radix-tree.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282
  1. /*
  2. * Copyright (C) 2001 Momchil Velikov
  3. * Portions Copyright (C) 2001 Christoph Hellwig
  4. * Copyright (C) 2005 SGI, Christoph Lameter
  5. * Copyright (C) 2006 Nick Piggin
  6. * Copyright (C) 2012 Konstantin Khlebnikov
  7. * Copyright (C) 2016 Intel, Matthew Wilcox
  8. * Copyright (C) 2016 Intel, Ross Zwisler
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2, or (at
  13. * your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/bitmap.h>
  25. #include <linux/bitops.h>
  26. #include <linux/cpu.h>
  27. #include <linux/errno.h>
  28. #include <linux/export.h>
  29. #include <linux/idr.h>
  30. #include <linux/init.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmemleak.h>
  33. #include <linux/percpu.h>
  34. #include <linux/preempt.h> /* in_interrupt() */
  35. #include <linux/radix-tree.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/slab.h>
  38. #include <linux/string.h>
  39. /* Number of nodes in fully populated tree of given height */
  40. static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  41. /*
  42. * Radix tree node cache.
  43. */
  44. static struct kmem_cache *radix_tree_node_cachep;
  45. /*
  46. * The radix tree is variable-height, so an insert operation not only has
  47. * to build the branch to its corresponding item, it also has to build the
  48. * branch to existing items if the size has to be increased (by
  49. * radix_tree_extend).
  50. *
  51. * The worst case is a zero height tree with just a single item at index 0,
  52. * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  53. * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  54. * Hence:
  55. */
  56. #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  57. /*
  58. * The IDR does not have to be as high as the radix tree since it uses
  59. * signed integers, not unsigned longs.
  60. */
  61. #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
  62. #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
  63. RADIX_TREE_MAP_SHIFT))
  64. #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
  65. /*
  66. * The IDA is even shorter since it uses a bitmap at the last level.
  67. */
  68. #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  69. #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
  70. RADIX_TREE_MAP_SHIFT))
  71. #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
  72. /*
  73. * Per-cpu pool of preloaded nodes
  74. */
  75. struct radix_tree_preload {
  76. unsigned nr;
  77. /* nodes->parent points to next preallocated node */
  78. struct radix_tree_node *nodes;
  79. };
  80. static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  81. static inline struct radix_tree_node *entry_to_node(void *ptr)
  82. {
  83. return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  84. }
  85. static inline void *node_to_entry(void *ptr)
  86. {
  87. return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  88. }
  89. #define RADIX_TREE_RETRY node_to_entry(NULL)
  90. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  91. /* Sibling slots point directly to another slot in the same node */
  92. static inline
  93. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  94. {
  95. void **ptr = node;
  96. return (parent->slots <= ptr) &&
  97. (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  98. }
  99. #else
  100. static inline
  101. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  102. {
  103. return false;
  104. }
  105. #endif
  106. static inline
  107. unsigned long get_slot_offset(const struct radix_tree_node *parent, void **slot)
  108. {
  109. return slot - parent->slots;
  110. }
  111. static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  112. struct radix_tree_node **nodep, unsigned long index)
  113. {
  114. unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  115. void **entry = rcu_dereference_raw(parent->slots[offset]);
  116. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  117. if (radix_tree_is_internal_node(entry)) {
  118. if (is_sibling_entry(parent, entry)) {
  119. void **sibentry = (void **) entry_to_node(entry);
  120. offset = get_slot_offset(parent, sibentry);
  121. entry = rcu_dereference_raw(*sibentry);
  122. }
  123. }
  124. #endif
  125. *nodep = (void *)entry;
  126. return offset;
  127. }
  128. static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  129. {
  130. return root->gfp_mask & __GFP_BITS_MASK;
  131. }
  132. static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  133. int offset)
  134. {
  135. __set_bit(offset, node->tags[tag]);
  136. }
  137. static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  138. int offset)
  139. {
  140. __clear_bit(offset, node->tags[tag]);
  141. }
  142. static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
  143. int offset)
  144. {
  145. return test_bit(offset, node->tags[tag]);
  146. }
  147. static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
  148. {
  149. root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
  150. }
  151. static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
  152. {
  153. root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
  154. }
  155. static inline void root_tag_clear_all(struct radix_tree_root *root)
  156. {
  157. root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
  158. }
  159. static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
  160. {
  161. return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
  162. }
  163. static inline unsigned root_tags_get(const struct radix_tree_root *root)
  164. {
  165. return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
  166. }
  167. static inline bool is_idr(const struct radix_tree_root *root)
  168. {
  169. return !!(root->gfp_mask & ROOT_IS_IDR);
  170. }
  171. /*
  172. * Returns 1 if any slot in the node has this tag set.
  173. * Otherwise returns 0.
  174. */
  175. static inline int any_tag_set(const struct radix_tree_node *node,
  176. unsigned int tag)
  177. {
  178. unsigned idx;
  179. for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
  180. if (node->tags[tag][idx])
  181. return 1;
  182. }
  183. return 0;
  184. }
  185. static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
  186. {
  187. bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
  188. }
  189. /**
  190. * radix_tree_find_next_bit - find the next set bit in a memory region
  191. *
  192. * @addr: The address to base the search on
  193. * @size: The bitmap size in bits
  194. * @offset: The bitnumber to start searching at
  195. *
  196. * Unrollable variant of find_next_bit() for constant size arrays.
  197. * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
  198. * Returns next bit offset, or size if nothing found.
  199. */
  200. static __always_inline unsigned long
  201. radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
  202. unsigned long offset)
  203. {
  204. const unsigned long *addr = node->tags[tag];
  205. if (offset < RADIX_TREE_MAP_SIZE) {
  206. unsigned long tmp;
  207. addr += offset / BITS_PER_LONG;
  208. tmp = *addr >> (offset % BITS_PER_LONG);
  209. if (tmp)
  210. return __ffs(tmp) + offset;
  211. offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
  212. while (offset < RADIX_TREE_MAP_SIZE) {
  213. tmp = *++addr;
  214. if (tmp)
  215. return __ffs(tmp) + offset;
  216. offset += BITS_PER_LONG;
  217. }
  218. }
  219. return RADIX_TREE_MAP_SIZE;
  220. }
  221. static unsigned int iter_offset(const struct radix_tree_iter *iter)
  222. {
  223. return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
  224. }
  225. /*
  226. * The maximum index which can be stored in a radix tree
  227. */
  228. static inline unsigned long shift_maxindex(unsigned int shift)
  229. {
  230. return (RADIX_TREE_MAP_SIZE << shift) - 1;
  231. }
  232. static inline unsigned long node_maxindex(const struct radix_tree_node *node)
  233. {
  234. return shift_maxindex(node->shift);
  235. }
  236. static unsigned long next_index(unsigned long index,
  237. const struct radix_tree_node *node,
  238. unsigned long offset)
  239. {
  240. return (index & ~node_maxindex(node)) + (offset << node->shift);
  241. }
  242. #ifndef __KERNEL__
  243. static void dump_node(struct radix_tree_node *node, unsigned long index)
  244. {
  245. unsigned long i;
  246. pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
  247. node, node->offset, index, index | node_maxindex(node),
  248. node->parent,
  249. node->tags[0][0], node->tags[1][0], node->tags[2][0],
  250. node->shift, node->count, node->exceptional);
  251. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
  252. unsigned long first = index | (i << node->shift);
  253. unsigned long last = first | ((1UL << node->shift) - 1);
  254. void *entry = node->slots[i];
  255. if (!entry)
  256. continue;
  257. if (entry == RADIX_TREE_RETRY) {
  258. pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
  259. i, first, last, node);
  260. } else if (!radix_tree_is_internal_node(entry)) {
  261. pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
  262. entry, i, first, last, node);
  263. } else if (is_sibling_entry(node, entry)) {
  264. pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
  265. entry, i, first, last, node,
  266. *(void **)entry_to_node(entry));
  267. } else {
  268. dump_node(entry_to_node(entry), first);
  269. }
  270. }
  271. }
  272. /* For debug */
  273. static void radix_tree_dump(struct radix_tree_root *root)
  274. {
  275. pr_debug("radix root: %p rnode %p tags %x\n",
  276. root, root->rnode,
  277. root->gfp_mask >> ROOT_TAG_SHIFT);
  278. if (!radix_tree_is_internal_node(root->rnode))
  279. return;
  280. dump_node(entry_to_node(root->rnode), 0);
  281. }
  282. static void dump_ida_node(void *entry, unsigned long index)
  283. {
  284. unsigned long i;
  285. if (!entry)
  286. return;
  287. if (radix_tree_is_internal_node(entry)) {
  288. struct radix_tree_node *node = entry_to_node(entry);
  289. pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
  290. node, node->offset, index * IDA_BITMAP_BITS,
  291. ((index | node_maxindex(node)) + 1) *
  292. IDA_BITMAP_BITS - 1,
  293. node->parent, node->tags[0][0], node->shift,
  294. node->count);
  295. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
  296. dump_ida_node(node->slots[i],
  297. index | (i << node->shift));
  298. } else if (radix_tree_exceptional_entry(entry)) {
  299. pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
  300. entry, (int)(index & RADIX_TREE_MAP_MASK),
  301. index * IDA_BITMAP_BITS,
  302. index * IDA_BITMAP_BITS + BITS_PER_LONG -
  303. RADIX_TREE_EXCEPTIONAL_SHIFT,
  304. (unsigned long)entry >>
  305. RADIX_TREE_EXCEPTIONAL_SHIFT);
  306. } else {
  307. struct ida_bitmap *bitmap = entry;
  308. pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
  309. (int)(index & RADIX_TREE_MAP_MASK),
  310. index * IDA_BITMAP_BITS,
  311. (index + 1) * IDA_BITMAP_BITS - 1);
  312. for (i = 0; i < IDA_BITMAP_LONGS; i++)
  313. pr_cont(" %lx", bitmap->bitmap[i]);
  314. pr_cont("\n");
  315. }
  316. }
  317. static void ida_dump(struct ida *ida)
  318. {
  319. struct radix_tree_root *root = &ida->ida_rt;
  320. pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
  321. root->gfp_mask >> ROOT_TAG_SHIFT);
  322. dump_ida_node(root->rnode, 0);
  323. }
  324. #endif
  325. /*
  326. * This assumes that the caller has performed appropriate preallocation, and
  327. * that the caller has pinned this thread of control to the current CPU.
