amdgpu_amdkfd_gfx_v7.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/fdtable.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_amdkfd.h"
  28. #include "cikd.h"
  29. #include "cik_sdma.h"
  30. #include "amdgpu_ucode.h"
  31. #include "gfx_v7_0.h"
  32. #include "gca/gfx_7_2_d.h"
  33. #include "gca/gfx_7_2_enum.h"
  34. #include "gca/gfx_7_2_sh_mask.h"
  35. #include "oss/oss_2_0_d.h"
  36. #include "oss/oss_2_0_sh_mask.h"
  37. #include "gmc/gmc_7_1_d.h"
  38. #include "gmc/gmc_7_1_sh_mask.h"
  39. #include "cik_structs.h"
  40. enum hqd_dequeue_request_type {
  41. NO_ACTION = 0,
  42. DRAIN_PIPE,
  43. RESET_WAVES
  44. };
  45. enum {
  46. MAX_TRAPID = 8, /* 3 bits in the bitfield. */
  47. MAX_WATCH_ADDRESSES = 4
  48. };
  49. enum {
  50. ADDRESS_WATCH_REG_ADDR_HI = 0,
  51. ADDRESS_WATCH_REG_ADDR_LO,
  52. ADDRESS_WATCH_REG_CNTL,
  53. ADDRESS_WATCH_REG_MAX
  54. };
  55. /* not defined in the CI/KV reg file */
  56. enum {
  57. ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
  58. ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
  59. ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
  60. /* extend the mask to 26 bits to match the low address field */
  61. ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
  62. ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
  63. };
  64. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  65. mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
  66. mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
  67. mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
  68. mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
  69. };
  70. union TCP_WATCH_CNTL_BITS {
  71. struct {
  72. uint32_t mask:24;
  73. uint32_t vmid:4;
  74. uint32_t atc:1;
  75. uint32_t mode:2;
  76. uint32_t valid:1;
  77. } bitfields, bits;
  78. uint32_t u32All;
  79. signed int i32All;
  80. float f32All;
  81. };
  82. /*
  83. * Register access functions
  84. */
  85. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  86. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  87. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  88. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  89. unsigned int vmid);
  90. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  91. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  92. uint32_t queue_id, uint32_t __user *wptr,
  93. uint32_t wptr_shift, uint32_t wptr_mask,
  94. struct mm_struct *mm);
  95. static int kgd_hqd_dump(struct kgd_dev *kgd,
  96. uint32_t pipe_id, uint32_t queue_id,
  97. uint32_t (**dump)[2], uint32_t *n_regs);
  98. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  99. uint32_t __user *wptr, struct mm_struct *mm);
  100. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  101. uint32_t engine_id, uint32_t queue_id,
  102. uint32_t (**dump)[2], uint32_t *n_regs);
  103. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  104. uint32_t pipe_id, uint32_t queue_id);
  105. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  106. enum kfd_preempt_type reset_type,
  107. unsigned int utimeout, uint32_t pipe_id,
  108. uint32_t queue_id);
  109. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  110. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  111. unsigned int utimeout);
  112. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  113. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  114. unsigned int watch_point_id,
  115. uint32_t cntl_val,
  116. uint32_t addr_hi,
  117. uint32_t addr_lo);
  118. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  119. uint32_t gfx_index_val,
  120. uint32_t sq_cmd);
  121. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  122. unsigned int watch_point_id,
  123. unsigned int reg_offset);
  124. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  125. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  126. uint8_t vmid);
  127. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  128. static void set_scratch_backing_va(struct kgd_dev *kgd,
  129. uint64_t va, uint32_t vmid);
  130. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  131. uint32_t page_table_base);
  132. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
  133. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
  134. /* Because of REG_GET_FIELD() being used, we put this function in the
  135. * asic specific file.
