amdgpu_dpm.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /*
  2. * Copyright 2011 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_atombios.h"
  27. #include "amdgpu_i2c.h"
  28. #include "amdgpu_dpm.h"
  29. #include "atom.h"
  30. void amdgpu_dpm_print_class_info(u32 class, u32 class2)
  31. {
  32. const char *s;
  33. switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
  34. case ATOM_PPLIB_CLASSIFICATION_UI_NONE:
  35. default:
  36. s = "none";
  37. break;
  38. case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
  39. s = "battery";
  40. break;
  41. case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED:
  42. s = "balanced";
  43. break;
  44. case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
  45. s = "performance";
  46. break;
  47. }
  48. printk("\tui class: %s\n", s);
  49. printk("\tinternal class:");
  50. if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) &&
  51. (class2 == 0))
  52. pr_cont(" none");
  53. else {
  54. if (class & ATOM_PPLIB_CLASSIFICATION_BOOT)
  55. pr_cont(" boot");
  56. if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL)
  57. pr_cont(" thermal");
  58. if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE)
  59. pr_cont(" limited_pwr");
  60. if (class & ATOM_PPLIB_CLASSIFICATION_REST)
  61. pr_cont(" rest");
  62. if (class & ATOM_PPLIB_CLASSIFICATION_FORCED)
  63. pr_cont(" forced");
  64. if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE)
  65. pr_cont(" 3d_perf");
  66. if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE)
  67. pr_cont(" ovrdrv");
  68. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  69. pr_cont(" uvd");
  70. if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW)
  71. pr_cont(" 3d_low");
  72. if (class & ATOM_PPLIB_CLASSIFICATION_ACPI)
  73. pr_cont(" acpi");
  74. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  75. pr_cont(" uvd_hd2");
  76. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  77. pr_cont(" uvd_hd");
  78. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  79. pr_cont(" uvd_sd");
  80. if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2)
  81. pr_cont(" limited_pwr2");
  82. if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV)
  83. pr_cont(" ulv");
  84. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  85. pr_cont(" uvd_mvc");
  86. }
  87. pr_cont("\n");
  88. }
  89. void amdgpu_dpm_print_cap_info(u32 caps)
  90. {
  91. printk("\tcaps:");
  92. if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY)
  93. pr_cont(" single_disp");
  94. if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK)
  95. pr_cont(" video");
  96. if (caps & ATOM_PPLIB_DISALLOW_ON_DC)
  97. pr_cont(" no_dc");
  98. pr_cont("\n");
  99. }
  100. void amdgpu_dpm_print_ps_status(struct amdgpu_device *adev,
  101. struct amdgpu_ps *rps)
  102. {
  103. printk("\tstatus:");
  104. if (rps == adev->pm.dpm.current_ps)
  105. pr_cont(" c");
  106. if (rps == adev->pm.dpm.requested_ps)
  107. pr_cont(" r");
  108. if (rps == adev->pm.dpm.boot_ps)
  109. pr_cont(" b");
  110. pr_cont("\n");
  111. }
  112. void amdgpu_dpm_get_active_displays(struct amdgpu_device *adev)
  113. {
  114. struct drm_device *ddev = adev->ddev;
  115. struct drm_crtc *crtc;
  116. struct amdgpu_crtc *amdgpu_crtc;
  117. adev->pm.dpm.new_active_crtcs = 0;
  118. adev->pm.dpm.new_active_crtc_count = 0;
  119. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  120. list_for_each_entry(crtc,
  121. &ddev->mode_config.crtc_list, head) {
  122. amdgpu_crtc = to_amdgpu_crtc(crtc);
  123. if (amdgpu_crtc->enabled) {
  124. adev->pm.dpm.new_active_crtcs |= (1 << amdgpu_crtc->crtc_id);
  125. adev->pm.dpm.new_active_crtc_count++;
  126. }
  127. }
  128. }
  129. }
  130. u32 amdgpu_dpm_get_vblank_time(struct amdgpu_device *adev)
  131. {
  132. struct drm_device *dev = adev->ddev;
  133. struct drm_crtc *crtc;
  134. struct amdgpu_crtc *amdgpu_crtc;
  135. u32 vblank_in_pixels;
  136. u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */
  137. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  138. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  139. amdgpu_crtc = to_amdgpu_crtc(crtc);
  140. if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
  141. vblank_in_pixels =
  142. amdgpu_crtc->hw_mode.crtc_htotal *
  143. (amdgpu_crtc->hw_mode.crtc_vblank_end -
  144. amdgpu_crtc->hw_mode.crtc_vdisplay +
  145. (amdgpu_crtc->v_border * 2));
  146. vblank_time_us = vblank_in_pixels * 1000 / amdgpu_crtc->hw_mode.clock;
  147. break;
  148. }
  149. }
  150. }
  151. return vblank_time_us;
  152. }
  153. u32 amdgpu_dpm_get_vrefresh(struct amdgpu_device *adev)
  154. {
  155. struct drm_device *dev = adev->ddev;
  156. struct drm_crtc *crtc;
  157. struct amdgpu_crtc *amdgpu_crtc;
  158. u32 vrefresh = 0;
  159. if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
  160. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  161. amdgpu_crtc = to_amdgpu_crtc(crtc);
  162. if (crtc->enabled && amdgpu_crtc->enabled && amdgpu_crtc->hw_mode.clock) {
  163. vrefresh = drm_mode_vrefresh(&amdgpu_crtc->hw_mode);
  164. break;
  165. }
  166. }
  167. }
  168. return vrefresh;
  169. }
  170. void amdgpu_calculate_u_and_p(u32 i, u32 r_c, u32 p_b,
  171. u32 *p, u32 *u)
  172. {
  173. u32 b_c = 0;
  174. u32 i_c;