  328. */
  329. static struct radix_tree_node *
  330. radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
  331. unsigned int shift, unsigned int offset,
  332. unsigned int count, unsigned int exceptional)
  333. {
  334. struct radix_tree_node *ret = NULL;
  335. /*
  336. * Preload code isn't irq safe and it doesn't make sense to use
  337. * preloading during an interrupt anyway as all the allocations have
  338. * to be atomic. So just do normal allocation when in interrupt.
  339. */
  340. if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
  341. struct radix_tree_preload *rtp;
  342. /*
  343. * Even if the caller has preloaded, try to allocate from the
  344. * cache first for the new node to get accounted to the memory
  345. * cgroup.
  346. */
  347. ret = kmem_cache_alloc(radix_tree_node_cachep,
  348. gfp_mask | __GFP_NOWARN);
  349. if (ret)
  350. goto out;
  351. /*
  352. * Provided the caller has preloaded here, we will always
  353. * succeed in getting a node here (and never reach
  354. * kmem_cache_alloc)
  355. */
  356. rtp = this_cpu_ptr(&radix_tree_preloads);
  357. if (rtp->nr) {
  358. ret = rtp->nodes;
  359. rtp->nodes = ret->parent;
  360. rtp->nr--;
  361. }
  362. /*
  363. * Update the allocation stack trace as this is more useful
  364. * for debugging.
  365. */
  366. kmemleak_update_trace(ret);
  367. goto out;
  368. }
  369. ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  370. out:
  371. BUG_ON(radix_tree_is_internal_node(ret));
  372. if (ret) {
  373. ret->parent = parent;
  374. ret->shift = shift;
  375. ret->offset = offset;
  376. ret->count = count;
  377. ret->exceptional = exceptional;
  378. }
  379. return ret;
  380. }
  381. static void radix_tree_node_rcu_free(struct rcu_head *head)
  382. {
  383. struct radix_tree_node *node =
  384. container_of(head, struct radix_tree_node, rcu_head);
  385. /*
  386. * Must only free zeroed nodes into the slab. We can be left with
  387. * non-NULL entries by radix_tree_free_nodes, so clear the entries
  388. * and tags here.
  389. */
  390. memset(node->slots, 0, sizeof(node->slots));
  391. memset(node->tags, 0, sizeof(node->tags));
  392. INIT_LIST_HEAD(&node->private_list);
  393. kmem_cache_free(radix_tree_node_cachep, node);
  394. }
  395. static inline void
  396. radix_tree_node_free(struct radix_tree_node *node)
  397. {
  398. call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
  399. }
  400. /*
  401. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  402. * ensure that the addition of a single element in the tree cannot fail. On
  403. * success, return zero, with preemption disabled. On error, return -ENOMEM
  404. * with preemption not disabled.
  405. *
  406. * To make use of this facility, the radix tree must be initialised without
  407. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  408. */
  409. static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
  410. {
  411. struct radix_tree_preload *rtp;
  412. struct radix_tree_node *node;
  413. int ret = -ENOMEM;
  414. /*
  415. * Nodes preloaded by one cgroup can be be used by another cgroup, so
  416. * they should never be accounted to any particular memory cgroup.
  417. */
  418. gfp_mask &= ~__GFP_ACCOUNT;
  419. preempt_disable();
  420. rtp = this_cpu_ptr(&radix_tree_preloads);
  421. while (rtp->nr < nr) {
  422. preempt_enable();
  423. node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  424. if (node == NULL)
  425. goto out;
  426. preempt_disable();
  427. rtp = this_cpu_ptr(&radix_tree_preloads);
  428. if (rtp->nr < nr) {
  429. node->parent = rtp->nodes;
  430. rtp->nodes = node;
  431. rtp->nr++;
  432. } else {
  433. kmem_cache_free(radix_tree_node_cachep, node);
  434. }
  435. }
  436. ret = 0;
  437. out:
  438. return ret;
  439. }
  440. /*
  441. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  442. * ensure that the addition of a single element in the tree cannot fail. On
  443. * success, return zero, with preemption disabled. On error, return -ENOMEM
  444. * with preemption not disabled.
  445. *
  446. * To make use of this facility, the radix tree must be initialised without
  447. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  448. */
  449. int radix_tree_preload(gfp_t gfp_mask)
  450. {
  451. /* Warn on non-sensical use... */
  452. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  453. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  454. }
  455. EXPORT_SYMBOL(radix_tree_preload);
  456. /*
  457. * The same as above function, except we don't guarantee preloading happens.
  458. * We do it, if we decide it helps. On success, return zero with preemption
  459. * disabled. On error, return -ENOMEM with preemption not disabled.
  460. */
  461. int radix_tree_maybe_preload(gfp_t gfp_mask)
  462. {
  463. if (gfpflags_allow_blocking(gfp_mask))
  464. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  465. /* Preloading doesn't help anything with this gfp mask, skip it */
  466. preempt_disable();
  467. return 0;
  468. }
  469. EXPORT_SYMBOL(radix_tree_maybe_preload);
  470. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  471. /*
  472. * Preload with enough objects to ensure that we can split a single entry
  473. * of order @old_order into many entries of size @new_order
  474. */
  475. int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
  476. gfp_t gfp_mask)
  477. {
  478. unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
  479. unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
  480. (new_order / RADIX_TREE_MAP_SHIFT);
  481. unsigned nr = 0;
  482. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  483. BUG_ON(new_order >= old_order);
  484. while (layers--)
  485. nr = nr * RADIX_TREE_MAP_SIZE + 1;
  486. return __radix_tree_preload(gfp_mask, top * nr);
  487. }
  488. #endif
  489. /*
  490. * The same as function above, but preload number of nodes required to insert
  491. * (1 << order) continuous naturally-aligned elements.
  492. */
  493. int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
  494. {
  495. unsigned long nr_subtrees;
  496. int nr_nodes, subtree_height;
  497. /* Preloading doesn't help anything with this gfp mask, skip it */
  498. if (!gfpflags_allow_blocking(gfp_mask)) {
  499. preempt_disable();
  500. return 0;
  501. }
  502. /*
  503. * Calculate number and height of fully populated subtrees it takes to
  504. * store (1 << order) elements.
  505. */
  506. nr_subtrees = 1 << order;
  507. for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
  508. subtree_height++)
  509. nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
  510. /*
  511. * The worst case is zero height tree with a single item at index 0 and
  512. * then inserting items starting at ULONG_MAX - (1 << order).
  513. *
  514. * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
  515. * 0-index item.
  516. */
  517. nr_nodes = RADIX_TREE_MAX_PATH;
  518. /* Plus branch to fully populated subtrees. */
  519. nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
  520. /* Root node is shared. */
  521. nr_nodes--;
  522. /* Plus nodes required to build subtrees. */
  523. nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
  524. return __radix_tree_preload(gfp_mask, nr_nodes);
  525. }
  526. static unsigned radix_tree_load_root(const struct radix_tree_root *root,
  527. struct radix_tree_node **nodep, unsigned long *maxindex)
  528. {
  529. struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
  530. *nodep = node;
  531. if (likely(radix_tree_is_internal_node(node))) {
  532. node = entry_to_node(node);
  533. *maxindex = node_maxindex(node);
  534. return node->shift + RADIX_TREE_MAP_SHIFT;
  535. }
  536. *maxindex = 0;
  537. return 0;
  538. }
  539. /*
  540. * Extend a radix tree so it can store key @index.
