amdgpu_amdkfd_gfx_v8.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <linux/firmware.h>
  26. #include <drm/drmP.h>
  27. #include "amdgpu.h"
  28. #include "amdgpu_amdkfd.h"
  29. #include "amdgpu_ucode.h"
  30. #include "gfx_v8_0.h"
  31. #include "gca/gfx_8_0_sh_mask.h"
  32. #include "gca/gfx_8_0_d.h"
  33. #include "gca/gfx_8_0_enum.h"
  34. #include "oss/oss_3_0_sh_mask.h"
  35. #include "oss/oss_3_0_d.h"
  36. #include "gmc/gmc_8_1_sh_mask.h"
  37. #include "gmc/gmc_8_1_d.h"
  38. #include "vi_structs.h"
  39. #include "vid.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. struct vi_sdma_mqd;
  46. /*
  47. * Register access functions
  48. */
  49. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  50. uint32_t sh_mem_config,
  51. uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
  52. uint32_t sh_mem_bases);
  53. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  54. unsigned int vmid);
  55. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  56. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  57. uint32_t queue_id, uint32_t __user *wptr,
  58. uint32_t wptr_shift, uint32_t wptr_mask,
  59. struct mm_struct *mm);
  60. static int kgd_hqd_dump(struct kgd_dev *kgd,
  61. uint32_t pipe_id, uint32_t queue_id,
  62. uint32_t (**dump)[2], uint32_t *n_regs);
  63. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  64. uint32_t __user *wptr, struct mm_struct *mm);
  65. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  66. uint32_t engine_id, uint32_t queue_id,
  67. uint32_t (**dump)[2], uint32_t *n_regs);
  68. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  69. uint32_t pipe_id, uint32_t queue_id);
  70. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  71. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  72. enum kfd_preempt_type reset_type,
  73. unsigned int utimeout, uint32_t pipe_id,
  74. uint32_t queue_id);
  75. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  76. unsigned int utimeout);
  77. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  78. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  79. unsigned int watch_point_id,
  80. uint32_t cntl_val,
  81. uint32_t addr_hi,
  82. uint32_t addr_lo);
  83. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  84. uint32_t gfx_index_val,
  85. uint32_t sq_cmd);
  86. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  87. unsigned int watch_point_id,
  88. unsigned int reg_offset);
  89. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  90. uint8_t vmid);
  91. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  92. uint8_t vmid);
  93. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  94. static void set_scratch_backing_va(struct kgd_dev *kgd,
  95. uint64_t va, uint32_t vmid);
  96. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  97. uint32_t page_table_base);
  98. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  99. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  100. /* Because of REG_GET_FIELD() being used, we put this function in the
  101. * asic specific file.
  102. */
  103. static int get_tile_config(struct kgd_dev *kgd,
  104. struct tile_config *config)
  105. {
  106. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  107. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  108. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  109. MC_ARB_RAMCFG, NOOFBANK);
  110. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  111. MC_ARB_RAMCFG, NOOFRANKS);
  112. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  113. config->num_tile_configs =
  114. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  115. config->macro_tile_config_ptr =
  116. adev->gfx.config.macrotile_mode_array;
  117. config->num_macro_tile_configs =
  118. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  119. return 0;
  120. }
  121. static const struct kfd2kgd_calls kfd2kgd = {
  122. .init_gtt_mem_allocation = alloc_gtt_mem,
  123. .free_gtt_mem = free_gtt_mem,
  124. .get_local_mem_info = get_local_mem_info,
  125. .get_gpu_clock_counter = get_gpu_clock_counter,
  126. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  127. .alloc_pasid = amdgpu_pasid_alloc,
  128. .free_pasid = amdgpu_pasid_free,
  129. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  130. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  131. .init_interrupts = kgd_init_interrupts,
  132. .hqd_load = kgd_hqd_load,
  133. .hqd_sdma_load = kgd_hqd_sdma_load,
  134. .hqd_dump = kgd_hqd_dump,
  135. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  136. .hqd_is_occupied = kgd_hqd_is_occupied,
  137. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  138. .hqd_destroy = kgd_hqd_destroy,
  139. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  140. .address_watch_disable = kgd_address_watch_disable,
  141. .address_watch_execute = kgd_address_watch_execute,
  142. .wave_control_execute = kgd_wave_control_execute,
  143. .address_watch_get_offset = kgd_address_watch_get_offset,
  144. .get_atc_vmid_pasid_mapping_pasid =
  145. get_atc_vmid_pasid_mapping_pasid,
  146. .get_atc_vmid_pasid_mapping_valid =
  147. get_atc_vmid_pasid_mapping_valid,
  148. .get_fw_version = get_fw_version,
  149. .set_scratch_backing_va = set_scratch_backing_va,
  150. .get_tile_config = get_tile_config,
  151. .get_cu_info = get_cu_info,