  136. */
  137. static int get_tile_config(struct kgd_dev *kgd,
  138. struct tile_config *config)
  139. {
  140. struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
  141. config->gb_addr_config = adev->gfx.config.gb_addr_config;
  142. config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  143. MC_ARB_RAMCFG, NOOFBANK);
  144. config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
  145. MC_ARB_RAMCFG, NOOFRANKS);
  146. config->tile_config_ptr = adev->gfx.config.tile_mode_array;
  147. config->num_tile_configs =
  148. ARRAY_SIZE(adev->gfx.config.tile_mode_array);
  149. config->macro_tile_config_ptr =
  150. adev->gfx.config.macrotile_mode_array;
  151. config->num_macro_tile_configs =
  152. ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
  153. return 0;
  154. }
  155. static const struct kfd2kgd_calls kfd2kgd = {
  156. .init_gtt_mem_allocation = alloc_gtt_mem,
  157. .free_gtt_mem = free_gtt_mem,
  158. .get_local_mem_info = get_local_mem_info,
  159. .get_gpu_clock_counter = get_gpu_clock_counter,
  160. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  161. .alloc_pasid = amdgpu_pasid_alloc,
  162. .free_pasid = amdgpu_pasid_free,
  163. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  164. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  165. .init_interrupts = kgd_init_interrupts,
  166. .hqd_load = kgd_hqd_load,
  167. .hqd_sdma_load = kgd_hqd_sdma_load,
  168. .hqd_dump = kgd_hqd_dump,
  169. .hqd_sdma_dump = kgd_hqd_sdma_dump,
  170. .hqd_is_occupied = kgd_hqd_is_occupied,
  171. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  172. .hqd_destroy = kgd_hqd_destroy,
  173. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  174. .address_watch_disable = kgd_address_watch_disable,
  175. .address_watch_execute = kgd_address_watch_execute,
  176. .wave_control_execute = kgd_wave_control_execute,
  177. .address_watch_get_offset = kgd_address_watch_get_offset,
  178. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  179. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  180. .get_fw_version = get_fw_version,
  181. .set_scratch_backing_va = set_scratch_backing_va,
  182. .get_tile_config = get_tile_config,
  183. .get_cu_info = get_cu_info,
  184. .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
  185. .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
  186. .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
  187. .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
  188. .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
  189. .set_vm_context_page_table_base = set_vm_context_page_table_base,
  190. .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
  191. .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
  192. .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
  193. .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
  194. .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
  195. .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
  196. .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
  197. .invalidate_tlbs = invalidate_tlbs,
  198. .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
  199. .submit_ib = amdgpu_amdkfd_submit_ib,
  200. };
  201. struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
  202. {
  203. return (struct kfd2kgd_calls *)&kfd2kgd;
  204. }
  205. static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
  206. {
  207. return (struct amdgpu_device *)kgd;
  208. }
  209. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  210. uint32_t queue, uint32_t vmid)
  211. {
  212. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  213. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  214. mutex_lock(&adev->srbm_mutex);
  215. WREG32(mmSRBM_GFX_CNTL, value);
  216. }
  217. static void unlock_srbm(struct kgd_dev *kgd)
  218. {
  219. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  220. WREG32(mmSRBM_GFX_CNTL, 0);
  221. mutex_unlock(&adev->srbm_mutex);
  222. }
  223. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  224. uint32_t queue_id)
  225. {
  226. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  227. uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  228. uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  229. lock_srbm(kgd, mec, pipe, queue_id, 0);
  230. }
  231. static void release_queue(struct kgd_dev *kgd)
  232. {
  233. unlock_srbm(kgd);
  234. }
  235. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  236. uint32_t sh_mem_config,
  237. uint32_t sh_mem_ape1_base,
  238. uint32_t sh_mem_ape1_limit,
  239. uint32_t sh_mem_bases)
  240. {
  241. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  242. lock_srbm(kgd, 0, 0, 0, vmid);
  243. WREG32(mmSH_MEM_CONFIG, sh_mem_config);
  244. WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
  245. WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  246. WREG32(mmSH_MEM_BASES, sh_mem_bases);
  247. unlock_srbm(kgd);
  248. }
  249. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  250. unsigned int vmid)
  251. {
  252. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  253. /*
  254. * We have to assume that there is no outstanding mapping.