  175. u32 tmp;
  176. i_c = (i * r_c) / 100;
  177. tmp = i_c >> p_b;
  178. while (tmp) {
  179. b_c++;
  180. tmp >>= 1;
  181. }
  182. *u = (b_c + 1) / 2;
  183. *p = i_c / (1 << (2 * (*u)));
  184. }
  185. int amdgpu_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th)
  186. {
  187. u32 k, a, ah, al;
  188. u32 t1;
  189. if ((fl == 0) || (fh == 0) || (fl > fh))
  190. return -EINVAL;
  191. k = (100 * fh) / fl;
  192. t1 = (t * (k - 100));
  193. a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100));
  194. a = (a + 5) / 10;
  195. ah = ((a * t) + 5000) / 10000;
  196. al = a - ah;
  197. *th = t - ah;
  198. *tl = t + al;
  199. return 0;
  200. }
  201. bool amdgpu_is_uvd_state(u32 class, u32 class2)
  202. {
  203. if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  204. return true;
  205. if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE)
  206. return true;
  207. if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)
  208. return true;
  209. if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE)
  210. return true;
  211. if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)
  212. return true;
  213. return false;
  214. }
  215. bool amdgpu_is_internal_thermal_sensor(enum amdgpu_int_thermal_type sensor)
  216. {
  217. switch (sensor) {
  218. case THERMAL_TYPE_RV6XX:
  219. case THERMAL_TYPE_RV770:
  220. case THERMAL_TYPE_EVERGREEN:
  221. case THERMAL_TYPE_SUMO:
  222. case THERMAL_TYPE_NI:
  223. case THERMAL_TYPE_SI:
  224. case THERMAL_TYPE_CI:
  225. case THERMAL_TYPE_KV:
  226. return true;
  227. case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
  228. case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
  229. return false; /* need special handling */
  230. case THERMAL_TYPE_NONE:
  231. case THERMAL_TYPE_EXTERNAL:
  232. case THERMAL_TYPE_EXTERNAL_GPIO:
  233. default:
  234. return false;
  235. }
  236. }
  237. union power_info {
  238. struct _ATOM_POWERPLAY_INFO info;
  239. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  240. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  241. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  242. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  243. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  244. struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4;
  245. struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5;
  246. };
  247. union fan_info {
  248. struct _ATOM_PPLIB_FANTABLE fan;
  249. struct _ATOM_PPLIB_FANTABLE2 fan2;
  250. struct _ATOM_PPLIB_FANTABLE3 fan3;
  251. };
  252. static int amdgpu_parse_clk_voltage_dep_table(struct amdgpu_clock_voltage_dependency_table *amdgpu_table,
  253. ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table)
  254. {
  255. u32 size = atom_table->ucNumEntries *
  256. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  257. int i;
  258. ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry;
  259. amdgpu_table->entries = kzalloc(size, GFP_KERNEL);
  260. if (!amdgpu_table->entries)
  261. return -ENOMEM;
  262. entry = &atom_table->entries[0];
  263. for (i = 0; i < atom_table->ucNumEntries; i++) {
  264. amdgpu_table->entries[i].clk = le16_to_cpu(entry->usClockLow) |
  265. (entry->ucClockHigh << 16);
  266. amdgpu_table->entries[i].v = le16_to_cpu(entry->usVoltage);
  267. entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *)
  268. ((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record));
  269. }
  270. amdgpu_table->count = atom_table->ucNumEntries;
  271. return 0;
  272. }
  273. int amdgpu_get_platform_caps(struct amdgpu_device *adev)
  274. {
  275. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  276. union power_info *power_info;
  277. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  278. u16 data_offset;
  279. u8 frev, crev;
  280. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  281. &frev, &crev, &data_offset))
  282. return -EINVAL;
  283. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  284. adev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  285. adev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  286. adev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  287. return 0;
  288. }
  289. /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */
  290. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12
  291. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14
  292. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16
  293. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18
  294. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20
  295. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22
  296. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24
  297. #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26
  298. int amdgpu_parse_extended_power_table(struct amdgpu_device *adev)
  299. {
  300. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  301. union power_info *power_info;
  302. union fan_info *fan_info;
  303. ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table;
  304. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  305. u16 data_offset;
  306. u8 frev, crev;
  307. int ret, i;
  308. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  309. &frev, &crev, &data_offset))
  310. return -EINVAL;
