376. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2377. {
  2378. int ret;
  2379. if (!intel_ring_initialized(ring))
  2380. return;
  2381. ret = intel_ring_idle(ring);
  2382. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2383. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2384. ring->name, ret);
  2385. stop_ring(ring);
  2386. }