  255. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
  256. * a mapping is in progress or because a mapping finished and the
  257. * SW cleared it. So the protocol is to always wait & clear.
  258. */
  259. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  260. ATC_VMID0_PASID_MAPPING__VALID_MASK;
  261. WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
  262. while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
  263. cpu_relax();
  264. WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  265. /* Mapping vmid to pasid also for IH block */
  266. WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
  267. return 0;
  268. }
  269. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  270. {
  271. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  272. uint32_t mec;
  273. uint32_t pipe;
  274. mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
  275. pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
  276. lock_srbm(kgd, mec, pipe, 0, 0);
  277. WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
  278. CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
  279. unlock_srbm(kgd);
  280. return 0;
  281. }
  282. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  283. {
  284. uint32_t retval;
  285. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  286. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  287. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  288. return retval;
  289. }
  290. static inline struct cik_mqd *get_mqd(void *mqd)
  291. {
  292. return (struct cik_mqd *)mqd;
  293. }
  294. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  295. {
  296. return (struct cik_sdma_rlc_registers *)mqd;
  297. }
  298. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  299. uint32_t queue_id, uint32_t __user *wptr,
  300. uint32_t wptr_shift, uint32_t wptr_mask,
  301. struct mm_struct *mm)
  302. {
  303. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  304. struct cik_mqd *m;
  305. uint32_t *mqd_hqd;
  306. uint32_t reg, wptr_val, data;
  307. bool valid_wptr = false;
  308. m = get_mqd(mqd);
  309. acquire_queue(kgd, pipe_id, queue_id);
  310. /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
  311. mqd_hqd = &m->cp_mqd_base_addr_lo;
  312. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  313. WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
  314. /* Copy userspace write pointer value to register.
  315. * Activate doorbell logic to monitor subsequent changes.
  316. */
  317. data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
  318. CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
  319. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
  320. /* read_user_ptr may take the mm->mmap_sem.
  321. * release srbm_mutex to avoid circular dependency between
  322. * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
  323. */
  324. release_queue(kgd);
  325. valid_wptr = read_user_wptr(mm, wptr, wptr_val);
  326. acquire_queue(kgd, pipe_id, queue_id);
  327. if (valid_wptr)
  328. WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
  329. data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
  330. WREG32(mmCP_HQD_ACTIVE, data);
  331. release_queue(kgd);
  332. return 0;
  333. }
  334. static int kgd_hqd_dump(struct kgd_dev *kgd,
  335. uint32_t pipe_id, uint32_t queue_id,
  336. uint32_t (**dump)[2], uint32_t *n_regs)
  337. {
  338. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  339. uint32_t i = 0, reg;
  340. #define HQD_N_REGS (35+4)
  341. #define DUMP_REG(addr) do { \
  342. if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
  343. break; \
  344. (*dump)[i][0] = (addr) << 2; \
  345. (*dump)[i++][1] = RREG32(addr); \
  346. } while (0)
  347. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  348. if (*dump == NULL)
  349. return -ENOMEM;
  350. acquire_queue(kgd, pipe_id, queue_id);
  351. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
  352. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
  353. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
  354. DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
  355. for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
  356. DUMP_REG(reg);
  357. release_queue(kgd);
  358. WARN_ON_ONCE(i != HQD_N_REGS);
  359. *n_regs = i;
  360. return 0;
  361. }
  362. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
  363. uint32_t __user *wptr, struct mm_struct *mm)
  364. {
  365. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  366. struct cik_sdma_rlc_registers *m;
  367. unsigned long end_jiffies;
  368. uint32_t sdma_base_addr;
  369. uint32_t data;
  370. m = get_sdma_mqd(mqd);
  371. sdma_base_addr = get_sdma_base_addr(m);
  372. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  373. m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