  152. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  153. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  154. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  155. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  156. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  157. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  158. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  159. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  160. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  161. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  162. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  163. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  164. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  165. .invalidate_tlbs = invalidate_tlbs,
  166. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  167. .submit_ib = amdgpu_amdkfd_submit_ib,
  168. };
  169. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
  170. {
  171. return (struct kfd2kgd_calls *)&kfd2kgd;
  172. }
  173. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  174. {
  175. return (struct amdgpu_device *)kgd;
  176. }
  177. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  178. uint32_t queue, uint32_t vmid)
  179. {
  180. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  181. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  182. mutex_lock(&adev->srbm_mutex);
  183. WREG32(mmSRBM_GFX_CNTL, value);
  184. }
  185. static void unlock_srbm(struct kgd_dev *kgd)
  186. {
  187. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  188. WREG32(mmSRBM_GFX_CNTL, 0);
  189. mutex_unlock(&adev->srbm_mutex);
  190. }
  191. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  192. uint32_t queue_id)
  193. {
  194. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  195. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  196. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  197. lock_srbm(kgd, mec, pipe, queue_id, 0);
  198. }
  199. static void release_queue(struct kgd_dev *kgd)
  200. {
  201. unlock_srbm(kgd);
  202. }
  203. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  204. uint32_t sh_mem_config,
  205. uint32_t sh_mem_ape1_base,
  206. uint32_t sh_mem_ape1_limit,
  207. uint32_t sh_mem_bases)
  208. {
  209. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  210. lock_srbm(kgd, 0, 0, 0, vmid);
  211. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  212. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  213. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  214. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  215. unlock_srbm(kgd);
  216. }
  217. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  218. unsigned int vmid)
  219. {
  220. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  221. /*
  222. * We have to assume that there is no outstanding mapping.
  223. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  224. * a mapping is in progress or because a mapping finished
  225. * and the SW cleared it.
  226. * So the protocol is to always wait & clear.
  227. */
  228. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  229. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  230. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  231. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  232. cpu_relax();
  233. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  234. /* Mapping vmid to pasid also for IH block */
  235. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  236. return 0;
  237. }
  238. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  239. {
  240. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  241. uint32_t mec;
  242. uint32_t pipe;
  243. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  244. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  245. lock_srbm(kgd, mec, pipe, 0, 0);
  246. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
  247. unlock_srbm(kgd);
  248. return 0;
  249. }
  250. static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
  251. {
  252. uint32_t retval;
  253. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  254. m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  255. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  256. return retval;
  257. }
  258. static inline struct vi_mqd *get_mqd(void *mqd)
  259. {
  260. return (struct vi_mqd *)mqd;
  261. }
  262. static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
  263. {
  264. return (struct vi_sdma_mqd *)mqd;
  265. }
  266. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  267. uint32_t queue_id, uint32_t __user *wptr,
  268. uint32_t wptr_shift, uint32_t wptr_mask,
  269. struct mm_struct *mm)
  270. {
  271. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  272. struct vi_mqd *m;
  273. uint32_t *mqd_hqd;
  274. uint32_t reg, wptr_val, data;
  275. bool valid_wptr = false;
  276. m = get_mqd(mqd);
  277. acquire_queue(kgd, pipe_id, queue_id);
  278. /* HIQ is set during driver init period with vmid set to 0*/
  279. if (m->cp_hqd_vmid == 0) {
  280. uint32_t value, mec, pipe;
  281. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  282. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  283. pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
  284. mec, pipe, queue_id);
  285. value = RREG32(mmRLC_CP_SCHEDULERS);
  286. value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
  287. ((mec << 5) | (pipe << 3) | queue_id | 0x80));
  288. WREG32(mmRLC_CP_SCHEDULERS, value);
  289. }
  290. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
  291. mqd_hqd = &m->cp_mqd_base_addr_lo;
  292. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
  293. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  294. /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
  295. * This is safe since EOP RPTR==WPTR for any inactive HQD
  296. * on ASICs that do not support context-save.