  541. */
  542. static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
  543. unsigned long index, unsigned int shift)
  544. {
  545. struct radix_tree_node *slot;
  546. unsigned int maxshift;
  547. int tag;
  548. /* Figure out what the shift should be. */
  549. maxshift = shift;
  550. while (index > shift_maxindex(maxshift))
  551. maxshift += RADIX_TREE_MAP_SHIFT;
  552. slot = root->rnode;
  553. if (!slot && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
  554. goto out;
  555. do {
  556. struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
  557. shift, 0, 1, 0);
  558. if (!node)
  559. return -ENOMEM;
  560. if (is_idr(root)) {
  561. all_tag_set(node, IDR_FREE);
  562. if (!root_tag_get(root, IDR_FREE)) {
  563. tag_clear(node, IDR_FREE, 0);
  564. root_tag_set(root, IDR_FREE);
  565. }
  566. } else {
  567. /* Propagate the aggregated tag info to the new child */
  568. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
  569. if (root_tag_get(root, tag))
  570. tag_set(node, tag, 0);
  571. }
  572. }
  573. BUG_ON(shift > BITS_PER_LONG);
  574. if (radix_tree_is_internal_node(slot)) {
  575. entry_to_node(slot)->parent = node;
  576. } else if (radix_tree_exceptional_entry(slot)) {
  577. /* Moving an exceptional root->rnode to a node */
  578. node->exceptional = 1;
  579. }
  580. node->slots[0] = slot;
  581. slot = node_to_entry(node);
  582. rcu_assign_pointer(root->rnode, slot);
  583. shift += RADIX_TREE_MAP_SHIFT;
  584. } while (shift <= maxshift);
  585. out:
  586. return maxshift + RADIX_TREE_MAP_SHIFT;
  587. }
  588. /**
  589. * radix_tree_shrink - shrink radix tree to minimum height
  590. * @root radix tree root
  591. */
  592. static inline bool radix_tree_shrink(struct radix_tree_root *root,
  593. radix_tree_update_node_t update_node,
  594. void *private)
  595. {
  596. bool shrunk = false;
  597. for (;;) {
  598. struct radix_tree_node *node = root->rnode;
  599. struct radix_tree_node *child;
  600. if (!radix_tree_is_internal_node(node))
  601. break;
  602. node = entry_to_node(node);
  603. /*
  604. * The candidate node has more than one child, or its child
  605. * is not at the leftmost slot, or the child is a multiorder
  606. * entry, we cannot shrink.
  607. */
  608. if (node->count != 1)
  609. break;
  610. child = node->slots[0];
  611. if (!child)
  612. break;
  613. if (!radix_tree_is_internal_node(child) && node->shift)
  614. break;
  615. if (radix_tree_is_internal_node(child))
  616. entry_to_node(child)->parent = NULL;
  617. /*
  618. * We don't need rcu_assign_pointer(), since we are simply
  619. * moving the node from one part of the tree to another: if it
  620. * was safe to dereference the old pointer to it
  621. * (node->slots[0]), it will be safe to dereference the new
  622. * one (root->rnode) as far as dependent read barriers go.
  623. */
  624. root->rnode = child;
  625. if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
  626. root_tag_clear(root, IDR_FREE);
  627. /*
  628. * We have a dilemma here. The node's slot[0] must not be
  629. * NULLed in case there are concurrent lookups expecting to
  630. * find the item. However if this was a bottom-level node,
  631. * then it may be subject to the slot pointer being visible
  632. * to callers dereferencing it. If item corresponding to
  633. * slot[0] is subsequently deleted, these callers would expect
  634. * their slot to become empty sooner or later.
  635. *
  636. * For example, lockless pagecache will look up a slot, deref
  637. * the page pointer, and if the page has 0 refcount it means it
  638. * was concurrently deleted from pagecache so try the deref
  639. * again. Fortunately there is already a requirement for logic
  640. * to retry the entire slot lookup -- the indirect pointer
  641. * problem (replacing direct root node with an indirect pointer
  642. * also results in a stale slot). So tag the slot as indirect
  643. * to force callers to retry.
  644. */
  645. node->count = 0;
  646. if (!radix_tree_is_internal_node(child)) {
  647. node->slots[0] = RADIX_TREE_RETRY;
  648. if (update_node)
  649. update_node(node, private);
  650. }
  651. WARN_ON_ONCE(!list_empty(&node->private_list));
  652. radix_tree_node_free(node);
  653. shrunk = true;
  654. }
  655. return shrunk;
  656. }
  657. static bool delete_node(struct radix_tree_root *root,
  658. struct radix_tree_node *node,
  659. radix_tree_update_node_t update_node, void *private)
  660. {
  661. bool deleted = false;
  662. do {
  663. struct radix_tree_node *parent;
  664. if (node->count) {
  665. if (node == entry_to_node(root->rnode))
  666. deleted |= radix_tree_shrink(root, update_node,
  667. private);
  668. return deleted;
  669. }
  670. parent = node->parent;
  671. if (parent) {
  672. parent->slots[node->offset] = NULL;
  673. parent->count--;
  674. } else {
  675. /*
  676. * Shouldn't the tags already have all been cleared
  677. * by the caller?
  678. */
  679. if (!is_idr(root))
  680. root_tag_clear_all(root);
  681. root->rnode = NULL;
  682. }
  683. WARN_ON_ONCE(!list_empty(&node->private_list));
  684. radix_tree_node_free(node);
  685. deleted = true;
  686. node = parent;
  687. } while (node);
  688. return deleted;
  689. }
  690. /**
  691. * __radix_tree_create - create a slot in a radix tree
  692. * @root: radix tree root
  693. * @index: index key
  694. * @order: index occupies 2^order aligned slots
  695. * @nodep: returns node
  696. * @slotp: returns slot
  697. *
  698. * Create, if necessary, and return the node and slot for an item
  699. * at position @index in the radix tree @root.
  700. *
  701. * Until there is more than one item in the tree, no nodes are
  702. * allocated and @root->rnode is used as a direct slot instead of
  703. * pointing to a node, in which case *@nodep will be NULL.
  704. *
  705. * Returns -ENOMEM, or 0 for success.
  706. */
  707. int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
  708. unsigned order, struct radix_tree_node **nodep,
  709. void ***slotp)
  710. {
  711. struct radix_tree_node *node = NULL, *child;
  712. void **slot = (void **)&root->rnode;
  713. unsigned long maxindex;
  714. unsigned int shift, offset = 0;
  715. unsigned long max = index | ((1UL << order) - 1);
  716. gfp_t gfp = root_gfp_mask(root);
  717. shift = radix_tree_load_root(root, &child, &maxindex);
  718. /* Make sure the tree is high enough. */
  719. if (order > 0 && max == ((1UL << order) - 1))
  720. max++;
  721. if (max > maxindex) {
  722. int error = radix_tree_extend(root, gfp, max, shift);
  723. if (error < 0)
  724. return error;
  725. shift = error;
  726. child = root->rnode;
  727. }
  728. while (shift > order) {
  729. shift -= RADIX_TREE_MAP_SHIFT;
  730. if (child == NULL) {
  731. /* Have to add a child node. */
  732. child = radix_tree_node_alloc(gfp, node, shift,
  733. offset, 0, 0);
  734. if (!child)
  735. return -ENOMEM;
  736. rcu_assign_pointer(*slot, node_to_entry(child));
  737. if (node)
  738. node->count++;
  739. } else if (!radix_tree_is_internal_node(child))
  740. break;
  741. /* Go a level down */
  742. node = entry_to_node(child);
  743. offset = radix_tree_descend(node, &child, index);
  744. slot = &node->slots[offset];
  745. }
  746. if (nodep)
  747. *nodep = node;
  748. if (slotp)
  749. *slotp = slot;
  750. return 0;
  751. }
  752. /*
  753. * Free any nodes below this node. The tree is presumed to not need
  754. * shrinking, and any user data in the tree is presumed to not need a
  755. * destructor called on it. If we need to add a destructor, we can
  756. * add that functionality later. Note that we may not clear tags or
  757. * slots from the tree as an RCU walker may still have a pointer into
  758. * this subtree. We could replace the entries with RADIX_TREE_RETRY,
  759. * but we'll still have to clear those in rcu_free.