  311. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  312. /* fan table */
  313. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  314. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  315. if (power_info->pplib3.usFanTableOffset) {
  316. fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset +
  317. le16_to_cpu(power_info->pplib3.usFanTableOffset));
  318. adev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst;
  319. adev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin);
  320. adev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed);
  321. adev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh);
  322. adev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin);
  323. adev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed);
  324. adev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh);
  325. if (fan_info->fan.ucFanTableFormat >= 2)
  326. adev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax);
  327. else
  328. adev->pm.dpm.fan.t_max = 10900;
  329. adev->pm.dpm.fan.cycle_delay = 100000;
  330. if (fan_info->fan.ucFanTableFormat >= 3) {
  331. adev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode;
  332. adev->pm.dpm.fan.default_max_fan_pwm =
  333. le16_to_cpu(fan_info->fan3.usFanPWMMax);
  334. adev->pm.dpm.fan.default_fan_output_sensitivity = 4836;
  335. adev->pm.dpm.fan.fan_output_sensitivity =
  336. le16_to_cpu(fan_info->fan3.usFanOutputSensitivity);
  337. }
  338. adev->pm.dpm.fan.ucode_fan_control = true;
  339. }
  340. }
  341. /* clock dependancy tables, shedding tables */
  342. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  343. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) {
  344. if (power_info->pplib4.usVddcDependencyOnSCLKOffset) {
  345. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  346. (mode_info->atom_context->bios + data_offset +
  347. le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset));
  348. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
  349. dep_table);
  350. if (ret) {
  351. amdgpu_free_extended_power_table(adev);
  352. return ret;
  353. }
  354. }
  355. if (power_info->pplib4.usVddciDependencyOnMCLKOffset) {
  356. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  357. (mode_info->atom_context->bios + data_offset +
  358. le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset));
  359. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
  360. dep_table);
  361. if (ret) {
  362. amdgpu_free_extended_power_table(adev);
  363. return ret;
  364. }
  365. }
  366. if (power_info->pplib4.usVddcDependencyOnMCLKOffset) {
  367. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  368. (mode_info->atom_context->bios + data_offset +
  369. le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset));
  370. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
  371. dep_table);
  372. if (ret) {
  373. amdgpu_free_extended_power_table(adev);
  374. return ret;
  375. }
  376. }
  377. if (power_info->pplib4.usMvddDependencyOnMCLKOffset) {
  378. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  379. (mode_info->atom_context->bios + data_offset +
  380. le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset));
  381. ret = amdgpu_parse_clk_voltage_dep_table(&adev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
  382. dep_table);
  383. if (ret) {
  384. amdgpu_free_extended_power_table(adev);
  385. return ret;
  386. }
  387. }
  388. if (power_info->pplib4.usMaxClockVoltageOnDCOffset) {
  389. ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v =
  390. (ATOM_PPLIB_Clock_Voltage_Limit_Table *)
  391. (mode_info->atom_context->bios + data_offset +
  392. le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset));
  393. if (clk_v->ucNumEntries) {
  394. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk =
  395. le16_to_cpu(clk_v->entries[0].usSclkLow) |
  396. (clk_v->entries[0].ucSclkHigh << 16);
  397. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk =
  398. le16_to_cpu(clk_v->entries[0].usMclkLow) |
  399. (clk_v->entries[0].ucMclkHigh << 16);
  400. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc =
  401. le16_to_cpu(clk_v->entries[0].usVddc);
  402. adev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci =
  403. le16_to_cpu(clk_v->entries[0].usVddci);
  404. }
  405. }
  406. if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) {
  407. ATOM_PPLIB_PhaseSheddingLimits_Table *psl =
  408. (ATOM_PPLIB_PhaseSheddingLimits_Table *)
  409. (mode_info->atom_context->bios + data_offset +
  410. le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset));
  411. ATOM_PPLIB_PhaseSheddingLimits_Record *entry;
  412. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries =
  413. kzalloc(psl->ucNumEntries *
  414. sizeof(struct amdgpu_phase_shedding_limits_entry),
  415. GFP_KERNEL);
  416. if (!adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) {
  417. amdgpu_free_extended_power_table(adev);
  418. return -ENOMEM;
  419. }
  420. entry = &psl->entries[0];
  421. for (i = 0; i < psl->ucNumEntries; i++) {
  422. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk =
  423. le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16);
  424. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk =
  425. le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16);