  374. end_jiffies = msecs_to_jiffies(2000) + jiffies;
  375. while (true) {
  376. data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  377. if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
  378. break;
  379. if (time_after(jiffies, end_jiffies))
  380. return -ETIME;
  381. usleep_range(500, 1000);
  382. }
  383. if (m->sdma_engine_id) {
  384. data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
  385. data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
  386. RESUME_CTX, 0);
  387. WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
  388. } else {
  389. data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
  390. data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
  391. RESUME_CTX, 0);
  392. WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
  393. }
  394. data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
  395. ENABLE, 1);
  396. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
  397. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
  398. if (read_user_wptr(mm, wptr, data))
  399. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
  400. else
  401. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
  402. m->sdma_rlc_rb_rptr);
  403. WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
  404. m->sdma_rlc_virtual_addr);
  405. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
  406. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
  407. m->sdma_rlc_rb_base_hi);
  408. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
  409. m->sdma_rlc_rb_rptr_addr_lo);
  410. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
  411. m->sdma_rlc_rb_rptr_addr_hi);
  412. data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
  413. RB_ENABLE, 1);
  414. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
  415. return 0;
  416. }
  417. static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
  418. uint32_t engine_id, uint32_t queue_id,
  419. uint32_t (**dump)[2], uint32_t *n_regs)
  420. {
  421. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  422. uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
  423. queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  424. uint32_t i = 0, reg;
  425. #undef HQD_N_REGS
  426. #define HQD_N_REGS (19+4)
  427. *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
  428. if (*dump == NULL)
  429. return -ENOMEM;
  430. for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
  431. DUMP_REG(sdma_offset + reg);
  432. for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
  433. reg++)
  434. DUMP_REG(sdma_offset + reg);
  435. WARN_ON_ONCE(i != HQD_N_REGS);
  436. *n_regs = i;
  437. return 0;
  438. }
  439. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  440. uint32_t pipe_id, uint32_t queue_id)
  441. {
  442. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  443. uint32_t act;
  444. bool retval = false;
  445. uint32_t low, high;
  446. acquire_queue(kgd, pipe_id, queue_id);
  447. act = RREG32(mmCP_HQD_ACTIVE);
  448. if (act) {
  449. low = lower_32_bits(queue_address >> 8);
  450. high = upper_32_bits(queue_address >> 8);
  451. if (low == RREG32(mmCP_HQD_PQ_BASE) &&
  452. high == RREG32(mmCP_HQD_PQ_BASE_HI))
  453. retval = true;
  454. }
  455. release_queue(kgd);
  456. return retval;
  457. }
  458. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  459. {
  460. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  461. struct cik_sdma_rlc_registers *m;
  462. uint32_t sdma_base_addr;
  463. uint32_t sdma_rlc_rb_cntl;
  464. m = get_sdma_mqd(mqd);
  465. sdma_base_addr = get_sdma_base_addr(m);
  466. sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  467. if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
  468. return true;
  469. return false;
  470. }
  471. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
  472. enum kfd_preempt_type reset_type,
  473. unsigned int utimeout, uint32_t pipe_id,
  474. uint32_t queue_id)
  475. {
  476. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  477. uint32_t temp;
  478. enum hqd_dequeue_request_type type;
  479. unsigned long flags, end_jiffies;
  480. int retry;
  481. acquire_queue(kgd, pipe_id, queue_id);
  482. WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
  483. switch (reset_type) {
  484. case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
  485. type = DRAIN_PIPE;
  486. break;
  487. case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
  488. type = RESET_WAVES;
  489. break;
  490. default:
  491. type = DRAIN_PIPE;
  492. break;
  493. }
  494. /* Workaround: If IQ timer is active and the wait time is close to or
  495. * equal to 0, dequeueing is not safe. Wait until either the wait time
  496. * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
  497. * cleared before continuing. Also, ensure wait times are set to at
  498. * least 0x3.