  760. */
  761. static void radix_tree_free_nodes(struct radix_tree_node *node)
  762. {
  763. unsigned offset = 0;
  764. struct radix_tree_node *child = entry_to_node(node);
  765. for (;;) {
  766. void *entry = child->slots[offset];
  767. if (radix_tree_is_internal_node(entry) &&
  768. !is_sibling_entry(child, entry)) {
  769. child = entry_to_node(entry);
  770. offset = 0;
  771. continue;
  772. }
  773. offset++;
  774. while (offset == RADIX_TREE_MAP_SIZE) {
  775. struct radix_tree_node *old = child;
  776. offset = child->offset + 1;
  777. child = child->parent;
  778. WARN_ON_ONCE(!list_empty(&old->private_list));
  779. radix_tree_node_free(old);
  780. if (old == entry_to_node(node))
  781. return;
  782. }
  783. }
  784. }
  785. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  786. static inline int insert_entries(struct radix_tree_node *node, void **slot,
  787. void *item, unsigned order, bool replace)
  788. {
  789. struct radix_tree_node *child;
  790. unsigned i, n, tag, offset, tags = 0;
  791. if (node) {
  792. if (order > node->shift)
  793. n = 1 << (order - node->shift);
  794. else
  795. n = 1;
  796. offset = get_slot_offset(node, slot);
  797. } else {
  798. n = 1;
  799. offset = 0;
  800. }
  801. if (n > 1) {
  802. offset = offset & ~(n - 1);
  803. slot = &node->slots[offset];
  804. }
  805. child = node_to_entry(slot);
  806. for (i = 0; i < n; i++) {
  807. if (slot[i]) {
  808. if (replace) {
  809. node->count--;
  810. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  811. if (tag_get(node, tag, offset + i))
  812. tags |= 1 << tag;
  813. } else
  814. return -EEXIST;
  815. }
  816. }
  817. for (i = 0; i < n; i++) {
  818. struct radix_tree_node *old = slot[i];
  819. if (i) {
  820. rcu_assign_pointer(slot[i], child);
  821. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  822. if (tags & (1 << tag))
  823. tag_clear(node, tag, offset + i);
  824. } else {
  825. rcu_assign_pointer(slot[i], item);
  826. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  827. if (tags & (1 << tag))
  828. tag_set(node, tag, offset);
  829. }
  830. if (radix_tree_is_internal_node(old) &&
  831. !is_sibling_entry(node, old) &&
  832. (old != RADIX_TREE_RETRY))
  833. radix_tree_free_nodes(old);
  834. if (radix_tree_exceptional_entry(old))
  835. node->exceptional--;
  836. }
  837. if (node) {
  838. node->count += n;
  839. if (radix_tree_exceptional_entry(item))
  840. node->exceptional += n;
  841. }
  842. return n;
  843. }
  844. #else
  845. static inline int insert_entries(struct radix_tree_node *node, void **slot,
  846. void *item, unsigned order, bool replace)
  847. {
  848. if (*slot)
  849. return -EEXIST;
  850. rcu_assign_pointer(*slot, item);
  851. if (node) {
  852. node->count++;
  853. if (radix_tree_exceptional_entry(item))
  854. node->exceptional++;
  855. }
  856. return 1;
  857. }
  858. #endif
  859. /**
  860. * __radix_tree_insert - insert into a radix tree
  861. * @root: radix tree root
  862. * @index: index key
  863. * @order: key covers the 2^order indices around index
  864. * @item: item to insert
  865. *
  866. * Insert an item into the radix tree at position @index.
  867. */
  868. int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
  869. unsigned order, void *item)
  870. {
  871. struct radix_tree_node *node;
  872. void **slot;
  873. int error;
  874. BUG_ON(radix_tree_is_internal_node(item));
  875. error = __radix_tree_create(root, index, order, &node, &slot);
  876. if (error)
  877. return error;
  878. error = insert_entries(node, slot, item, order, false);
  879. if (error < 0)
  880. return error;
  881. if (node) {
  882. unsigned offset = get_slot_offset(node, slot);
  883. BUG_ON(tag_get(node, 0, offset));
  884. BUG_ON(tag_get(node, 1, offset));
  885. BUG_ON(tag_get(node, 2, offset));
  886. } else {
  887. BUG_ON(root_tags_get(root));
  888. }
  889. return 0;
  890. }
  891. EXPORT_SYMBOL(__radix_tree_insert);
  892. /**
  893. * __radix_tree_lookup - lookup an item in a radix tree
  894. * @root: radix tree root
  895. * @index: index key
  896. * @nodep: returns node
  897. * @slotp: returns slot
  898. *
  899. * Lookup and return the item at position @index in the radix
  900. * tree @root.
  901. *
  902. * Until there is more than one item in the tree, no nodes are
  903. * allocated and @root->rnode is used as a direct slot instead of
  904. * pointing to a node, in which case *@nodep will be NULL.
  905. */
  906. void *__radix_tree_lookup(const struct radix_tree_root *root,
  907. unsigned long index, struct radix_tree_node **nodep,
  908. void ***slotp)
  909. {
  910. struct radix_tree_node *node, *parent;
  911. unsigned long maxindex;
  912. void **slot;
  913. restart:
  914. parent = NULL;
  915. slot = (void **)&root->rnode;
  916. radix_tree_load_root(root, &node, &maxindex);
  917. if (index > maxindex)
  918. return NULL;
  919. while (radix_tree_is_internal_node(node)) {
  920. unsigned offset;
  921. if (node == RADIX_TREE_RETRY)
  922. goto restart;
  923. parent = entry_to_node(node);
  924. offset = radix_tree_descend(parent, &node, index);
  925. slot = parent->slots + offset;
  926. }
  927. if (nodep)
  928. *nodep = parent;
  929. if (slotp)
  930. *slotp = slot;
  931. return node;
  932. }
  933. /**
  934. * radix_tree_lookup_slot - lookup a slot in a radix tree
  935. * @root: radix tree root
  936. * @index: index key
  937. *
  938. * Returns: the slot corresponding to the position @index in the
  939. * radix tree @root. This is useful for update-if-exists operations.
  940. *
  941. * This function can be called under rcu_read_lock iff the slot is not
  942. * modified by radix_tree_replace_slot, otherwise it must be called
  943. * exclusive from other writers. Any dereference of the slot must be done
  944. * using radix_tree_deref_slot.
  945. */
  946. void **radix_tree_lookup_slot(const struct radix_tree_root *root,
  947. unsigned long index)
  948. {
  949. void **slot;
  950. if (!__radix_tree_lookup(root, index, NULL, &slot))
  951. return NULL;
  952. return slot;
  953. }
  954. EXPORT_SYMBOL(radix_tree_lookup_slot);
  955. /**
  956. * radix_tree_lookup - perform lookup operation on a radix tree
  957. * @root: radix tree root
  958. * @index: index key
  959. *
  960. * Lookup the item at the position @index in the radix tree @root.
  961. *
  962. * This function can be called under rcu_read_lock, however the caller
  963. * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
  964. * them safely). No RCU barriers are required to access or modify the
  965. * returned item, however.
  966. */
  967. void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
  968. {
  969. return __radix_tree_lookup(root, index, NULL, NULL);
  970. }
  971. EXPORT_SYMBOL(radix_tree_lookup);
  972. static inline void replace_sibling_entries(struct radix_tree_node *node,
  973. void **slot, int count, int exceptional)
  974. {
  975. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  976. void *ptr = node_to_entry(slot);
  977. unsigned offset = get_slot_offset(node, slot) + 1;
  978. while (offset < RADIX_TREE_MAP_SIZE) {
  979. if (node->slots[offset] != ptr)
  980. break;
  981. if (count < 0) {
  982. node->slots[offset] = NULL;
  983. node->count--;
  984. }
  985. node->exceptional += exceptional;
  986. offset++;
  987. }
  988. #endif
  989. }
  990. static void replace_slot(void **slot, void *item, struct radix_tree_node *node,
  991. int count, int exceptional)
  992. {
  993. if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
  994. return;
  995. if (node && (count || exceptional)) {
  996. node->count += count;
  997. node->exceptional += exceptional;
  998. replace_sibling_entries(node, slot, count, exceptional);
  999. }
  1000. rcu_assign_pointer(*slot, item);
  1001. }
  1002. static bool node_tag_get(const struct radix_tree_root *root,
  1003. const struct radix_tree_node *node,
  1004. unsigned int tag, unsigned int offset)
  1005. {
  1006. if (node)
  1007. return tag_get(node, tag, offset);
  1008. return root_tag_get(root, tag);
  1009. }
  1010. /*
  1011. * IDR users want to be able to store NULL in the tree, so if the slot isn't
  1012. * free, don't adjust the count, even if it's transitioning between NULL and
  1013. * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
  1014. * have empty bits, but it only stores NULL in slots when they're being
  1015. * deleted.
  1016. */
  1017. static int calculate_count(struct radix_tree_root *root,
  1018. struct radix_tree_node *node, void **slot,
  1019. void *item, void *old)
  1020. {
  1021. if (is_idr(root)) {
  1022. unsigned offset = get_slot_offset(node, slot);
  1023. bool free = node_tag_get(root, node, IDR_FREE, offset);
  1024. if (!free)
  1025. return 0;
  1026. if (!old)
  1027. return 1;
  1028. }
  1029. return !!item - !!old;
  1030. }
  1031. /**
  1032. * __radix_tree_replace - replace item in a slot
  1033. * @root: radix tree root
  1034. * @node: pointer to tree node
  1035. * @slot: pointer to slot in @node
  1036. * @item: new item to store in the slot.
  1037. * @update_node: callback for changing leaf nodes
  1038. * @private: private data to pass to @update_node
  1039. *
  1040. * For use with __radix_tree_lookup(). Caller must hold tree write locked
  1041. * across slot lookup and replacement.
  1042. */
  1043. void __radix_tree_replace(struct radix_tree_root *root,
  1044. struct radix_tree_node *node,
  1045. void **slot, void *item,
  1046. radix_tree_update_node_t update_node, void *private)
  1047. {
  1048. void *old = rcu_dereference_raw(*slot);
  1049. int exceptional = !!radix_tree_exceptional_entry(item) -
  1050. !!radix_tree_exceptional_entry(old);
  1051. int count = calculate_count(root, node, slot, item, old);
  1052. /*
  1053. * This function supports replacing exceptional entries and
  1054. * deleting entries, but that needs accounting against the
  1055. * node unless the slot is root->rnode.