  426. adev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage =
  427. le16_to_cpu(entry->usVoltage);
  428. entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *)
  429. ((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record));
  430. }
  431. adev->pm.dpm.dyn_state.phase_shedding_limits_table.count =
  432. psl->ucNumEntries;
  433. }
  434. }
  435. /* cac data */
  436. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  437. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) {
  438. adev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit);
  439. adev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit);
  440. adev->pm.dpm.near_tdp_limit_adjusted = adev->pm.dpm.near_tdp_limit;
  441. adev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit);
  442. if (adev->pm.dpm.tdp_od_limit)
  443. adev->pm.dpm.power_control = true;
  444. else
  445. adev->pm.dpm.power_control = false;
  446. adev->pm.dpm.tdp_adjustment = 0;
  447. adev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold);
  448. adev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage);
  449. adev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope);
  450. if (power_info->pplib5.usCACLeakageTableOffset) {
  451. ATOM_PPLIB_CAC_Leakage_Table *cac_table =
  452. (ATOM_PPLIB_CAC_Leakage_Table *)
  453. (mode_info->atom_context->bios + data_offset +
  454. le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset));
  455. ATOM_PPLIB_CAC_Leakage_Record *entry;
  456. u32 size = cac_table->ucNumEntries * sizeof(struct amdgpu_cac_leakage_table);
  457. adev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL);
  458. if (!adev->pm.dpm.dyn_state.cac_leakage_table.entries) {
  459. amdgpu_free_extended_power_table(adev);
  460. return -ENOMEM;
  461. }
  462. entry = &cac_table->entries[0];
  463. for (i = 0; i < cac_table->ucNumEntries; i++) {
  464. if (adev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
  465. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 =
  466. le16_to_cpu(entry->usVddc1);
  467. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 =
  468. le16_to_cpu(entry->usVddc2);
  469. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 =
  470. le16_to_cpu(entry->usVddc3);
  471. } else {
  472. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc =
  473. le16_to_cpu(entry->usVddc);
  474. adev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage =
  475. le32_to_cpu(entry->ulLeakageValue);
  476. }
  477. entry = (ATOM_PPLIB_CAC_Leakage_Record *)
  478. ((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record));
  479. }
  480. adev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries;
  481. }
  482. }
  483. /* ext tables */
  484. if (le16_to_cpu(power_info->pplib.usTableSize) >=
  485. sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) {
  486. ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *)
  487. (mode_info->atom_context->bios + data_offset +
  488. le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset));
  489. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) &&
  490. ext_hdr->usVCETableOffset) {
  491. VCEClockInfoArray *array = (VCEClockInfoArray *)
  492. (mode_info->atom_context->bios + data_offset +
  493. le16_to_cpu(ext_hdr->usVCETableOffset) + 1);
  494. ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits =
  495. (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)
  496. (mode_info->atom_context->bios + data_offset +
  497. le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
  498. 1 + array->ucNumEntries * sizeof(VCEClockInfo));
  499. ATOM_PPLIB_VCE_State_Table *states =
  500. (ATOM_PPLIB_VCE_State_Table *)
  501. (mode_info->atom_context->bios + data_offset +
  502. le16_to_cpu(ext_hdr->usVCETableOffset) + 1 +
  503. 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) +
  504. 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)));
  505. ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry;
  506. ATOM_PPLIB_VCE_State_Record *state_entry;
  507. VCEClockInfo *vce_clk;
  508. u32 size = limits->numEntries *
  509. sizeof(struct amdgpu_vce_clock_voltage_dependency_entry);
  510. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries =
  511. kzalloc(size, GFP_KERNEL);
  512. if (!adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) {
  513. amdgpu_free_extended_power_table(adev);
  514. return -ENOMEM;
  515. }
  516. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count =
  517. limits->numEntries;
  518. entry = &limits->entries[0];
  519. state_entry = &states->entries[0];
  520. for (i = 0; i < limits->numEntries; i++) {
  521. vce_clk = (VCEClockInfo *)
  522. ((u8 *)&array->entries[0] +
  523. (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
  524. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk =
  525. le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
  526. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk =
  527. le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
  528. adev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v =
  529. le16_to_cpu(entry->usVoltage);
  530. entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *)
  531. ((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record));
  532. }
  533. adev->pm.dpm.num_of_vce_states =
  534. states->numEntries > AMD_MAX_VCE_LEVELS ?