  499. */
  500. local_irq_save(flags);
  501. preempt_disable();
  502. retry = 5000; /* wait for 500 usecs at maximum */
  503. while (true) {
  504. temp = RREG32(mmCP_HQD_IQ_TIMER);
  505. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
  506. pr_debug("HW is processing IQ\n");
  507. goto loop;
  508. }
  509. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
  510. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
  511. == 3) /* SEM-rearm is safe */
  512. break;
  513. /* Wait time 3 is safe for CP, but our MMIO read/write
  514. * time is close to 1 microsecond, so check for 10 to
  515. * leave more buffer room
  516. */
  517. if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
  518. >= 10)
  519. break;
  520. pr_debug("IQ timer is active\n");
  521. } else
  522. break;
  523. loop:
  524. if (!retry) {
  525. pr_err("CP HQD IQ timer status time out\n");
  526. break;
  527. }
  528. ndelay(100);
  529. --retry;
  530. }
  531. retry = 1000;
  532. while (true) {
  533. temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
  534. if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
  535. break;
  536. pr_debug("Dequeue request is pending\n");
  537. if (!retry) {
  538. pr_err("CP HQD dequeue request time out\n");
  539. break;
  540. }
  541. ndelay(100);
  542. --retry;
  543. }
  544. local_irq_restore(flags);
  545. preempt_enable();
  546. WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
  547. end_jiffies = (utimeout * HZ / 1000) + jiffies;
  548. while (true) {
  549. temp = RREG32(mmCP_HQD_ACTIVE);
  550. if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
  551. break;
  552. if (time_after(jiffies, end_jiffies)) {
  553. pr_err("cp queue preemption time out\n");
  554. release_queue(kgd);
  555. return -ETIME;
  556. }
  557. usleep_range(500, 1000);
  558. }
  559. release_queue(kgd);
  560. return 0;
  561. }
  562. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  563. unsigned int utimeout)
  564. {
  565. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  566. struct cik_sdma_rlc_registers *m;
  567. uint32_t sdma_base_addr;
  568. uint32_t temp;
  569. unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
  570. m = get_sdma_mqd(mqd);
  571. sdma_base_addr = get_sdma_base_addr(m);
  572. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
  573. temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
  574. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
  575. while (true) {
  576. temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
  577. if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
  578. break;
  579. if (time_after(jiffies, end_jiffies))
  580. return -ETIME;
  581. usleep_range(500, 1000);
  582. }
  583. WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
  584. WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
  585. RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
  586. SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
  587. m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
  588. return 0;
  589. }
  590. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  591. {
  592. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  593. union TCP_WATCH_CNTL_BITS cntl;
  594. unsigned int i;
  595. cntl.u32All = 0;
  596. cntl.bitfields.valid = 0;
  597. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  598. cntl.bitfields.atc = 1;
  599. /* Turning off this address until we set all the registers */
  600. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  601. WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
  602. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  603. return 0;
  604. }
  605. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  606. unsigned int watch_point_id,
  607. uint32_t cntl_val,
  608. uint32_t addr_hi,
  609. uint32_t addr_lo)
  610. {
  611. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  612. union TCP_WATCH_CNTL_BITS cntl;
  613. cntl.u32All = cntl_val;
  614. /* Turning off this watch point until we set all the registers */
  615. cntl.bitfields.valid = 0;
  616. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  617. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  618. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  619. ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
  620. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  621. ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
  622. /* Enable the watch point */
  623. cntl.bitfields.valid = 1;
  624. WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  625. ADDRESS_WATCH_REG_CNTL], cntl.u32All);