  1056. */
  1057. WARN_ON_ONCE(!node && (slot != (void **)&root->rnode) &&
  1058. (count || exceptional));
  1059. replace_slot(slot, item, node, count, exceptional);
  1060. if (!node)
  1061. return;
  1062. if (update_node)
  1063. update_node(node, private);
  1064. delete_node(root, node, update_node, private);
  1065. }
  1066. /**
  1067. * radix_tree_replace_slot - replace item in a slot
  1068. * @root: radix tree root
  1069. * @slot: pointer to slot
  1070. * @item: new item to store in the slot.
  1071. *
  1072. * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
  1073. * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
  1074. * across slot lookup and replacement.
  1075. *
  1076. * NOTE: This cannot be used to switch between non-entries (empty slots),
  1077. * regular entries, and exceptional entries, as that requires accounting
  1078. * inside the radix tree node. When switching from one type of entry or
  1079. * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
  1080. * radix_tree_iter_replace().
  1081. */
  1082. void radix_tree_replace_slot(struct radix_tree_root *root,
  1083. void **slot, void *item)
  1084. {
  1085. __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
  1086. }
  1087. /**
  1088. * radix_tree_iter_replace - replace item in a slot
  1089. * @root: radix tree root
  1090. * @slot: pointer to slot
  1091. * @item: new item to store in the slot.
  1092. *
  1093. * For use with radix_tree_split() and radix_tree_for_each_slot().
  1094. * Caller must hold tree write locked across split and replacement.
  1095. */
  1096. void radix_tree_iter_replace(struct radix_tree_root *root,
  1097. const struct radix_tree_iter *iter, void **slot, void *item)
  1098. {
  1099. __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
  1100. }
  1101. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1102. /**
  1103. * radix_tree_join - replace multiple entries with one multiorder entry
  1104. * @root: radix tree root
  1105. * @index: an index inside the new entry
  1106. * @order: order of the new entry
  1107. * @item: new entry
  1108. *
  1109. * Call this function to replace several entries with one larger entry.
  1110. * The existing entries are presumed to not need freeing as a result of
  1111. * this call.
  1112. *
  1113. * The replacement entry will have all the tags set on it that were set
  1114. * on any of the entries it is replacing.
  1115. */
  1116. int radix_tree_join(struct radix_tree_root *root, unsigned long index,
  1117. unsigned order, void *item)
  1118. {
  1119. struct radix_tree_node *node;
  1120. void **slot;
  1121. int error;
  1122. BUG_ON(radix_tree_is_internal_node(item));
  1123. error = __radix_tree_create(root, index, order, &node, &slot);
  1124. if (!error)
  1125. error = insert_entries(node, slot, item, order, true);
  1126. if (error > 0)
  1127. error = 0;
  1128. return error;
  1129. }
  1130. /**
  1131. * radix_tree_split - Split an entry into smaller entries
  1132. * @root: radix tree root
  1133. * @index: An index within the large entry
  1134. * @order: Order of new entries
  1135. *
  1136. * Call this function as the first step in replacing a multiorder entry
  1137. * with several entries of lower order. After this function returns,
  1138. * loop over the relevant portion of the tree using radix_tree_for_each_slot()
  1139. * and call radix_tree_iter_replace() to set up each new entry.
  1140. *
  1141. * The tags from this entry are replicated to all the new entries.
  1142. *
  1143. * The radix tree should be locked against modification during the entire
  1144. * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
  1145. * should prompt RCU walkers to restart the lookup from the root.
  1146. */
  1147. int radix_tree_split(struct radix_tree_root *root, unsigned long index,
  1148. unsigned order)
  1149. {
  1150. struct radix_tree_node *parent, *node, *child;
  1151. void **slot;
  1152. unsigned int offset, end;
  1153. unsigned n, tag, tags = 0;
  1154. gfp_t gfp = root_gfp_mask(root);
  1155. if (!__radix_tree_lookup(root, index, &parent, &slot))
  1156. return -ENOENT;
  1157. if (!parent)
  1158. return -ENOENT;
  1159. offset = get_slot_offset(parent, slot);
  1160. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1161. if (tag_get(parent, tag, offset))
  1162. tags |= 1 << tag;
  1163. for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
  1164. if (!is_sibling_entry(parent, parent->slots[end]))
  1165. break;
  1166. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1167. if (tags & (1 << tag))
  1168. tag_set(parent, tag, end);
  1169. /* rcu_assign_pointer ensures tags are set before RETRY */
  1170. rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
  1171. }
  1172. rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
  1173. parent->exceptional -= (end - offset);
  1174. if (order == parent->shift)
  1175. return 0;
  1176. if (order > parent->shift) {
  1177. while (offset < end)
  1178. offset += insert_entries(parent, &parent->slots[offset],
  1179. RADIX_TREE_RETRY, order, true);
  1180. return 0;
  1181. }
  1182. node = parent;
  1183. for (;;) {
  1184. if (node->shift > order) {
  1185. child = radix_tree_node_alloc(gfp, node,
  1186. node->shift - RADIX_TREE_MAP_SHIFT,
  1187. offset, 0, 0);
  1188. if (!child)
  1189. goto nomem;
  1190. if (node != parent) {
  1191. node->count++;
  1192. node->slots[offset] = node_to_entry(child);
  1193. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1194. if (tags & (1 << tag))
  1195. tag_set(node, tag, offset);
  1196. }
  1197. node = child;
  1198. offset = 0;
  1199. continue;
  1200. }
  1201. n = insert_entries(node, &node->slots[offset],
  1202. RADIX_TREE_RETRY, order, false);
  1203. BUG_ON(n > RADIX_TREE_MAP_SIZE);
  1204. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1205. if (tags & (1 << tag))
  1206. tag_set(node, tag, offset);
  1207. offset += n;
  1208. while (offset == RADIX_TREE_MAP_SIZE) {
  1209. if (node == parent)
  1210. break;
  1211. offset = node->offset;
  1212. child = node;
  1213. node = node->parent;
  1214. rcu_assign_pointer(node->slots[offset],
  1215. node_to_entry(child));
  1216. offset++;
  1217. }
  1218. if ((node == parent) && (offset == end))
  1219. return 0;
  1220. }
  1221. nomem:
  1222. /* Shouldn't happen; did user forget to preload? */
  1223. /* TODO: free all the allocated nodes */
  1224. WARN_ON(1);
  1225. return -ENOMEM;
  1226. }
  1227. #endif
  1228. static void node_tag_set(struct radix_tree_root *root,
  1229. struct radix_tree_node *node,
  1230. unsigned int tag, unsigned int offset)
  1231. {
  1232. while (node) {
  1233. if (tag_get(node, tag, offset))
  1234. return;
  1235. tag_set(node, tag, offset);
  1236. offset = node->offset;
  1237. node = node->parent;
  1238. }
  1239. if (!root_tag_get(root, tag))
  1240. root_tag_set(root, tag);
  1241. }
  1242. /**
  1243. * radix_tree_tag_set - set a tag on a radix tree node
  1244. * @root: radix tree root
  1245. * @index: index key
  1246. * @tag: tag index
  1247. *
  1248. * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1249. * corresponding to @index in the radix tree. From
  1250. * the root all the way down to the leaf node.
  1251. *
  1252. * Returns the address of the tagged item. Setting a tag on a not-present
  1253. * item is a bug.
  1254. */
  1255. void *radix_tree_tag_set(struct radix_tree_root *root,
  1256. unsigned long index, unsigned int tag)
  1257. {
  1258. struct radix_tree_node *node, *parent;
  1259. unsigned long maxindex;
  1260. radix_tree_load_root(root, &node, &maxindex);
  1261. BUG_ON(index > maxindex);
  1262. while (radix_tree_is_internal_node(node)) {
  1263. unsigned offset;
  1264. parent = entry_to_node(node);
  1265. offset = radix_tree_descend(parent, &node, index);
  1266. BUG_ON(!node);
  1267. if (!tag_get(parent, tag, offset))
  1268. tag_set(parent, tag, offset);
  1269. }
  1270. /* set the root's tag bit */
  1271. if (!root_tag_get(root, tag))
  1272. root_tag_set(root, tag);
  1273. return node;
  1274. }
  1275. EXPORT_SYMBOL(radix_tree_tag_set);
  1276. /**
  1277. * radix_tree_iter_tag_set - set a tag on the current iterator entry
  1278. * @root: radix tree root
  1279. * @iter: iterator state
  1280. * @tag: tag to set
  1281. */
  1282. void radix_tree_iter_tag_set(struct radix_tree_root *root,
  1283. const struct radix_tree_iter *iter, unsigned int tag)
  1284. {
  1285. node_tag_set(root, iter->node, tag, iter_offset(iter));
  1286. }
  1287. static void node_tag_clear(struct radix_tree_root *root,
  1288. struct radix_tree_node *node,
  1289. unsigned int tag, unsigned int offset)
  1290. {
  1291. while (node) {
  1292. if (!tag_get(node, tag, offset))
  1293. return;
  1294. tag_clear(node, tag, offset);
  1295. if (any_tag_set(node, tag))
  1296. return;
  1297. offset = node->offset;
  1298. node = node->parent;
  1299. }
  1300. /* clear the root's tag bit */
  1301. if (root_tag_get(root, tag))
  1302. root_tag_clear(root, tag);
  1303. }
  1304. /**
  1305. * radix_tree_tag_clear - clear a tag on a radix tree node
  1306. * @root: radix tree root
  1307. * @index: index key
  1308. * @tag: tag index
  1309. *
  1310. * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1311. * corresponding to @index in the radix tree. If this causes
  1312. * the leaf node to have no tags set then clear the tag in the
  1313. * next-to-leaf node, etc.