  535. AMD_MAX_VCE_LEVELS : states->numEntries;
  536. for (i = 0; i < adev->pm.dpm.num_of_vce_states; i++) {
  537. vce_clk = (VCEClockInfo *)
  538. ((u8 *)&array->entries[0] +
  539. (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo)));
  540. adev->pm.dpm.vce_states[i].evclk =
  541. le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16);
  542. adev->pm.dpm.vce_states[i].ecclk =
  543. le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16);
  544. adev->pm.dpm.vce_states[i].clk_idx =
  545. state_entry->ucClockInfoIndex & 0x3f;
  546. adev->pm.dpm.vce_states[i].pstate =
  547. (state_entry->ucClockInfoIndex & 0xc0) >> 6;
  548. state_entry = (ATOM_PPLIB_VCE_State_Record *)
  549. ((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record));
  550. }
  551. }
  552. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) &&
  553. ext_hdr->usUVDTableOffset) {
  554. UVDClockInfoArray *array = (UVDClockInfoArray *)
  555. (mode_info->atom_context->bios + data_offset +
  556. le16_to_cpu(ext_hdr->usUVDTableOffset) + 1);
  557. ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits =
  558. (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *)
  559. (mode_info->atom_context->bios + data_offset +
  560. le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 +
  561. 1 + (array->ucNumEntries * sizeof (UVDClockInfo)));
  562. ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry;
  563. u32 size = limits->numEntries *
  564. sizeof(struct amdgpu_uvd_clock_voltage_dependency_entry);
  565. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries =
  566. kzalloc(size, GFP_KERNEL);
  567. if (!adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) {
  568. amdgpu_free_extended_power_table(adev);
  569. return -ENOMEM;
  570. }
  571. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count =
  572. limits->numEntries;
  573. entry = &limits->entries[0];
  574. for (i = 0; i < limits->numEntries; i++) {
  575. UVDClockInfo *uvd_clk = (UVDClockInfo *)
  576. ((u8 *)&array->entries[0] +
  577. (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo)));
  578. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk =
  579. le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16);
  580. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk =
  581. le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16);
  582. adev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v =
  583. le16_to_cpu(entry->usVoltage);
  584. entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *)
  585. ((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record));
  586. }
  587. }
  588. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) &&
  589. ext_hdr->usSAMUTableOffset) {
  590. ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits =
  591. (ATOM_PPLIB_SAMClk_Voltage_Limit_Table *)
  592. (mode_info->atom_context->bios + data_offset +
  593. le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1);
  594. ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry;
  595. u32 size = limits->numEntries *
  596. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  597. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries =
  598. kzalloc(size, GFP_KERNEL);
  599. if (!adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) {
  600. amdgpu_free_extended_power_table(adev);
  601. return -ENOMEM;
  602. }
  603. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count =
  604. limits->numEntries;
  605. entry = &limits->entries[0];
  606. for (i = 0; i < limits->numEntries; i++) {
  607. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk =
  608. le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16);
  609. adev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v =
  610. le16_to_cpu(entry->usVoltage);
  611. entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *)
  612. ((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record));
  613. }
  614. }
  615. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) &&
  616. ext_hdr->usPPMTableOffset) {
  617. ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *)
  618. (mode_info->atom_context->bios + data_offset +
  619. le16_to_cpu(ext_hdr->usPPMTableOffset));
  620. adev->pm.dpm.dyn_state.ppm_table =
  621. kzalloc(sizeof(struct amdgpu_ppm_table), GFP_KERNEL);
  622. if (!adev->pm.dpm.dyn_state.ppm_table) {
  623. amdgpu_free_extended_power_table(adev);
  624. return -ENOMEM;
  625. }