  626. return 0;
  627. }
  628. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  629. uint32_t gfx_index_val,
  630. uint32_t sq_cmd)
  631. {
  632. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  633. uint32_t data;
  634. mutex_lock(&adev->grbm_idx_mutex);
  635. WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
  636. WREG32(mmSQ_CMD, sq_cmd);
  637. /* Restore the GRBM_GFX_INDEX register */
  638. data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
  639. GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
  640. GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
  641. WREG32(mmGRBM_GFX_INDEX, data);
  642. mutex_unlock(&adev->grbm_idx_mutex);
  643. return 0;
  644. }
  645. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  646. unsigned int watch_point_id,
  647. unsigned int reg_offset)
  648. {
  649. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
  650. }
  651. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
  652. uint8_t vmid)
  653. {
  654. uint32_t reg;
  655. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  656. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  657. return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
  658. }
  659. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  660. uint8_t vmid)
  661. {
  662. uint32_t reg;
  663. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  664. reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  665. return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
  666. }
  667. static void set_scratch_backing_va(struct kgd_dev *kgd,
  668. uint64_t va, uint32_t vmid)
  669. {
  670. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  671. lock_srbm(kgd, 0, 0, 0, vmid);
  672. WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
  673. unlock_srbm(kgd);
  674. }
  675. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  676. {
  677. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  678. const union amdgpu_firmware_header *hdr;
  679. switch (type) {
  680. case KGD_ENGINE_PFP:
  681. hdr = (const union amdgpu_firmware_header *)
  682. adev->gfx.pfp_fw->data;
  683. break;
  684. case KGD_ENGINE_ME:
  685. hdr = (const union amdgpu_firmware_header *)
  686. adev->gfx.me_fw->data;
  687. break;
  688. case KGD_ENGINE_CE:
  689. hdr = (const union amdgpu_firmware_header *)
  690. adev->gfx.ce_fw->data;
  691. break;
  692. case KGD_ENGINE_MEC1:
  693. hdr = (const union amdgpu_firmware_header *)
  694. adev->gfx.mec_fw->data;
  695. break;
  696. case KGD_ENGINE_MEC2:
  697. hdr = (const union amdgpu_firmware_header *)
  698. adev->gfx.mec2_fw->data;
  699. break;
  700. case KGD_ENGINE_RLC:
  701. hdr = (const union amdgpu_firmware_header *)
  702. adev->gfx.rlc_fw->data;
  703. break;
  704. case KGD_ENGINE_SDMA1:
  705. hdr = (const union amdgpu_firmware_header *)
  706. adev->sdma.instance[0].fw->data;
  707. break;
  708. case KGD_ENGINE_SDMA2:
  709. hdr = (const union amdgpu_firmware_header *)
  710. adev->sdma.instance[1].fw->data;
  711. break;
  712. default:
  713. return 0;
  714. }
  715. if (hdr == NULL)
  716. return 0;
  717. /* Only 12 bit in use*/
  718. return hdr->common.ucode_version;
  719. }
  720. static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
  721. uint32_t page_table_base)
  722. {
  723. struct amdgpu_device *adev = get_amdgpu_device(kgd);
  724. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  725. pr_err("trying to set page table base for wrong VMID\n");
  726. return;
  727. }
  728. WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
  729. }
  730. static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
  731. {
  732. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  733. int vmid;
  734. unsigned int tmp;
  735. for (vmid = 0; vmid < 16; vmid++) {
  736. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
  737. continue;
  738. tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
  739. if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
  740. (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
  741. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  742. RREG32(mmVM_INVALIDATE_RESPONSE);
  743. break;
  744. }
  745. }
  746. return 0;
  747. }
  748. static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
  749. {
  750. struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
  751. if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
  752. pr_err("non kfd vmid\n");
  753. return 0;
  754. }
  755. WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
  756. RREG32(mmVM_INVALIDATE_RESPONSE);
  757. return 0;
  758. }