  1314. *
  1315. * Returns the address of the tagged item on success, else NULL. ie:
  1316. * has the same return value and semantics as radix_tree_lookup().
  1317. */
  1318. void *radix_tree_tag_clear(struct radix_tree_root *root,
  1319. unsigned long index, unsigned int tag)
  1320. {
  1321. struct radix_tree_node *node, *parent;
  1322. unsigned long maxindex;
  1323. int uninitialized_var(offset);
  1324. radix_tree_load_root(root, &node, &maxindex);
  1325. if (index > maxindex)
  1326. return NULL;
  1327. parent = NULL;
  1328. while (radix_tree_is_internal_node(node)) {
  1329. parent = entry_to_node(node);
  1330. offset = radix_tree_descend(parent, &node, index);
  1331. }
  1332. if (node)
  1333. node_tag_clear(root, parent, tag, offset);
  1334. return node;
  1335. }
  1336. EXPORT_SYMBOL(radix_tree_tag_clear);
  1337. /**
  1338. * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  1339. * @root: radix tree root
  1340. * @iter: iterator state
  1341. * @tag: tag to clear
  1342. */
  1343. void radix_tree_iter_tag_clear(struct radix_tree_root *root,
  1344. const struct radix_tree_iter *iter, unsigned int tag)
  1345. {
  1346. node_tag_clear(root, iter->node, tag, iter_offset(iter));
  1347. }
  1348. /**
  1349. * radix_tree_tag_get - get a tag on a radix tree node
  1350. * @root: radix tree root
  1351. * @index: index key
  1352. * @tag: tag index (< RADIX_TREE_MAX_TAGS)
  1353. *
  1354. * Return values:
  1355. *
  1356. * 0: tag not present or not set
  1357. * 1: tag set
  1358. *
  1359. * Note that the return value of this function may not be relied on, even if
  1360. * the RCU lock is held, unless tag modification and node deletion are excluded
  1361. * from concurrency.
  1362. */
  1363. int radix_tree_tag_get(const struct radix_tree_root *root,
  1364. unsigned long index, unsigned int tag)
  1365. {
  1366. struct radix_tree_node *node, *parent;
  1367. unsigned long maxindex;
  1368. if (!root_tag_get(root, tag))
  1369. return 0;
  1370. radix_tree_load_root(root, &node, &maxindex);
  1371. if (index > maxindex)
  1372. return 0;
  1373. while (radix_tree_is_internal_node(node)) {
  1374. unsigned offset;
  1375. parent = entry_to_node(node);
  1376. offset = radix_tree_descend(parent, &node, index);
  1377. if (!tag_get(parent, tag, offset))
  1378. return 0;
  1379. if (node == RADIX_TREE_RETRY)
  1380. break;
  1381. }
  1382. return 1;
  1383. }
  1384. EXPORT_SYMBOL(radix_tree_tag_get);
  1385. static inline void __set_iter_shift(struct radix_tree_iter *iter,
  1386. unsigned int shift)
  1387. {
  1388. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1389. iter->shift = shift;
  1390. #endif
  1391. }
  1392. /* Construct iter->tags bit-mask from node->tags[tag] array */
  1393. static void set_iter_tags(struct radix_tree_iter *iter,
  1394. struct radix_tree_node *node, unsigned offset,
  1395. unsigned tag)
  1396. {
  1397. unsigned tag_long = offset / BITS_PER_LONG;
  1398. unsigned tag_bit = offset % BITS_PER_LONG;
  1399. if (!node) {
  1400. iter->tags = 1;
  1401. return;
  1402. }
  1403. iter->tags = node->tags[tag][tag_long] >> tag_bit;
  1404. /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
  1405. if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
  1406. /* Pick tags from next element */
  1407. if (tag_bit)
  1408. iter->tags |= node->tags[tag][tag_long + 1] <<
  1409. (BITS_PER_LONG - tag_bit);
  1410. /* Clip chunk size, here only BITS_PER_LONG tags */
  1411. iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
  1412. }
  1413. }
  1414. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1415. static void **skip_siblings(struct radix_tree_node **nodep,
  1416. void **slot, struct radix_tree_iter *iter)
  1417. {
  1418. void *sib = node_to_entry(slot - 1);
  1419. while (iter->index < iter->next_index) {
  1420. *nodep = rcu_dereference_raw(*slot);
  1421. if (*nodep && *nodep != sib)
  1422. return slot;
  1423. slot++;
  1424. iter->index = __radix_tree_iter_add(iter, 1);
  1425. iter->tags >>= 1;
  1426. }
  1427. *nodep = NULL;
  1428. return NULL;
  1429. }
  1430. void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
  1431. unsigned flags)
  1432. {
  1433. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1434. struct radix_tree_node *node = rcu_dereference_raw(*slot);
  1435. slot = skip_siblings(&node, slot, iter);
  1436. while (radix_tree_is_internal_node(node)) {
  1437. unsigned offset;
  1438. unsigned long next_index;
  1439. if (node == RADIX_TREE_RETRY)
  1440. return slot;
  1441. node = entry_to_node(node);
  1442. iter->node = node;
  1443. iter->shift = node->shift;
  1444. if (flags & RADIX_TREE_ITER_TAGGED) {
  1445. offset = radix_tree_find_next_bit(node, tag, 0);
  1446. if (offset == RADIX_TREE_MAP_SIZE)
  1447. return NULL;
  1448. slot = &node->slots[offset];
  1449. iter->index = __radix_tree_iter_add(iter, offset);
  1450. set_iter_tags(iter, node, offset, tag);
  1451. node = rcu_dereference_raw(*slot);
  1452. } else {
  1453. offset = 0;
  1454. slot = &node->slots[0];
  1455. for (;;) {
  1456. node = rcu_dereference_raw(*slot);
  1457. if (node)
  1458. break;
  1459. slot++;
  1460. offset++;
  1461. if (offset == RADIX_TREE_MAP_SIZE)
  1462. return NULL;
  1463. }
  1464. iter->index = __radix_tree_iter_add(iter, offset);
  1465. }
  1466. if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
  1467. goto none;
  1468. next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
  1469. if (next_index < iter->next_index)
  1470. iter->next_index = next_index;
  1471. }
  1472. return slot;
  1473. none:
  1474. iter->next_index = 0;
  1475. return NULL;
  1476. }
  1477. EXPORT_SYMBOL(__radix_tree_next_slot);
  1478. #else
  1479. static void **skip_siblings(struct radix_tree_node **nodep,
  1480. void **slot, struct radix_tree_iter *iter)
  1481. {
  1482. return slot;
  1483. }
  1484. #endif
  1485. void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
  1486. {
  1487. struct radix_tree_node *node;
  1488. slot++;
  1489. iter->index = __radix_tree_iter_add(iter, 1);
  1490. node = rcu_dereference_raw(*slot);
  1491. skip_siblings(&node, slot, iter);
  1492. iter->next_index = iter->index;
  1493. iter->tags = 0;
  1494. return NULL;
  1495. }
  1496. EXPORT_SYMBOL(radix_tree_iter_resume);
  1497. /**
  1498. * radix_tree_next_chunk - find next chunk of slots for iteration
  1499. *
  1500. * @root: radix tree root
  1501. * @iter: iterator state
  1502. * @flags: RADIX_TREE_ITER_* flags and tag index
  1503. * Returns: pointer to chunk first slot, or NULL if iteration is over
  1504. */
  1505. void **radix_tree_next_chunk(const struct radix_tree_root *root,
  1506. struct radix_tree_iter *iter, unsigned flags)
  1507. {
  1508. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1509. struct radix_tree_node *node, *child;
  1510. unsigned long index, offset, maxindex;
  1511. if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
  1512. return NULL;
  1513. /*
  1514. * Catch next_index overflow after ~0UL. iter->index never overflows
  1515. * during iterating; it can be zero only at the beginning.
  1516. * And we cannot overflow iter->next_index in a single step,
  1517. * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
  1518. *
  1519. * This condition also used by radix_tree_next_slot() to stop
  1520. * contiguous iterating, and forbid switching to the next chunk.
  1521. */
  1522. index = iter->next_index;
  1523. if (!index && iter->index)
  1524. return NULL;
  1525. restart:
  1526. radix_tree_load_root(root, &child, &maxindex);
  1527. if (index > maxindex)
  1528. return NULL;
  1529. if (!child)
  1530. return NULL;
  1531. if (!radix_tree_is_internal_node(child)) {
  1532. /* Single-slot tree */
  1533. iter->index = index;
  1534. iter->next_index = maxindex + 1;
  1535. iter->tags = 1;
  1536. iter->node = NULL;
  1537. __set_iter_shift(iter, 0);
  1538. return (void **)&root->rnode;
  1539. }
  1540. do {
  1541. node = entry_to_node(child);
  1542. offset = radix_tree_descend(node, &child, index);
  1543. if ((flags & RADIX_TREE_ITER_TAGGED) ?