  626. adev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign;
  627. adev->pm.dpm.dyn_state.ppm_table->cpu_core_number =
  628. le16_to_cpu(ppm->usCpuCoreNumber);
  629. adev->pm.dpm.dyn_state.ppm_table->platform_tdp =
  630. le32_to_cpu(ppm->ulPlatformTDP);
  631. adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp =
  632. le32_to_cpu(ppm->ulSmallACPlatformTDP);
  633. adev->pm.dpm.dyn_state.ppm_table->platform_tdc =
  634. le32_to_cpu(ppm->ulPlatformTDC);
  635. adev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc =
  636. le32_to_cpu(ppm->ulSmallACPlatformTDC);
  637. adev->pm.dpm.dyn_state.ppm_table->apu_tdp =
  638. le32_to_cpu(ppm->ulApuTDP);
  639. adev->pm.dpm.dyn_state.ppm_table->dgpu_tdp =
  640. le32_to_cpu(ppm->ulDGpuTDP);
  641. adev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power =
  642. le32_to_cpu(ppm->ulDGpuUlvPower);
  643. adev->pm.dpm.dyn_state.ppm_table->tj_max =
  644. le32_to_cpu(ppm->ulTjmax);
  645. }
  646. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) &&
  647. ext_hdr->usACPTableOffset) {
  648. ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits =
  649. (ATOM_PPLIB_ACPClk_Voltage_Limit_Table *)
  650. (mode_info->atom_context->bios + data_offset +
  651. le16_to_cpu(ext_hdr->usACPTableOffset) + 1);
  652. ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry;
  653. u32 size = limits->numEntries *
  654. sizeof(struct amdgpu_clock_voltage_dependency_entry);
  655. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries =
  656. kzalloc(size, GFP_KERNEL);
  657. if (!adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) {
  658. amdgpu_free_extended_power_table(adev);
  659. return -ENOMEM;
  660. }
  661. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count =
  662. limits->numEntries;
  663. entry = &limits->entries[0];
  664. for (i = 0; i < limits->numEntries; i++) {
  665. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk =
  666. le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16);
  667. adev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v =
  668. le16_to_cpu(entry->usVoltage);
  669. entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *)
  670. ((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record));
  671. }
  672. }
  673. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) &&
  674. ext_hdr->usPowerTuneTableOffset) {
  675. u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset +
  676. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  677. ATOM_PowerTune_Table *pt;
  678. adev->pm.dpm.dyn_state.cac_tdp_table =
  679. kzalloc(sizeof(struct amdgpu_cac_tdp_table), GFP_KERNEL);
  680. if (!adev->pm.dpm.dyn_state.cac_tdp_table) {
  681. amdgpu_free_extended_power_table(adev);
  682. return -ENOMEM;
  683. }
  684. if (rev > 0) {
  685. ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *)
  686. (mode_info->atom_context->bios + data_offset +
  687. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  688. adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit =
  689. ppt->usMaximumPowerDeliveryLimit;
  690. pt = &ppt->power_tune_table;
  691. } else {
  692. ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *)
  693. (mode_info->atom_context->bios + data_offset +
  694. le16_to_cpu(ext_hdr->usPowerTuneTableOffset));
  695. adev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255;
  696. pt = &ppt->power_tune_table;
  697. }
  698. adev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP);
  699. adev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp =
  700. le16_to_cpu(pt->usConfigurableTDP);
  701. adev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC);
  702. adev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit =
  703. le16_to_cpu(pt->usBatteryPowerLimit);
  704. adev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit =
  705. le16_to_cpu(pt->usSmallPowerLimit);
  706. adev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage =
  707. le16_to_cpu(pt->usLowCACLeakage);
  708. adev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage =
  709. le16_to_cpu(pt->usHighCACLeakage);
  710. }
  711. if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) &&
  712. ext_hdr->usSclkVddgfxTableOffset) {
  713. dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *)
  714. (mode_info->atom_context->bios + data_offset +
  715. le16_to_cpu(ext_hdr->usSclkVddgfxTableOffset));
  716. ret = amdgpu_parse_clk_voltage_dep_table(