  297. * EOP writes/reads can start anywhere in the ring.
  298. */
  299. if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
  300. WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
  301. WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
  302. WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
  303. }
  304. for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
  305. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  306. /* Copy userspace write pointer value to register.
  307. * Activate doorbell logic to monitor subsequent changes.
  308. */
  309. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  310. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  311. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  312. /* read_user_ptr may take the mm->mmap_sem.
  313. * release srbm_mutex to avoid circular dependency between
  314. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  315. */
  316. release_queue(kgd);
  317. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  318. acquire_queue(kgd, pipe_id, queue_id);
  319. if (valid_wptr)
  320. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  321. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  322. WREG32(mmCP_HQD_ACTIVE, data);
  323. release_queue(kgd);
  324. return 0;
  325. }
  326. static int kgd_hqd_dump(struct kgd_dev *kgd,
  327. uint32_t pipe_id, uint32_t queue_id,
  328. uint32_t (**dump)[2], uint32_t *n_regs)
  329. {
  330. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  331. uint32_t i = 0, reg;
  332. #define HQD_N_REGS (54+4)
  333. #define DUMP_REG(addr) do { \
  334. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  335. break; \
  336. (*dump)[i][0] = (addr) << 2; \
  337. (*dump)[i++][1] = RREG32(addr); \
  338. } while (0)
  339. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  340. if (*dump == NULL)
  341. return -ENOMEM;
  342. acquire_queue(kgd, pipe_id, queue_id);
  343. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  344. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  345. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  346. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  347. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
  348. DUMP_REG(reg);
  349. release_queue(kgd);
  350. WARN_ON_ONCE(i != HQD_N_REGS);
  351. *n_regs = i;
  352. return 0;
  353. }
  354. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  355. uint32_t __user *wptr, struct mm_struct *mm)
  356. {
  357. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  358. struct vi_sdma_mqd *m;
  359. unsigned long end_jiffies;
  360. uint32_t sdma_base_addr;
  361. uint32_t data;
  362. m = get_sdma_mqd(mqd);
  363. sdma_base_addr = get_sdma_base_addr(m);
  364. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  365. m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  366. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  367. while (true) {
  368. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  369. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  370. break;
  371. if (time_after(jiffies, end_jiffies))
  372. return -ETIME;
  373. usleep_range(500, 1000);
  374. }
  375. if (m->sdma_engine_id) {
  376. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  377. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  378. RESUME_CTX, 0);
  379. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  380. } else {
  381. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  382. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  383. RESUME_CTX, 0);
  384. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  385. }
  386. data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
  387. ENABLE, 1);
  388. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  389. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
  390. if (read_user_wptr(mm, wptr, data))
  391. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  392. else
  393. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  394. m->sdmax_rlcx_rb_rptr);
  395. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  396. m->sdmax_rlcx_virtual_addr);
  397. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
  398. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  399. m->sdmax_rlcx_rb_base_hi);
  400. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  401. m->sdmax_rlcx_rb_rptr_addr_lo);
  402. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  403. m->sdmax_rlcx_rb_rptr_addr_hi);
  404. data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
  405. RB_ENABLE, 1);
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  407. return 0;
  408. }
  409. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  410. uint32_t engine_id, uint32_t queue_id,
  411. uint32_t (**dump)[2], uint32_t *n_regs)
  412. {
  413. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  414. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  415. queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
  416. uint32_t i = 0, reg;
  417. #undef HQD_N_REGS
  418. #define HQD_N_REGS (19+4+2+3+7)
  419. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  420. if (*dump == NULL)
  421. return -ENOMEM;
  422. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  423. DUMP_REG(sdma_offset + reg);