  1544. !tag_get(node, tag, offset) : !child) {
  1545. /* Hole detected */
  1546. if (flags & RADIX_TREE_ITER_CONTIG)
  1547. return NULL;
  1548. if (flags & RADIX_TREE_ITER_TAGGED)
  1549. offset = radix_tree_find_next_bit(node, tag,
  1550. offset + 1);
  1551. else
  1552. while (++offset < RADIX_TREE_MAP_SIZE) {
  1553. void *slot = node->slots[offset];
  1554. if (is_sibling_entry(node, slot))
  1555. continue;
  1556. if (slot)
  1557. break;
  1558. }
  1559. index &= ~node_maxindex(node);
  1560. index += offset << node->shift;
  1561. /* Overflow after ~0UL */
  1562. if (!index)
  1563. return NULL;
  1564. if (offset == RADIX_TREE_MAP_SIZE)
  1565. goto restart;
  1566. child = rcu_dereference_raw(node->slots[offset]);
  1567. }
  1568. if (!child)
  1569. goto restart;
  1570. if (child == RADIX_TREE_RETRY)
  1571. break;
  1572. } while (radix_tree_is_internal_node(child));
  1573. /* Update the iterator state */
  1574. iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
  1575. iter->next_index = (index | node_maxindex(node)) + 1;
  1576. iter->node = node;
  1577. __set_iter_shift(iter, node->shift);
  1578. if (flags & RADIX_TREE_ITER_TAGGED)
  1579. set_iter_tags(iter, node, offset, tag);
  1580. return node->slots + offset;
  1581. }
  1582. EXPORT_SYMBOL(radix_tree_next_chunk);
  1583. /**
  1584. * radix_tree_gang_lookup - perform multiple lookup on a radix tree
  1585. * @root: radix tree root
  1586. * @results: where the results of the lookup are placed
  1587. * @first_index: start the lookup from this key
  1588. * @max_items: place up to this many items at *results
  1589. *
  1590. * Performs an index-ascending scan of the tree for present items. Places
  1591. * them at *@results and returns the number of items which were placed at
  1592. * *@results.
  1593. *
  1594. * The implementation is naive.
  1595. *
  1596. * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
  1597. * rcu_read_lock. In this case, rather than the returned results being
  1598. * an atomic snapshot of the tree at a single point in time, the
  1599. * semantics of an RCU protected gang lookup are as though multiple
  1600. * radix_tree_lookups have been issued in individual locks, and results
  1601. * stored in 'results'.
  1602. */
  1603. unsigned int
  1604. radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
  1605. unsigned long first_index, unsigned int max_items)
  1606. {
  1607. struct radix_tree_iter iter;
  1608. void **slot;
  1609. unsigned int ret = 0;
  1610. if (unlikely(!max_items))
  1611. return 0;
  1612. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1613. results[ret] = rcu_dereference_raw(*slot);
  1614. if (!results[ret])
  1615. continue;
  1616. if (radix_tree_is_internal_node(results[ret])) {
  1617. slot = radix_tree_iter_retry(&iter);
  1618. continue;
  1619. }
  1620. if (++ret == max_items)
  1621. break;
  1622. }
  1623. return ret;
  1624. }
  1625. EXPORT_SYMBOL(radix_tree_gang_lookup);
  1626. /**
  1627. * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
  1628. * @root: radix tree root
  1629. * @results: where the results of the lookup are placed
  1630. * @indices: where their indices should be placed (but usually NULL)
  1631. * @first_index: start the lookup from this key
  1632. * @max_items: place up to this many items at *results
  1633. *
  1634. * Performs an index-ascending scan of the tree for present items. Places
  1635. * their slots at *@results and returns the number of items which were
  1636. * placed at *@results.
  1637. *
  1638. * The implementation is naive.
  1639. *
  1640. * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
  1641. * be dereferenced with radix_tree_deref_slot, and if using only RCU
  1642. * protection, radix_tree_deref_slot may fail requiring a retry.
  1643. */
  1644. unsigned int
  1645. radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
  1646. void ***results, unsigned long *indices,
  1647. unsigned long first_index, unsigned int max_items)
  1648. {
  1649. struct radix_tree_iter iter;
  1650. void **slot;
  1651. unsigned int ret = 0;
  1652. if (unlikely(!max_items))
  1653. return 0;
  1654. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1655. results[ret] = slot;
  1656. if (indices)
  1657. indices[ret] = iter.index;
  1658. if (++ret == max_items)
  1659. break;
  1660. }
  1661. return ret;
  1662. }
  1663. EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
  1664. /**
  1665. * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
  1666. * based on a tag
  1667. * @root: radix tree root
  1668. * @results: where the results of the lookup are placed
  1669. * @first_index: start the lookup from this key
  1670. * @max_items: place up to this many items at *results
  1671. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1672. *
  1673. * Performs an index-ascending scan of the tree for present items which
  1674. * have the tag indexed by @tag set. Places the items at *@results and
  1675. * returns the number of items which were placed at *@results.
  1676. */
  1677. unsigned int
  1678. radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
  1679. unsigned long first_index, unsigned int max_items,
  1680. unsigned int tag)
  1681. {
  1682. struct radix_tree_iter iter;
  1683. void **slot;
  1684. unsigned int ret = 0;
  1685. if (unlikely(!max_items))
  1686. return 0;
  1687. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1688. results[ret] = rcu_dereference_raw(*slot);
  1689. if (!results[ret])
  1690. continue;
  1691. if (radix_tree_is_internal_node(results[ret])) {
  1692. slot = radix_tree_iter_retry(&iter);
  1693. continue;
  1694. }
  1695. if (++ret == max_items)
  1696. break;
  1697. }
  1698. return ret;
  1699. }
  1700. EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
  1701. /**
  1702. * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
  1703. * radix tree based on a tag
  1704. * @root: radix tree root
  1705. * @results: where the results of the lookup are placed
  1706. * @first_index: start the lookup from this key
  1707. * @max_items: place up to this many items at *results
  1708. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1709. *
  1710. * Performs an index-ascending scan of the tree for present items which
  1711. * have the tag indexed by @tag set. Places the slots at *@results and
  1712. * returns the number of slots which were placed at *@results.
  1713. */
  1714. unsigned int
  1715. radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
  1716. void ***results, unsigned long first_index,
  1717. unsigned int max_items, unsigned int tag)
  1718. {
  1719. struct radix_tree_iter iter;
  1720. void **slot;
  1721. unsigned int ret = 0;
  1722. if (unlikely(!max_items))
  1723. return 0;
  1724. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1725. results[ret] = slot;
  1726. if (++ret == max_items)
  1727. break;
  1728. }
  1729. return ret;
  1730. }
  1731. EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
  1732. /**
  1733. * __radix_tree_delete_node - try to free node after clearing a slot
  1734. * @root: radix tree root
  1735. * @node: node containing @index
  1736. * @update_node: callback for changing leaf nodes
  1737. * @private: private data to pass to @update_node
  1738. *
  1739. * After clearing the slot at @index in @node from radix tree
  1740. * rooted at @root, call this function to attempt freeing the
  1741. * node and shrinking the tree.
  1742. */
  1743. void __radix_tree_delete_node(struct radix_tree_root *root,
  1744. struct radix_tree_node *node,
  1745. radix_tree_update_node_t update_node,
  1746. void *private)
  1747. {
  1748. delete_node(root, node, update_node, private);
  1749. }
  1750. static bool __radix_tree_delete(struct radix_tree_root *root,
  1751. struct radix_tree_node *node, void **slot)
  1752. {
  1753. void *old = rcu_dereference_raw(*slot);
  1754. int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
  1755. unsigned offset = get_slot_offset(node, slot);
  1756. int tag;
  1757. if (is_idr(root))
  1758. node_tag_set(root, node, IDR_FREE, offset);
  1759. else
  1760. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1761. node_tag_clear(root, node, tag, offset);
  1762. replace_slot(slot, NULL, node, -1, exceptional);
  1763. return node && delete_node(root, node, NULL, NULL);
  1764. }
  1765. /**
  1766. * radix_tree_iter_delete - delete the entry at this iterator position
  1767. * @root: radix tree root
  1768. * @iter: iterator state
  1769. * @slot: pointer to slot
  1770. *
  1771. * Delete the entry at the position currently pointed to by the iterator.
  1772. * This may result in the current node being freed; if it is, the iterator
  1773. * is advanced so that it will not reference the freed memory. This
  1774. * function may be called without any locking if there are no other threads
  1775. * which can access this tree.
  1776. */
  1777. void radix_tree_iter_delete(struct radix_tree_root *root,
  1778. struct radix_tree_iter *iter, void **slot)
  1779. {
  1780. if (__radix_tree_delete(root, iter->node, slot))
  1781. iter->index = iter->next_index;
  1782. }
  1783. /**
  1784. * radix_tree_delete_item - delete an item from a radix tree
  1785. * @root: radix tree root
  1786. * @index: index key
  1787. * @item: expected item
  1788. *
  1789. * Remove @item at @index from the radix tree rooted at @root.
  1790. *
  1791. * Return: the deleted entry, or %NULL if it was not present
  1792. * or the entry at the given @index was not @item.