  717. &adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk,
  718. dep_table);
  719. if (ret) {
  720. kfree(adev->pm.dpm.dyn_state.vddgfx_dependency_on_sclk.entries);
  721. return ret;
  722. }
  723. }
  724. }
  725. return 0;
  726. }
  727. void amdgpu_free_extended_power_table(struct amdgpu_device *adev)
  728. {
  729. struct amdgpu_dpm_dynamic_state *dyn_state = &adev->pm.dpm.dyn_state;
  730. kfree(dyn_state->vddc_dependency_on_sclk.entries);
  731. kfree(dyn_state->vddci_dependency_on_mclk.entries);
  732. kfree(dyn_state->vddc_dependency_on_mclk.entries);
  733. kfree(dyn_state->mvdd_dependency_on_mclk.entries);
  734. kfree(dyn_state->cac_leakage_table.entries);
  735. kfree(dyn_state->phase_shedding_limits_table.entries);
  736. kfree(dyn_state->ppm_table);
  737. kfree(dyn_state->cac_tdp_table);
  738. kfree(dyn_state->vce_clock_voltage_dependency_table.entries);
  739. kfree(dyn_state->uvd_clock_voltage_dependency_table.entries);
  740. kfree(dyn_state->samu_clock_voltage_dependency_table.entries);
  741. kfree(dyn_state->acp_clock_voltage_dependency_table.entries);
  742. kfree(dyn_state->vddgfx_dependency_on_sclk.entries);
  743. }
  744. static const char *pp_lib_thermal_controller_names[] = {
  745. "NONE",
  746. "lm63",
  747. "adm1032",
  748. "adm1030",
  749. "max6649",
  750. "lm64",
  751. "f75375",
  752. "RV6xx",
  753. "RV770",
  754. "adt7473",
  755. "NONE",
  756. "External GPIO",
  757. "Evergreen",
  758. "emc2103",
  759. "Sumo",
  760. "Northern Islands",
  761. "Southern Islands",
  762. "lm96163",
  763. "Sea Islands",
  764. "Kaveri/Kabini",
  765. };
  766. void amdgpu_add_thermal_controller(struct amdgpu_device *adev)
  767. {
  768. struct amdgpu_mode_info *mode_info = &adev->mode_info;
  769. ATOM_PPLIB_POWERPLAYTABLE *power_table;
  770. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  771. ATOM_PPLIB_THERMALCONTROLLER *controller;
  772. struct amdgpu_i2c_bus_rec i2c_bus;
  773. u16 data_offset;
  774. u8 frev, crev;
  775. if (!amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
  776. &frev, &crev, &data_offset))
  777. return;
  778. power_table = (ATOM_PPLIB_POWERPLAYTABLE *)
  779. (mode_info->atom_context->bios + data_offset);
  780. controller = &power_table->sThermalController;
  781. /* add the i2c bus for thermal/fan chip */
  782. if (controller->ucType > 0) {
  783. if (controller->ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN)
  784. adev->pm.no_fan = true;
  785. adev->pm.fan_pulses_per_revolution =
  786. controller->ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK;
  787. if (adev->pm.fan_pulses_per_revolution) {
  788. adev->pm.fan_min_rpm = controller->ucFanMinRPM;
  789. adev->pm.fan_max_rpm = controller->ucFanMaxRPM;
  790. }
  791. if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV6xx) {
  792. DRM_INFO("Internal thermal controller %s fan control\n",
  793. (controller->ucFanParameters &
  794. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  795. adev->pm.int_thermal_type = THERMAL_TYPE_RV6XX;
  796. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_RV770) {
  797. DRM_INFO("Internal thermal controller %s fan control\n",
  798. (controller->ucFanParameters &
  799. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  800. adev->pm.int_thermal_type = THERMAL_TYPE_RV770;
  801. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EVERGREEN) {
  802. DRM_INFO("Internal thermal controller %s fan control\n",
  803. (controller->ucFanParameters &
  804. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  805. adev->pm.int_thermal_type = THERMAL_TYPE_EVERGREEN;
  806. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SUMO) {
  807. DRM_INFO("Internal thermal controller %s fan control\n",
  808. (controller->ucFanParameters &
  809. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  810. adev->pm.int_thermal_type = THERMAL_TYPE_SUMO;
  811. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_NISLANDS) {
  812. DRM_INFO("Internal thermal controller %s fan control\n",
  813. (controller->ucFanParameters &
  814. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  815. adev->pm.int_thermal_type = THERMAL_TYPE_NI;
  816. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_SISLANDS) {
  817. DRM_INFO("Internal thermal controller %s fan control\n",
  818. (controller->ucFanParameters &
  819. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  820. adev->pm.int_thermal_type = THERMAL_TYPE_SI;