  424. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  425. reg++)
  426. DUMP_REG(sdma_offset + reg);
  427. for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
  428. reg++)
  429. DUMP_REG(sdma_offset + reg);
  430. for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
  431. reg++)
  432. DUMP_REG(sdma_offset + reg);
  433. for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
  434. reg++)
  435. DUMP_REG(sdma_offset + reg);
  436. WARN_ON_ONCE(i != HQD_N_REGS);
  437. *n_regs = i;
  438. return 0;
  439. }
  440. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  441. uint32_t pipe_id, uint32_t queue_id)
  442. {
  443. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  444. uint32_t act;
  445. bool retval = false;
  446. uint32_t low, high;
  447. acquire_queue(kgd, pipe_id, queue_id);
  448. act = RREG32(mmCP_HQD_ACTIVE);
  449. if (act) {
  450. low = lower_32_bits(queue_address >> 8);
  451. high = upper_32_bits(queue_address >> 8);
  452. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  453. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  454. retval = true;
  455. }
  456. release_queue(kgd);
  457. return retval;
  458. }
  459. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  460. {
  461. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  462. struct vi_sdma_mqd *m;
  463. uint32_t sdma_base_addr;
  464. uint32_t sdma_rlc_rb_cntl;
  465. m = get_sdma_mqd(mqd);
  466. sdma_base_addr = get_sdma_base_addr(m);
  467. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  468. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  469. return true;
  470. return false;
  471. }
  472. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  473. enum kfd_preempt_type reset_type,
  474. unsigned int utimeout, uint32_t pipe_id,
  475. uint32_t queue_id)
  476. {
  477. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  478. uint32_t temp;
  479. enum hqd_dequeue_request_type type;
  480. unsigned long flags, end_jiffies;
  481. int retry;
  482. struct vi_mqd *m = get_mqd(mqd);
  483. acquire_queue(kgd, pipe_id, queue_id);
  484. if (m->cp_hqd_vmid == 0)
  485. WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
  486. switch (reset_type) {
  487. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  488. type = DRAIN_PIPE;
  489. break;
  490. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  491. type = RESET_WAVES;
  492. break;
  493. default:
  494. type = DRAIN_PIPE;
  495. break;
  496. }
  497. /* Workaround: If IQ timer is active and the wait time is close to or
  498. * equal to 0, dequeueing is not safe. Wait until either the wait time
  499. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  500. * cleared before continuing. Also, ensure wait times are set to at
  501. * least 0x3.
  502. */
  503. local_irq_save(flags);
  504. preempt_disable();
  505. retry = 5000; /* wait for 500 usecs at maximum */
  506. while (true) {
  507. temp = RREG32(mmCP_HQD_IQ_TIMER);
  508. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  509. pr_debug("HW is processing IQ\n");
  510. goto loop;
  511. }
  512. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  513. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  514. == 3) /* SEM-rearm is safe */
  515. break;
  516. /* Wait time 3 is safe for CP, but our MMIO read/write
  517. * time is close to 1 microsecond, so check for 10 to
  518. * leave more buffer room
  519. */
  520. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  521. >= 10)
  522. break;
  523. pr_debug("IQ timer is active\n");
  524. } else
  525. break;
  526. loop:
  527. if (!retry) {
  528. pr_err("CP HQD IQ timer status time out\n");
  529. break;
  530. }
  531. ndelay(100);
  532. --retry;
  533. }
  534. retry = 1000;
  535. while (true) {
  536. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  537. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  538. break;
  539. pr_debug("Dequeue request is pending\n");
  540. if (!retry) {
  541. pr_err("CP HQD dequeue request time out\n");
  542. break;
  543. }
  544. ndelay(100);
  545. --retry;
  546. }
  547. local_irq_restore(flags);
  548. preempt_enable();
  549. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  550. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  551. while (true) {
  552. temp = RREG32(mmCP_HQD_ACTIVE);
  553. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  554. break;
  555. if (time_after(jiffies, end_jiffies)) {
  556. pr_err("cp queue preemption time out.\n");
  557. release_queue(kgd);
  558. return -ETIME;
  559. }
  560. usleep_range(500, 1000);
  561. }
  562. release_queue(kgd);
  563. return 0;
  564. }
  565. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  566. unsigned int utimeout)
  567. {
  568. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  569. struct vi_sdma_mqd *m;
  570. uint32_t sdma_base_addr;
  571. uint32_t temp;
  572. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  573. m = get_sdma_mqd(mqd);
  574. sdma_base_addr = get_sdma_base_addr(m);
  575. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  576. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  577. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  578. while (true) {
  579. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  580. if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  581. break;