  1793. */
  1794. void *radix_tree_delete_item(struct radix_tree_root *root,
  1795. unsigned long index, void *item)
  1796. {
  1797. struct radix_tree_node *node = NULL;
  1798. void **slot;
  1799. void *entry;
  1800. entry = __radix_tree_lookup(root, index, &node, &slot);
  1801. if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
  1802. get_slot_offset(node, slot))))
  1803. return NULL;
  1804. if (item && entry != item)
  1805. return NULL;
  1806. __radix_tree_delete(root, node, slot);
  1807. return entry;
  1808. }
  1809. EXPORT_SYMBOL(radix_tree_delete_item);
  1810. /**
  1811. * radix_tree_delete - delete an entry from a radix tree
  1812. * @root: radix tree root
  1813. * @index: index key
  1814. *
  1815. * Remove the entry at @index from the radix tree rooted at @root.
  1816. *
  1817. * Return: The deleted entry, or %NULL if it was not present.
  1818. */
  1819. void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
  1820. {
  1821. return radix_tree_delete_item(root, index, NULL);
  1822. }
  1823. EXPORT_SYMBOL(radix_tree_delete);
  1824. void radix_tree_clear_tags(struct radix_tree_root *root,
  1825. struct radix_tree_node *node,
  1826. void **slot)
  1827. {
  1828. if (node) {
  1829. unsigned int tag, offset = get_slot_offset(node, slot);
  1830. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1831. node_tag_clear(root, node, tag, offset);
  1832. } else {
  1833. root_tag_clear_all(root);
  1834. }
  1835. }
  1836. /**
  1837. * radix_tree_tagged - test whether any items in the tree are tagged
  1838. * @root: radix tree root
  1839. * @tag: tag to test
  1840. */
  1841. int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
  1842. {
  1843. return root_tag_get(root, tag);
  1844. }
  1845. EXPORT_SYMBOL(radix_tree_tagged);
  1846. /**
  1847. * idr_preload - preload for idr_alloc()
  1848. * @gfp_mask: allocation mask to use for preloading
  1849. *
  1850. * Preallocate memory to use for the next call to idr_alloc(). This function
  1851. * returns with preemption disabled. It will be enabled by idr_preload_end().
  1852. */
  1853. void idr_preload(gfp_t gfp_mask)
  1854. {
  1855. __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
  1856. }
  1857. EXPORT_SYMBOL(idr_preload);
  1858. /**
  1859. * ida_pre_get - reserve resources for ida allocation
  1860. * @ida: ida handle
  1861. * @gfp: memory allocation flags
  1862. *
  1863. * This function should be called before calling ida_get_new_above(). If it
  1864. * is unable to allocate memory, it will return %0. On success, it returns %1.
  1865. */
  1866. int ida_pre_get(struct ida *ida, gfp_t gfp)
  1867. {
  1868. __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
  1869. /*
  1870. * The IDA API has no preload_end() equivalent. Instead,
  1871. * ida_get_new() can return -EAGAIN, prompting the caller
  1872. * to return to the ida_pre_get() step.
  1873. */
  1874. preempt_enable();
  1875. if (!this_cpu_read(ida_bitmap)) {
  1876. struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
  1877. if (!bitmap)
  1878. return 0;
  1879. bitmap = this_cpu_cmpxchg(ida_bitmap, NULL, bitmap);
  1880. kfree(bitmap);
  1881. }
  1882. return 1;
  1883. }
  1884. EXPORT_SYMBOL(ida_pre_get);
  1885. void **idr_get_free(struct radix_tree_root *root,
  1886. struct radix_tree_iter *iter, gfp_t gfp, int end)
  1887. {
  1888. struct radix_tree_node *node = NULL, *child;
  1889. void **slot = (void **)&root->rnode;
  1890. unsigned long maxindex, start = iter->next_index;
  1891. unsigned long max = end > 0 ? end - 1 : INT_MAX;
  1892. unsigned int shift, offset = 0;
  1893. grow:
  1894. shift = radix_tree_load_root(root, &child, &maxindex);
  1895. if (!radix_tree_tagged(root, IDR_FREE))
  1896. start = max(start, maxindex + 1);
  1897. if (start > max)
  1898. return ERR_PTR(-ENOSPC);
  1899. if (start > maxindex) {
  1900. int error = radix_tree_extend(root, gfp, start, shift);
  1901. if (error < 0)
  1902. return ERR_PTR(error);
  1903. shift = error;
  1904. child = rcu_dereference_raw(root->rnode);
  1905. }
  1906. while (shift) {
  1907. shift -= RADIX_TREE_MAP_SHIFT;
  1908. if (child == NULL) {
  1909. /* Have to add a child node. */
  1910. child = radix_tree_node_alloc(gfp, node, shift, offset,
  1911. 0, 0);
  1912. if (!child)
  1913. return ERR_PTR(-ENOMEM);
  1914. all_tag_set(child, IDR_FREE);
  1915. rcu_assign_pointer(*slot, node_to_entry(child));
  1916. if (node)
  1917. node->count++;
  1918. } else if (!radix_tree_is_internal_node(child))
  1919. break;
  1920. node = entry_to_node(child);
  1921. offset = radix_tree_descend(node, &child, start);
  1922. if (!tag_get(node, IDR_FREE, offset)) {
  1923. offset = radix_tree_find_next_bit(node, IDR_FREE,
  1924. offset + 1);
  1925. start = next_index(start, node, offset);
  1926. if (start > max)
  1927. return ERR_PTR(-ENOSPC);
  1928. while (offset == RADIX_TREE_MAP_SIZE) {
  1929. offset = node->offset + 1;
  1930. node = node->parent;
  1931. if (!node)
  1932. goto grow;
  1933. shift = node->shift;
  1934. }
  1935. child = rcu_dereference_raw(node->slots[offset]);
  1936. }
  1937. slot = &node->slots[offset];
  1938. }
  1939. iter->index = start;
  1940. if (node)
  1941. iter->next_index = 1 + min(max, (start | node_maxindex(node)));
  1942. else
  1943. iter->next_index = 1;
  1944. iter->node = node;
  1945. __set_iter_shift(iter, shift);
  1946. set_iter_tags(iter, node, offset, IDR_FREE);
  1947. return slot;
  1948. }
  1949. /**
  1950. * idr_destroy - release all internal memory from an IDR
  1951. * @idr: idr handle
  1952. *
  1953. * After this function is called, the IDR is empty, and may be reused or
  1954. * the data structure containing it may be freed.
  1955. *
  1956. * A typical clean-up sequence for objects stored in an idr tree will use
  1957. * idr_for_each() to free all objects, if necessary, then idr_destroy() to
  1958. * free the memory used to keep track of those objects.
  1959. */
  1960. void idr_destroy(struct idr *idr)
  1961. {
  1962. struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
  1963. if (radix_tree_is_internal_node(node))
  1964. radix_tree_free_nodes(node);
  1965. idr->idr_rt.rnode = NULL;
  1966. root_tag_set(&idr->idr_rt, IDR_FREE);
  1967. }
  1968. EXPORT_SYMBOL(idr_destroy);
  1969. static void
  1970. radix_tree_node_ctor(void *arg)
  1971. {
  1972. struct radix_tree_node *node = arg;
  1973. memset(node, 0, sizeof(*node));
  1974. INIT_LIST_HEAD(&node->private_list);
  1975. }
  1976. static __init unsigned long __maxindex(unsigned int height)
  1977. {
  1978. unsigned int width = height * RADIX_TREE_MAP_SHIFT;
  1979. int shift = RADIX_TREE_INDEX_BITS - width;
  1980. if (shift < 0)
  1981. return ~0UL;
  1982. if (shift >= BITS_PER_LONG)
  1983. return 0UL;
  1984. return ~0UL >> shift;
  1985. }
  1986. static __init void radix_tree_init_maxnodes(void)
  1987. {
  1988. unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
  1989. unsigned int i, j;
  1990. for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
  1991. height_to_maxindex[i] = __maxindex(i);
  1992. for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
  1993. for (j = i; j > 0; j--)
  1994. height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
  1995. }
  1996. }
  1997. static int radix_tree_cpu_dead(unsigned int cpu)
  1998. {
  1999. struct radix_tree_preload *rtp;
  2000. struct radix_tree_node *node;
  2001. /* Free per-cpu pool of preloaded nodes */
  2002. rtp = &per_cpu(radix_tree_preloads, cpu);
  2003. while (rtp->nr) {
  2004. node = rtp->nodes;
  2005. rtp->nodes = node->parent;
  2006. kmem_cache_free(radix_tree_node_cachep, node);
  2007. rtp->nr--;
  2008. }
  2009. kfree(per_cpu(ida_bitmap, cpu));
  2010. per_cpu(ida_bitmap, cpu) = NULL;
  2011. return 0;
  2012. }
  2013. void __init radix_tree_init(void)
  2014. {
  2015. int ret;
  2016. radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
  2017. sizeof(struct radix_tree_node), 0,
  2018. SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
  2019. radix_tree_node_ctor);
  2020. radix_tree_init_maxnodes();
  2021. ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
  2022. NULL, radix_tree_cpu_dead);
  2023. WARN_ON(ret < 0);
  2024. }