  821. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_CISLANDS) {
  822. DRM_INFO("Internal thermal controller %s fan control\n",
  823. (controller->ucFanParameters &
  824. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  825. adev->pm.int_thermal_type = THERMAL_TYPE_CI;
  826. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_KAVERI) {
  827. DRM_INFO("Internal thermal controller %s fan control\n",
  828. (controller->ucFanParameters &
  829. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  830. adev->pm.int_thermal_type = THERMAL_TYPE_KV;
  831. } else if (controller->ucType == ATOM_PP_THERMALCONTROLLER_EXTERNAL_GPIO) {
  832. DRM_INFO("External GPIO thermal controller %s fan control\n",
  833. (controller->ucFanParameters &
  834. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  835. adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL_GPIO;
  836. } else if (controller->ucType ==
  837. ATOM_PP_THERMALCONTROLLER_ADT7473_WITH_INTERNAL) {
  838. DRM_INFO("ADT7473 with internal thermal controller %s fan control\n",
  839. (controller->ucFanParameters &
  840. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  841. adev->pm.int_thermal_type = THERMAL_TYPE_ADT7473_WITH_INTERNAL;
  842. } else if (controller->ucType ==
  843. ATOM_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) {
  844. DRM_INFO("EMC2103 with internal thermal controller %s fan control\n",
  845. (controller->ucFanParameters &
  846. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  847. adev->pm.int_thermal_type = THERMAL_TYPE_EMC2103_WITH_INTERNAL;
  848. } else if (controller->ucType < ARRAY_SIZE(pp_lib_thermal_controller_names)) {
  849. DRM_INFO("Possible %s thermal controller at 0x%02x %s fan control\n",
  850. pp_lib_thermal_controller_names[controller->ucType],
  851. controller->ucI2cAddress >> 1,
  852. (controller->ucFanParameters &
  853. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  854. adev->pm.int_thermal_type = THERMAL_TYPE_EXTERNAL;
  855. i2c_bus = amdgpu_atombios_lookup_i2c_gpio(adev, controller->ucI2cLine);
  856. adev->pm.i2c_bus = amdgpu_i2c_lookup(adev, &i2c_bus);
  857. if (adev->pm.i2c_bus) {
  858. struct i2c_board_info info = { };
  859. const char *name = pp_lib_thermal_controller_names[controller->ucType];
  860. info.addr = controller->ucI2cAddress >> 1;
  861. strlcpy(info.type, name, sizeof(info.type));
  862. i2c_new_device(&adev->pm.i2c_bus->adapter, &info);
  863. }
  864. } else {
  865. DRM_INFO("Unknown thermal controller type %d at 0x%02x %s fan control\n",
  866. controller->ucType,
  867. controller->ucI2cAddress >> 1,
  868. (controller->ucFanParameters &
  869. ATOM_PP_FANPARAMETERS_NOFAN) ? "without" : "with");
  870. }
  871. }
  872. }
  873. enum amdgpu_pcie_gen amdgpu_get_pcie_gen_support(struct amdgpu_device *adev,
  874. u32 sys_mask,
  875. enum amdgpu_pcie_gen asic_gen,
  876. enum amdgpu_pcie_gen default_gen)
  877. {
  878. switch (asic_gen) {
  879. case AMDGPU_PCIE_GEN1:
  880. return AMDGPU_PCIE_GEN1;
  881. case AMDGPU_PCIE_GEN2:
  882. return AMDGPU_PCIE_GEN2;
  883. case AMDGPU_PCIE_GEN3:
  884. return AMDGPU_PCIE_GEN3;
  885. default:
  886. if ((sys_mask & DRM_PCIE_SPEED_80) && (default_gen == AMDGPU_PCIE_GEN3))
  887. return AMDGPU_PCIE_GEN3;
  888. else if ((sys_mask & DRM_PCIE_SPEED_50) && (default_gen == AMDGPU_PCIE_GEN2))
  889. return AMDGPU_PCIE_GEN2;
  890. else
  891. return AMDGPU_PCIE_GEN1;
  892. }
  893. return AMDGPU_PCIE_GEN1;
  894. }
  895. u16 amdgpu_get_pcie_lane_support(struct amdgpu_device *adev,
  896. u16 asic_lanes,
  897. u16 default_lanes)
  898. {
  899. switch (asic_lanes) {
  900. case 0:
  901. default:
  902. return default_lanes;
  903. case 1:
  904. return 1;
  905. case 2:
  906. return 2;
  907. case 4:
  908. return 4;
  909. case 8:
  910. return 8;
  911. case 12:
  912. return 12;
  913. case 16:
  914. return 16;
  915. }
  916. }
  917. u8 amdgpu_encode_pci_lane_width(u32 lanes)
  918. {
  919. u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 };
  920. if (lanes > 16)
  921. return 0;
  922. return encoded_lanes[lanes];
  923. }
  924. struct amd_vce_state*
  925. amdgpu_get_vce_clock_state(void *handle, u32 idx)
  926. {
  927. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  928. if (idx < adev->pm.dpm.num_of_vce_states)
  929. return &adev->pm.dpm.vce_states[idx];
  930. return NULL;
  931. }