  582. if (time_after(jiffies, end_jiffies))
  583. return -ETIME;
  584. usleep_range(500, 1000);
  585. }
  586. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  587. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  588. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  589. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  590. m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  591. return 0;
  592. }
  593. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  594. uint8_t vmid)
  595. {
  596. uint32_t reg;
  597. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  598. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  599. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  600. }
  601. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  602. uint8_t vmid)
  603. {
  604. uint32_t reg;
  605. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  606. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  607. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  608. }
  609. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  610. {
  611. return 0;
  612. }
  613. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  614. unsigned int watch_point_id,
  615. uint32_t cntl_val,
  616. uint32_t addr_hi,
  617. uint32_t addr_lo)
  618. {
  619. return 0;
  620. }
  621. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  622. uint32_t gfx_index_val,
  623. uint32_t sq_cmd)
  624. {
  625. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  626. uint32_t data = 0;
  627. mutex_lock(&adev->grbm_idx_mutex);
  628. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  629. WREG32(mmSQ_CMD, sq_cmd);
  630. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  631. INSTANCE_BROADCAST_WRITES, 1);
  632. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  633. SH_BROADCAST_WRITES, 1);
  634. data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
  635. SE_BROADCAST_WRITES, 1);
  636. WREG32(mmGRBM_GFX_INDEX, data);
  637. mutex_unlock(&adev->grbm_idx_mutex);
  638. return 0;
  639. }
  640. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  641. unsigned int watch_point_id,
  642. unsigned int reg_offset)
  643. {
  644. return 0;
  645. }
  646. static void set_scratch_backing_va(struct kgd_dev *kgd,
  647. uint64_t va, uint32_t vmid)
  648. {
  649. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  650. lock_srbm(kgd, 0, 0, 0, vmid);
  651. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  652. unlock_srbm(kgd);
  653. }
  654. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  655. {
  656. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  657. const union amdgpu_firmware_header *hdr;
  658. switch (type) {
  659. case KGD_ENGINE_PFP:
  660. hdr = (const union amdgpu_firmware_header *)
  661. adev->gfx.pfp_fw->data;
  662. break;
  663. case KGD_ENGINE_ME:
  664. hdr = (const union amdgpu_firmware_header *)
  665. adev->gfx.me_fw->data;
  666. break;
  667. case KGD_ENGINE_CE:
  668. hdr = (const union amdgpu_firmware_header *)
  669. adev->gfx.ce_fw->data;
  670. break;
  671. case KGD_ENGINE_MEC1:
  672. hdr = (const union amdgpu_firmware_header *)
  673. adev->gfx.mec_fw->data;
  674. break;
  675. case KGD_ENGINE_MEC2:
  676. hdr = (const union amdgpu_firmware_header *)
  677. adev->gfx.mec2_fw->data;
  678. break;
  679. case KGD_ENGINE_RLC:
  680. hdr = (const union amdgpu_firmware_header *)
  681. adev->gfx.rlc_fw->data;
  682. break;
  683. case KGD_ENGINE_SDMA1:
  684. hdr = (const union amdgpu_firmware_header *)
  685. adev->sdma.instance[0].fw->data;
  686. break;
  687. case KGD_ENGINE_SDMA2:
  688. hdr = (const union amdgpu_firmware_header *)
  689. adev->sdma.instance[1].fw->data;
  690. break;
  691. default:
  692. return 0;
  693. }
  694. if (hdr == NULL)
  695. return 0;
  696. /* Only 12 bit in use*/
  697. return hdr->common.ucode_version;
  698. }
  699. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  700. uint32_t page_table_base)
  701. {
  702. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  703. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  704. pr_err("trying to set page table base for wrong VMID\n");
  705. return;
  706. }
  707. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  708. }
  709. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  710. {
  711. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  712. int vmid;
  713. unsigned int tmp;
  714. for (vmid = 0; vmid < 16; vmid++) {
  715. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  716. continue;
  717. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  718. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  719. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  720. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  721. RREG32(mmVM_INVALIDATE_RESPONSE);
  722. break;
  723. }
  724. }
  725. return 0;
  726. }
  727. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  728. {
  729. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  730. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  731. pr_err("non kfd vmid %d\n", vmid);
  732. return -EINVAL;
  733. }
  734. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  735. RREG32(mmVM_INVALIDATE_RESPONSE);
  736. return 0;
  737. }